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ETH Zurich

rozhonv@ethz.ch

Abstract

Recently, Brandt, Maus and Uitto [PODC’19] showed that, in a re-
stricted setting, the dependency of the complexity of the distributed
Lovász Local Lemma (LLL) on the chosen LLL criterion exhibits a
sharp threshold phenomenon: They proved that, under the LLL cri-
terion p2d < 1, if each random variable affects at most 3 events,
the deterministic complexity of the LLL in the LOCAL model is
O(d2 + log∗ n). In stark contrast, under the criterion p2d ≤ 1, there is
a randomized lower bound of Ω(log log n) by Brandt et al. [STOC’16]
and a deterministic lower bound of Ω(log n) by Chang, Kopelowitz
and Pettie [FOCS’16]. Brandt, Maus and Uitto conjectured that the
same behavior holds for the unrestricted setting where each random
variable affects arbitrarily many events.

We prove their conjecture, by providing an algorithm that solves
the LLL in time O(d2+log∗ n) under the LLL criterion p2d < 1, which
is tight in bounded-degree graphs due to an Ω(log∗ n) lower bound by
Chung, Pettie and Su [PODC’14]. By the work of Brandt, Maus and
Uitto, obtaining such an algorithm can be reduced to proving that all
members in a certain family of functions in arbitrarily high dimensions
are convex on some specific domain. Unfortunately, an analytical de-
scription of these functions is known only for dimension at most 3,
which led to the aforementioned restriction of their result. While
obtaining those descriptions for functions of (substantially) higher di-
mension seems out of the reach of current techniques, we show that
their convexity can be inferred by combinatorial means.
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1 Introduction

1.1 Background

The Lovász Local Lemma is a celebrated result from 1975 due to Erdős and
Lovász [EL75], with applications in many types of problems such as coloring,
scheduling or satisfiability problems [AS08, Bec91, CPS17, CS00a, CS00b,
EPS15, HSS10, LMR99, Mos09]. It states the following.

Lovász Local Lemma (LLL). Let {X1, . . . , Xm} be a set of mutually in-
dependent random variables and E1, . . . , En probabilistic events that depend
on the Xi. For each Ei, let vbl(Ei) denote the random variables Ei depends
on. We say that Ei and Ej share a random variable if vbl(Ei) ∩ vbl(Ej) 6= ∅.
Assume that there is some p < 1 such that for each 1 ≤ i ≤ n, we have
P (Ei) ≤ p , and let d be a positive integer such that each Ei shares a random
variable with at most d other Ej (where j 6= i). Then, if 4pd ≤ 1, there exists
an assignment of values to the random variables such that none of the events
Ei occurs.

1

The LLL can be seen as a generalization of the well-known fact that for
any set of independent events that all occur with probability strictly less than
1, the probability that none of the events occurs is non-zero: some amount
of dependency between the events is tolerable for preserving the avoidance
guarantee—how much exactly depends on the parameter p that bounds the
occurrence probabilities of the events.

While being an indispensable tool for applying the probabilistic method,
the LLL, in its original form, is of limited usefulness if seen from an algorith-
mic standpoint, as it gives a purely existential statement and does not provide
a method for finding such an assignment to the random variables. The un-
derlying algorithmic question of computing such an assignment, called the
algorithmic (or constructive) LLL (problem) received considerable attention
in a series of papers [Alo91, CS00a, MR98, Mos08, Mos09, Sri08], starting
with Beck [Bec91] in the 90s, and culminating in a breakthrough result by
Moser and Tardos [MT10] in 2010. The latter work showed that an assign-
ment to the random variables that avoids all events can be found quickly

1We note that the LLL criterion 4pd ≤ 1 guaranteeing the existence of the desired
variable assignment is not optimal and has been subject to improvements by Spencer
[Spe77] and Shearer [She85].
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by a simple resampling approach. Moreover, this approach is easily paral-
lelizable, and implies a (randomized) distributed algorithm that finds the
desired assignment in O(log2 n) rounds of communication in a distributed
setting w.h.p.2 for the LLL criterion ep(d+1) < 1. In the following, we take
a closer look at the distributed version of the algorithmic LLL, the main
topic of this work.

The Distributed LLL Let an instance of the LLL be given by mutually
independent random variables X1, . . . , Xm and events E1, . . . , En satisfying
some LLL criterion that guarantees existence of an assignment avoiding all
events. The distributed version of the LLL is commonly phrased using the
notion of the so-called dependency graph. In the dependency graph of an
LLL instance, the events Ei are the nodes, and there is an edge between two
events Ei, Ej if the two events share a variable. Each node Ei is aware of
vbl(Ei) and knows for exactly which combinations of values for the random
variables in vbl(Ei) the event Ei occurs. As before, the task is to find an
assignment to the variables such that none of the events occurs. To specify
the output, each node Ei has to output a value for each variable it depends
on, and any two nodes outputting a value for the same random variable have
to agree on the value.

We will consider the LLL in the LOCAL model3 of distributed computing
[Lin92, Pel00], in which the LLL has been the focus of a number of important
works in recent years (see Section 1.3 for an in-depth overview). One par-
ticularly intriguing result underlining the importance of the LLL was given
by Chang and Pettie [CP17]: they show that any problem from a very natu-
ral problem class, called locally checkable labelings4, that has sublogarithmic
randomized complexity also admits a randomized algorithm that solves it in
time TLLL(n), where TLLL(n) denotes the randomized complexity of the LLL
under a polynomial criterion (i.e., a criterion of the form pdc ∈ O(1) for an
arbitrarily large constant c).

2As usual, w.h.p. stands for “with probability at least 1− 1/n”.
3The communication graph for the LLL is the dependency graph. For details regarding

the LOCAL model, we refer to Section 2.1.
4Roughly speaking, these are problems for which the correctness of the global solution

can be verified by checking the correctness of the output in the local neighborhood of each
node.

3



The LLL criterion As can be expected, the complexity of solving the
algorithmic LLL depends on the chosen LLL criterion. Strengthening the
LLL criterion, i.e., restricting5 the set of allowed LLL instances by making
fewer pairs (p, d) satisfy the criterion, clearly can only reduce the complexity
of the LLL problem, but it is a major open question precisely how the LLL
complexity relates to the chosen criterion. At which points in strengthening
the LLL criterion does the asymptotic complexity of the LLL change and do
we obtain smooth or sharp transitions between the different complexities?

While it is known, due to a result by Chung, Pettie and Su [CPS17], that
Ω(log∗ n) rounds are required for any LLL criterion, the only lower bounds
known so far that could possibly be used to obtain a separation between the
complexities for different criteria are an Ω(log log n) lower bound for random-
ized algorithms by Brandt et al. [BFH+16], and an Ω(log n) lower bound for
deterministic algorithms by Chang, Pettie and Kopelowitz [CKP16], which
both hold even under the strong criterion p2d ≤ 1. It is natural to ask
whether any further strengthening of the LLL criterion breaks the lower
bound or whether the lower bound can be extended to stronger criteria.

Very recently, Brandt, Maus and Uitto [BMU19] showed that if we restrict
the random variables to affect at most 3 events each (which they call rank at
most 3), then already under the minimally strengthened criterion p2d < 1,
there is a deterministic LLL algorithm with a complexity ofO(poly d+log∗ n).
They conjectured that this behavior also holds without their restriction on
the variables.

Conjecture 1.1 ([BMU19], rephrased). There is a (deterministic) distributed
algorithm that solves the LLL problem in time O(d2 + log∗n) under the cri-
terion p2d < 1.

1.2 Contributions and Techniques

In this work, we prove Conjecture 1.1, by providing such a deterministic
algorithm. This gives a first (unrestricted) answer to the aforementioned
question about the relation between the LLL criterion and the complexity
of the LLL: a sharp transition occurs at the criterion p2d < 1, where the
complexity of the LLL drops from Ω(log log n) randomized, resp. Ω(log n)

5There is some disagreement about whether this should be called a strengthening or
weakening of the LLL criterion. We will use the same (sensible) terminology as the closest
work to ours by Brandt, Maus and Uitto [BMU19], to make it easier to relate the results.
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deterministic, to O(d2 + log∗ n). Moreover, our upper bound is tight on
bounded-degree graphs due to the Ω(log∗ n) lower bound by Chung, Pettie
and Su [CPS17]. Finally, as is the nature of upper bounds for the LLL,
our result immediately implies the same upper bound for all problems that
can be phrased as an LLL problem with criterion p2d < 1, such as certain
hypergraph edge-coloring problems or orientation problems in hypergraphs
(see [BMU19]).

Previous Techniques Our work builds on techniques developed in [BMU19].
In their work, Brandt, Maus and Uitto obtain an O(d2 + log∗ n)-round LLL
algorithm under the criterion p2d < 1 for the case of variables of rank at
most 3. In the following, we give an informal overview of their approach.

The basic idea of the algorithm is to go sequentially through all variables
and fix them to some values one by one while preserving a certain invariant
that makes sure that the final assignment avoids all events. In order to
define the invariant, each edge of the dependency graph is assigned two non-
negative values, one for each endpoint of the edge, that sum up to at most 2.
When fixing a random variable, the algorithm is also allowed to change these
“book-keeping” values. The invariant now states that for any node v in the
dependency graph, the product of the deg(v) values around v multiplied by p
is an upper bound for the conditional probability of the event Ev associated
with node v to occur (where we naturally condition on the already-fixed
random variables being fixed as prescribed by the (partial) value assignments
performed by the algorithm so far). If this invariant is preserved, then,
after all variables are fixed, each event Ev occurs with probability at most
2deg(v) · p ≤ p2d < 1, and therefore with probability 0, as desired.

Brandt, Maus and Uitto do not only show that such a sequential process
preserving the invariant at all times exists (even if the order in which the
random variables have to be fixed are chosen adversarially), but also that it
can be made to work in a local manner: in order to fix a random variable,
the algorithm only needs to know the random variables and edge values in a
small local neighborhood. This allows to process random variables that affect
events that are sufficiently far from each other in the dependency graph in
parallel. By adding an O(log∗ n)-round preprocessing step to the algorithm
where a 2-hop node coloring with O(d2) colors is computed in the dependency
graph, the sequential fixing process can then be parallelized by iterating
through the color classes in a standard way, yielding the desired runtime
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of O(d2 + log∗ n) rounds. We will provide a more detailed overview of the
algorithm from [BMU19] in Section 2.2.

The crucial, and rather surprising, observation making the algorithm work
is that in each step in which a random variable is fixed, the existence of a
value for that random variable that preserves the invariant is guaranteed if
a certain function is shown to be convex on some domain. Hence, proving
the existence of the desired algorithm is reduced to solving an analytical
problem for a fixed function f , providing a very intriguing connection between
distributed algorithms and analysis. To be precise, Brandt, Maus und Uitto
show that for any integer r ≥ 2, there is a fixed function fr : D → R on
some domain D ⊂ R

r−1 satisfying the following property: if fr is convex,
then for any rank-r random variable, there is a value that this variable can
be fixed to such that the invariant is preserved. By proving the convexity of
f3(a, b) = 4+1/2 · (ab−2a−2b−

√

ab(4 − a)(4− b)), they prove the desired
upper bound for the case of variables of rank at most 3.6

One of the main problems with extending this proof to arbitrary ranks
is that the function is only given in an indirect way, by a characterization of
the set of points in R

r that lie below and on the function. No closed-form
expression describing fr is known for any r > 3, and the relatively compact
form of the function for the case r = 3 is arguably due to the cancellation of
certain terms that do not cancel out in higher dimensions. In fact, none of
the ways to obtain f3 from the characterization of the mentioned point set
seems to yield any closed-form expression if adapted to higher dimensions,
and even if a closed-form expression for all fr were found in some way, it is
far from clear that proving convexity of these functions would be feasible.

New Techniques We overcome this obstacle by showing that, perhaps
surprisingly, even without any analytical access to the functions fr, we can
infer their convexity for all r. In the following we give an informal overview
of our approach. Our main idea is to prove convexity of fr—or equivalently,
convexity of the set bounded by fr from below— by finding a so-called locally
supporting hyperplane for each point q on fr. More precisely, for each such
q, we want to find a number of vectors such that the following two properties
hold:

1. The affine subspace of Rr spanned by the vectors and containing q is a
hyperplane, i.e., an affine subspace of dimension r − 1.

6Taking care of the case of rank-1 and rank-2 variables is comparably easy.
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2. In an ε-ball around q, the hyperplane is contained in the set consisting
of all points on and below fr.

These properties ensure convexity of fr in q; however, a priori it is completely
unclear how to find such vectors. In order to obtain these vectors, we consider
the combinatorial description of the points on and below fr that is tightly
connected to the aforementioned invariant: Consider a hyperedge of rank r
and write two non-negative values that sum up to at most 2 on each edge
of the skeleton of the hyperedge (i.e., a clique induced by the hyperedge)
one value for each endpoint of the edge. For each endpoint of the hyperedge
multiply the r − 1 values belonging to the endpoint, and consider the r-
dimensional vector obtained by collecting the resulting products. The points
that can be generated in this way are exactly the (non-negative) points that
lie on or below fr.

For each such point q′, call the tuple of the Θ(r2) values written on the
edges that generate q′ in the above description a generator of q′; a point
can have (and usually has) more than one generator. Roughly speaking, we
find the desired vectors for a point q by picking an arbitrary generator and,
for each edge e in the skeleton of the hyperedge, computing the vector by
which q changes if we subtract some small ε from one value on e and add
it to the other. A crucial insight is that it is fine to pick such a large set
of Θ(r2) ≫ r − 1 vectors: due to the specific construction, one can show
that the affine subspace spanned by these Θ(r2) vectors and containing q
is (r − 1)-dimensional. Moreover, the redundancy contained in this choice
enables us to prove Item 2 by finding, for each q′ on the hyperplane in an
ε-ball around q, a way to write q′−q as a linear combination of r−1 of these
vectors that satisfies certain desirable properties.

Note that we will use terminology that does not refer to the convexity
of the function fr as we do not make use of this function from an analytical
perspective. Instead, we will aim for the equivalent goal of showing that the
set bounded by fr from below is convex, by making use of its combinatorial
description.

1.3 Further Related Work

Following the resampling approach of Moser and Tardos [MT10], many of
the results for the distributed LLL were based on randomized algorithms.
The bounds given in the following hold w.h.p. The bound of O(log2 n) for
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the algorithm by Moser and Tardos [MT10] is due to O(logn) steps in which
variables are resampled, where in each step a maximal independent set (MIS)
is computed in O(logn) rounds in order to perform the resampling in a
conflict-free manner. By showing that a weaker variant of an MIS is sufficient
for this purpose, Chung, Pettie and Su [CPS17] obtained an upper bound
of O(log2 d logn), for the same LLL criterion ep(d + 1) < 1. In turn, by
improving the computation of such a weak MIS from O(log2 d) to O(log d),
Ghaffari [Gha16] improved this bound to O(log d logn).

In the aforementioned work, Chung, Pettie and Su also showed that faster
algorithms can be obtained if the LLL criterion is strengthened: under the
criterion epd2 < 1, they provide an algorithm running in time O(logn), and
under an exponential criterion, i.e., a criterion of the form pf(d) < 1 where
f(d) is exponential in d, they give an upper bound of O(logn/ log logn). For
LLL instances with d ∈ O(log1/5 log n), Fischer and Ghaffari [FG17] provided
a 2O(

√
log logn)-round algorithm under the criterion p(ed)32 < 1. Ghaffari, Har-

ris and Kuhn [GHK18] improved on this result by showing that for any integer

i ≥ 1, there is an LLL algorithm running in time exp(i)(O(log d+

√

log(i+1) n))

under the criterion 20000pd8 ≤ 1, where exp(i) and log(i) represent a power
tower and the iterated logarithm, respectively. Finally, Rozhon and Ghaffari
[RG20] proved, as one of the many implications of their recent breakthrough
in computing network decompositions, that on bounded-degree graphs a vari-
able assignment avoiding all events can be found in O(poly log log n) rounds
under the criterion pd10 < 1, closing in on a conjecture by Chang and Pettie
[CP17] stating that O(log logn) rounds are sufficient.

The latter three works [FG17, GHK18, RG20] also provide the first non-
trivial deterministic algorithms for the distributed LLL. The currently best
known upper bound by Rozhon and Ghaffari [RG20] (for polynomial criteria)
states that poly log n rounds suffice under the criterion epd(1 + ε) < 1, for
any constant ε > 0.

2 Preliminaries

2.1 Model

The model in which we study the LLL is the LOCAL model of distributed
computing [Lin92, Pel00]. In the LOCAL model, we usually want to solve a
graph problem, but unlike in centralized computation, the actual computa-
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tion is performed by the nodes of the input graph. To this end, each node
of the input graph is considered as a computational entity, and each edge as
a communication link over which the entities can communicate. The com-
putation proceeds in synchronous rounds, where in each round two things
happen: first, each node sends an arbitrarily large message to each of its
neighbors and then, after the messages have arrived, each node can perform
an arbitrarily complex internal computation. Each node has to decide at
some point that it terminates and then it must output its local part of the
global solution to the given problem—in the case of the LLL problem this
local part is the values of all random variables the associated event depends
on. The runtime of a distributed algorithm is the number of rounds until the
last node terminates.

2.2 The Reduction

In this section, we will give a detailed explanation of the argumentation
presented in [BMU19] that reduces proving the existence of an O(d2+log∗ n)-
round distributed deterministic LLL algorithm under the criterion p2d < 1
to showing that a certain family of sets or functions is convex. The blueprint
for such an algorithm A is given as follows.

Consider an instance of the LLL, given by a set {X1, . . . , Xm} of mutually
independent random variables and a set of events that depend on the random
variables. Consider the dependency graph G = (V,E) of this instance, and
denote the event associated with a vertex v by Ev, and the maximum degree
of G by d. Let p be a parameter such that each event occurs with probability
at most p, and assume that p2d < 1, i.e., fix the LLL criterion to p2d < 1.
As any two events that depend on the same variable are neighbors of each
other in G, we can create for each random variable Xi a hyperedge that
has the nodes v such that Ev depends on Xi as endpoints. Technically, the
hyperedges are not part of G, but for simplicity, we might consider them as
such.

Algorithm A starts by computing a 2-hop coloring with O(d2) colors in
Õ(d) + O(log∗ n) rounds, by applying the coloring algorithm by Fraigniaud,
Heinrich and Kosowski [FHK16] to G2, i.e., to the graph obtained by con-
necting any two nodes of distance at most 2 in G by an edge. Then, it
iterates through the colors one by one, and each time a color c is processed,
each node v of color c fixes each incident random variable (i.e., each random
variable whose corresponding hyperedge is incident to v) that has not been
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fixed so far. We will see that in order to fix all incident random variables of
a node in a suitable way, O(1) rounds suffice, and as there are O(d2) colors,
algorithm A runs in O(d2 + log∗ n) rounds.

The challenging part is to fix the random variables in a manner such
that the produced final assignment is correct, i.e., such that none of the
events occurs under the assignment. To this end, during the fixing process
the authors keep track of, roughly speaking, how favorable or unfavorable
the variable fixings performed so far were for the nodes (regarding avoiding
the associated event), by assigning two values to each edge. More precisely,
they assign a non-negative value ϕv

e to each pair (e, v) ∈ E×V for which e is
incident to v. We can imagine the two values ϕu

e and ϕv
e to be written on edge

e; each time a random variable Xi is fixed by a node, the node also updates
the values that are written on the edges in the skeleton of the hyperedge
corresponding to Xi.

The purpose of these edge values w.r.t. obtaining a correct output in the
end of the process is to define a property P ∗ that is kept as an invariant
during the fixing process and guarantees that the final assignment avoids all
events. Consider an arbitrary point in the fixing process where some ran-
dom variables X1, . . . , Xℓ already have been fixed to some values x1, . . . , xℓ,
respectively. Property P ∗ is satisfied if the following two conditions hold.

1. ϕu
e + ϕv

e ≤ 2 for each edge e = {u, v}.

2. P (Ev | X1 = x1, . . . , Xℓ = xℓ) ≤ p ·
∏

e∋v ϕ
v
e for each node v.

If Property P ∗ is satisfied when all variables have been fixed, then for each
event Ev we have a bound of p ·

∏

e∋v ϕ
v
e ≤ p2d < 1 for the probability that

Ev occurs, which implies that Ev does not occur since the probability of it
occurring can only be 0 or 1. By initializing each value ϕv

e to 1, the authors
make sure that P ∗ is satisfied when algorithm A starts. The crucial insight
in [BMU19] is that there is always a way to preserve Property P ∗ each time a
random variable is fixed if a certain function or set is convex. For the precise
statement, the authors introduce the notion of a representable triple.

Definition 2.1 (Definition 3.3 of [BMU19]). A triple (a, b, c) ∈ R
3
≥0 is called

representable if there are values a1, a2, b1, b3, c2, c3 ∈ [0, 2] such that a1 · a2 =
a, b1 · b3 = b, c2 · c3 = c, a1 + b1 ≤ 2, a2 + c2 ≤ 2, and b3 + c3 ≤ 2.
Let Srep = {(a, b, c) ∈ R

3
≥0 | (a, b, c) is representable} denote the set of all

representable triples.
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Using this definition, the authors prove the following statement for the
case of rank-3 random variables (which we give in a reformulated version
using the notion of convexity instead of the concept of “incurvedness” used
in [BMU19]).

If [0, 2]3 \Srep is a convex set, then there is a way to fix any given random
variable Xi of rank at most 3 at any point in time during the algorithm (or,
more generally, for any arbitrary fixing of already fixed random variables such
that Property P ∗ is satisfied) such that Property P ∗ is preserved. Moreover,
the only information required to fix Xi is the set of values ϕ

v
e written on the

edges e that belong to the skeleton of the hyperedge corresponding to Xi.
We refer to [BMU19, Section 3.3] for the details of the proof.

Hence, in algorithm A, each node v that has the task to fix all its incident
unfixed random variables can simply collect all edge values written on edges
between nodes in its inclusive 1-hop neighborhood, and then go through
its incident random variables one by one, each time finding a value for the
random variable in question that preserves Property P ∗. As the sequential
fixing does not require any communication after obtaining the required edge
values, fixing all incident unfixed variables of a node can be done in O(1)
rounds. Moreover the local nature of P ∗ and the fact that the set of edge
values required and rewritten by a node during the fixing does not intersect
with the set of analogous edge values for a node in distance at least 3 ensures
that any two nodes with the same color in the computed 2-hop coloring can
perform the variable fixing in parallel. This concludes the description of the
reduction.

As already noted by the authors, the definitions and proofs (for the re-
duction to the convexity statement) generalize straightforwardly to the case
of random variables of arbitrary rank. However, showing that the convexity
of the respective set indeed holds for higher dimensions remained unanswered
in [BMU19]; and indeed, even given our resolution, it remains unclear and
would be interesting to see whether their analytical approach can feasibly be
extended to higher dimensions than 3. To be precise, their approach extends
in the following way: to prove the existence of the deterministic algorithm
in the case that each random variable affects at most r events, it suffices
to prove that the set S

(r)
non := [0, 1]r \ S

(r)
rep is convex, where S

(r)
rep is the set

of all representable tuples, which are tuples that can be generated by some
generator, as defined below.

Definition 2.2 (generator). We call a vector (aij)i 6=j∈[r] with r(r − 1) coor-
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dinates a generator if for each i 6= j we have 0 ≤ aij ≤ 1 and aij + aji ≤ 1.
The generator (aij)i 6=j∈[r] generates the r-dimensional tuple (a1, . . . , ar) with
ai =

∏

j∈[r]\{i} aij for i ∈ [r]. We call a generator non-zero, if none of its
coordinates is 0. We use a shorthand notation and denote the generator
(aij)i 6=j∈[r] simply as (aij).

Note that if (aij) is a non-zero generator, then aij < 1 for each i 6= j ∈ [r].

Definition 2.3 (representable tuples). A tuple (a1, . . . , ar) ∈ R
r
≥0 is called

representable if there exists a generator (aij) that generates it. Let S
(r)
rep =

{(a1, . . . , ar) ∈ R
r
≥0|(a1, . . . , ar) is representable } denote the set of all repre-

sentable tuples.

Note that S
(3)
rep 6= Srep, as we require aij + aji ≤ 1 instead of aij + aji ≤ 2.

We consider this scaled version, as this makes the proof cleaner later on: note
that [0, 1]3 \ S

(3)
rep being convex directly implies that [0, 2]3 \ Srep is convex as

the latter is just a scaled variant of the former set. In the following, we drop
the superscripts when clear from context and we denote with Srep the set of
representable tuples with respect to the scaled down version and Snon as the
set of points in [0, 1]r which are not representable. Our main contribution is
the proof of the following theorem.

Theorem 2.4. For every r ≥ 2, S
(r)
non is convex.

This settles Conjecture 1.1 as described above.

3 Proving that Snon is convex

In this section we prove that set Snon is convex, omitting two longer proofs
that are postponed to Section 4 and Section 5.

3.1 Notation

We work with the standard Euclidean space R
m where distances are mea-

sured with the Euclidean norm; 0 and 1 denote the vectors (0, 0, . . . , 0)T and
(1, 1, . . . , 1)T , respectively. We define B(x,R) := {y ∈ R

m, ‖x − y‖ ≤ R}
as the closed ball around x with radius R. A subset S ⊆ R

m is open if for
any x ∈ S, there exists R > 0 such that B(x,R) ⊆ S. A subset S ⊆ R

m

is closed if Rm \ S is open. A set S ⊆ R
m is bounded if there exists R > 0
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such that S ⊆ B(0, R). A set S is compact if it is closed and bounded.
Equivalently, S is compact if every sequence x1, x2, . . . with each xi ∈ S has
a subsequence xs(i) that converges to some x ∈ S. The subset [0, 1]m ⊆ R

m

is compact. The interior of a set S is an open subset of S and defined as
So = {x ∈ S, ∃R > 0 : B(x,R) ⊆ S}. The boundary of a set S is defined as
∂S = {x ∈ R

m, ∀R > 0 : B(x,R) ∩ S 6= ∅ and B(x,R) ∩ (Rm \ S) 6= ∅}. A
set S is path-connected if for any x, y ∈ S there exists a continuous function
f : [0, 1] → S such that f(0) = x and f(1) = y.

A hyperplane H ⊂ R
m is an affine subspace of dimension m− 1. Equiv-

alently, it is a set of points H = {x ∈ R
m, hTx = b} for some vector

h ∈ R
m \ {0} and b ∈ R. A weakly supporting hyperplane for S inter-

secting y ∈ ∂S is a hyperplane H = {x ∈ R
m, hTx = b} with hT y = b and

hT z ≥ b for any z ∈ S. Finally, a weakly locally supporting hyperplane for
S intersecting y ∈ ∂S is a hyperplane H = {x ∈ R

m, hTx = b} with hTy = b
satisfying the following property: there exists an ε > 0 such that for any
z ∈ S ∩ B(y, ε) we have hT z ≥ b.

3.2 Proof

Convexity of a set can be verified in several equivalent ways. As we outlined
in Section 1.2, we rely on the “supporting hyperplane formulation”, i.e., a set
is convex if for each boundary point we can find a hyperplane such that the
whole set lies on one side of the hyperplane. Moreover, for connected sets,
it is enough to prove that each such hyperplane is “locally” supporting as
formalized in the following theorem, which is stated in a more general form
in [Val75] (Theorem 4.10 there).

Theorem 3.1. Let S ⊆ R
r be an open and path-connected set in R

r. The set
S ⊆ R

r is convex if for every point y contained in the boundary of S, there
exists a weakly locally supporting hyperplane with respect to S going through
y.

Note that Theorem 3.1 can only be used to prove convexity of open sets
and thus cannot directly applied to establish the convexity of Snon. Instead,
we use Theorem 3.1 to first establish convexity of the interior of Snon, which
is an open set and which we denote by So

non. Once we have established
the convexity of So

non, we prove the convexity of Snon by induction on the
dimension r. To prove convexity of So

non, we need to show that So
non is path-

connected and that for every boundary point of So
non, there exists a weakly
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locally supporting hyperplane going through the boundary point. We now
prove the former, using the following simple observation, which will be used
in several other proofs.

Observation 3.2. Let a = (a1, . . . , ar) be a representable tuple. Then any
tuple a′ with 0 ≤ a′i ≤ ai for all i ∈ [r] is also representable.

Proof. Consider a generator (aij) of a. For any i, pick some j 6= i and set

a′ij = aij ·
a′i
ai

≤ 1. Set all other values in (a′ij) equal to the corresponding
value in (aij). (a

′
ij) is a valid generator generating the tuple a′.

Now, we are ready to prove that So
non is path-connected.

Lemma 3.3. The set So

non
is path-connected.

Proof. For any u, u′ ∈ So
non, consider the vector u

′′ ∈ R
r with u′′

i = max{ui, u
′
i} >

0 for every i ∈ [r]. Note that the union of the two segments between u and
u′′ and between u′′ and u′ is a path. Moreover, any tuple on this path is
contained in (0, 1)r and either dominates u or u′. Hence, by Observation 3.2,
each tuple on the path is in So

non.

Next, we need to understand the boundary between Srep and Snon. To do
so, it will be helpful to prove that Srep is closed. As Srep ⊆ [0, 1]r is bounded,
this is equivalent to show that Srep is compact.

Lemma 3.4. The set Srep is compact.

Proof. The set Srep is defined as an image of a continuous function that maps
each generator (Definition 2.2) from the compact set of all generators to the
corresponding representable tuple. Hence, it is compact as an image of a
compact set under continuous function is always compact.

Next, we set up the notion of maximal tuples.

Definition 3.5 (domination and maximal tuples). Let a = (a1, . . . , ar) and
a′ = (a′1, . . . , a

′
r) be two representable tuples. We say that a′ weakly dom-

inates a if a′i ≥ ai for all i ∈ [r], and a′ 6= a. Moreover, we say that a′

strongly dominates a if a′i > ai for all i ∈ [r]. We call a representable tuple
a maximal if there is no representable tuple a′ that weakly dominates a.

Intuitively, maximal tuples are forming the boundary between Srep and
Snon and this is indeed what we prove.
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Lemma 3.6. Let x ∈ R
r be contained in ∂Snon. Then, there either exists

i ∈ [r] such that xi ∈ {0, 1} or x is a maximal representable tuple.

We defer the easy, yet slightly technical proof, together with proofs of a
few other technical lemmas, to Section 4. Our main technical contribution is
a proof that a locally supporting hyperplane can be found for any maximal
tuple a.

Lemma 3.7. For each maximal representable tuple a, there exists a locally
supporting hyperplane for So

non
intersecting a.

The non-trivial proof of the above lemma is deferred to Section 5. As a
corollary, we infer that the whole set So

non is convex.

Corollary 3.8. The set So

non
is convex.

Proof. By Theorem 3.1 it suffices to provide a weakly locally supporting
hyperplane for any a ∈ ∂Snon. By Lemma 3.6, any a ∈ ∂Snon is either
a maximal representable tuple and hence the existence of the supporting
hyperplane follows from Lemma 3.7, or we have ai = 0 or ai = 1, respectively,
for some i. But then the hyperplane {x ∈ R

r : eTi x = 0} or {x ∈ R
r : −

eTi x = −1}, respectively, is a weakly (locally) supporting hyperplane for So
non

intersecting a.

The proof of Theorem 2.4 now easily follows.

Proof of Theorem 2.4. We prove the statement by induction on r. For r = 2,
the statement trivially holds. Now, let r ≥ 3 arbitrary and assume that
S
(r−1)
non is convex. Let x 6= y ∈ S

(r)
non and α ∈ (0, 1) be arbitrary. We need

to show that for z := αx + (1 − α)y we have z ∈ S
(r)
non. As S

(r)
rep is a closed

set (Lemma 3.4), there exists some ε with 0 < ε < min(α, 1 − α) such

that x′ = (1− ε)x+ εy 6∈ S
(r)
rep and, hence, x′ ∈ S

(r)
non since the whole segment

{βx+(1−β)y, 0 < β < 1} is contained in [0, 1]r, and y′ := (1−ε)y+εx ∈ S
(r)
non.

Furthermore, there exists an α′ ∈ (0, 1) such that z = α′x′ + (1− α′)y′.
If x′, y′ ∈ So

non
(r), then, by Corollary 3.8, it follows that z ∈ So

non
(r) and we

are done. Otherwise, x′ 6∈ So
non

(r) or y′ 6∈ So
non

(r). Without loss of generality,

assume that x′ 6∈ So
non

(r). Since x′ 6∈ S
(r)
non, Lemma 3.6 implies that there

exists some i ∈ [r] with x′
i ∈ {0, 1}. Our choice of ε > 0 now implies that

either xi = yi = zi = 1 or xi = yi = zi = 0.
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In the first case, as x is not representable, there exists some j ∈ [r] \ {i}
with xj > 0. Therefore, zj > 0 and as zi = 1, any generator of z would
need to have zij = 1 and zji > 0, a contradiction with zij + zji ≤ 1. Hence,

z ∈ S
(r)
non.

In the second case, assume without loss of generality that i = r. Let x̃,
ỹ, z̃ ∈ [0, 1]r−1 be equal to the vectors x, y and z restricted to the first r− 1

coordinates. We have x̃, ỹ ∈ S
(r−1)
non , since otherwise taking their generator

and augmenting it by zeros would generate x or y, respectively. As z̃ is a
convex combination of x̃ and ỹ, the induction hypothesis implies that z̃ ∈
S
(r−1)
non and therefore z ∈ S

(r)
non, which concludes the induction step.

4 Technical preparation

In this section we prove several technical results that are needed for the proof.
First, we prove the equivalence of the notions of weak and strong dominance.
To this end, we first show a simple “continuity” statement that shows that
for any representable tuple a, one can increase all but one of its coordinates
a little bit at the expense of decreasing the remaining one.

Lemma 4.1. Let (a1, . . . , ar) be a representable tuple with ai > 0 for each
i ∈ [r]. For each k ∈ [r], there exist an ε > 0 and a ξ > 0 such that for all t
with 0 < t < ε, the tuple a′ defined by a′k = ak − t and a′i = ai + ξt for i 6= k
is also representable.

Proof. Let (aij) be a generator of (a1, . . . , ar). As ai > 0 for each i ∈ [r],
(aij) is a non-zero generator. Now, for some δ > 0, consider (bij) with

bij =











aij − δ if i = k

aij + δ if j = k

aij otherwise

for each i 6= j ∈ [r]. We have bij + bji = aij + aji ≤ 1 for each i, j ∈ [r], i 6= j.
Furthermore, if we choose δ such that 0 < δ < ε′ := mini 6=j∈[r]min(aij, 1 −
aij) < 1, we have 0 ≤ bij ≤ 1 for each i, j ∈ [r], i 6= j. In that case, (bij) is a
valid generator that generates a tuple (b1, . . . , br) such that:

bk =
∏

j 6=k

bkj =
∏

j 6=k

(akj − δ) ≥

(

∏

j 6=k

akj

)

− δf((aij)) = ak − δf((aij))
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for some function f with f((aij)) > 0. Note that such a function f exists,
as δ < 1 and therefore δe ≤ δ for each e ≥ 1. For each i ∈ [r] \ {k}, we have:

bi =
∏

j 6=i

bij = (aik + δ) ·
∏

j /∈{i,k}
aij = ai + δ ·

∏

j /∈{i,k}
aij

≥ ai + δ ·
∏

j 6=i

aij = ai + δai

Set t = δ · f((aij)), ξ = 1
f((aij ))

mini∈[r] ai > 0 and ε = ε′ · f((aij)) > 0.

Now, consider some arbitrary t with 0 < t < ε. The definition of ε implies
that 0 < δ = t

f((aij ))
< ε

f((aij ))
= ε′. Thus, we can represent a tuple (b1, . . . , br)

with bk ≥ ak − δf((aij)) ≥ ak − t = a′k and bi ≥ ai + δ · ai ≥ ai + ξ · t = a′i
for i 6= k. This tuple dominates the tuple a′. As a′i ≥ 0 for each i ∈ [r],
Observation 3.2 implies that we can represent a′.

Now we are ready to show that if a tuple is weakly dominated by some
other tuple, it is also strongly dominated by (a potentially different) one.

Corollary 4.2 (strong vs weak domination). Let a = (a1, . . . , ar) be a rep-
resentable tuple such that for all i ∈ [r] we have 0 < ai < 1. If there exists
a representable tuple that weakly dominates a, then there also exists a repre-
sentable tuple that strongly dominates a.

Proof. Let (a′1, . . . , a
′
r) be a representable tuple that weakly dominates a.

Note that we have a′i > 0 for each i ∈ [r]. Let k ∈ [r] such that a′k > ak.
According to Lemma 4.1, there exists ε > 0 and ξ > 0 such that for all
0 < t < ε, the tuple (a′1 + ξt, . . . , a′k−1 + ξt, a′k − t, a′k+1 + ξt, . . . , a′r + ξt)
is representable. For t small enough, this tuple strictly dominates the tuple
(a1, . . . , ar).

We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. We show the contrapositive. Let x ∈ R
r such that

xi /∈ {0, 1} for each i ∈ [r] and x is not a maximal representable tuple. We
show that this implies the existence of a ball B(x, ε) around x with radius
ε > 0 such that either B(x, ε) ⊆ Snon or B(x, ε) ∩ Snon = ∅, which in turn
implies x 6∈ ∂Snon.

For x /∈ [0, 1]r there is clearly such a ball. Otherwise, we have x ∈
(0, 1)r, as we assume that for each i ∈ [r], xi /∈ {0, 1}. If x ∈ Srep, but
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x is not maximal representable, there is a representable tuple that weakly
dominates x and as x ∈ (0, 1)r, Corollary 4.2 provides a representable tuple
that strongly dominates x. Hence, there exists some ε > 0 such that the
tuple (x1 + ε, . . . , xr + ε) is a representable tuple. This implies that for
ε′ = min(ε,mini∈[r] xi) we have B(x, ε′) ⊆ Srep due to Observation 3.2 and,
hence, B(x, ε′) ∩ Snon = ∅ as needed. Finally, in the case x ∈ (0, 1)r ∩
Snon Lemma 3.4 implies that the complement of Srep is open which in turn
implies the existence of an ε > 0 so that B(x, ε) ∩ Srep = ∅. For ε′ =
min(ε,mini∈[r]min(xi, 1 − xi)) we then have B(x, ε′) ⊆ [0, 1]r \ Srep = Snon,
as needed.

5 Construction of hyperplanes

In this section we prove our main technical contribution: Lemma 3.7 that
states that for each maximal tuple we can find a locally weakly supporting
hyperplane for the set Snon. First, we give an informal proof of this result
for the case r = 3, which captures the intuition behind the general proof for
all r that we give later.

5.1 Informal outline for r = 3

Our main observation is that finding a locally supporting hyperplane comes
down to proving that a certain set of tuples in the neighbourhood of a is
representable. In this section, we denote the tuples, more intuitively, as
triples. So, we now focus on how to generate triples similar to a.

Generating more triples Given a representable triple a ∈ (0, 1)3 gener-
ated by the generator (aij), what other triples close to a are representable?
Certainly, all the triples that a dominates. Besides, we can play with the
generator itself. Adding α12 to a12 and subtracting it from a21 gives us again
a valid generator that generates triples of the form

(a13(a12 + α12), (a21 − α12)a23, a31a32) = a+ α12 (a13,−a23, 0)

I.e., it generates triples on the line

a + α12(a13,−a23, 0) = a+ α12w12, α12 ∈ R
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for |α12| small enough. Similarly, by adding α13 to a13 and subtracting it
from a31, we can generate triples on the line

a + α13(a12, 0,−a32) = a+ α13w13, α13 ∈ R

and by adding α23 to a23 and subtracting it from a32, we can generate triples
on the line

a + α23(0, a21,−a31) = a+ α23w23, α23 ∈ R

in some neighborhood around the triple a. We call the three lines ℓ1, ℓ2 and
ℓ3.

Since all components of the generator of a are nonzero, these three lines
define an affine subspace of dimension at least two. Later we prove that if a
is a maximal representable triple, then the three lines lie on a common plane.
The plane spanned by ℓ1, ℓ2 and ℓ3 then becomes an obvious suspect for the
supporting hyperplane we wish to find!

In fact, we prove that not only triples on the lines ℓ1, ℓ2 and ℓ3 are repre-
sentable, given that they lie in some small neighborhood around the maximal
representable triple a, but any triple a′ in the affine span of the three lines
is representable, provided that a′ ∈ B(a, ε) for some positive ε that depends
on a. This finishes our proof, as we can now find a weakly locally supporting
hyperplane for each maximal representable triple a.

We now prove that for maximal triples all three lines lie in a common
plane and all triples in that plane are representable (if they are close enough
to a).

Claim 5.1. For a maximal triple a, the affine hull of ℓ1, ℓ2 and ℓ3 is a plane.

Assume the contrary. Then, there exist α12, α13, α23 ∈ R, such that
(1, 1, 1) = α12w12 +α13w13+α23w23. Now, change the values of (aij) propor-
tional to the values of α to obtain the generator (a′ij) with

a′12 = a12 + ξα12, a′21 = a21 − ξα12;

a′13 = a13 + ξα13, a′31 = a31 − ξα13;

a′23 = a23 + ξα23, a′32 = a32 − ξα23.

Intuitively, we expect these changes to give us a generator of a′ = a +
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ξα12w12 + ξα13w13 + ξα23w23 = a + ξ · (1, 1, 1). This is almost the case:

a′ = (a′12a
′
13, a

′
21a

′
23, a

′
31a

′
32)

= ((a12 + ξα12)(a13 + ξα13), (a21 − ξα12)(a23 + ξα23),

(a31 − ξα13)(a32 − ξα23))

= (a12a13, a21a23, a31a32) + ξα12(a13,−a23, 0)

+ ξα13(a12, 0,−a32) + ξα23(0, a21,−a31)

+ ξ2(α12α13,−α12α23, α13α23)

= a+ ξα12w12 + ξα13w13 + ξα23w23

+ ξ2(α12α13,−α12α23, α13α23)

= a+ ξ(1, 1, 1) + ξ2(α12α13,−α12α23, α13α23)

Choosing ξ > 0 small enough, we conclude that the triple a+ξ/2 · (1, 1, 1)
is representable and therefore a is not maximal, a contradiction!

Generating triples on the plane We are given a maximal triple a and
some a′ in the affine hull of ℓ1, ℓ2 and ℓ3 that is sufficiently close to a. We
need to prove that a′ is representable. To do so, we first note that as a′

is contained in the affine hull, there exist α12, α13 and α23 such that a′ =
a + α12w12 + α13w13 + α23w23. Now, we employ the same strategy as above
and observe that we can change the generator of a as follows

a′12 = a12 + α12, a′21 = a21 − α12;

a′13 = a13 + α13, a′31 = a31 − α13;

a′23 = a23 + α23, a′32 = a32 − α23,

so as to generate the triple

((a12 + α12)(a13 + α13), (a21 − α12)(a23 + α23),

(a31 − α13)(a32 − α23))

= (a12a13, a21a23, a31a32) + α12(a13,−a23, 0) + α13(a12, 0,−a32)

+ α23(0, a21,−a31) + (α12α13,−α12α23, α13α23)

= a+ α12w12 + α13w13 + α23w23 + (α12α13,−α12α23, α13α23)

= a′ + (α12α13,−α12α23, α13α23)

The term (α12α13,−α12α23, α13α23) is important now. We require (α12α13,−α12α23, α13α23) ≥
0 to prove that a′ is a representable triple. This property does not hold for
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every choice of the coefficients α12, α13, α23. However, as w12, w13 and w23

are linearly dependent, we have a certain flexibility to choose the α’s. In
particular, one can choose the α’s in such a way that at most 2 of them are
non-zero.

It turns out that it is indeed always possible to choose the α’s in such a
way that (α12α13,−α12α23, α13α23) ≥ 0. To see why, observe that the first
coordinate of the quadratic term is negative if and only if out of the two
numbers a12 and a13 (recall that a1 = a12a13), one is increased and one is
decreased. This holds analogously also for the other coordinates. So, we
show how to generate a′ such that this does not happen.

First, one can observe that a′ does not dominate a or vice versa: if this
was the case, one could obtain a contradiction by showing that a is not a
maximal representable triple similarly to the proof of Claim 5.1. Thus, we
can assume that there exist i 6= j ∈ [3] such that ai < a′i and aj > a′j .
Assume (without loss of generality) that a1 < a′1, a2 > a′2 and a3 ≥ a′3. In
that case, we first fix α23 = 0. As a2 ≥ a′2 and a3 ≥ a′3, one can show that a′

lies in the span of ℓ1 and ℓ2, thus one can write

a′ = a+ α12w12 + α13w13

= a+ α12(a13,−a23, 0) + α13(a12, 0,−a32)

= (a1 + α12a13 + α13a12, a2 − α12a23, a3 − α13a32).

Since a′2 < a2, we have α12 > 0. Similarly, since a′3 ≤ a3, we have α13 ≥ 0.
Together with α23 = 0, we get (α12α13,−α12α23, α13α23) ≥ 0, as needed.

This concludes the proof outline for r = 3. For general r, the last step
is slightly more tricky: generally, we set αij = 0 if both ai and aj needs
to be increased or both needs to be increased. Additionally, if ak needs to
be increased, αij(wij)k is non-negative for all i < j and if ak needs to be
decreased, αij(wij)k is non-positive for all i < j. Moreover, for general r,
augmenting the generator according to the α-values might lead to negative
higher order terms. However, these are always dominated by the quadratic
increase in a neighborhood around a.

5.2 Construction of hyperplanes, in general

We start by defining “movement vectors”, analogues to vectors w12, w13, w23

from Section 5.1, that correspond to “allowed movements” that we may make
to construct representable tuples in the vicinity of a representable tuple a.
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Definition 5.2 (movement vectors). Let a ∈ (0, 1)r be a maximal tuple and
(aij)i 6=j∈[r] an arbitrary (nonzero) generator of a. For each i 6= j ∈ [r], we
define wij as the r-dimensional vector such that for each k ∈ [r],

(wij)k =











ai
aij

if k = i ,
−aj
aji

if k = j ,

0 otherwise .

Similarly to Section 5.1, we now define the span of the movement vectors
Ha that we later prove to be a hyperplane for the case of maximal repre-
sentable tuples.

Definition 5.3. We define Ha := {a +
∑

i 6=j∈[r] αijwij | αij ∈ R for all i 6=

j ∈ [r]}.

Observation 5.4. Ha is an affine subspace with a dimension at least r− 1.

Proof. Consider the r−1 vectors w12, w13, . . . , w1r. Among those r−1 vectors,
w1j is the only vector with a non-zero j-th coordinate. Hence, the r−1 vectors
are linearly independent.

The next lemma corresponds to Claim 5.1 of the informal outline.

Lemma 5.5. Let a ∈ (0, 1)r be a maximal tuple and q ∈ R≥0 be a non-
negative vector such that there exists some index k ∈ [r] with qk > 0. Then,
a+ q /∈ Ha.

Proof. We show that the existence of such a vector q would contradict the
fact that a is a maximal tuple. Thus, for the sake of contradiction, assume
that there exists a non-negative vector q and some k ∈ [r] such that qk > 0
and a + q ∈ H . Thus, there exist αij ’s such that q =

∑

i 6=j∈[r] αijwij. For

δ > 0, consider (a′ij) with a′ij = aij + δ · (αij − αji) for i 6= j ∈ [r]. Note that

a′ij + a′ji = (aij + δ · (αij − αji)) + (aji + δ · (αji − αij)) = aij + aji ≤ 1.

Thus, for δ small enough, (a′ij) is a valid generator. Let a′ denote the tuple
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that (a′ij) generates. Then, for each i ∈ [r], we get:

a′i =
∏

j 6=i

(aij + δ(αij − αji))

=
∏

j 6=i

aij +





∑

ℓ 6=i

δ(αiℓ − αℓi)
∏

j /∈{i,ℓ}
aij



− O(δ2)

= ai +

(

∑

ℓ 6=i

δ(αiℓ − αℓi)
ai
aiℓ

)

−O(δ2)

= ai +

(

∑

ℓ 6=i

δ(αiℓ(wiℓ)i + αℓi(wℓi)i)

)

−O(δ2)

= ai + δ

(

∑

ℓ 6=j

αℓj(wℓj)i

)

− O(δ2)

= (a+ δq)i − O(δ2)

Thus, there exists some constant c ≥ 0, such that for each sufficiently small
δ > 0, there is a non-negative representable tuple b with b(δ) := a+δq−cδ2 ·1.
Lemma 4.1 implies the existence of some ξ > 0 such that for each sufficiently
small t > 0, we can represent the tuple b′(δ, t) with b′(δ, t)k = b(δ) − t and
b′(δ, t)i = b(δ) + ξt for each i 6= k. In particular, we can choose δ > 0
small enough such that for t = (qk/2)δ, the tuple b

′(δ, t) is representable and
furthermore:

b′(δ, t)k = b(δ)k − t = ak + δqk − cδ2 − t = ak + δ(qk/2)− cδ2 > ak

and for i 6= k,

b′(δ, t)i = b(δ)i + ξt = ai + δqi − c · δ2 + ξt ≥ ai − c · δ2 + ξ(qk/2)δ > ai

which contradicts the maximality of a.

Corollary 5.6. For any maximal representable tuple a, the set Ha defines a
hyperplane. That is, there exist h ∈ R

r \ {0} and b ∈ R such that Ha = {x ∈
R

r : hTx = b}. Furthermore, one can choose h such that h ≥ 0.
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Proof. The set Ha defines an affine subspace of dimension at least r − 1
(Observation 5.4) and of dimension at most r − 1, because a + 1 /∈ Ha

according to Lemma 5.5. Thus, Ha is an affine subspace of dimension r − 1.
Hence, there exist h ∈ R

r\{0} and b ∈ R such thatHa = {x ∈ R
r : hTx = b}.

Assume that there exist two indices i 6= j ∈ [r] such that hi > 0 and hj < 0.
This would imply the existence of a non-zero vector q ≥ 0 with hT q = 0. As
a ∈ Ha and hTa = b we would get hT (a + q) = b. However, as q is non-zero
and q ≥ 0, a+q /∈ Ha according to Lemma 5.5, a contradiction. Thus, either
h ≥ 0 or h ≤ 0. As {x ∈ R

r : hTx = b} = {x ∈ R
r : (−h)Tx = −b}, this

proves the lemma.

The next lemma lies at the heart of our argument.

Lemma 5.7. For any maximal representable tuple a and any a′ ∈ Ha, there
exist values α′

ij ∈ R for i 6= j ∈ [r] with a′ = a+
∑

i 6=j∈[r] α
′
ijwij such that for

each k ∈ [r], either α′
ij(wij)k ≤ 0 for each i 6= j ∈ [r] or α′

ij(wij)k ≥ 0 for
each i 6= j ∈ [r].

Proof. Let a′ ∈ Ha be arbitrary. Let b ∈ Ha a vector such that for each
i ∈ [r], either ai ≤ bi ≤ a′i or a

′
i ≤ bi ≤ ai and there exist values βij ∈ R for

i 6= j ∈ [r] such that b = a +
∑

i 6=j∈[r] βijwij. Furthermore, for each k ∈ [r],

either βij(wij)k ≤ 0 for each i 6= j ∈ [r] or βij(wij)k ≥ 0 for each i 6= j ∈ [r].
Note that such a vector b always exists, as setting b = a and all the βij ’s to
0 would fulfill all the criteria. We choose b in such a way that the number of
coordinates that b and a′ disagree with is minimal. Note that showing b = a′

is equivalent to the statement of the lemma. For the sake of contradiction,
assume that this is not the case.

As a′, b ∈ Ha, we also have a + (a′ − b) ∈ Ha and a + (b − a′) ∈ Ha. If
a′i ≥ bi for all i ∈ [r], then a′ − b is a non-zero vector with a′ − b ≥ 0. Hence,
according to Lemma 5.5, a+(a′−b) /∈ Ha, a contradiction. Similarly, a′i ≤ bi
for all i ∈ [r] would also lead to a contradiction. Thus, we can conclude that
there exist two indices k, ℓ ∈ [r] such that bk < a′k and bℓ > a′ℓ. Now, consider
the vector c = a+

∑

i 6=j∈[r] γijwij where for i 6= j ∈ [r] we define

γij =

{

βkℓ +min
(

(a′
k
−bk)

(wkℓ)k
,
(bℓ−a′

ℓ
)

(wℓk)ℓ

)

if i = k and j = ℓ

βij otherwise

We show that c contradicts the assumption that b is a vector that agrees
with a′ on the maximum number of coordinates, among the vectors satisfying
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the properties stated in the beginning. We start by showing that for each
coordinate m ∈ [r], we either have γij(wij)m ≤ 0 for each i 6= j ∈ [r] or
γij(wij)m ≥ 0 for each i 6= j ∈ [r]. As we assume that this property holds for
the vector b, we only need to show it for the coordinates k and ℓ.

Recall that we have either ai ≤ bi ≤ a′i or a
′
i ≤ bi ≤ ai and that bk < a′k.

This implies that ak ≤ bk < a′k. In particular, this implies that βij(wij)k ≥ 0
for each i 6= j ∈ [r]. Thus, it remains to show that γkℓ(wkℓ)k ≥ 0, which
is the case as (wkℓ)k > 0 implies βkℓ ≥ 0 and therefore also γkℓ ≥ 0, as

min
(

(a′
k
−bk)

(wkℓ)k
,
(bℓ−a′

ℓ
)

(wℓk)ℓ

)

≥ 0. Proceeding in the same manner, we get that

bℓ > a′ℓ implies that a′ℓ < bℓ ≤ aℓ. In particular, this implies that βij(wij)ℓ ≤ 0
for each i 6= j ∈ [r]. Thus, it remains to show that γkl(wkℓ)ℓ ≤ 0, which is
the case as (wkℓ)ℓ ≤ 0 and γkℓ ≥ 0.

Next, we show that for each i ∈ [r], we either have ai ≤ ci ≤ a′i or
ai ≥ ci ≥ a′i. As bi = ci for each i ∈ [r] \ {k, ℓ}, we only need to show it for
the coordinates k and ℓ. We have:

ak ≤ bk ≤ bk +min

(

(a′k − bk)

(wkℓ)k
,
(bℓ − a′ℓ)

(wℓk)ℓ

)

(wkℓ)k

≤ bk +
(a′k − bk)

(wkℓ)k
(wkℓ)k = a′k

and

aℓ ≥ bℓ ≥ bℓ +min

(

(a′k − bk)

(wkℓ)k
,
(bℓ − a′ℓ)

(wℓk)ℓ

)

(wkℓ)ℓ

≥ bℓ +
(bℓ − a′ℓ)

(wℓk)ℓ
(wkℓ)ℓ = a′ℓ

and therefore ak ≤ ck ≤ a′k and aℓ ≥ cℓ ≥ a′ℓ, as desired. In the second
line, we used the fact that (wkℓ)ℓ = −(wℓk)ℓ ≤ 0. Furthermore, note that if

min
(

(a′
k
−bk)

(wkℓ)k
,
(bℓ−a′

ℓ
)

(wℓk)ℓ

)

=
(a′

k
−bk)

(wkℓ)k
, then ck = a′k, and otherwise cℓ = a′ℓ. There-

fore, c and a′ differ in a smaller number of coordinates than b and a′, which
is a contradiction.

We will use the following corollary of the above statement.

Corollary 5.8. Let c = maxi∈[r] 1/ai. For each unit vector v ∈ R
r with

a + v ∈ Ha, there exist αij’s with v =
∑

i 6=j∈[r] αijwij such that for each
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k ∈ [r], either αij(wij)k ≤ 0 for each i 6= j ∈ [r] or αij(wij)k ≥ 0 for each
i 6= j ∈ [r] and furthermore, |αij| ≤ c, for each i 6= j ∈ [r].

Proof. Let v ∈ R
r be a unit vector with a+v ∈ Ha. According to Lemma 5.7,

there exist αij’s such that v =
∑

i 6=j∈[r] αijwij and for each k ∈ [r], either

αij(wij)k ≤ 0 for each i 6= j ∈ [r] or αij(wij)k ≥ 0 for each i 6= j ∈ [r]. We
show that |αij | ≤ c for each i 6= j ∈ [r]. For the sake of contradiction, assume
there exist k 6= ℓ ∈ [r] such that |αkℓ| > c. This implies

|αkℓ(wkℓ)k| =
∣

∣αkℓ
ak
akℓ

∣

∣ >
1

ak
·
ak
akℓ

> 1

and therefore:

∣

∣vk
∣

∣ =
∣

∣

∑

i 6=j∈[r]
αij(wij)k

∣

∣ =
∑

i 6=j∈[r]

∣

∣αij(wij)k
∣

∣ ≥
∣

∣αkℓ(wkℓ)k
∣

∣ > 1

The second inequality follows as for each i 6= j ∈ [r], αij(wij)k has the
same sign. This is a contradiction as v is a unit vector and therefore |vk| ≤
1.

The main theorem now follows by carefully checking that the quadratic
terms appearing when we generate a′ are always positive.

Theorem 5.9. For any maximal representable tuple a, there exists an ε > 0
such that for any a′ ∈ Ha ∩ B(a, ε), a′ is representable.

Proof. Note that it is sufficient to prove the existence of an ε > 0, such that
for any unit vector v ∈ R

r with a + v ∈ Ha and every 0 ≤ δ < ε, the tuple
aδ := a+δv is representable. As v is a unit vector with a+v ∈ Ha, according
to Corollary 5.8, there exist αij’s such that v = a +

∑

i 6=j∈[r] αijwij and,

moreover, for each k ∈ [r], we either have αij(wij)k ≤ 0 for each i 6= j ∈ [r]
or αij(wij)k ≥ 0 for each i 6= j ∈ [r], and |αij| ≤ c := maxi∈[r]1/ai. We
have aδ := a + δv = a +

∑

i 6=j∈[r](δαij)wij. Consider now (aδij) with aδij =

aij + δ(αij −αji). Note that a
δ
ij +aδji = aij +aji ≤ 1 for each δ. Furthermore,

for each δ ≥ 0 and i 6= j ∈ [r], |aδij − aij | ≤ δ(|αij| + |αji|) ≤ 2δc. As c only
depends on a, there exists some ε′ > 0, independent of v, such that for each
0 ≤ δ ≤ ε′, (aδij) is a valid generator.

Next, we show that there exists some 0 < ε < ε′, again independent of
v, such that for each 0 ≤ δ ≤ ε, (aδij) generates a tuple with each coordinate
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being at least as large as the corresponding coordinate in aδ. This implies
that aδ is representable, hence proving the claim. To that end, note that for
an arbitrary k ∈ [r] we have

aδk =
∏

j 6=k

aδkj =
∏

j 6=k

(akj + δ · (αkj − αjk))

= ak +
∑

ℓ 6=k

δ · (αkℓ − αℓk)
∏

j /∈{k,ℓ}
akj

+ δ2
∑

ℓ′ 6=k

∑

ℓ′′ 6∈{k,ℓ′}
(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)

∏

j /∈{k,ℓ′,ℓ′′}
akj

+ δ3
∑

ℓ′ 6=k

∑

ℓ′′ 6∈{k,ℓ′}

∑

ℓ′′′ 6∈{k,ℓ′,ℓ′′}
(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)

· (αkℓ′′′ − αℓ′′′k)
∏

j /∈{k,ℓ′,ℓ′′,ℓ′′′}
akj + . . .

First, we take a look at the term linear in δ. We get:

∑

ℓ 6=k

δ · (αkℓ − αℓk)
∏

j /∈{k,ℓ}
akj =

∑

ℓ 6=k

δ ·

(

αkℓ
ak
akℓ

+ αℓk
−ak
akℓ

)

=
∑

ℓ 6=k

δαkℓ(wkℓ)k + δαℓk(wℓk)k =
∑

i 6=j

δαij(wij)k = δvk

Next, we find a lower bound for the quadratic term. Note that for each
ℓ′ 6= ℓ′′ ∈ [r] \ {k}, we have:

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)

=

(

αkℓ′(wkℓ′)k
akℓ′

ak
+ αℓ′k(wℓ′k)k

akℓ′

ak

)

·

(

αkℓ′′(wkℓ′′)k
akℓ′′

ak
+ αℓ′′k(wℓ′′k)k

akℓ′′

ak

)

≥ 0

as for all i 6= j ∈ [r] αij(wij)k ≥ 0, or for all i 6= j ∈ [r] αij(wij)k ≤ 0. Thus,
each summand in the quadratic term is non-negative. Let us define

u := max
ℓ′ 6=ℓ′′∈[r]\{k}

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k) ≥ 0
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We can lower bound the quadratic term by:

δ2
∑

ℓ′ 6=k

∑

ℓ′′ 6∈{ℓ′,k}
(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)

∏

j /∈{k,ℓ′,ℓ′′}
akj ≥ δ2 · u · ak

Next, we find a lower bound for each higher order term. Each such higher
order term is the sum of expressions with the following form:

δt
t
∏

s=1

(αkℓs − αℓsk)
∏

j /∈{k,ℓ1,...,ℓt}
akj

≥ −
∣

∣δt
t
∏

s=1

(αkℓs − αℓsk)
∏

j /∈{k,ℓ1,...,ℓt}
akj
∣

∣

≥ −δt · u · (2c)t−2 ≥ −u · δ3 · (2c)r

for some distinct ℓ1, . . . , ℓt ∈ [r] \ {k} and some t ∈ N with t ≥ 3. As there
are at most 2r such terms, we can conclude that:

aδk =
∏

j 6=k

aδkj ≥ ak + δvk + δ2 · u · ak − 2r(u · δ3 · (2c)r)

= a′(δ)k + uδ2(ak − δ · 2r · (2c)r) ≥ a′(δ)k

for δ ≤ ak
2r ·(2c)r := ε′′ with ε′′ only depending on the tuple (a1, . . . , an) and

not the vector v. Setting ε = min(ε′, ε′′), we can conclude that for each δ
with 0 ≤ δ ≤ ε, a′(δ) is a representable tuple. This concludes the proof.

Lemma 5.10. For each maximal representable tuple a, there exists a weakly
locally supportive hyperplane for So

non
containing a.

Proof. According to Corollary 5.6, there exist h ∈ R
r with h ≥ 0 and b ∈ R

such that Ha = {x ∈ Rr : hTx = b}. As a ∈ Ha, we have h
Ta = b. Let ε′ > 0

such that for each a′ ∈ Ha ∩ B(a, ε′), a′ is a representable tuple. According
to Theorem 5.9, such an ε′ exists. We set ε = min(ε′,mini∈[r] ai) > 0. Let
a′′ ∈ B(a, ε) with hTa′′ ≤ b. As hTa′′ ≤ b, there exists some δ ≥ 0 such that
hTa′ = b with a′ := a′′ + δh. As hT (a− a′) = b− b = 0 and a′ − a′′ = δh, we
can write a− a′′ = (a− a′) + (a′ − a′′) with (a− a′)T (a′ − a′′) = 0. Thus, we
can conclude that ||a − a′|| ≤ ||a − a′′|| ≤ ε. Hence, a′ ∈ Ha ∩ B(a, ε) and
therefore a′ is a representable tuple. As h ≥ 0, a′′ = a′ − δh ≥ 0 is also a
representable tuple and therefore a′′ ∈ Srep. Thus, a

′′ /∈ So
non, as desired.
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