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Abstract

A t-spanner H of a weighted graph G = (V,E,w) is a subgraph that approximates all
pairwise distances up to a factor of t. The lightness of H is defined as the ratio between the
weight of H to that of the minimum spanning tree. An (α, β)-Shallow Light Tree (SLT) is a
tree of lightness β, that approximates all distances from a designated root vertex up to a factor
of α. A long line of works resulted in efficient algorithms that produce (nearly) optimal light
spanners and SLTs.

Some of the most notable algorithmic applications of light spanners and SLTs are in dis-
tributed settings. Surprisingly, so far there are no known efficient distributed algorithms for
constructing these objects in general graphs. In this paper we devise efficient distributed algo-
rithms in the CONGEST model for constructing light spanners and SLTs, with near optimal
parameters. Specifically, for any k ≥ 1 and 0 < ε < 1, we show a (2k − 1) · (1 + ε)-spanner with

lightness O(k ·n1/k) can be built in Õ
(
n

1
2+

1
4k+2 +D

)
rounds (where n = |V | and D is the hop-

diameter of G). In addition, for any α > 1 we provide an (α, 1 + O(1)
α−1 )-SLT in (

√
n+D) · no(1)

rounds. The running time of our algorithms cannot be substantially improved.
We also consider spanners for the family of doubling graphs, and devise a (

√
n + D) · no(1)

rounds algorithm in the CONGEST model that computes a (1 + ε)-spanner with lightness
(log n)/εO(1). As a stepping stone, which is interesting in its own right, we first develop a
distributed algorithm for constructing nets (for arbitrary weighted graphs), generalizing previous
algorithms that worked only for unweighted graphs.

1 Introduction

Let G = (V,E,w) be a graph with edge weights w : E → R+. For u, v ∈ V , denote by dG(u, v) the
shortest path distance in G between u, v with respect to these weights. A subgraph H = (V,E′)
with E′ ⊆ E is called a t-spanner of G, if for all u, v ∈ V , dH(u, v) ≤ t · dG(u, v). The parameter t
is called the stretch of H. The most relevant and studied attributes of a t-spanner are its sparsity
(i.e., the number of edges |E′|), and the total weight of the edges w(H) =

∑
e∈E′ w(e). Since any

spanner with finite stretch must be connected, its weight is at least the weight of the Minimum
Spanning Tree (MST) of G, and the lightness of H is defined as w(H)

w(MST ) .
Another useful notion of a subgraph that approximately preserves distances was introduced in

[ABP92, KRY95]. Given a weighted graph G = (V,E,w) with a designated root vertex rt, an
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Object Distortion Lightness Size Run time

Spanner (2k − 1) · (1 + ε) O(k · n1/k) O(k · n1+1/k) Õ
(
n

1
2+

1
4k+2 +D

)
SLT 1 + O(1)

α−1 α NA Õ (
√
n+D) · poly

(
1

α−1

)
(γ, β)-net NA NA NA (

√
n+D) · 2Õ(

√
logn·log β

γ−β )

Spanner 1 + ε ε−O(ddim) · log n n · ε−O(ddim) · log n (
√
n+D) · ε−Õ(

√
logn+ddim)

Table 1: A summary of our main results. Here n is the number of vertices, k ≥ 1 and α ≥ 1 are
parameters and 0 < ε < 1 is a constant. For the nets γ > β > 0. All results are in the CONGEST
model.

(α, β)-Shallow-Light Tree (SLT) T of G is a spanning tree which has lightness β, and approximates
all distances from rt to the other vertices up to a factor of α.

In this paper we focus on the distributed CONGEST model of computation, where each vertex
of the graph G hosts a processor, and these processors communicate with each other in discrete
rounds via short messages on the graph edges (typically the message size is O(log n) bits). We
devise efficient distributed algorithms that construct light spanners and shallow-light trees for
general graphs, and also light spanners for doubling graphs. See Table 1 for a succinct summary.

1.1 Light Spanners for General Graphs

Spanners are a fundamental combinatorial object. They have been extensively studied and have
found numerous algorithmic applications [Awe85, PS89, PU89, ADD+93, Coh98, ACIM99, EP01,
BS07, Elk07, EZ06, TZ06, Pet09, DGPV08, Pet10, MPVX15, AB16, EN17a]. The basic greedy
algorithm [ADD+93], for a graph with n vertices and any integer k ≥ 1, provides a (2k−1)-spanner
with O(n1+1/k) edges, which is best possible (assuming Erdos’ girth conjecture). Spanners of low
weight have received much attention in recent years [CDNS95, ES16, ENS15, Got15, CW18, BFN16,
ADF+17, BLW17, FN18, BLW19], and are particularly useful in a distributed setting; efficient
broadcast protocols, network synchronization and computing global functions [ABP90, ABP92],
network design [MP98, SCRS01] and routing [WCT02] are a few examples. The state-of-the-art
is a (2k − 1) · (1 + ε)-spanner of [CW18] with lightness O(n1/k), for any constant 0 < ε < 1. In
[FS16] it was shown that the greedy algorithm is existentially optimal, hence it also achieves such
lightness.

The greedy algorithm provides a satisfactory answer to the existence of sparse and light span-
ners, but not to efficiently producing such a spanner (because the greedy algorithm has inherently
large running time). Indeed, the problem of devising fast algorithms to construct spanners is very
important in some algorithmic applications. For light spanners, [ES16] showed a near-linear time
algorithm that constructs a (2k−1)·(1+ε)-spanner with O(k·n1+1/k) edges and lightness O(k·n1/k).
The sparsity and lightness were improved (still in near-linear time) in [ADF+17] to O(log k ·n1+1/k)
and O(log k · n1/k) respectively. In the distributed setting, [BS07] devised a randomized algorithm
for a (2k− 1)-spanner with O(k · n1+1/k) edges in O(k) rounds in the CONGEST model. This was
recently improved for unweighted graphs by [MPVX15, EN17b] to O(n1+1/k) edges. However, the
weight of these spanners is not bounded. Surprisingly, none of the previous works in the CONGEST
model has a bound on the lightness of spanners for general graphs.
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Our results. Unlike the sparsity of spanners, which can be preserved via a local algorithm, the
lightness is a global measure. Indeed, we observe that the lower bound of [SHK+12] on the number
of rounds required for any polynomial approximation of the MST weight, implies a lower bound
for computing light spanners. In particular, for a graph with n vertices and hop-diameter1 D, any
CONGEST algorithm requires at least Ω̃(

√
n+D) rounds for computing a light spanner (with any

polynomial lightness).2

We provide the first algorithm with sub-linear number of rounds for constructing light spanners
for general graphs in the CONGEST model. Specifically, for any integer parameter k ≥ 1 and
constant 0 < ε < 1, we devise a randomized algorithm that w.h.p. outputs a (2k − 1) · (1 + ε)-

spanner with O(k · n1+1/k) edges and lightness O(k · n1/k), within Õ
(
n

1
2

+ 1
4k+2 +D

)
rounds in the

CONGEST model, thus nearly matching the lower bounds.

1.2 Shallow-Light Trees

Shallow-Light trees are widely used for various distributed tasks, such as network design, broad-
casting in ad-hoc networks and multicasting [PV04, BDS04, YCC06]. In [KRY95], an optimal
tradeoff between the lightness of the SLT to the stretch of the root distances was obtained. Specif-
ically, for any α > 1 they obtained an SLT with lightness α and stretch 1 + 2

α−1 . In addition,
[KRY95] exhibited an efficient algorithm for constructing such a tree in near-linear time, and also
in O(log n) rounds in the PRAM (CREW) model. However, their techniques are inapplicable to the
CONGEST model, and it remained an open question whether an SLT can be built efficiently in this
model. (Roughly speaking, [KRY95] used pointer jumping techniques that require communication
between non-adjacent vertices, hence this is unsuitable for the CONGEST model.)

Our result. Here we answer this question, and devise a distributed deterministic algorithm,
that for any α > 1, outputs an SLT with lightness α and stretch 1 + O(1)

α−1 , within Õ (
√
n+D) ·

poly
(

1
α−1

)
rounds. Once again, any distributed SLT algorithm must take at least Ω̃(

√
n + D)

rounds [Elk04, SHK+12]. Thus our result is nearly optimal.

1.3 Light Spanners for Doubling Graphs

A graph G has doubling dimension ddim if for every vertex v ∈ V and radius r > 0, the ball3

BG(v, 2r) can be covered by 2ddim balls of radius r. For instance, a d-dimensional `p space has
ddim = Θ(d), and every graph with n vertices has ddim = O(log n). This is a standard and
well-studied notion of ”growth restriction” on a graph [Ass83, GKL03, HM06], and it is believed
that such graphs occur often in real-life networks and data [TSL00, NZ02]. One notable motivation
for light spanners in doubling graphs4 is their application for polynomial approximation schemes
for the traveling salesperson and related problems (see, e.g., [Kle05, Got15]). While spanners
with 1 + ε stretch and constant lightness have been known to exists in low dimensional Euclidean
space for a while [DHN93, ADD+93], only recently such (1 + ε)-spanners with constant lightness

1The hop diameter of a weighted graph is the diameter of the underlying unweighted graph.
2The notations Õ(·) and Ω̃(·) hide polylogarithmic factors.
3A ball is defined as BG(v, r) = {u ∈ V : dG(u, v) ≤ r}.
4A graph family is called doubling if its members have constant doubling dimension.
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(ddim/ε)O(ddim) have been discovered for doubling graphs [Got15]. The lightness was improved by
[BLW19] to the optimal (1/ε)O(ddim).

In the distributed LOCAL model5, [DPP06] devised light spanners for a certain graph family,
called unit ball graphs in a doubling metric space6. Specifically, they showed an O(log∗ n) rounds
algorithm for a (1 + ε)-spanner with lightness (1/ε)O(ddim) · log Λ, where Λ is the aspect ratio of G
(the ratio between the largest to smallest edge weights). We note that to obtain such a low number
of rounds, they imposed restrictions on both the distributed model and the graph family.

Essentially all spanners for doubling graphs use nets in their construction. An (α, β)-net of a
graph is a set N ⊆ V which is both α-covering: for all u ∈ V there is v ∈ N with dG(u, v) ≤ α, and
β-separated: for all x, y ∈ N , dG(x, y) > β. The standard definition of a net is when α = β, but we
shall allow α > β as well. The usefulness of nets in doubling graphs stems from the fact that any
net restricted to a ball of certain radius has a small cardinality. While a simple greedy algorithm
yields a net, it is not suitable for distributed models due to it being inherently sequential.

A ruling set is a net in an unweighted graph. There have been several works that compute a
ruling set in distributed settings. In [AGLP89], a deterministic algorithm for a (k log n, k)-ruling
set running in O(k log n) rounds was developed, and a tradeoff extending this result was shown in
[SEW13]. A consequence of the work of [AGLP89] provides a (k, k)-ruling set computed within

k · 2Õ(
√

logn) rounds. A randomized algorithm for a (k, k)-ruling set was given in [Lub86] with
O(k log n) rounds, and the running time was improved for graphs of small maximum degree in
[BEPS12, Gha16]. However, all these results apply only for unweighted graphs. The problem of
efficiently constructing a net in distributed models remained unanswered.

Our results. We design a randomized distributed algorithm, that for a given graph with n
vertices and hop-diameter D and any 0 < β < α < 2β, w.h.p. finds an (α, β)-net within (

√
n+D) ·

2
Õ(
√

logn·log β
α−β )

rounds in the CONGEST model. We show that the running time must be at least
Ω̃(
√
n+D) for general graphs, via a reduction to the problem of approximating the MST weight.

So our running time is best possible (up to lower order terms). However, we do not know if a faster
algorithm is achievable when the input graph has a constant doubling dimension.

Then, we utilize this algorithm for constructing nets, and devise a randomized algorithm that
for a graph with doubling dimension ddim and any 0 < ε < 1, w.h.p. produces a (1 + ε)-spanner

with lightness ε−O(ddim) · log n in (
√
n+D) · ε−Õ(

√
logn+ddim) rounds.

1.4 Overview of Techniques

In this section we provide an overview of the algorithms, techniques and ideas used in the paper.
For the sake of brevity, some parts are over-simplified, or even completely neglected.

Eulerian Tour of the MST. Let T be the MST. The first step in both our constructions of an
SLT and a light spanner for general graphs is a distributed computation of a DFS traversal L of T .
As an outcome of this computation, each vertex knows all its visiting times in L. Our algorithm is
a simplification of a similar algorithm from [EN18].

5The LOCAL model is similar to CONGEST, but the size of messages is not bounded.
6A unit ball graph is a graph whose vertices lie in a metric space, and edges connect vertices of distance at most

1. In this scenario the metric is doubling.
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In order to compute L, we note that the distributed MST algorithm of [KP98] induces a partition
of T into O(

√
n) fragments, each with hop-diameter O(

√
n). We then create a virtual tree T ′ whose

vertices are the fragments. As T ′ has only O(
√
n) vertices, it is possible to broadcast T ′ to the

entire graph. We first compute a DFS tour locally in each fragment, and broadcast the O(
√
n)

lengths of these tours. We use this information and the known structure of T ′ to globally compute
the DFS visit times for the ”roots” of the fragments. Finally, locally in each fragment, we extend
this to a traversal of the entire tree T .

Shallow Light Tree (SLT). An SLT is a combination of the MST T and a shortest path tree
(SPT) rooted in rt. As currently the fastest known exact SPT algorithms [GL18, Elk17a] require
more than Õ(

√
n + D) rounds, we use instead an approximate SPT , T ′. Our basic strategy

(following [ABP92, KRY95]) is to choose a subset of vertices called break points (BP). Then we
construct a subgraph H by taking T , and adding to H the unique path in T ′ from rt to every break
point v ∈ BP. The SLT is computed as yet another approximate SPT rooted in rt, but now using
H edges only.

Let L = {x0, x1, . . . , x2n−2} be an Eulerian traversal of the MST L (each vertex may appear
several times). Ideally, we would like to choose BP = {x0, xi1 , xi2 , . . . } such that (1) every pair of
consecutive points xij , xij+1 ∈ BP is far, specifically dL(xij , xij+1) > ε · dG(rt, xij+1), and (2) every
node xq ∈ L has a nearby break point xij ∈ BP, specifically dL(xij , xq) ≤ ε · dG(rt, xq). The first
condition is used to bound the lightness, while the second condition is used to bound the stretch.

The choice of BP described above can be easily performed in a greedy manner by sequentially
traversing the nodes in L. Unfortunately, we cannot implement this sequential algorithm efficiently
in a distributed manner. Instead, we break L into O(

√
n) intervals, each containing at most

√
n

nodes. We add the first node in each interval to a temporary break point set BP′. Using these
temporary break points as an anchor, we perform the sequential algorithm simultaneously in all
intervals, and add (permanent) break points. Finally, we broadcast BP′ to rt, which performs a
local computation in order to sparsify this set. Specifically, it chooses a subset of BP′ to serve as
permanent break points using the sequential algorithm, and broadcasts the chosen break points
to the entire network. Intuitively, we are building a separate SLT for the set BP′, which filters
out some of its points. Our analysis shows that this two-step choice of break points loses only a
constant factor in the lightness. However, this constant factor loss implies that obtaining the full
tradeoff (i.e., lightness close to 1) cannot be done trivially as before. To remedy this, we apply a
reduction from [BFN16] adapted to the CONGEST model.

Light Spanner for General Graphs. Our basic approach is similar to the algorithms of
[CDNS95, ES16, ENS15]. We divide the graph edges into O(log n) buckets, according to their
weight. Denote by L the weight of the MST multiplied by 2 (for technical reasons). In the lowest
level, we have all the edges of weight at most L/n. For this bucket we simply use the distributed
spanner of [BS07] for weighted graphs. Even though the algorithm of [BS07] provides an upper
bound only the sparsity of the spanner, we can use their construction as the weight of the edges in
this bucket is sufficiently small.

Consider the i-th bucket Ei, where all edges have weight in
(

L
(1+ε)i+1 ,

L
(1+ε)i

]
. We use the MST

traversal L to divide the graph into O( (1+ε)i

ε ) clusters of diameter ε·L
(1+ε)i

. Next, define an unweighted

cluster graph Gi whose vertices are the clusters, and inter-cluster edges are taken only from Ei.
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Intuitively, the diameter of clusters is an ε-fraction of the edge weights, so using the MST edges to
travel inside clusters will increase the distance by at most a (1 + ε) factor.

We then simulate the spanner algorithm of [EN17b] for unweighted graphs on Gi, and obtain a
spanner Hi. For every edge e ∈ Hi, we add a corresponding edge e′ ∈ Ei to the final spanner. The
main technical part is this simulation, which is difficult since the communication graph G is not
the graph Gi for which we want a spanner. We distinguish between small and large clusters; for the
former we use L to pipeline information inside the clusters, while for the latter we convergecast all
the relevant information to a single vertex, and then broadcast the decisions made by this vertex
to the entire graph. For this approach to be efficient we need to refine the partition to clusters, so
that small clusters will have bounded hop-diameter, and also ensure there are few large clusters, to
bound the convergecast and broadcast time.

Net Construction. Our algorithm for an (α, β)-net imitates, on a high level, previous ruling
sets algorithms (like [Lub86, MRSZ11]).7 Ideally, the net construction works as follows. Initially,
all vertices are active. In each round, sample a permutation π. Each (active) vertex v which is the
first in the permutation with respect to (w.r.t.) its β-neighborhood joins the net. Every vertex
for which some vertex from its α-neighborhood joined the net, becomes inactive. Repeat until all
vertices become inactive.

In order to check whether a vertex is the first in the permutation w.r.t. its β-neighborhood,
we use Least Element (LE) lists [Coh97]. Given a permutation π, a vertex u belongs to the LE
list of a vertex v, if u is the first in the permutation among all the vertices at distance at most
dG(v, u) from v. In particular, given the LE list of v, we can check whether it should join the net or
not. Efficient distributed computation of an LE list is presented in [FL16]. However, rather than
computing the list w.r.t. the graph G, [FL16] compute LE list w.r.t. an auxiliary graph H that
approximates G distances up to a 1+ ε factor. Fortunately, we can cope with the approximation by
taking α > (1 + ε)β. Once we compute the lists and choose which vertices will be added to the net,
we compute an (approximate) shortest path tree rooted in the net points. All vertices at distance
at most α from net points become inactive. This concludes a single round. After O(log n) rounds
all vertices become inactive w.h.p.. The running time is dominated by the LE lists computations.

We also provide a lower bound on the number of rounds required to construct a net, by a
reduction to the problem of approximating the weight of an MST.

Light Spanner for Doubling Metrics. The basic idea for constructing spanners for doubling
metrics is quite simple and well known. For every distance scale ∆, construct an (α, β)-net N∆

where α, β ≈ ε∆, and connect by a shortest path every pair of net points at distance at most ∆.
The stretch bound follows standard arguments, based on the covering property of nets. To prove
lightness, we will use a packing argument, stating that every net point has at most ε−O(ddim) other
net points at distance ∆, and every net point must contribute to the MST weight at least ε ·∆.

The main issue is implementing this algorithm efficiently in the CONGEST model. An efficient
distributed construction of nets was already described above, and the remaining obstacle is to
connect nearby net points. The problem is that the shortest path between nearby net points may
contain many vertices, and we cannot afford to add these sequentially. We resolve this issue by
conducting a ∆-bounded multi-source approximate shortest paths (from each net point) based on

7In fact, these papers showed algorithms for Maximal Independent Sets (MIS), but a (k, k)-ruling set is an MIS
for the graph Gk.
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hopsets. Roughly speaking, a hopset is a set of (virtual) edges added to the graph, so that every
pair has an approximate shortest path containing few edges. We use the path-reporting hopsets of
[EN16], so that the actual paths are added to the spanner. The running time is indeed bounded:
we use the packing property of nets to show that every vertex participates in a bounded number
of such approximate shortest path computations.

1.5 Organization

In Section 3 we devise an Eulerian traversal of the MST, which will be used in the following
sections. In Section 4 we present our distributed construction of an SLT. In Section 5 we show our
light spanners for general graphs. The construction of nets for general graphs is shown in Section 6,
and their application to light spanners for doubling graphs is in Section 7. Finally, the lower bounds
are in Section 8.

2 Preliminaries

Let G = (V,E,w) be a weighted graph with n vertices, and let dG be the induced shortest path
metric with respect to the weights. We assume that the minimal edge weight is 1, and that the
maximal weight is poly(n). For v ∈ V denote by N(v) = {u ∈ V : {u, v} ∈ E} its set of neighbors,
and by N+(v) = N(v)∪{v}. For a set C ⊆ V , the induced graph on C is G[C]. The weak diameter
of C is maxu,v∈C{dG(u, v)} and its strong diameter is maxu,v∈C{dG[C](u, v)}. The hop-diameter of
G is defined as its diameter while ignoring the weights.

In the CONGEST model of distributed computation, the graph G represents a network, and
every vertex initially knows only the edges incident on it. Communication between vertices occurs
in synchronous rounds. On every round, each vertex may send a small message to each of its
neighbors. Every message has size at most O(log n) bits. The time complexity is measured by the
number of rounds it takes to complete a task (we assume local computation does not cost anything).
Often the time depends on n, the number of vertices, and D, the hop-diameter of the graph. The
following lemma formalizes the broadcast ability of a distributed network (see, e.g., [Pel00]).

Lemma 1. Suppose every v ∈ V holds mv messages, each of O(1) words8, for a total of M =∑
v∈V mv. Then all vertices can receive all the messages within O(M +D) rounds.

A Breadth First Search (BFS) tree τ of G of hop-diameter D (ignoring the weights) can be
computed in O(D) rounds. Since all our algorithms have a larger running time, we always assume
that we have such a tree at our disposal.

3 Eulerian Tour of the MST
rt = a

b

c d f

e

g

2

2 4

3

31

a b

a

a

b bc d

eee fg

2 2 2
2

1 1

3333 44

0 2
10

30

6 84 7

132127 1724

T

L
Rx

Let G = (V,E,w) be a weighted graph on n vertices with hop-diameter
D. Let T be the minimum spanning tree of G with a root vertex
rt ∈ V . We compute an Eulerian path L = {rt = x0, x1, . . . , x2n−2}
drawn by taking a preorder traversal of T . The order between the
children of a vertex is determined using their id. We remark that

8We assume a word size is logn bits.

7



in [EN18] it was described how to compute a DFS search of a tree
in Õ(

√
n + D) rounds. However, that paper also had the property

that each vertex uses at most O(log n) words of memory. We give the
full details here for completeness, and also since the presentation is
somewhat simpler without the bound on the memory usage.

For a vertex x ∈ L, let Rx = dL(rt, x) be the time visiting x in L. The total length of the
traversal L (that is Rx2n−2) equals 2 ·w(T ). The number of appearances of each vertex v ∈ V in L
equals to its degree in T (other that the root rt who has deg(rt) + 1 appearances). We will treat
each such appearance as a separate vertex. That is L is a path graph. See figure on the right for an
illustration. For a vertex v ∈ V , let L(v) ⊆ L be the set of appearances of v in L. In the remainder
of this section we will prove the following lemma, that computes the traversal L in Õ(

√
n + D)

rounds, meaning that each vertex v will know L(v) and the visiting time of every vertex x ∈ L(v).

Lemma 2 (MST traversal). Let G = (V,E,w) be a weighted graph with n vertices, hop-diameter
D and root rt ∈ V , then there is a deterministic algorithm in the CONGEST model that computes
L in Õ(

√
n+D) rounds.

3.1 Computing the MST Fragments Tree

In [Elk17b], following [KP98], a deterministic MST construction in the CONGEST model with
Õ(
√
n + D) rounds was shown. The algorithm has two phases, according to the hop-diameter of

the fragments. At the end of the first phase, there is a set of O(
√
n) fragments F = {F1, F2, . . . },

each with hop-diameter O(
√
n). These fragments are called base fragments. The edges added in the

first phase are called internal edges (as each such edge is internal to some base fragment). In the
second phase of the algorithm, the remaining O(

√
n) edges are added and connect the fragments

to a tree. We call these edges external edges, as they cross between base fragments.
Let T ′ be a virtual tree with the base fragments F as vertices, and with the external edges as

its edge set (i.e. there is an edge between Fi and Fj if there is an external edge between a vertex in
Fi to a vertex in Fj). Since there are O(

√
n) vertices in T ′, in O(

√
n+D) rounds we can broadcast

T ′ to all the vertices V . We will think of the MST T as a tree rooted in rt, and of T ′ as a tree
rooted at the fragment F1 containing rt. Using the information above, every vertex in each base
fragment Fi can learn the structure of the MST on the fragments T ′, and infer its parent base
fragment p(Fi). If the MST edge connecting Fi to p(Fi) is (u, v) (where u ∈ Fi), then p(u) = v,
and we set ri = u to be the root of the base fragment Fi. For F1, r1 = rt will be its root. Set
R = {r1, r2, . . . } to be the set of base fragment root vertices. See Figure 1 for an illustration.

3.2 Computing Tour Lengths

For v ∈ Fi, let `(v) denote the length of the tour of the subtree of Fi rooted at v. This is the local
tour length for v, which is simply twice the sum of edge weights in that subtree. In addition, denote
by g(x) the length of the tour of the subtree of T rooted at v, which is the global tour length for
v. See Figure 1 for an example.

The computations of the local tour lengths is done locally in each base fragment, i.e. in all
the base fragments in parallel. Consider Fi. Initially `(v) = 0 for every leaf v ∈ Fi. Every
intermediate vertex u ∈ Fi that received messages from all its children in Fi, denoted z1, . . . , zk,
computes `(u) =

∑k
i=1 (`(zi) + 2 · w(u, zi)), and sends `(u) to its own parent. Using the bounded

8



r1 = rt

r2

r3 r4

r5

r6

a

b

F1

F2

F3 F4

F5

F6

T

Figure 1: The tree T in the figure is divided to 6 base fragments circled by a dotted line. The internal edges
are colored black, while the external edges are dashed and colored red. The fragment Ri is rooted in ri, a
vertex with outgoing edge towards a parent fragment. For example, consider the case where all the edges in
T have unit weight. Sample of local lengths: `(a) = 2, `(b) = 0, `(r1) = 14, and of global lengths g(a) = 2,
g(b) = 12, g(r1) = 78.

hop-diameter of the base fragments, this procedure will terminate in O(
√
n) rounds. When this

stage concludes, every v ∈ V knows `(v).
After the computation of the local tour lengths, all the root vertices R broadcast to the entire

graph their local tour lengths `(r1), `(r2) . . . in O(
√
n + D) rounds. As the tree T ′ is known to

the entire graph, all the vertices can compute locally the global tour lengths g(r1), g(r2) . . . of the
roots. Specifically, for ri the root of the base fragment Fi, consider its descendent base fragments
F ′ in T ′. Denote by rF the root of the base fragment F and by eF the external edge connecting F
to p(F ), its parent fragment. Then

g(ri) = `(ri) +
∑
F∈F ′

(`(rF ) + 2 · w(eF )) .

The computation of the global tour lengths for non-roots is done locally in a similar manner as the
local tour lengths. For a vertex v ∈ Fi, let z̃1, . . . , z̃k be its children in T , then

g(v) =
k∑
i=1

(g(z̃i) + 2 · w(v, z̃i)) .

If v is a leaf of some Fi then it can compute g(v) (since all its children are in R), and then send g(v)
to it parent. Every intermediate vertex v of Fi can compute g(v) as soon as it received messages
from all its children in Fi, and then send g(v) to its own parent. As we run this procedure in all
the fragments in parallel, it terminates in O(

√
n) rounds. When this stage concludes, every v ∈ V

knows g(v).

3.3 Computing Tour Visit Times

Finally we compute for every vertex v ∈ V the set L(v) and all its tour visiting times. This
can be achieved by running a DFS search from the root rt. Direct implementation of the DFS
algorithm will take Ω(n) rounds. Instead, we will use a similar idea to the one above to speed-up
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the computation. First we will compute “local” DFS in the base fragments. Then aggregate these
times into a global DFS, first for the roots R, and afterwards to all of V .

First we compute the “local” DFS visiting times. We will compute the visiting times in all
the fragments in parallel. Consider Fi. For every v ∈ Fi we will compute the entering and exit
DFS time, for the global subtree of T rooted at ri (rather than only in Fi). For a vertex v ∈ Fi,
denote by ti(v) the interval between the first “local” entrance to the last exit. The computation
is performed top to bottom. First for ri, ti(ri) = [0, g(ri)]. Next, consider a vertex v ∈ Fi that
received its interval ti(v) = [a, b]. By induction b− a = g(v). Denote by z1, . . . , zk all the children
of v in T (inside and outside Fi). Then v will send each child zj its interval, where

ti(zj) =

a+
∑
q<j

(g(zq) + 2w(v, zq)) + w(v, zj) , a+
∑
q<j

(g(zq) + 2w(v, zq)) + w(v, zj) + g(zj)

 .

Note that the length of the interval ti(zj) is exactly g(zj). (We remark that roots inR do not initiate
another interval assignment when they receive message from their parent in T .) This procedure
will terminate in O(

√
n) rounds (the hop-diameter of any base fragment), where each vertex v ∈ Fi

knows ti(v). Moreover, consider a root vertex ri (other than rt), such that p(ri) ∈ Fj . Then by the
description of the algorithm, in addition to ti(ri), ti also knows tj(ri), its interval in the DFS tour
in the subtree rooted in rj .

Finally we are ready to compute the global DFS intervals. Note that all we are actually missing
here, is the first time visit of each root vertex. That is, we will compute a shift si for every
root ri. First, each root vertex ri broadcasts to rt (through τ), its local interval ti(ri) and its
local interval in its parent fragment tj(ri) (assuming p(ri) ∈ Fj). This take O(

√
n + D) rounds.

Now, rt has all the required information in order to compute the DFS intervals for R. Initially
t(rt) = t1(rt). Next, by induction assume that rt computed the interval t(rj) = [sj , sj + g(rj)]
for some rj ∈ R. Then for every ri ∈ R such p(ri) ∈ Fj and tj(ri) = [b, b + g(ri)], we compute
t(ri) = [sj + b, sj + b + g(ri)] = [si, si + g(ri)]. Eventually rt knows the global DFS intervals of
all the roots R and can broadcast it to all the vertices in O(

√
n + D) rounds. Consider a vertex

v ∈ Fj . Given its local interval tj(v) = [a, b] and the shift sj , v computes its global interval
t(v) = [sj + a, sj + b]. This is done locally in all the fragments.

We conclude that in Õ(
√
n + D) rounds every vertex v can know its DFS interval. As every

vertex can also compute the DFS intervals of it’s children (in T ), both L(v) and the visiting times
of L(v) are easily computed.

4 Shallow Light Tree (SLT)

In this section we present our SLT construction. Recall that an (α, β)-SLT of G with a root rt is
a tree TSLT that satisfies: 1) ∀ v ∈ V, dTSLT(rt, v) ≤ α · dG(rt, v), and 2) w(TSLT) ≤ β · w(MST ).
We show the following theorem.

Theorem 1 (SLT). There is a deterministic distributed algorithm in the CONGEST model, that
given a weighted graph G with n vertices and hop-diameter D, root vertex rt and parameter ε > 0,
constructs an (1 + ε, 1 +O(1

ε ))-SLT in Õ (
√
n+D) · poly(ε−1) rounds.

Initially we will assume that ε ∈ (0, 1). Afterwards, we will show how to generalize our result
to ε ≥ 1.
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Intuitively, in order to construct an SLT, one should combine the MST tree T of G with
a shortest path tree rooted at rt. Unfortunately, currently existing algorithms for constructing
exact shortest path tree [Elk17a, GL18] require more than Õ(

√
n + D) rounds. Instead, we will

use an approximate shortest path tree of [BKKL17]. Specifically, they show that given a root
vertex rt and a parameter ε ∈ (0, 1], one can compute an approximate shortest path tree Trt in
Õ((
√
n+D)/poly(ε)) rounds. The approximation here is in the sense that for every vertex v,

dG(rt, v) ≤ dTrt(rt, v) ≤ (1 + ε) · dG(rt, v) . (1)

Our strategy to construct the SLT is similar to the framework of [ABP92, KRY95]. First,
construct an MST T and an approximate shortest path Trt (rooted at rt). Next, choose a subset of
vertices BP called Break Points. An intermediate graph H will be constructed as a union of T , and
the paths in Trt from rt to all the vertices in BP. We will argue that H has lightness O(1

ε ), and
approximate distance to rt up to a 1+O(ε) factor. Our final SLT will be constructed as yet another
approximate shortest path tree in H (rooted at rt). The main difference from previous works is
that a refined selection of breakpoints is required, in order to ensure efficient implementation in
the CONGEST model. In previous algorithms BP was chosen sequentially, i.e., break points were
determined one after another. In contrast, we have two phases. In the first phase we choose the
BP locally, while in the second phase we somewhat sparsify the set BP using a global computation.

We remark that [KRY95] gave an efficient implementation of their algorithm in the PRAM
CREW model with n processors in O(log n) rounds. However, this implementation uses pointer
jumping techniques which cannot be translated to the CONGEST model.

4.1 Break Points Selection

Before picking the break points, we create traversal L of the MST T (rooted at rt) as in Section 3,
such that each vertex v ∈ V knows its appearances L(v) and visiting times Rx for any x ∈ L(v). We
will treat vertices with duplications according to their appearances on L. That is, v will simulate
different vertices in L (and even can be chosen to BP several times). Note that every neighbor u
of v in G is a neighbor of exactly two vertices in L(v) (w.r.t L), and therefore v indeed can act in
several roles without congestion issues. In addition, each vertex xi ∈ L will know its index i (i.e.,
how many vertices precede him in L an not only the weighted visiting time Rxi). This information
can be obtained by running the same algorithm that finds visiting times, ignoring the weights.

Set α = d
√
ne. We will construct BP in several steps. The initial set of break points will be

BP′ = {x0, xα, x2α, x3α, . . . }, i.e., all the vertices whose index is a multiple of α. Next, we create a
break point set BP1 from L \ BP′. In each interval Ii = {xiα, xiα+1, . . . , x(i+1)α−1} in parallel we
will add points to BP1. Initially, for every i, xiα sends a message to xiα+1 with the information
(xiα, Rxiα). Generally, each vertex xj ∈ Ii will get at some point a message (y,Ry) from xj−1. The
interpretation is that y is the most recent addition to BP1, with the additional information of Ry.
Now, xj will join BP1 if the following condition holds:

dL(xj , y) = Rxj −Ry > ε · dTrt(rt, xj) . (2)

Note that dTrt(rt, xj) is an information locally known to xj from the approximate shortest path
computation. Now, xj will send a message to xj+1. If xj joined BP1, the message will be

(
xj , Rxj

)
.

Otherwise the message will be (y,Ry). After α − 1 rounds this procedure ends, and each internal
vertex x /∈ BP′ knows whether it joins BP1 or not.
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We cannot allow all the vertices in BP′ to become break points (as we have no bound on the
weight of all the shortest paths from rt towards them). Filtering which vertices among BP′ will
actually join BP will be done in a centralized fashion. All the vertices xiα ∈ BP′ will broadcast to
rt the message (xiα, Rxiα). By Lemma 1 this can be done in O(

√
n+D) rounds (since there are at

most 2
√
n relevant indices 0 < i ≤ 2n−2). The root rt locally creates the set BP2 ⊆ BP′ as follows.

Initially rt = x0 joins BP2. Next, sequentially, for xiα where y ∈ BP′ was the last vertex to join
BP2, xiα will join BP2 if dL(xiα, y) = Rxiα − Ry > ε · dTrt(rt, xiα). After this local computation,
rt will broadcast to the entire graph the set BP2 in O(

√
n + D) rounds. Define the final set of

breakpoints as BP = BP1 ∪ BP2. (Intuitively, this step computes an SLT for the submetric of the
original metric, induced by the set BP′.)

4.2 The Creation of H

For a point b ∈ BP, let Pb be the unique path from rt to b in Trt. Let H = T ∪
⋃
b∈BP Pb. Denote by

ABP the set of vertices whose subtree in Trt contains a vertex of BP. Each vertex knows whether
it belongs to BP, and we would like to ensure that every v ∈ ABP will add an edge to its parent
in Trt. Then adding the MST edges will conclude the construction of H. In the remaining part of
this sub-section we show the computation of ABP.

We start by creating a set F of O(
√
n) fragments, which are subtrees of Trt of hop-diameter

O(
√
n) (this could be done by applying the first phase of the MST algorithm of [KP98], see Sec-

tion 3.1 for more details). Each fragment can locally (in parallel) compute in O(
√
n) rounds whether

it contains a break point, since it has bounded hop-diameter. Next, each fragment sends to rt its
id, whether it contains a break point, and all of its outgoing edges in Trt. Note there is a total
of O(

√
n) messages in this broadcast, so by Lemma 1 this will take O(

√
n + D) rounds (in fact,

all vertices will receive all these messages). Now, rt can form a virtual tree T ′ whose vertices are
the fragments F = {F1, F2, . . . }, and its edges connect fragments Fi, Fj if there is an edge of Trt
between a vertex of Fi to a vertex of Fj . Now, we can also assign roots r1, r2, . . . (where ri ∈ Fi
and r1 = rt), so that ri is the vertex with an edge in Trt to a vertex in the parent of Fi in T ′. (See
Section 3 for more details and a picture of the virtual tree and its roots.)

Then, rt is able to compute locally for every root ri ∈ Fi whether ri ∈ ABP (i.e. its subtree
contains a break point), simply by inspecting whether Fi has a descendant in T ′ with a break point.
Then broadcast this information on all roots in O(

√
n+D) rounds. Note that now every local leaf

v ∈ Fi knows whether its subtree contains a break point. Finally, locally in parallel in O(
√
n)

rounds, in all the fragments Fi we can compute for every vertex v ∈ Fi whether v ∈ ABP.

4.3 Stretch and Lightness Analysis

In this subsection we argue that H has the desired lightness and stretch. We name the break points
BP1 = {b0,b1, . . . }, BP2 = {b̃0, b̃1, . . . } according to the order of their appearance in L. It is clear
by construction that for every pair of consecutive break points b̃j−1, b̃j ∈ BP2, dL(b̃j , b̃j−1) >
ε · dTrt(rt, b̃j). We claim that this property remain true also for every consecutive break points
bj−1, bj ∈ BP1. Indeed, let i such that bj ∈ Ii. If bj−1 ∈ Ii then it follows by construction.
Otherwise, bj is the first break point in Ii, and by Equation (2) it holds that dL(bj , bj−1) >
dL(bj , xiα) > ε · dTrt(rt, bj).

Corollary 3. w(H) ≤ (1 + 4
ε ) · w(T ).

12



Proof. The graph H consists of three parts, w(H) ≤ w(T ) +
∑

b∈BP1
w(Pb) +

∑
b̃∈BP2

w(Pb̃). We
first bound the weight of the edges added due to BP1:∑

j≥1

w(Pbj ) =
∑
j≥1

dTrt(rt, bj) <
∑
j≥1

1

ε
· dL(bj−1, bj) ≤

1

ε
· w(L) =

2

ε
· w(T ) .

Similarly for BP2,
∑

j≥1w(Pb̃j ) ≤
2
ε · w(T ). The corollary follows.

Lemma 4. For every v ∈ V , dH(rt, v) ≤ (1 + 25ε) · dG(rt, v).

Proof. Consider a vertex v ∈ V . Let x be an arbitrary vertex from L(v). By construction there is
a point y ∈ BP′ ∪ BP1 such that

dL(x, y) ≤ ε · dTrt(rt, x) . (3)

Moreover, for y there is a point y′ ∈ BP such that

dL(y, y′) ≤ ε · dTrt(rt, y) , (4)

(it might be that x = y or y = y′). We first bound dL(x, y′), using that dG ≤ dL and the assumption
ε ≤ 1.

dL(x, y′) = dL(x, y) + dL(y, y′)

(4)

≤ dL(x, y) + ε · dTrt(rt, y)

(1)

≤ dL(x, y) + ε · (1 + ε) · dG(rt, y)

≤ dL(x, y) + 2ε · (dG(x, y) + dG(rt, x))

≤ (1 + 2ε) · dL(x, y) + 2ε · dG(rt, x)

(3)

≤ (1 + 2ε) · ε · dTrt(rt, x) + 2ε · dG(rt, x)

(1)

≤ (1 + 2ε) · ε · (1 + ε) · dG(rt, x) + 2ε · dG(rt, x)

≤ 8ε · dG(rt, x) .

We conclude,

dH(rt, x) ≤ dTrt(rt, y′) + dL(x, y′)

≤ (1 + ε) ·
(
dG(rt, x) + dG(x, y′)

)
+ dL(x, y′)

≤ (1 + ε) · dG(rt, x) + 3 · dL(x, y′) ≤ (1 + 25ε) · dG(rt, x) .

4.4 Finishing the Construction and Generalization to ε > 1

After creating the subgraph H, we create a (1 + ε)-shortest path tree TSLT (using [BKKL17]) of H
rooted at rt in Õ(

√
n+D)/poly(ε) rounds. The tree TSLT has weight at most w(TSLT) ≤ w(H) ≤

(1 + 4
ε ) · w(T ) by Corollary 3. Moreover, by Lemma 4 for every vertex v ∈ V it holds that

dTSLT(rt, v) ≤ (1 + ε) · dH(rt, v) ≤ (1 + ε) · (1 + 25ε) · dG(rt, v) ≤ (1 + 51ε) · dG(rt, v) .
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By rescaling ε, we conclude that for every ε ∈ (0, 1) we can construct an (1 + ε, O(1
ε ))-SLT. This is

the right behavior (up to constant factors) when the distortion is small, as shown in [KRY95]. We
would like to obtain the inverse tradeoff, when the lightness is close to 1, say 1 + γ for 0 < γ < 1.
If we will directly apply our construction for large 1 < ε = 1/γ, then it can be checked that we
will get distortion O(1/γ2) and lightness 1 + γ, instead of the desired O(1/γ) distortion (roughly
speaking, this is because a breakpoint in BP ′ may have been removed, so in the analysis we applied
a chain of two breakpoints). Fortunately, we can use a reduction due to [BFN16].

Lemma 5 ([BFN16]). Let G = (V,E) be a graph, 0 < δ < 1 a parameter and t :
(
V
2

)
→ R+

some function. Suppose that we have an algorithm that for any given weight function w : E → R+

constructs a spanner H with lightness ` such that every pair u, v ∈ V suffers distortion at most
t(u, v). Then for every weight function w there exists a spanner H with lightness 1 + δ` and such
that every pair u, v suffers distortion at most t(u, v)/δ.

The reduction algorithm works by first changing the edge weights, and then executing the
original algorithm. To compute the new weight of an edge e ∈ E, we only need to know the
parameter δ, the original weight w(e) and whether e belongs the MST. Thus we can easily use this
reduction in the CONGEST model as well.

We presented an algorithm that constructs a subgraph H with constant lightness (say c) and
distortion 2 from rt. We will use distortion function below,

t(u, v) =

{
2 rt ∈ {u, v}
∞ otherwise

.

Thus, given any 0 < γ < 1, we can apply Lemma 5 with the parameter δ = γ/c, and obtain
lightness 1 + γ and distortion O(1/γ). Theorem 1 now follows.

5 Distributed Light Spanner

In this section we devise an efficient distributed algorithm for light spanners in general graphs. In
particular, we prove the following:

Theorem 2 (Light Spanner). There is an randomized distributed algorithm in the CONGEST
model, that given a weighted graph G = (V,E,w) with n vertices and hop-diameter D, and param-

eters k ∈ N, ε ∈ (0, 1), in Õε

(
n

1
2

+ 1
4k+2 +D

)
rounds, w.h.p. returns a (2k − 1)(1 + ε) spanner H

with Oε(k · n1+ 1
k ) edges and lightness Oε(k · n

1
k ).

Our algorithm is similar in spirit to the algorithms of [CDNS95, ES16, ENS15]. It begins by
computing a traversal L = {rt = x0, x1, . . . , x2n−2} of the MST T , as in Section 3. In particular,
every vertex v knows the set of its appearances L(v), and the visiting times and indices of every
x ∈ L(v). Let L = w(L) = 2w(T ) denote the length of L. Note that the value L is known to all
the vertices (or can be broadcasted in O(D) rounds).

Set E′ = {e ∈ E : w(e) ≤ L/n}, and for every i ∈ {0, 1, . . . ,
⌈
log1+ε n

⌉
} set Ei = {e ∈

E : L
(1+ε)i+1 < w(e) ≤ L

(1+ε)i
}. The algorithm constructs a different spanner for each edge set,

and the final spanner will be a union of all these spanners. First, build a spanner H ′ for the low
weight edges E′. This is done using the algorithm of Baswana and Sen [BS07]. Specifically we run

14



[BS07] on the graph G′ = (V,E′). In O(k) rounds9 we get a (2k − 1)-spanner H ′ of G′, where the
expected number of edges is bounded by O(k · n1+1/k).

Next, for every i ∈ {0, 1, . . . ,
⌈
log1+ε n

⌉
} we will define a cluster graph Gi, on which we will

simulate a spanner for unweighted graphs. For each i, we partition V into clusters Ci. Let Gi be an
unweighted graph with Ci as its vertex set, and there is an edge between two clusters A,B if there
are vertices a ∈ A, b ∈ B such that {a, b} ∈ Ei.

In [ES16, ENS15] the greedy spanner was applied on each Gi. However, we cannot do so
efficiently in a distributed setting. Instead, we will use the randomized algorithm of [EN17b] on each
Gi. For an unweighted graph with N vertices, that algorithm provides (with constant probability)
a (2k − 1)-spanner with O(N1+1/k) edges, computed in k rounds. Even though [EN17b] gave an
efficient distributed implementation, the input graph Gi is not the communication graph G. Our
main technical contribution in this section is an adaptation of that algorithm for the cluster graphs
Gi, which also requires some changes in the partition that generates these graphs.

The algorithm of [EN17b] runs in k rounds. Initially, every vertex x independently samples a
value r(x) from some distribution. In the first round x initializes m(x) = r(x), s(x) = x and sends
(s(x),m(x)−1) to all its neighbors. In each following round, every vertex x that received messages
{(s(v),m(v))}v∈N(x) from its neighbors in the previous round, computes u = argmaxv∈N+(x){m(v)},
updates m(x) = m(u) and s(x) = s(u), and sends (s(x),m(x) − 1) to all its neighbors. After k
rounds, each vertex x adds to the spanner edges: for every vertex y, add one edge to an arbitrary
vertex in the set {v ∈ N(x) : m(v) ≥ m(x) − 1 ∧ s(v) = y}, if exists (in other words, for every
source y whose message reached x with value at least m(x)−1, we add 1 edge to the spanner, from
x to a neighbor v that sent x the message on y). A useful property of the algorithm is that the
stretch is guaranteed10 while the number of edges is bounded in expectation.

In order to implement this algorithm in Gi, the vertices in each cluster C ∈ Ci need to compute
the maximum over all the values they received from their neighbors in the previous round, and then
send this value. Finally, we need to make sure that for every pair of clusters we want to connect,
only one edge is added. We will distinguish between two cases, as long as the hop diameter of
clusters is not too large, they can compute locally the maximum value. When the hop diameter
is too large, we will ensure that there are few clusters, and all the relevant information will be
broadcasted to the entire graph.

Case 1: i < log1+ε(ε · n
k

2k+1 ). Set wi = L
(1+ε)i

. We now describe the partition of V into clusters

Ci. Each cluster C ∈ Ci has a name in {0, 1, 2, . . . , L
ε·wi }, and its weak diameter is at most ε · wi

w.r.t the MST metric (i.e. for any u, v ∈ C, dT (u, v) ≤ ε · wi). Let v ∈ V , and x ∈ L(v) be

an arbitrary appearance. Then v will belong to the cluster
⌈
Rx
ε·wi

⌉
(recall that Rx = dL(rt, x)).

The weak diameter is indeed bounded, as for every v, u ∈ V which both belong to the same
cluster j, it holds that there are x′ ∈ L(v), x′′ ∈ L(u) such that |Rx′ −Rx′′ | ≤ ε · wi, hence
dT (u, v) ≤ dL(x′, x′′) ≤ ε · wi. Note that each vertex belongs to a single cluster. The number of

clusters is bounded by
⌈

L
ε·wi

⌉
+ 1 =

⌈
(1+ε)i

ε

⌉
+ 1 ≤

⌈
n

k
2k+1

⌉
+ 1.

Before the rounds simulations, each vertex v ∈ V sends the identity of its cluster to all its

9The original paper claimed O(k2) rounds, but it has been observed that their algorithm can be implemented in
O(k) rounds.

10For the stretch bound, the random samples r(x) need to satisfy r(x) < k, which can be verified locally. The
stretch analysis in [EN17b] is conditioned on the event ∀x ∈ V : r(x) < k.
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neighbors. Additionally, rt samples a value rA for every cluster A ∈ Ci, and broadcasts all these
values to all the vertices in O(|Ci|+D) rounds, using Lemma 1. Next, we describe how to implement
a single round. In the beginning of the round, each vertex knows the message (s(A),m(A)) that all
clusters A ∈ Ci sent in the previous round. The simulation has three phases: (1) Local phase: each
vertex v ∈ A, computes the maximum m(B) over all neighboring clusters B. No communication
required, as v knows the clusters of its neighbors and their messages. (2) Convergecast phase: we
convergecast (s(A),m(A)) towards rt on the BFS tree τ . Each vertex v that received all messages
from its children in τ for a cluster A, will only forward the one with maximum m(A). Therefore
each vertex will forward only |Ci| messages, and we can pipeline all the messages of the second
phase in O(|Ci| + D) rounds. (3) Broadcast phase: the root rt broadcasts all the new messages
(s(A),m(A)) for all clusters A ∈ Ci to all the graph in O(|Ci|+D) rounds.

After k such rounds we add edges to the spanner by a convergecast of all the spanner edges
towards rt using τ . Let Hi be the spanner of Gi. In [EN17b] it is shown that in expectation

|Hi| = O(|Ci|1+ 1
k ). Consider a vertex v ∈ A. For every cluster B such that {A,B} ∈ Hi and there

is a neighbor u ∈ B of v, v will send ((u, v), (A,B)) towards rt. On the other hand, each vertex

receiving edges from A×B, will forward only a single such edge. After O(|Ci|1+ 1
k +D) rounds the

center rt knows Hi, and for every edge (A,B) ∈ Hi it knows a representative (a, b) ∈ A × B. In

additional O(|Ci|1+ 1
k +D) rounds rt broadcasts all these edges and Hi is created accordingly. The

total number of rounds to implement each iteration of [EN17b] is

O(|Ci|1+ 1
k +D) ≤ O

((
n

k
2k+1

) k+1
k

+D

)
= O

(
n

1
2

+ 1
4k+2 +D

)
.

Case 2: log1+ε(ε · n
k

2k+1 ) < i ≤ log1+ε(n). Set wi = L
(1+ε)i

. Similarly to the previous regime,

we will partition the graph into clusters Ci with weak diameter ε · wi. However, as the number of
clusters will be large, computations will be done locally in the clusters. In order to make the local
computations efficient, we will refine the partition into clusters such that each cluster will have
bounded (weak) hop-diameter . We start by choosing cluster centers. A vertex xj ∈ L is a cluster
center if one of the following conditions is fulfilled:

1. There is an integer s such that Rxj−1 < s · (ε · wi) ≤ Rxj .

2. j is a multiple of
⌈

ε·n
(1+ε)i

⌉
(that is, there is an integer q such that j = q ·

⌈
ε·n

(1+ε)i

⌉
).

Note that x0 is a center. For every vertex xb ∈ L, consider the closest center xa left of xb (w.r.t
L). It holds that Rxb − Rxa < ε · wi and b − a < ε·n

(1+ε)i
. Moreover, the total number of centers is

bounded by L
ε·wi + n

ε·n
(1+ε)i

= 2·(1+ε)i

ε . In particular, each vertex can compute whether it is a center

locally. For every vertex v ∈ V , pick an arbitrary xj ∈ L(v), and let j′ ≤ j be the largest such that
xj′ is a center. Then v joins the cluster C(xj′) of xj′ . If xa, xb are two consecutive cluster centers,
then I(xa) = {xa, xa+1, xa+2, . . . , xb−1} will be the communication interval for the cluster C(xa).
Note that C(xa) ⊆ I(xa) (they need not be equal, since each vertex u ∈ V has several possible
representatives in L(u)).

Note that the hop-diameter of I(xa) is bounded by ε·n
(1+ε)i

≤ n
1
2

+ 1
4k+2 , and also for any u, v ∈

C(xa) we have dT (u, v) ≤ ε · wi. Each vertex v ∈ V belongs to a single cluster. However, v might
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belong to many communication intervals. Nevertheless, every MST edge appears twice in L, and
therefore it belongs to at most two communication intervals.

In order to enable the partition to clusters, each cluster center xa declares itself via I(xa). That
is, it sends to the right neighbor (on L) a message declaring itself, which is forwarded until it
reaches the next center xb. This declaration takes ε·n

(1+ε)i
rounds. At the end, each vertex chooses

to which cluster it joins, becomes aware of all the communication intervals it belongs to, and sends
its cluster i.d. to all its neighbors.

Now that we have defined the clustering, the simulation of each iteration of [EN17b] is done in
essentially the same manner as the previous case, with the communication interval taking the role
of the global BFS tree τ . That is, in parallel for every cluster C(xa) we find the maximum over
the m(v) by convergecast in I(xa). In the last round we convergecast the spanner edges touching
the cluster C(xa), so we need a bound on that number. In [EN17b] it is shown that w.h.p. every
vertex (cluster) adds at most O(|Ci|1/k log n) = O(n1/k log n) edges to the spanner. So the number
of rounds required for a simulation of a single iteration is at most

O(n
1
k log n+ n

1
2

+ 1
4k+2 ) = O(n

1
2

+ 1
4k+2 ) ,

(assuming k > 1.) The total number of rounds (for each i in this range) is thus O
(
k · n

1
2

+ 1
4k+2

)
.

This concludes the second case.
Our final spanner H will be a union of the MST T , with the spanner H ′ of G′, and with the

spanners Hi for all 0 ≤ i ≤ dlog1+ε ne. As the there are O(log1+ε n) different scales, we conclude

that the total construction of the spanner H of G takes Õ(n
1
2

+ 1
4k+2 +D) rounds.

5.1 Analysis

In this section we finish the proof of Theorem 2 by analyzing the stretch, lightness, and sparsity of
the spanner H.

Stretch. By the triangle inequality, it suffices to show that for every edge {u, v} = e ∈ E, it
holds that dH(u, v) ≤ (2k − 1)(1 + ε)w(e). In fact, we will show a bound of (2k − 1)(1 + O(ε))
on the stretch. This can be fixed later by rescaling ε. Fix {u, v} = e ∈ E. We can assume
that w(e) ≤ L, as otherwise we fulfill the requirement using the MST edges only. If e ∈ E′,
then dH(u, v) ≤ dH′(u, v) ≤ (2k − 1) · w(e). Otherwise, let i ≥ 0 such that e ∈ Ei, that is
wi

(1+ε) < w(e) ≤ wi for wi = L
(1+ε)i

. Let Au, Av ∈ Ci be the clusters containing u, v respectively. If

Au = Av, then dH(u, v) ≤ dT (u, v) ≤ ε ·wi ≤ w(e) (assuming ε < 1/2, say). Otherwise, {Au, Av} is
an edge of Gi, and therefore there is a path Au = A0, A1, . . . , At = Av between Au, Av in Hi where
t ≤ 2k − 1. In particular, for every 0 ≤ j < t, we added some edge {vj , uj+1} ∈ Aj × Aj+1 ∩ Ei to
Hi. Let u0 = u and vt = v. As the distance between every pair of vertices in any cluster is bounded
by ε · wi and the weight of all the edges in Hi is bounded by wi we conclude

dH(u, v) ≤ dHi∪T (u0, vt) ≤ dT (u0, v0) +

t−1∑
j=0

(w(vj , uj+1) + dT (uj+1, vj+1))

≤ (t+ 1) · ε · wi + t · wi
≤ (2k − 1) · (1 +O(ε)) · w(e) .
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Lightness. We bound the lightness of H ′ and each of the spanners Hi. First consider H ′. Since
the weight of every edge e ∈ E′ is at most L/n, we have

w(H ′) ≤ |H ′| · L
n

= O(k · n1+ 1
k · L

n
) = O(k · n

1
k · L) .

Next consider Hi, which has expected O(|Ci|1+ 1
k ) = O

((
(1+ε)i

ε

)1+ 1
k

)
edges, all of weight

bounded by wi = L
(1+ε)i

. So the expected weight of all these Hi together is

dlog1+ε ne∑
i=0

E [w(Hi)] ≤
dlog1+ε ne∑

i=0

E[|Hi|] · wi =

dlog1+ε ne∑
i=0

O

((
(1 + ε)i

ε

)1+ 1
k

)
· L

(1 + ε)i

= O

(
L

ε1+1/k

)
·
dlog1+ε ne∑

i=0

(1 + ε)
i
k = O

(
L

ε1+1/k

)
· (1 + ε)

dlog1+ε ne+1

k − 1

(1 + ε)1/k − 1

= O

(
L · k · n1/k

ε2+1/k

)
,

where the last equality follows as (1 + ε)
1
k − 1 ≥ e

ε
2
· 1
k − 1 ≥ ε

2k . We conclude that the expected
weight of H is

E[w(H)] ≤ w(T ) + w(H ′) +

dlog1+ε ne∑
i=0

E[w(Hi)] = Oε

(
k · n

1
k · L

)
.

Sparsity. Following the analysis of the lightness, we have

dlog1+ε ne∑
i=0

E[|Hi|] ≤
dlog1+ε ne∑

i=0

O

((
(1 + ε)i

ε

)1+ 1
k

)
= O

(
1

ε1+ 1
k

· n1+ 1
k

(1 + ε)1+ 1
k − 1

)
= O

(
n1+ 1

k

ε2+ 1
k

)
,

We conclude,

E[|H|] ≤ |T |+ |H ′|+
dlog1+ε ne∑

i=0

E[|Hi|] = Oε

(
k · n1+ 1

k

)
.

Remark 1. We note that the number of edges mostly comes from the spanner H ′. We can in
fact use the techniques developed here in order to efficiently implement the algorithm of [EN17b]
for weighted graphs in the CONGEST model, which provides a (2k − 1) · (1 + ε)-spanner with
Oε(log k · n1+1/k) edges. That algorithm partitions the edges E to ≈ log k sets, and for each set,
applies the unweighted version on a cluster graph. Since we already have an efficient distributed
implementation of that unweighted algorithm, we conclude that our sparsity bound may be improved
to Oε(log k · n1+1/k). We leave the details to the full version.

Successes Probability. Note that once the computation concludes, we can easily compute the
size and lightness of the spanner in O(D) rounds via the BFS tree τ . Thus we can repeat the
computation for H ′ and each Hi until they meet the required bounds, which will happen w.h.p.
after at most O(log n) tries. Recall that the stretch bound is guaranteed to hold.
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6 Distributed Construction of Nets

In this section we devise an efficient distributed algorithm for computing nets in general graphs. Let
G = (V,E,w) be a weighted graph. Recall that for α > 0, a set N ⊆ V is α-covering if for every
vertex x ∈ V there is y ∈ N with dG(x, y) ≤ α. A set N ⊆ V is β-separated if for every x, y ∈ N ,
dG(x, y) > β. We say that a set N is an (α, β)-net if it is both α-covering and β-separated. (In the
literature nets are often defined with α = β, but we will need the more general definition, since we
will only be able to provide nets with α > β.)

Our construction of nets is inspired by the MIS (maximal independent set) algorithm of [MRSZ11]
(which itself is inspired by [Lub86]). The MIS algorithm works in O(log n) rounds, where in each
round a permutation is sampled. A vertex joins the MIS iff it is local minimum (i.e., it appears
before all its neighbors in the permutation). We will also sample a permutation. However, instead
of checking only the neighbors, a vertex v will join the net iff it is a local minimum in a geometric
sense. I.e., v appears before all the vertices of BG(v, β) in the permutation.

In order to implement this algorithm efficiently we will require several tools that have found
distributed constructions recently, such as Least-Element lists and shortest path trees. However, we
do not know how to compute these exactly in the allotted number of rounds, so we will settle for
approximations. The rest of the section is dedicated to proving the following theorem.

Theorem 3. Given a weighted graph G = (V,E,w) with hop-diameter D and parameters ∆ >
0, δ ∈ (0, 1), there is a randomized algorithm in the CONGEST model that computes w.h.p. a(

(1 + δ) ·∆, ∆
1+δ

)
-net in (

√
n+D) · 2Õ(

√
logn·log(1/δ)) rounds.

Least Element Lists. LE lists were introduced by [Coh97]:

Definition 1. Given a weighted graph G = (V,E,w), a set A ⊆ V of vertices, and a permutation
π : A→ [|A|] on A, the LE list of a vertex v ∈ A is defined as

LEG,A,π(v) = {(u, dG(u, v)) : u ∈ A,@w ∈ A s.t. dG(v, w) ≤ dG(v, u) and π(w) < π(u)} .

In words, a vertex u ∈ A joins LEG,A,π(v), the LE list of v, if u is first in the permutation among
all the vertices at distance at most dG(v, u) from v (alternatively, u is the closest vertex to v among
the first π(u) vertices in the permutation.).

Khan et. al. [KKM+12] showed that with high probability over the choice of the permutation
π, it holds that |LEG,A,π(v)| = O(log |A|) simultaneously for all the vertices v ∈ A. Using hopsets,
Friedrichs and Lenzen [FL16] were able to efficiently compute LE lists in the CONGEST model
(improving upon Ghaffari and Lenzen [GL14]) for a graph H that is a good approximation of G.
(We remark that their algorithm was given in the case A = V , but it is a simple adaptation to
adjust it to the more general case.)

Theorem 4 ([FL16]). Consider a graph G = (V,E) with n vertices and hop-diameter D, a set
A ⊆ V , and let δ ∈ (0, 1) be any parameter. There is a randomized algorithm in the CONGEST
model that uniformly samples a permutation π and computes {LEH,A,π(v)}v∈V for a graph H such
that dG(u, v) ≤ dH(u, v) ≤ (1 + δ) · dG(u, v). The algorithm is successful w.h.p., and the number of

rounds is (
√
n+D) · 2Õ(

√
logn·log(1/δ)).
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Algorithm. Here we describe the algorithm promised in Theorem 3. The algorithm will run in
O(log n) iterations. Initially, set A1 = V the set of active vertices, and N = ∅. We denote by Ai
the set of active vertices for the i’th iteration, and by Ni the net just after the i’th iteration (so
N0 = ∅). In the i’th iteration, apply Theorem 4 on the graph G with the set Ai and the parameter
δ. We obtain a (uniformly random) permutation πi on Ai, alongside with LE lists for all v ∈ Ai
w.r.t πi and the graph Hi (which is a 1 + δ approximation of G). Every v ∈ Ai will join Ni iff it
is the first in the permutation order among its ∆-neighborhood (w.r.t Hi). In other words, v joins
Ni if there is no u ∈ LEHi,Ai,πi(v), u 6= v, such that dHi(u, v) ≤ ∆.

Next, we will construct an 1+δ approximate shortest path tree Ti (using [BKKL17], say) rooted
in Ni. Remove from Ai every vertex at distance at most (1 + δ) ·∆ from Ni (in Ti), to form Ai+1.
This concludes a single iteration. Continue until iteration i where Ai = ∅.

Running time. The number of rounds for computing the LE lists is (
√
n+D) · 2Õ(

√
logn·log(1/δ)),

and the shortest path tree takes Õ((
√
n + D)/poly(δ)) rounds. (Deciding whether to join Ni is

done locally once the LE lists are computed.) We will soon show that w.h.p. there are O(log n)

iterations, thus the total number of rounds is (
√
n+D) · 2Õ(

√
logn·log(1/δ)).

Analysis. First we argue that once the algorithm concludes, N is a
(

(1 + δ) ·∆, ∆
1+δ

)
-net. To

see the packing property, consider u, v ∈ N , and we want to show that dG(u, v) > ∆
1+δ . If u and v

joined N in the same iteration i, then they both were maximal in their ∆ neighborhoods w.r.t Hi,

and therefore dG(u, v) ≥ dHi (u,v)

1+δ > ∆
1+δ . Otherwise, assume w.l.o.g that u joined N at iteration i,

while v joined N at iteration i′ > i. As v remained active, necessarily (1 + δ) ·∆ < dTi(v,Ni) ≤
(1 + δ) ·dG(u, v). For the covering property, let v be some vertex that becomes inactive at iteration
i. Then there is a vertex u ∈ N such that dG(u, v) ≤ dTi(u, v) ≤ (1 + δ) ·∆.

It remains to show that after O(log n) iterations w.h.p. no active vertices remain. We say that
a pair of vertices {u, v} at distance at most ∆ (w.r.t. dG) is active if both u, v are active. Set
E0 = {{u, v} | dG(u, v) ≤ ∆} to be the set of initially active pairs. Ei will denote the set of pairs at
distance at most ∆ that remain active after the i’th iteration. For an active vertex v ∈ Ai, denote
by Ai(v) = Ai ∩ BG(v,∆). Note that u ∈ Ai(v) ⇐⇒ {v, u} ∈ Ei−1. We say that w ∈ Ai(v)
kills v at the i’th iteration if w is first in the permutation among Ai(v) ∪ Ai(w). Suppose that w
kills v in the i’th iteration. Then we claim that w joins Ni, as for every vertex w′ ∈ Ai such that
dHi(w,w

′) ≤ ∆ it holds that dG(w,w′) ≤ ∆ as well, and therefore π(w) < π(w′). In particular, v
will cease to be active as dTi(v,Ni) ≤ (1+δ) ·dG(v, w) ≤ (1+δ) ·∆. Note that at most one vertex w
can kill v (as it must be the first in the permutation in Ai(v)). 11 Therefore the probability that v
becomes inactive in iteration i is at least

∑
w∈Ai Pr [v is killed by w]. As we pick the permutation

π uniformly at random, the probability that w kills v is exactly |Ai(v) ∪Ai(w)|−1.
Our next goal is to show that in expectation, the number of active pairs is halved in each

11Note also that it is possible for a vertex to cease to be active without being killed. This can happen if the first
vertex in the permutation among Ai(v) does not join Ni, while a different vertex in Ai(v) does join. We do not take
advantage of this possibility.
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iteration. Consider a pair {u, v} ∈ Ei−1. Then

Pr [{u, v} /∈ Ei] ≥
1

2
· (Pr [u became inactive] + Pr [v became inactive])

≥ 1

2
·
∑
w∈Ai

Pr ([w kills u] + Pr [w kills v]) .

Ei−1 \ Ei is the set of pairs who cease to be active in the i’th iteration. We conclude

E [|Ei−1 \ Ei|] =
∑

{u,v}∈Ei−1

Pr [{u, v} /∈ Ei]

≥ 1

2
·

∑
{u,v}∈Ei−1

∑
w∈Ai

Pr ([w kills u] + Pr [w kills v])

=
1

2

∑
u∈Ai

∑
w∈Ai(u)

Pr [w kills u] · |Ai(u)|

=
1

2

∑
u∈Ai

∑
w∈Ai(u)

|Ai(u)|
|Ai(u) ∪Ai(w)|

≥ 1

2

∑
u∈Ai

∑
w∈Ai(u)

|Ai(u)|
|Ai(u)|+ |Ai(w)|

=
1

2

∑
{u,w}∈Ei−1

|Ai(u)|+ |Ai(w)|
|Ai(u)|+ |Ai(w)|

=
1

2
· |Ei−1| .

Set p = Pr
[
|Ei−1 \ Ei| > 1

4 · |Ei−1|
]
. Then 1

2 · |Ei−1| ≤ E [|Ei−1 \ Ei|] ≤ p · |Ei−1|+(1−p) · 14 · |Ei−1|,
which implies p ≥ 1

3 . After O(log n) iterations, by Chernoff inequality we had w.h.p. at least log 4
3
n

iterations where |Ei−1 \ Ei| > 1
4 · |Ei−1|, and therefore EO(logn) = ∅. Note that if no active edges

remain, then each active vertex is the only active vertex in its entire ∆ neighborhood. In particular,
in the next iteration all the active vertices will join N and cease to be active, as required.

7 Light Spanner for Doubling Metrics

In this section we show a distributed algorithm that produces light spanners for doubling metrics.

Theorem 5 (Light Spanner for Doubling Graphs). There is an randomized distributed algorithm
in the CONGEST model, that given a weighted graph G = (V,E,w) with n vertices, hop-diameter

D, doubling dimension ddim, and parameter ε ∈ (0, 1), in (
√
n+D) ·ε−Õ(

√
logn+ddim) rounds, w.h.p.

returns a (1 + ε)-spanner H with O
(
n · ε−O(ddim) · log n

)
edges and lightness ε−O(ddim) · log n.

Our spanner construction will go as follows. We take an ε∆-net for every distance scale ∆, and
connect net points that are within distance ∆ of each other. An efficient construction of nets was
described in Section 6. To efficiently implement the net point connections, we use approximate
shortest path computations based on hopsets from every net point. This will ensure that every
such approximate shortest path has few edges, thus the running time can be controlled.

The following lemma gives the standard packing property of doubling metrics (see, e.g., [GKL03]).
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Lemma 6. Let (M,ρ) be a metric space with doubling dimension ddim. If S ⊆ M is a subset
of points with minimum interpoint distance r that is contained in a ball of radius R, then |S| ≤(

2R
r

)O(ddim)
.

7.1 Spanner Construction

Let L be the weight of the MST of G. For every ∆ ∈ {1, 1 + ε, (1 + ε)2, . . . , (1 + ε)log1+ε L} we
compute a (2ε ·∆, ε2 ·∆)-net as in Theorem 3 (e.g., we can take δ = 1/2). Let Ni be the net for
∆ = (1 + ε)i, and for every net point u ∈ Ni, run in parallel a 2∆-bounded (1 + ε)-approximate
shortest path tree rooted at u, and add to the spanner H a (1 + ε)-approximate shortest path from
u to all other net points v ∈ Ni found within this distance bound.

Shortest paths via hopsets. To implement these bounded shortest paths computations, we use
the algorithm of [EN16] based on hopsets. A (β, ε)-hopset F for a graph G′ = (V ′, E′), is a set of
edges F that do not reduce distances, and for every u, v ∈ V ′

d
(β)
G′∪F (u, v) ≤ (1 + ε) · dG′(u, v) ,

where d(β)(·, ·) is the length of the shortest path containing at most β edges. The graph G′ is
created by choosing the set V ′ ⊆ V of size ≈

√
n lnn at random, so that w.h.p. it intersects every

shortest path in G of length at least
√
n. The edges E′ are the

√
n-bounded distances in G between

the vertices of V ′. Fix β = 1/εÕ(
√

logn). In [EN16] it is shown how to compute a (β, ε) hopset for
G′ of size O(

√
n · β2) in O((

√
n+D) · β2) rounds. Furthermore, that hopset is path reporting, that

is, there is a path Pe in G for every hopset edge e ∈ F , such that the length of Pe is exactly w(e),
and every vertex in Pe knows it lies on a path implementing e.

Once a hopset F is computed for G′, computing (1 + ε)-approximate shortest paths in G from
a root v ∈ V amounts to running β iterations of Bellman-Ford in G∪E′ ∪F In order to perform a
single Bellman-Ford iteration, we first send messages over the edges of E for 2

√
n rounds (to reach

a vertex of V ′, and then discover the relevant edges of E′). Second, every u ∈ V ′ broadcasts its
distance estimate to the root d(v) to all the graph using the BFS tree τ of depth D (to implement the
hopset edges). Since there are only O(

√
n · lnn) vertices in V ′, this can be done in O(

√
n · lnn+D)

rounds via Lemma 1.
In our setting we would like to compute in parallel multiple source 2∆-bounded approximate

shortest paths. To this end, we will use the fact the shortest path metric is doubling, hence every
vertex will participate in a small number of such computations.

7.2 Analysis

Running Time. Fix some ∆ = (1 + ε)i. Computing the (2ε ·∆, ε2 ·∆)-net Ni takes (
√
n+D) ·

2Õ(
√

logn) rounds. We next analyze the running time of the shortest paths computation from all
net points in Ni, which is conducted in parallel. By Lemma 6 we have that the number of net
points Ni in any ball of radius 2∆ is ε−O(ddim). This suggests that for any v ∈ V and any hopset
edge (x, y) ∈ F , there are at most ε−O(ddim) sources of shortest paths computations that will reach
them. Thus the number of rounds required to implement in parallel all approximate shortest path
computations is O

(
(
√
n+D) · β · ε−O(ddim)

)
= (
√
n+D) · ε−Õ(

√
logn+ddim). This is proportional to

the time required to compute the hopset, and as there are O(logL) = O(log n) different scales, the

final running time is (
√
n+D) · ε−Õ(

√
logn+ddim).
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Stretch Bound. For simplicity, we will prove stretch 1+c·ε for some constant c to be determined
later. One can get stretch 1 + ε by rescaling ε. Consider a pair u, v ∈ V such that (1 + ε)i−1 <
dG(u, v) ≤ (1 + ε)i = ∆. Assume by induction that every pair u′, v′ at distance at most (1 + ε)i−1

already enjoys stretch at most 1 + c · ε in H. The base case i = 0 is trivial since there are no pairs
u′ 6= v′ of distance less than 1. Let ũ, ṽ ∈ Ni be net points such that dG(u, ũ), dG(v, ṽ) ≤ 2ε ·∆. By
the triangle inequality dG(ũ, ṽ) ≤ (1+4ε)·∆, and since ε < 1/8 we have that (1+ε)·(1+4ε)·∆ ≤ 2∆,
so the 2∆-bounded shortest path exploration from ũ must have discovered ṽ. Therefore we added
a 1 + ε approximate shortest path between ũ and ṽ to H. Using the induction hypothesis on the
pairs {u, ũ} and {v, ṽ}, we conclude

dH (v, u) ≤ dH (v, ṽ) + dH (ṽ, ũ) + dH (u, ũ)

≤ (1 + cε) · 2ε∆ + (1 + ε)(1 + 4ε)∆ + (1 + cε) · 2ε∆
(∗)
<

1 + cε

1 + ε
·∆ ≤ (1 + cε) · dG (u, v) ,

where the inequality (∗) follows for any constant c ≥ 30, using that ε < 1/8.

Lightness bound. Let ni = |Ni|. In [FN18] the following claim was shown.

Claim 7 ([FN18]). Consider a weighted graph G with MST of weight L, such that there is an
r-separated set N . Then |N | ≤

⌈
2L
r

⌉
.

It follows that ni = O( L
ε∆). Recall that Lemma 6 implies that the number of net points Ni in

a ball of radius 2∆ is ε−O(ddim). So for every net point u ∈ Ni we added at most ε−O(ddim) paths
of weight at most 2∆ each. Thus the total weight of edges added for the i’th scale is bounded
by ni · ε−O(ddim) · 2∆ = ε−O(ddim) · L. In particular, the sum of weights of the edges added in the
2 log1+ε n scales i ∈ {log1+ε

L
n2 , . . . , log1+ε L} is bounded by ε−O(ddim) · log n · L. The contribution

of all the other scales is negligible as all these scales adds at most n2 edges of weight less than L
n2 .

The bound on the lightness follows.

Sparsity bound. Consider a vertex v ∈ V and the set of edges added for scale ∆ = (1 + ε)i.
Consider the ball B of radius 2∆ around v, recall that |B ∩Ni| = ε−O(ddim). We added a path to
the spanner only between net points of distance at most 2∆. Therefore v can participate in such
paths only when both net points are in B (as otherwise the length of a path going through v will
be greater than 2∆). Therefore v might participate in at most (ε−O(ddim))2 = ε−O(ddim) such paths.
As we added at most 2 edges touching v per path, the number of edges added which are incident
on v is bounded by ε−O(ddim). As there are log1+ε L scales (and n vertices), we can bound the total
number of edges added to the spanner by n · ε−O(ddim) · log n (recall we assumed G has diameter
poly(n), thus also L = poly(n)).

8 Lower Bounds

In a seminal paper, Das Sarma et al. [SHK+12] showed that approximating the weight of an MST
up to polynomial factors takes Ω̃(

√
n) rounds. As both an SLT and a light spanner provide such

an approximation to the weight of the MST, we conclude:
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Theorem 6. Every distributed algorithm in the CONGEST model that computes an SLT or a
spanner with polynomial lightness, takes Ω̃(

√
n+D) rounds.

Next we argue that computing nets takes Ω̃(
√
n + D) rounds as well. Our lower bound is for

general graphs. Therefore, it is possible that computing nets for graphs with bounded doubling
dimension can be performed faster. Nevertheless, we conclude that Theorem 3 is tight (up to lower
order terms).

Theorem 7. Suppose that there is a distributed algorithm in the CONGEST model that for every
parameter ∆ computes an (α ·∆,∆)-net for some 1 ≤ α ≤ poly(n). Then the algorithm runs in
Ω̃(
√
n+D) rounds.

Proof. Let G be a graph from the family [SHK+12] used for their lower bound for approximating the
weight of the MST. The only property we will use is that G has polynomial diameter Λ. (W.l.o.g.
the minimal distance is 1, and Λ is the largest distance in G.) We will create nets in all the distance
scales, and use their cardinality in order to provide a polynomial approximation to the weight of
the MST. As there are only O(log n) distance scales, and the cardinality of all the nets can be
computed in O(D + log n) time, the lower will follow.

For every i ≥ −dlogαe, compute an (α · 2i, 2i)-net Ni. We stop in the first time that |Ni| = 1.
Note that we compute at most O(log n) nets, since logα = O(log n), and when 2i is larger than
Λ = poly(n), there can be only a single net point. Next, we compute the cardinality of all the net
points and return Ψ =

∑
i ni · α · 2i+1 where ni = |Ni|. To finish the proof, we will argue that

L ≤ Ψ ≤ O(α · log n) · L (where L is the weight of the MST).
For every i, as Ni is 2i-separated, by Claim 7 ni ≤

⌈
2L
2i

⌉
. In particular, Ψ =

∑
i ni · α · 2i+1 ≤

α ·
∑

i

⌈
2L
2i

⌉
· 2i+1 = O(α · log n) · L.

For the second inequality, we will construct a connected subgraph H of G. For every net point
x ∈ Ni, let y ∈ Ni+1 be the closest point to x among points in Ni+1. Then by the covering property
dG(x, y) ≤ α · 2i+1. Add to H the shortest path from x to y. Do this for all the nets. Note that
N−dlogαe = V (since any point can cover only itself), and that the maximal net consist of a single
point. Therefore H is connected. We conclude L ≤ w(H) ≤

∑
i ni · α · 2i+1 = Ψ.
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