
Perigee: Efficient Peer-to-Peer Network Design for Blockchains
Yifan Mao

The Ohio State University

mao.360@osu.edu

Soubhik Deb

University ofWashington Seattle

soubhik@uw.edu

Shaileshh

Bojja Venkatakrishnan

The Ohio State University

shaileshh.bv@gmail.com

Sreeram Kannan

University ofWashington Seattle

ksreeram@uw.edu

Kannan Srinivasan

The Ohio State University

kannan.sriniv@gmail.com

ABSTRACT
A key performance metric in blockchains is the latency between

when a transaction is broadcast and when it is confirmed (the so-

called, confirmation latency). While improvements in consensus

techniques can lead to lower confirmation latency, a fundamental

lower bound on confirmation latency is the propagation latency of

messages through the underlying peer-to-peer (p2p) network (in

Bitcoin, the propagation latency is several tens of seconds). The de
facto p2p protocol used by Bitcoin and other blockchains is based

on random connectivity: each node connects to a random subset of

nodes. The induced p2p network topology can be highly suboptimal

since it neglects geographical distance, differences in bandwidth,

hash-power and computational abilities across peers. We present

Perigee, a decentralized algorithm that automatically learns an ef-

ficient p2p topology tuned to the aforementioned network hetero-

geneities, purely based on peers’ interactions with their neighbors.

Motivated by the literature on the multi-armed bandit problem,

Perigee optimally balances the tradeoff between retaining connec-

tions to knownwell-connected neighbors, and exploring new con-

nections to previously-unseen neighbors. Experimental evaluations

show that Perigee reduces the latency to broadcast by 33%. Lastly

Perigee is simple, computationally lightweight, adversary-resistant,

and compatible with the selfish interests of peers, making it an at-

tractive p2p protocol for blockchains.

CCS CONCEPTS
• Networks → Network algorithms; Peer-to-peer protocols;
Network performance evaluation; Network properties; Peer-to-peer
networks; • Theory of computation→ Distributed algorithms; •
Computingmethodologies→Multi-agent systems.
KEYWORDS
blockchain, peer-to-peer, topology, multi-armed bandit

ACMReference Format:
Yifan Mao, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram Kannan,

andKannan Srinivasan. 2020. Perigee: Efficient Peer-to-PeerNetworkDesign

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

PODC ’20, August 3–7, 2020, Virtual Event, Italy
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7582-5/20/08. . . $15.00

https://doi.org/10.1145/3382734.3405704

for Blockchains. In Symposium on Principles of Distributed Computing (PODC
’20), August 3–7, 2020, Virtual Event, Italy.ACM,NewYork, NY, USA, 10 pages.

https://doi.org/10.1145/3382734.3405704

1 INTRODUCTION
In 2008, Satoshi Nakamoto proposed Bitcoin as a decentralized cur-

rency systemover a peer-to-peer (p2p) network,with the blockchain

protocol as its underlying technology formaintaining a public ledger

of payment transactions [33]. Since then, there has been a prolifer-

ation of applications leveraging the power of blockchains as a core

component, for implementing cryptocurrencies, smart contracts,

supply chain management, etc. [14]. Today, the combined market

capitalization of all cryptocurrencies is around 280 billion dollars

with a rapidly increasing user base [4].

A key problem facing blockchain systems today is scalability—for

example, the Bitcoin network can currently support a maximum of

only 10 transaction per second [41], compared to 1700 transactions

per second on Visa. A blockchain protocol functions by periodically

consolidating transactions and broadcasting them as “blocks” over

the network. Recent works have constructed new consensus pro-

tocols to improve confirmation latency and throughput in both the

permissioned [7, 36] as well as the permissionless settings [10, 24].

There have also beenmethods to compress [34] and code [13] blocks

while forwarding. Despite these improvements, a fundamental fac-

tor limiting the performance of blockchain systems is the inherent

message propagation delay introduced by the p2p network. A block

experiences delays from various factors during propagation, such

as due to link latencies and processing delays for verifying blocks

at each peer. It is known that improving the propagation delay di-

rectly improves key performance metrics of the system: transaction

throughput, latency in confirming transactions, and security [10].

Measurement studies over Bitcoin [15, 17] report that it takes on

anaverage79seconds forablock to reach90%ofnodes in thenetwork.

Whereas themedian round-trip-timebetweenhostson the Internet is

<300ms [26], the median bandwidth of Bitcoin nodes is 33Mbps [15],

and the average time taken to validate a block is <200ms [23]. Blocks

have an average size of 1MB in Bitcoin today. These numbers show

that the time it takes for a block to propagate to the majority of the

network is 40× larger than the time it takes to verify and relay a block

between two nodes (<1 or 2s).With an estimated number of less than

11,000 nodes in Bitcoin [1], and each node making connections to at

least 8 other nodes [32], a key reason for the disproportionately large

propagation delay today is due to the ineffectiveway inwhich nodes

are connected to each other (i.e., the topology) in the p2p network.

ar
X

iv
:2

00
6.

14
18

6v
1

 [
cs

.N
I]

 2
5

Ju
n

20
20

https://doi.org/10.1145/3382734.3405704
https://doi.org/10.1145/3382734.3405704

PODC ’20, August 3–7, 2020, Virtual Event, Italy Mao, et al.

The design of p2p networks for efficient content storage and

lookup has a long history [30, 38, 42]. However, blockchains require

only a simple broadcast primitive (for example, unicast messages

directed to a particular node or lookup for specific content are not

supported) and this primitive needs to be robust to adversarial ac-

tion. This has led to Bitcoin following a random connection policy,

where each node chooses its neighbors randomly from among a set

of known nodes. While the random graph topology is simple, robust

and provides good connectivity (from a graph theoretic standpoint),

it is oblivious to differences in round-trip-time latencies between

different nodes, heterogeneity in node bandwidth and block verifi-

cation times. This inherently worsens the overall delay experienced

by broadcasted blocks; for example, a block is likely to make sev-

eral back-and-forth trips across distant continents before reaching

a node. In this paper, we consider the question of how to optimally

connect nodes in the Bitcoin network (and blockchain p2p networks

in general), in a way that is aware of link and node heterogeneities,

so that the broadcast time of blocks is minimized.

We present Perigee, a decentralized protocol that adaptively de-

cides which neighbors a node should connect to, purely based on

the node’s past interactions with its neighbors. Our protocol is mo-

tivated by the classical multi-armed bandit problem [8]. Nodes in

Perigee balance the trade-off between retaining old neighbors with

good connectivity, and exploring new neighbors with potentially

better connectivity. In Perigee, a node quantifies its interactionswith

its neighbors by looking at the block arrival times. Neighbors that

consistently deliver blocks quickly are favored, while others are dis-

connected. Perigee also continuously forms connections to a small

number of nodes randomly, for discovering previously unseen but

well-connected nodes. Our approach of purely using block arrival

times to select neighbors is automatically tuned to heterogeneity

in link latencies, block validation delays and node bandwidth. The

end result is a topology that is very tight: experimental results show

Perigee improves overall propagation delay by 33% compared to the

state of the art (§5).

Modifying the p2p topology for faster block propagation has been

considered in prior works; e.g., in Kadcast [37] the authors propose

a structured p2p overlay as a faster alternative to the random topol-

ogy. However, such a structured topology is still oblivious to link

latencies, block validation times and node bandwidth, which renders

its performance to be only slightly better than the random topology

(§5). One way to take link latency into account is by using the geo-

graphical location of nodes, inferred from their IP addresses, to select

neighbors [5]. However, this approach does not accurately reflect

propagation latencies sincenodes frequentlyuseproxy-servers,VPN

and Tor to run nodes, not tomention potential geo-location spoofing

attacks by adversaries. Even more importantly, this approach also

remains oblivious to the differing processing power and bandwidth

possessed by different nodes.

In contrast, Perigee does not use any explicit property about a

node, and is thus much more robust to spoofing attacks. Another

line of work proposes high-speed block distribution networks (e.g.,

BloXroute [29], Falcon [2], Fibre [3]) to reduce block propagation

times. These solutions are not fully decentralized, as using them

requires nodes to place trust on the relay network. The routes in

these networks could be also susceptible to man-in-the-middle at-

tack. Nevertheless, even if such relay networks are present, Perigee

automatically adapts its topology to exploit those networks (§5.4).

Perigee naturally incentivizes nodes to follow protocol—if a node

deviates from protocol (e.g., stops relaying blocks, or does not up-

date its neighbors using Perigee), then its neighbors will penalize

the node by disconnecting from it in the future. Consequently, the

deviant node will lose out on receiving blocks in a timely manner.

Finally Perigee maintains a subset of random neighbors at all

times, thus making it less susceptible to eclipse attacks.

1.1 Background
Blockchain applications use a distributed, replicated ledger—called

the blockchain—for storing and updating, collective states of ap-

plication’s end-users. Bitcoin is a popular example of a blockchain

application. In Bitcoin, the blockchain contains the sequence of all

payment transactions made by users since the very beginning of

Bitcoin. The public nature of these transaction logs allows a payee to

unilaterally verify the authenticity of incoming payments, without

relying on third party organizations. Thus it is a fully decentralized

payment system, a property that has contributed significantly to its

growth and popularity.

1.1.1 Bitcoin architecture. Bitcoin operates over a p2p network. In
Bitcoin,when a usermakes a payment transaction, first a transaction

message specifying the sender, recipient, and payment amount is cre-

ated by the user. The transaction is then broadcast to other peers over

the network. As new transactions are propagated over the network,

special peers called miners accumulate these transactions, verify

their authenticity and consolidate them into individual transaction

blocks in a process calledmining. A block in Bitcoin can contain a few

thousand transactions today. Miners compete for mining each block,

as they receive a monetary reward (funded by transaction fees) for

mining a block. To ensure immutability in the sequence of previously

minedblocks,minersareobliged to includehashof thepreviousblock

andsolvea computationallydifficult cryptographicpuzzlewhilemin-

ing. When a block is mined, the miner shares the block with the rest

of the network by broadcasting it. A peer receiving a freshly mined

block first verifies its authenticity, before appending the block to its

local copy of the blockchain or relaying the block to other neighbors.

1.1.2 Block propagation delay and performance. Blocks are broad-
cast in Bitcoin via flooding; when a peer receives a new block, it

announces the hash of the block to all its neighbors via an INVmes-

sage. Subsequently, neighbors who have not yet received the block

respond with a GETDATAmessage requesting for the block, and the

block is relayed to them. The process repeats until all the peers in

the network have received the new block.

The performance of Bitcoin, and other cryptocurrencies, is mea-

sured by their (i) throughput, which is the average rate atwhich trans-
actions are confirmed in the blockchain per second, (ii) confirmation
latency, the time taken such that the probability for removing an

honest transaction from the blockchain becomes sufficiently small,

and (iii) security, the extent of adversarial peers the network can

tolerate before the blockchain loses its immutability property [10].

Cryptocurrencies today offer strong security guarantees, but are

lacking in their throughput and confirmation latencies compared

Perigee: Efficient Peer-to-Peer Network Design for Blockchains PODC ’20, August 3–7, 2020, Virtual Event, Italy

to mainstream payment systems. For example, Bitcoin promises its

blockchain cannot be compromised as long as more than 50% of the

miners are honest. However, compared to the average throughput

of 1700 transactions per second in the Visa network, the average

throughput in Bitcoin today is just 3–7 transactions per second, and

the latency is 1 hour [15].

A key factor affecting the throughput, confirmation latency and

security is the propagationdelay of blocks. If the propagationdelay is

too large, then there is a higher probability ofmining of a blockwhile

another block at the same blockchain height is being propagated

across the network—a phenomenon called forking [17]—reducing

network throughput. The confirmation latency is also physically

lower bounded by the propagation delay of the underlying p2p net-

work [10]. Furthermore, a large propagation delay can help an adver-

sary to execute double spending and block-withholding attacks [39].

1.1.3 How the p2p topology impacts delay. The dynamics of block

propagation in Bitcoin has been empirically observed to follow a

pattern similar to randomized rumor spreading in networks [17].

For instance, when a block is mined and broadcast, it first spreads

exponentially fast to peers that are close to the source, before slow-

ing down exponentially and reaching the remaining peers [17, 28].

Prior works have extensively analyzed (both empirically, and the-

oretically) rumor spreading on different network topologies [19, 20],

and have shown that rumors spread substantially faster in certain

topologies than others. Specifically, scale-free graphs spread rumors

significantly faster (in sub-logarithmic time) than random graphs.

Doerr et al. [19] report that on social networks (e.g., the Twitter

topology), rumors spread even faster than on scale-free graphs.

While the rumor-spreading model is considerably simpler com-

pared to the dynamics of block propagation in Bitcoin’s network

(e.g., it does not model heterogeneity in link latencies, or bandwidth)

it illustrates the potential benefits of carefully designing the p2p

topology. An optimal peer connection protocol should not only im-

bibe essential properties of a fast rumor-spreading network and take

peer heterogeneity into account, but should also be implementable

in a decentralized manner without introducing new vulnerabilities.

1.2 Problem Statement and Contributions
We consider re-designing Bitcoin’s p2p topology, to minimize the

time taken by blocks to propagate over the network. The topology

is constructed using a fully decentralized protocol running at all the

peers. A peer may choose to not follow protocol, or even act adver-

sarially, but we assume there exist peers, whose aggregate compute

power amounts to more than 50% of the total compute power in the

network, that are honest [33]. Each honest peer seeks to connect to

a set of neighboring peers, to minimize the time it takes for a block

mined by the peer to reach a majority (e.g., 90%) of the compute

power in the network. Honest peers are also interested in receiving

blocks mined by a majority of other peers as early as possible. Our

main contributions are as follows.

Fundamental bounds on delay.We present a theoretical model

for analyzing block propagation delay in Bitcoin, that explicitlymod-

els heterogeneity in the communication latencies betweenpeers.Our

model is based on a line of work in the networking systems, which

has proposed that latencies between hosts on the Internet can be ac-

curately predicted by embedding the hosts on to a metric space [16].

With this model, we show that inter-connecting peers randomly

leads to propagation delays that are logarithmicallyworse compared

to the underlying point-to-point latencies between peers (§3.1). Con-

versely, we also show that a topology in which peers choose neigh-

bors with whom they have a small round-trip-time latency, provides

asymptotically the best possible propagation delay (§3.3).

Optimal algorithm.Wepropose Perigee, a decentralized neighbor-

selection protocol, that adaptively decides which neighbors to con-

nect to purely based on the interactions between a peer and its

neighbors (§4). Perigee is motivated by the classical multi-armed

bandit problem [8], in which an agent—faced with a decision to

choose one among many options with a priori unknown rewards—

adaptively tries the different options and zeros-in on the best choice.

A core tenet of algorithms for solving the multi-armed bandit prob-

lem is balancing exploration (trying out a previously unexplored

option) with exploitation (choosing an option that has already been

tried before). In our case, each peer is an agent that is faced with

choosing the best set of neighbors, amongdifferent choices for neigh-

bors. Interpreting the p2p topology design problem as an instance

of multi-armed bandit problem is a key novelty of our paper and,

to our best knowledge, has not been proposed before. Further, our

experiments show that the topology that is adaptively learned by

Perigee has striking statistical similarities to the theoretically opti-

mal topology (§3.3). In addition to minimizing propagation latency,

Perigee is attractive also for the following reasons:

• It is lightweight.

• It is compatible with the self-interests of peers—each peer

selfishly tries to select the best neighbors for itself.

• It supports incremental deployment: peers following Perigee

would see improvements in how quickly they can send or

receive blocks, compared to those that do not follow Perigee.

• It is robust against adversarial actions: a Perigee peer does not

need to knowmuch about a candidate neighbor (e.g., its geo-

graphical location, or the round-trip latency to the neighbor)

to decide whether to connect to it.

• It incentivizes peers to relay blocks promptly.

• It is naturally adaptive to varying hash-power. Each node

tries to optimize its distance from an average block source,

rather than from an average node.

2 SYSTEMMODEL
2.1 NetworkModel
We model Bitcoin’s p2p network as an undirected graph G(V ,E),
where V is the set of nodes, and E is the set of edges, or links, be-

tween the nodes. A node refers to a Bitcoin server (e.g., a miner), that

can accept incoming TCP connection requests from other servers

and clients. Clients on Bitcoin are end-devices that are not able to

accept incoming TCP connection requests (e.g., because they are

behind a NAT). Once a TCP connection has been established be-

tween two nodes, communication can happen in both directions.We

focus in this work, on Bitcoin servers as they form the core of the

p2p overlay—servers tend to be always on, and the time taken for a

block to propagate is largely affected by the interconnectionnetwork

between the servers. We focus on minimizing the latency of propa-

gating blocks, not transactions, in this work (we define the objective

formally in §2.2). It is well known that transaction throughput and

PODC ’20, August 3–7, 2020, Virtual Event, Italy Mao, et al.

confirmation latencies in Bitcoin are directly correlated with block

propagation times [10].Moreover, ap2pnetwork that isoptimized for

rapidly broadcasting blocks would also minimize transaction broad-

cast time, as clients are likely to connect to well-connected server

nodes (e.g., using [1]). However, our protocol is general, and can

readily be adapted to optimize transaction propagation times as well.

For any two nodes u,v ∈V , we assume the latency of sending a

block fromu tov or fromv tou, viaaTCPconnectionbetweenu andv ,
is a constantδ(u,v) ≥ 0. The latency here includes transmission delay,

in-network (propagation, queueing etc.) delays and protocol-specific

message exchange overheads (e.g., inv, getdata exchange in Bit-

coin)while sending a block.δ(u,v), for a pair of nodesu,v , depends on
various factors: the size of each block, the Internet access bandwidths

atu andv , the physical distance between the nodes, and the extent of
congestion in the network.We assume these factors are slowly vary-

ing compared to the timescale of our algorithm. Each nodev ∈V also

spendsafixedamountof time∆v , for cryptographicallyverifying the
authenticity of a block it receives. ∆v varies between nodes depend-

ing on their processing power. The fraction of hash power a nodev
has, relative to the total hash power of the network, is denoted by fv .

We assume blocks are periodically generated (e.g., once every

10 minutes) and broadcast over the network. The probability that

a nodev generates the block in a round is proportional to its hash

power fv . When a nodeu mines a block, or receives a block from a

neighbor, it immediately starts relaying the block to each neighborv ,
taking a time δ(u,v) to finish relaying. For simplicity we also assume

that the connection updates execute synchronously at all the nodes,

immediately after a block is broadcast on the network.

At any time, each node maintains dout=8 outgoing connections,
and has din ≤ 20 incoming connections. In practice, Bitcoin nodes

can have up to 8 outgoing and 125 incoming connections [32]. To

discover peers in the network, Bitcoin nodes also maintain a local

database called addrMan, which they regularly update by exchang-
ing messages to neighbors. A bootstrapping server provides with a

list of addresses for a freshly joining peer. However, we assume each

node know the IP addresses of all other nodes.

2.2 PerformanceMetrics
For eachv ∈V , we compute the minimum overall delay λv it takes

for a block mined and broadcast byv to reach nodes totalling to at

least 90% of the hash power in the network. The objective for each

v ∈V is to choose neighbors such thatλv isminimized. By symmetry,

this objective would equivalently also minimize the time taken by

blocks mined by a majority of other nodes to reachv .

3 BASELINEALGORITHMS
3.1 Random
The random connection policy is a simple algorithm that is widely

deployed in many cryptocurrency systems today. In this algorithm,

a node maintains a list of IP addresses of a small number of nodes

that are currently active in the network. Initially a bootstrapping

server provides the node with such a list; subsequently the list is

updated (i.e., new addresses are added, while stale ones are removed)

by gossiping any changes in the set of neighbors for each node, over

the network. Intuitively, if connections are formed randomly on a

world-wide network, then any path—and in particular the shortest

(a) (b)

Figure 1: Example of 1000 nodes embedded randomly within a
unit-square. (a) If nodes are interconnected according to a random
topology, the shortest path between two points can be much longer
than the Euclidean distance between the points. (b) If nodes are
interconnectedusinga carefullydesigned topology (e.g., a geometric
graph; see §3.3), significantly better paths, with length close to the
Euclidean distance, are possible.

path—between two nodesu,v would likely pass through intermedi-

ate nodes that are not located close to the shortest geographical route

(i.e., the geodesic) connectingu andv . Such less-than-direct paths
would prolong the propagation delays of blocks sent on the network.

Moreover, even with queueing delays on the Internet, we can show

that a random topology leads to paths with latencies significantly

larger than those of paths on optimal topologies. Based on extensive

measurement studies, prior works [16] have empirically shown that

endhosts on the Internet can be embedded on a high-dimensional

metric space (e.g.,R5) such that themetric distance between any two

endhosts accurately predicts the communication latency between

the hosts. However, the paths on a randomly connected network

are unlikely to remain close to the geodesic shortest route between

hosts, on the embedded high-dimensional space.

Example. To illustrate this, consider an example of a network em-

bedded in the unit square [0,1] × [0,1], as shown in Figure 1. The

green points within the square are drawn uniformly randomly and

represent the nodes in the network. The Euclidean distance | |u−v | |2
between any two nodes u,v is the one-way latency of sending a

message (e.g., a transaction, or a block) fromu tov or vice-versa.
1

Now, consider connecting each node in the unit-square randomly to

3 other nodes. Figure 1(a) shows the shortest path on this topology,

between twonodesa andb that are closest to the bottom-left and top-

right corner of the square. However, due to the meandering nature

of paths in a random topology, the latency between a and b is much

greater than the point-to-point latency | |a−b | |2 between them. In

contrast, a geometric graph topology (to be discussed shortly in §3.3)

hasa shortestpathbetweena andb that ismuchcloser to thegeodesic

shortest path (straight line between a andb), as shown in Figure 1(b).
We formally show the suboptimality of the random topology next.

Suboptimality of the random algorithm. Let [0,1]d be the d-
dimensional hypercube (d ≥ 2), equipped with the Euclidean metric,

and letV = {x1,x2,...,xn } denote the nodes in the network. To model

the point-to-point latencies between different pairs of nodes, i.e., the
latency between pairs of nodes if they are directly connected to each

1
From the literature and results on metric-embedding of Internet hosts, we assume

that message latency fromu tov is equal to the latency fromv tou .

Perigee: Efficient Peer-to-Peer Network Design for Blockchains PODC ’20, August 3–7, 2020, Virtual Event, Italy

other, we consider an embedding ofV on to [0,1]d , in which each

node xi is mapped to a point Xi chosen uniformly randomly over

[0,1]d . The point-to-point latency between any two nodes xi ,x j ∈V ,

is then simply | |Xi−X j | |2.
Next, to model random connections between nodes, for each pair

ofnodesxi ,x j weletxi andx j havea linkbetweenthemwithprobabil-

ityp, independent of other links. Equivalently, we can consider each
pair of pointsXi ,X j on the embedded space to have a link between

themwith probability p, independent of other links. The resulting
random graph of points {X1,X2,...,Xn } is denoted by G̃(Ṽ ,Ẽ). The
network latency dist(i,j) between any two pointsXi ,X j is the time

taken for a message broadcast by node i (resp. node j) to reach node
j (resp. node i). This is computed as the total weight of edges on the

shortest path betweenXi andX j onG̃ , where theweight of each edge

(Xu ,Xv) ∈ Ẽ is given by | |Xu−Xv | |2. Clearly, the maximum point-to-

point latency between any two points is bounded by

√
d , which is

the Euclidean distance between the diagonal points [0,0,...,0] and
[1,1,...,1] on the hypercube. However, due to the random nature of

the graph, the typical network latency between any twonodes i,j can
be a logarithmic factor worse as shown by the following Theorem.

Theorem 1 ([22]). For any pair of nodes xi ,x j ∈V andp ≤clogn/n,
where c=c(n)=O(1), we have

dist(i,j)≥ (logn)1−
1

d

8d3/2ed (loglogn)2c1/d
| |Xi−X j | |2, (1)

with probability 1−o(1).

(Proof in Freize et al. [22].)

In Theorem 1 above,p ≤clogn/n connotes a small average degree

of clogn per node in the network. The latency bound in Equation (1)

holds asymptotically almost surely for any pair of nodes i,j because
of our assumption that each node is embedded on to a random point

in the hypercube.
2
In reality, while connection patterns across nodes

can change randomly with time, the point-to-point latencies be-

tween nodesmay not vary significantly. Nevertheless, for nodes that

are not too close to each other, Theorem 1 suggests that the latency

between them on a random network must be logarithmically worse.

3.2 Connecting Based on Geography
Akey reason the randomly formed topology suffers from suboptimal

path delays (Theorem 1), is due to a lack of sufficient connectivity

between nodes that are in close proximity (i.e., have small delay) to

each other in the hypercube. If the size of the network is large, each

node is likely to choose neighbors that are all far away, as the number

of distant nodes is much greater than the number of nearby nodes.

Therefore, even if amessage reaches the general vicinity of node fast,

it likely needs to spend a disproportionate amount of time to actually

reach the node, due to the lack of any direct, low-delay paths. To

ensure good connectivity in this “last mile”, it is desirable for nodes

to connect not only to nodes that are far away, but also those close by.

In practice, it is difficult for nodes to a priori know the round-trip-

times to other nodes, without actually connecting to themfirst. How-

ever, recent work [11] has proposed using the geographical location

of a node—which can be estimated based on it’s IP address [27]—as

2
This leads to any two points Xi ,X j being "well-separated" on the hypercube with

high probability.

a proxy for predicting whether the connection latency to the node is

likely to be large or small. If the geographical locations of nodes are

known, then a natural method to improve the random protocol, is

to select a few neighbors among those that are geographically close,

and then choose the rest of the neighbors randomly. For instance,

if we cluster nodes according to the continents they are from, then a

node located in North America can have four neighbors that are also

in North America, and four other neighbors from other continents

(e.g., Asia, Europe).

In our evaluations (§5), we show that the above protocol, does

indeed perform better compared to the random protocol. However,

the question remains whether this protocol can be improved even

further. For instance, we have clustered nodes based on the conti-

nent in which they are located, but it is unclear if a different way

of grouping nodes would have fared better. We also assign 50% of

a node’s connections to in-cluster nodes, and the remaining 50% to

nodes outside the cluster. The optimal balance between the num-

ber of connections made within and outside of the cluster, is again

unclear. In practice a node may be malicious and try to spoof it’s

true geographical location (e.g., via proxies, or VPN), which can also

significantly degrade the utility of the algorithm. Lastly, the assump-

tion that the geographic distance to a node dictates the latency to

it is only a coarse approximation [26].

3.3 Theoretical Optimum
To understand how much better an optimal topology can be, we

consider a geometric graph in which two nodes are connected if

the latency between them is less than a threshold r . Compared to

the random topology, in which neighbors are selected completely

agnostic of their delay or geography, the geometric graph represents

the other extreme where all neighbors are chosen to be within some

small delay. Following the model for latency in which nodes are

randomly embedded within a d-dimensional unit-hypercube (§3.1),

we can show that the shortest path distance between any two nodes

is at most a constant factor larger than their Euclidean distance.

Theorem 2 ([21, 40]). For a geometric graph with threshold r =
Θ((logn/n)1/d), there exists a constant ξ such that for any two nodes
xi ,x j in the same connected component with | |Xi −X j | |2 = ω(r), it
holds that dist(i,j) is at most ξ | |Xi−X j | |2 with probability 1−o(1).

(Proof in Friedrich et al. [21])

The superior path delay of the geometric graph stems from nodes

having a strong connectivity to other nodes in their local vicinity,

which creates paths traversing closely to the geodesic between any

two nodes (Figure 1(b)). We note that the geometric graph is not

the only construction with order-optimal path delay—a recent line

of work [6, 18] has proposed other efficient topology constructions

also providing order-optimal path delays, for points embedded in

a metric space. For example, in Chan et al. [12], the authors propose

a decentralized algorithm for constructing a low-stretch spanner

where the graph distance between any two nodes is at most a con-

stant factor worse than their Euclidean distance. Their algorithm is

also robust against node faults.

Themetric embeddingmodel for node latencies, discussed in §3.1,

§3.2 and the present section, is useful as a simple, tractable theoret-

ical model for analyzing competing topology constructions. While

themodel captures first-order differences in point-to-point latencies

PODC ’20, August 3–7, 2020, Virtual Event, Italy Mao, et al.

across nodes, blocks in the Bitcoin network also suffer from delays

due to transmission (if the available bandwidth is small, relative to

the block size), and block validation. Measurement studies on the

Bitcoin network, report a wide skew in these delays across different

nodes; e.g., in one study [15] conducted in 2015, the bandwidth of

Bitcoin server nodes was found to vary from 3 Mbps to 186 Mbps.

Bitcoin’s block size has also varied over the years, from 87KB in 2012

to around 1 MB today. These numbers are likely to change as nodes

continuously invest in better network infrastructure, compute and

storage hardware, and as the Bitcoin community introduces higher-

level protocol changes . To optimize the p2p topology in an evolving

landscape, it is desirable for a neighborhood-selection protocol to be

adaptive to changes, while at the same time have behavioral similar-

ities to optimal topology constructions such as the geometric graph.

Perigee is such a protocol; we discuss it next.

4 PERIGEE
Perigee is a decentralized algorithm that adaptively learns to form
optimal peer connections, purely based on a node’s interactions

with its neighbors. Unlike hand-crafted protocols which often re-

quire extensive manual tuning to optimize protocol parameters for

individual blockchain networks, Perigee is a flexible learning algo-

rithm that automatically finds the best topology for any network

setting. In Perigee, nodes continuously monitor the promptness of

block delivery from each of their neighboring nodes, and decide

whether to retain their neighbors or explore connecting to other

potentially better-connected peers. Since each node tries to locally

find the best set of neighbors it can connect to, Perigee naturally

benefits the self-interests of peers. In §5 we show through extensive

experimental evaluations, that our protocol also globally optimizes

block propagation delays under diverse settings.

4.1 AlgorithmOverview
Perigee operates on top of existing block distribution protocols, and

does not change the format of blocks or the gossip protocols used

for broadcasting them. Instead it simply decides what is the best set

of neighbors for a node to connect to, for a given block size and gos-

sip protocol. Starting from an arbitrary initial set of neighbors (e.g,

obtained randomly from a bootstrapping server), a node in Perigee

periodically evaluates its current set of neighbors, to decide which

neighbors offer the fastest connectivity to the rest of the network.

Connections to those neighbors providing a good connectivity are re-

tained, while the rest are disconnected. Additionally, Perigee also pe-

riodically connects to a small number of randomnodes, as ameans to

discover previously unknown but potentially well-connected peers.

In Perigee, a neighbor is evaluated purely based on timestamp

measurements of when blocks, or advertisements for blocks, were

received from the neighbor.
3
Based on these measurements, a real-

valued score is computed and assigned to each neighbor, which is

then used to decide which subset of neighbors to retain. Using block

reception times to scoreneighbors, is a keynovelty inPerigee andhas

several advantages compared to algorithms discussed in §3. A node

is identified only by its IP address, and not based on auxiliary infor-

mation such as its geographical location. This makes our algorithm

3
Our protocol is general, and can also be used with timestamp measurements of

transactions received from neighbors.

Algorithm 1: Perigee: Algorithm template for updating

neighbors of nodev after each round.

input :neighbors Γv , outgoing neighbors Γov , set of blocks
B mined during the round, and observation set Ov

output :updated set of outgoing neighbors Γov for next round

/* Score each neighbor based on measurements
collected in Ov using a scoring algorithm
(see §4.2, §4.3 for different scoring methods) */

score(u)← ScoringAlgorithm(Ov), for each ngbr.u ∈ Γov
/* Retain subset of dv neighbors with best score */

Γov←{u ∈ Γov :score(u) ∈ best dv scores of nodes in Γov }
/* Additionally

connect to ev random peers for exploration */
Γov←Γov ∪(ev randomly chosen neighbors fromV)

robust to geo-spoofing attacks. Moreover, by explicitly using block

arrival times for scoring neighbors, Perigee automatically takes into

account heterogeneities, such as variations in link latencies across

geographically separated nodes, and variations in hash power. The

resulting topology therefore, has a good connectivity to nodes with

high hash power, rather than good connectivity in a simpler graph

theoretic sense (e.g., low diameter).

To simplify our exposition, we present Perigee (Algorithm 1)

under the network model of §2. The algorithm proceeds in rounds,

where each round spans the time taken to mine and broadcast K
unique blocks B= {b1,b2,...,bK } over the p2p network. For a node
v ∈V , letΓv denote thesetofv’sneighbors inG , and letΓov ⊆ Γv denote

v’s outgoing neighbors. When a block b ∈ B is broadcast during a

round, we let tbu,v be the local time atv when b was received from

neighboru ∈ Γv . We set tbu,v =∞ if block b was never relayed tov by

u. During a round, each nodev collects information aboutwhen each

block was received from its neighbors in the form of an observation

setOv = {(b,u,tbu,v) :b ∈B,u ∈ Γv }. Note that it is possible forv to hear

about a block for the first time from a non-outgoing neighbor. The

tuples collected inOv allows Perigee to rate how quickly a neighbor

relays blocks relative to other neighbors, and retain connections to

the best subset ofdv (e.g.,dv =6) neighbors at the end of each round.
Neighbors are evaluated using a scoring function, which estimates

the maximum delay taken by a neighbor to forward 90% of blocks

to the nodev . In addition, Perigee also connects to a small number

ev (e.g., ev =2) of random peers during each round, for discovering

previously unknown peers with good connectivity.

Wepropose twodifferent scoringmethods, dependingonwhether

each neighbor is scored individually (§4.2), or groups of neighbors

are jointly assigned a score (§4.3). In the latter case, the score is an

estimate of the maximum delay taken by the group of neighbors as

a whole to forward 90% of blocks tov . The joint scoring of different
neighbor groups is better suited to our objective, since each peer

ultimately just desires to receive blocks as fast as possible, regardless

ofwhich specific neighbor forwards the block. Certain blocksmaybe

relayed fast by someneighbors,while other blocks are relayed fast by

the remaining neighbors—as long as, together, the set of neighboring

nodes result in a quick delivery of amajority of blocks, it is beneficial

for the node. However, accurately evaluating scores for all possible

groups of neighbors is computationally expensive, and therefore

Perigee: Efficient Peer-to-Peer Network Design for Blockchains PODC ’20, August 3–7, 2020, Virtual Event, Italy

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔 𝒖𝟕 𝒖𝟖

𝒖𝒄𝒃(𝒖𝟏)

𝒍𝒄𝒃(𝒖𝟏)

𝒍𝒄𝒃(𝒖𝟐)

𝒍𝒄𝒃(𝒖𝟑)

𝒍𝒄𝒃(𝒖𝟒)

𝒍𝒄𝒃(𝒖𝟓)
𝒍𝒄𝒃(𝒖𝟔)

𝒍𝒄𝒃(𝒖𝟕)

𝒍𝒄𝒃(𝒖𝟖)

𝒖𝒄𝒃(𝒖𝟐)

𝒖𝒄𝒃(𝒖𝟑)

𝒖𝒄𝒃(𝒖𝟒)

𝒖𝒄𝒃(𝒖𝟓)

𝒖𝒄𝒃(𝒖𝟔)

𝒖𝒄𝒃(𝒖𝟕)

𝒖𝒄𝒃(𝒖𝟖)

𝟗𝟎
	𝐩
𝐞𝐫
𝐜𝐞
𝐧𝐭
𝐢𝐥𝐞
(𝑻..

𝒖 𝒊
,𝒗
)

Neighbors of node 𝑣

𝒃𝒂𝒅_𝒏𝒃𝒓

Figure 2: Observe that lcb(u4) ≥ lcb(u) ∀u ∈ Γov , ucb(u3) ≤ ucb(u)
∀u ∈ Γov . Moreover, lcb(u4) > ucb(u3) and so the neighbor to be
removed (bad_nbr) isu4.

we propose faster approximate methods. In our evaluations (§5), we

find both the independent scoring and approximate joint scoring

methods to be competitive.

4.2 Scoring Each Neighbor Individually
4.2.1 Vanilla Scoring. We first consider a simple scoring method,

called VanillaScoring, to illustrate how for each neighboru ∈ Γov
of a nodev , the timestamps tbu,v of blocks b ∈B broadcast during a

round can be used to estimateu’s score. Recall that a timestamp tbu,v
recorded in the observation setOv of a nodev corresponds to the

local wall-clock time when the block b was received atv . In order to
judgehowwell aneighbor is connected to the rest of thenetwork, it is

desirable to know the relative time betweenwhen a blockwasmined,

and when it was delivered by the neighbor (i.e., the propagation
delay). However, as it is difficult for a nodev to know the precise time

whenablockwasmined,weuse the relative timedifferencesbetween

when a block is forwarded by different neighbors, as a proxy for the

propagation delay. For a block b, the first time it was received byv

from some neighbor is at time tbv :=minu ∈Γv t
b
u,v . The timestamps

inOv are then revised relative to times blocks were first received by

v , and a time-normalized observation set
˜Ov is computed as

˜Ov = {(b,u,tbu,v −tbv) :u ∈ Γv ,b ∈B}. (2)

In VanillaScoring, the score for a neighboru ∈ Γov is simply com-

puted as the 90th percentile of the multi-set of relative timestamps

T̃u,v := (t̃ : (b,u,t̃) ∈ ˜Ov) observed in a round. This scoring approach
naturally reflects a node’s preference to retain an outgoing neighbor

fromwhich it received transactions relatively earlier. The lower the

score for a neighbor, the higher is the preference for nodev to retain

the neighbor in next round.

4.2.2 UCB Scoring. In the VanillaScoringmethod, propagation

delay estimates for individual neighbors (90th percentile of rela-

tive timestamp observations) are likely to be noisy if the number

of blocks |B | in a round is small. The noise here arises due to the

randomness in which node mines a block each time (§1.1). While

increasing |B | by increasing the duration of each round improves

accuracyof our estimates, it also slowsdown theoverall convergence

time of the algorithm.
4
To improve the accuracy of the VanillaS-

coring estimates, without sacrificing on convergence time, we pro-

pose a second scoring method motivated by the Upper Confidence

Bound (UCB) algorithm for multi-armed bandits [8]. In the UCB-

Scoringmethod, a nodemaintains an estimate of propagation delay

for a neighbor, based on observed timestamps, and also computes

lower and upper confidence bounds for it. If a neighbor has been

connected tov for longer than one round, then the estimates and

confidence bounds for the neighbor are computed not only using

the observationsOv made during the current round, but also using

past observations available for the neighbor. For a neighboru ∈ Γov ,
let T̃u,v (−i) denote the multi-set of relative timestamps obtained

during a round i rounds before the present round. Supposing nodeu
has beenv’s neighbor for the past ru,v rounds. In the UCBScoring

approach, we use a multi-set of relative timestamp observations

≈
Tu,v = (t̃ : (b,u,t̃) ∈ ∪

−ru,v
i=0 T̃u,v (−i) such that t̃ <∞) for a neighbor

u.5 The propagation delay foru is estimated as the 90th percentile

of

≈
Tu,v , and its confidence bounds are computed as

ucb(u)=90percentile(
≈
Tu,v)+c

√√√
log(|

≈
Tu,v |)

2×|
≈
Tu,v |

(3)

lcb(u)=90percentile(
≈
Tu,v)−c

√√√
log(|

≈
Tu,v |)

2×|
≈
Tu,v |

, (4)

where ucb and lcb denote the upper and lower confidence bounds

respectively [8], and 90percentile(·) computes the 90th percentile

of its argument. At the end of each round, in the UCBScoring ap-

proach we check whethermaxu ∈Γov (lcb(u))>minu ∈Γov (ucb(u)), and
if so,v disconnects from the neighbor argmaxu ∈Γov (lcb(u)) and con-
nects to a randomnewneighbor instead; otherwise the current set of

neighbors are retained for the next round. Figure 2 shows an example

of upper and lower confidence bounds for a set of eight neighbors.

Nodeu4 will be disconnected at the end of the round in this example.

Updating the set of neighbors thisway based on confidence intervals,

avoids accidentally disconnecting from a well-connected neighbor

that has a poor 90th percentile score due to randomness in mining

and lack of sufficient measurement samples.

4.3 Scoring Groups of Neighbors Jointly
Next, we present an alternative scoring method, SubsetScoring,

where scores are assigned to each groupγv ⊂ Γov of neighbors (of a

certain cardinality, e.g., 6) instead of to individual nodes. At the end

of a round, the group of neighbors having the best score are retained

and neighbors that are not part of this group are disconnected. As be-

fore, a small number of neighboring connections aremade randomly

in each round to encourage exploration.

To avoid the computational overhead of exhaustively evaluating

scores for all possible subsets of neighbors, we consider a simpler,

but approximate, greedy approach in which the neighbors to be

retained are selected one by one. First, the algorithm selects the

neighbor u1 ∈ Γov having the best 90th percentile score in the rela-

tive timestamp observation multi-set T̃u,v (§4.2.1). If k neighbors

u1,u2,...,uk have been selected, the (k+1)st neighbor is selected by
4
We illustrate convergence of Perigee empirically in our experiments in §5.

5
Note that the union∪−ru,vi=0 T̃u,v (−i) is a multi-set union.

PODC ’20, August 3–7, 2020, Virtual Event, Italy Mao, et al.

(a) (b)

Figure 3:Minimumdelay to nodes totaling 90% of network’s hash power on random, geographic, Perigee-Vanilla, Perigee-Subset, Perigee-UCB,
Kademlia and the fullly-connected graph (denoted as ideal). (a) All nodes have the same hash power. (b) Nodes have a hash power drawn from
an exponential distribution.

first computing a transformed observation set

≈
Ov (u1,u2, ...,uk) =

{(b,u,min(t̃bu,v ,min
1≤i≤k t̃

b
ui ,v)) : b ∈ B,u ∈ Γov \{u1,u2, ... ,uk }},

followed by the multi-set of relative timestamps

≈
Tu,v (u1,...,uk)=

(≈t : (b,u, ≈t) ∈
≈
Ov (u1, ... ,uk)) for each neighbor u ∈ Γov \{u1, ... ,uk }.

The transformation essentially avoids penalizing nodes that do not

have good connectivity to a certain part of the network, to which

the neighbors already chosen have a good connectivity. The node

u ∈ Γov \{u1,...,uk } with the lowest 90percentile(
≈
Tu,v (u1,...,uk))

value is finally selected as the (k + 1)st choice. Thus, each time a

neighbor is chosen whose connectivity to the rest of the network

best complements the other neighbors selected thus far. As in §4.2,

once (dv −ev) neighbors are selected, nodev also randomly selects

ev nodes as part of exploration. This set of dv nodes arev’s updated
set of neighbors that it will monitor in the next round.

5 EVALUATION
We evaluate the performance of Perigee, and compare it against the

baseline algorithms of §3. Our experiments are based on a Python

simulator we built following the network model of §2.
6
We describe

the experimental setting in §5.1. Following this, we evaluate Perigee

on a variety of different network conditions (§5.2–§5.4).

5.1 Experimental Setup
Network setting.We retrieved a publicly available list of 9408 Bit-

coin nodes [1], and use a randomly sampled subset of 1000 nodes

from it, for all our experiments. The “default” setting for hash power

of nodes, block validation times, link propagation delay, and block

size in our experiments are described below. In §5.2, §5.3,we consider

a broader range of settings for each of hash power, block validation

times respectively; in each case, while we explore different settings

6
Source code and datasets are available at https://github.com/mori94/perigee.

for one attribute, we fix the other attributes to their “default” setting

unless specified otherwise. The default settings are as follows.

(1) Hash power. We assume hash power is distributed uniformly

across all the nodes.

(2) Propagation delay. The dataset of Bitcoin nodes [1] includes in-
formation about the geographical location of each node. Nodes are

spreadacross sevengeographic regions:NorthAmerica, SouthAmer-

ica, Europe, Asia, Africa, China, andOceania.We set the propagation

latency between any two nodes according to their geographical lo-

cations, using the iPlane latency measurement dataset [31, 37].

(3) Block size.We assume block sizes are small, relative to the band-

width available at the nodes. Hence the overall block broadcasting

delay is dominated by the link propagation delays, and block vali-

dation delays, in the default setting.

(4) Block validation time. Each node has a mean block processing

time of 50 ms.

In addition, in §5.4 we consider a scenario where nodes have access

to a high-speed block distribution network such as BloXroute [29].

Each node creates 8 outgoing connections, and accepts up to 20 in-

coming connections. If a node already has 20 incoming connections,

any additional connection request is declined by the node.

Algorithms compared.We implement Perigee under the scoring

methods discussed in §4.2.1, §4.2.2, §4.3, and name them Perigee-

Vanilla, Perigee-UCB and Perigee-Subset respectively. For Perigee-

Vanilla and Perigee-Subset, we define a round such that |B | = 100
blocks aremined during each round; for Perigee-UCBwe use shorter

rounds in which only one block (|B | = 1) is mined each round. In

all of the Perigee variants, a node selects two neighbors randomly

for exploration every round (§4). As baseline algorithms, we con-

sider the random connection algorithm (§3.1), geography-based

connection algorithm (§3.2) and a structured p2p topology based on

Kademlia [37]. For these baselines, we do not change the topology

with each round. We also consider a topology in which each node

https://github.com/mori94/perigee

Perigee: Efficient Peer-to-Peer Network Design for Blockchains PODC ’20, August 3–7, 2020, Virtual Event, Italy

(a) (b) (c)

Figure 4: (a) Delay distributions for Perigee with 0.1×, 0.5×, 5× and 10× the default node delay. (b) Setting with a small number (10%) of high
hash powerminers. (c) Performance in the presence of a low-latency block distribution network such as bloXroute.

is connected to all other nodes, to obtain a theoretical lower bound

on block propagation times.

Performancemetric. For each node, we compute the time it takes

for a block broadcast by the node to reach 50% and 90% of the hash

power in the network. We repeat each experiment three times using

independently sampled link latencies, and plot the mean propaga-

tion times for different nodes in ascending order; we also show error

bars at the 100th, 300th, 500th, 700th and 900th node. Note that the

nodes corresponding to the same x-coordinate value may not be the

same node in the network.

5.2 Hash Power
We first consider the setting where all the attributes—hash power,

link propagation latencies, block validation times, block size—take

their default setting (§5.1) and plot the results in Figure 3(a). The

Perigee-Subset and -UCB algorithm achieve around 33% and 11%

lower delay respectively compared to randomneighbor selection, in-

dicating that switching neighbors based on their scores helps reduce

the block propagation delays. Connecting based on node geography

does help lower delay compared to random selection, however it is

still 40% worse than Perigee-Subset at the 500th node. The Kadem-

lia topology is slightly worse than even the geographic topology.

While the 90-percentile delays in Perigee converge as the number of

rounds increases, we observe the 50-percentile delays do not exhibit

a similar monotonicity. This is because Perigee chooses neighbors

only to optimize nodes’ 90-percentile delays.

Since Perigee-Subset is slightly better than Perigee-UCB or -

Vanilla, for the reminder we have used Perigee-Subset as the pre-

ferred scoring method. Next, we consider the same setting as above

but where the hash power of the nodes are sampled from an expo-

nential distribution (of mean 1), and normalized to 1 (Figure 3(b)).

The results show a similar performance pattern as in Figure 3(a) with

Perigee-Subset being 33% better than random.

5.3 Processing Delay
In Figure 4, we vary the block validation time to 0.1×, 0.5×, 5× and
10× its default value. As shown in the Figure, for small values of

node delay (0.1×), Perigee finds a topology with delays at least 62%
better than random. However, as the node delay increases, Perigee

approaches the random protocol’s performance. This is expected,

since with large processing delays the 90th percentile delay is dic-

tated by the number of nodes on the shortest paths to nodes (i.e., the

Figure 5: Histograms of the edge latencies in the p2p graph obtained
after theexecutionofvariousalgorithmsunderuniformhashpower.

diameter of the network). With node degree bounded by a constant,

the diameter is lower-bounded by the logarithm in number of nodes,

which is achieved by the random topology.

5.4 Fast Distribution Networks
The Bitcoin network is known to have a small number of mining

pools that contribute to most of the hash power in the network. To

simulate such a network,we randomly select 10%of the nodes and as-

sign them 90% of the network’s total hash power; we also set the link

propagation latencies between the high-power miners to be much

smaller than their default values. In this network, it is desirable for

peers to be directly connected to at least one of the high-power min-

ers. As shown by the results in Figure 4(b), Perigee can exploit and

explore the network to get much closer to the ideal delay in a fully-

connected network compared to baselines. We also simulate fast

block relay networks, by considering 100 nodes organized as a tree

topology with low-propagation-latency links. The block validation

delays for these 100 nodes are also set to be 10% of their default value.

Even here, as before, our results in Figure 4(c) show that Perigee can

approach the fully-connected network baseline closely.

5.5 What does Perigee learn?
In Figure 5 we observe that the distribution of edge latencies of the

p2p network obtained in all the four algorithms are bimodal. The

lower mode is mostly populated by intra-continental edges with

smaller edge latencies whereas the upper mode is mostly populated

by inter-continental edges with larger edge latencies. For Perigee-

subset, the latencies of bulk of the edges are populated around the

lower mode. On the other hand, this is not the case in random and

PODC ’20, August 3–7, 2020, Virtual Event, Italy Mao, et al.

geometric. This implies that over the course of execution of Perigee-

subset algorithm, nodes learn to select those outgoing neighbors

with which they have smaller edge latency.

6 DISCUSSION
We have proposed Perigee, an adaptive algorithmmotivated by the

multi-armed bandit problem, that finds efficient p2p topologies for

reducing block propagation times in blockchain networks.While we

have empirically illustrated the effectiveness of Perigee, we believe

our work is only a first step and important questions—both theoret-

ical issues and practical considerations—need to be addressed for a

more thorough understanding of the problem.

Theoretically analysis of Perigee, e.g., to study its convergence

behavior and characterize its "regret" (how far it is from the "best"

topology), is a crucial topic for future research. In Perigee, one way

to launch an Eclipse attack [25] is for an adversary to provide blocks

earlier than other nodes, thus gaining a peer’s trust and dominating

its neighborhood. The presence of random neighbors in Perigee

provides some mitigation against this attack, a formal analysis of

which is left for futurework. Another dimension of analysis involves

analyzing the performance under node churn [9, 35], with limited

peer addresses known at each node (that are dynamically updated

as part of a peer-discovery protocol).

REFERENCES
[1] 2020. Bitnodes network. Data drawn fromwebsite, https://bitnodes.earn.com/.

[2] 2020. Falcon. https://www.falcon-net.org/.

[3] 2020. FIBRE. https://bitcoinfibre.org/.

[4] 2020. Howmany people use Bitcoin in 2019? https://www.bitcoinmarketjournal.

com/how-many-people-use-bitcoin/.

[5] OsamaAbboud,AleksandraKovacevic, KalmanGraffi,KonstantinPussep, andRalf

Steinmetz. 2009. Underlayawareness inP2Psystems:Techniquesandchallenges. In

2009 IEEE International Symposium on Parallel & Distributed Processing. IEEE, 1–8.
[6] Ittai Abraham, Yair Bartal, J Kleinberg, T-HH Chan, O Neiman, Kedar Dhamdhere,

Aleksandrs Slivkins, and AnupamGupta. 2005. Metric embeddings with relaxed

guarantees. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05). IEEE, 83–100.

[7] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2019.

Sync HotStuff: simple and practical synchronous state machine replication. IACR
Cryptology ePrint Archive 2019 (2019), 270.

[8] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.

Journal of Machine Learning Research 3, Nov (2002), 397–422.
[9] John Augustine, Gopal Pandurangan, Peter Robinson, Scott Roche, and Eli

Upfal. 2015. Enabling robust and efficient distributed computation in dynamic

peer-to-peer networks. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science. IEEE, 350–369.

[10] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.

2019. Prism: Deconstructing the blockchain to approach physical limits. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 585–602.

[11] Lukas Bieri. 2019. Simulating Bitcoin?s Network Topology. (2019).

[12] T-H Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. 2015. New doubling

spanners: Better and simpler. SIAM J. Comput. 44, 1 (2015), 37–53.
[13] Nakul Chawla, HansWalter Behrens, Darren Tapp, Dragan Boscovic, and K Selçuk

Candan. 2019. Velocity: Scalability improvements in block propagation through

rateless erasure coding. In 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). IEEE, 447–454.

[14] Lin William Cong and Zhiguo He. 2019. Blockchain disruption and smart

contracts. The Review of Financial Studies 32, 5 (2019), 1754–1797.
[15] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016.

On scaling decentralized blockchains. In International conference on financial
cryptography and data security. Springer, 106–125.

[16] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. 2004. Vivaldi:

A decentralized network coordinate system. ACM SIGCOMM Computer
Communication Review 34, 4 (2004), 15–26.

[17] Christian Decker and RogerWattenhofer. 2013. Information propagation in the

bitcoin network. In IEEE P2P 2013 Proceedings. IEEE, 1–10.

[18] Anthony Dekker, Hebert Pérez-Rosés, Guillermo Pineda-Villavicencio, and Paul

Watters. 2012. The maximum degree & diameter-bounded subgraph and its appli-

cations. Journal of Mathematical Modelling and Algorithms 11, 3 (2012), 249–268.
[19] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. 2011. Social networks

spread rumors in sublogarithmic time. In Proceedings of the forty-third annual
ACM symposium on Theory of computing. 21–30.

[20] Nikolaos Fountoulakis, Anna Huber, and Konstantinos Panagiotou. 2010. Reliable

broadcasting in random networks and the effect of density. In 2010 Proceedings
IEEE INFOCOM. IEEE, 1–9.

[21] Tobias Friedrich, Thomas Sauerwald, and Alexandre Stauffer. 2013. Diameter and

broadcast time of random geometric graphs in arbitrary dimensions. Algorithmica
67, 1 (2013), 65–88.

[22] Alan Frieze andWesley Pegden. 2019. Traveling in randomly embedded random

graphs. Random Structures & Algorithms 55, 3 (2019), 649–676.
[23] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun. 2015.

Tampering with the delivery of blocks and transactions in bitcoin. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
692–705.

[24] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principle. 51–68.
[25] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

attacks on bitcoin?s peer-to-peer network. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 129–144.

[26] Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brunstrom. 2016.

Measuring latency variation in the internet. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 473–480.

[27] ZiHu, JohnHeidemann, andYuri Pradkin. 2012. Towards geolocationofmillions of

IP addresses. In Proceedings of the 2012 Internet Measurement Conference. 123–130.
[28] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vocking.

2000. Randomized rumor spreading. In Proceedings 41st Annual Symposium on
Foundations of Computer Science. IEEE, 565–574.

[29] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer. 2018.

bloxroute: A scalable trustless blockchain distribution network whitepaper. IEEE
Internet of Things Journal (2018).

[30] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim.

2005. A survey and comparison of peer-to-peer overlay network schemes. IEEE
Communications Surveys & Tutorials 7, 2 (2005), 72–93.

[31] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas

Anderson, Arvind Krishnamurthy, and Arun Venkataramani. 2006. iPlane: An

information plane for distributed services. In Proceedings of the 7th symposium
on Operating systems design and implementation. 367–380.

[32] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin, Neil

Spring, and Bobby Bhattacharjee. 2015. Discovering bitcoin?s public topology

and influential nodes. et al (2015).
[33] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Technical

Report. Manubot.

[34] A Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and Brian

Levine. 2017. Graphene: A new protocol for block propagation using set

reconciliation. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 420–428.

[35] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. 2003. Building low-

diameter peer-to-peer networks. IEEE Journal on selected areas in communications
21, 6 (2003), 995–1002.

[36] Rafael Pass and Elaine Shi. 2017. Hybrid consensus: Efficient consensus in the

permissionless model. In 31st International Symposium on Distributed Computing
(DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[37] Elias Rohrer and Florian Tschorsch. 2019. Kadcast: A Structured Approach to

Broadcast in Blockchain Networks. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies. 199–213.

[38] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 329–350.

[39] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal selfish

mining strategies in bitcoin. In International Conference on Financial Cryptography
and Data Security. Springer, 515–532.

[40] Kiril Solovey, Oren Salzman, and Dan Halperin. 2018. New perspective on

sampling-based motion planning via random geometric graphs. The International
Journal of Robotics Research 37, 10 (2018), 1117–1133.

[41] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure high-rate transaction

processing in bitcoin. In International Conference on Financial Cryptography and
Data Security. Springer, 507–527.

[42] Ion Stoica, RobertMorris, David Karger,M FransKaashoek, andHari Balakrishnan.

2001. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMMComputer Communication Review 31, 4 (2001), 149–160.

https://bitnodes.earn.com/
https://www.falcon-net.org/
https://bitcoinfibre.org/
https://www.bitcoinmarketjournal.com/how-many-people-use-bitcoin/
https://www.bitcoinmarketjournal.com/how-many-people-use-bitcoin/

	Abstract
	1 Introduction
	1.1 Background
	1.2 Problem Statement and Contributions

	2 System Model
	2.1 Network Model
	2.2 Performance Metrics

	3 Baseline Algorithms
	3.1 Random
	3.2 Connecting Based on Geography
	3.3 Theoretical Optimum

	4 Perigee
	4.1 Algorithm Overview
	4.2 Scoring Each Neighbor Individually
	4.3 Scoring Groups of Neighbors Jointly

	5 Evaluation
	5.1 Experimental Setup
	5.2 Hash Power
	5.3 Processing Delay
	5.4 Fast Distribution Networks
	5.5 What does Perigee learn?

	6 Discussion
	References

