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ABSTRACT

In comparing well-known CRDTs representing sets that can grow

and shrink, we find caveats. In one, the removal of an element can-

not be reliably undone. In another, undesirable states are attainable,

such as when an element is present -1 times (and so must be added

for the set to become empty). The first lacks a general-purpose

undo, while the second acts less like a set and more like a tuple of

counters, one per possible element.

Using some group theory, we show that this trade-off is unavoid-

able: every undoable CRDT is a tuple of counters.

1 INTRODUCTION

Conflict-free replicated data types (CRDTs) allow replication of a

data structure across multiple machines without risking conflicts

between different versions. Even though each machine may con-

currently modify its own copy of the data structure, a CRDT guar-

antees that these concurrent modifications can be merged into a

consistent result, upon which the whole network will agree.

Here, we adopt the operation-based view of CRDTs [4], in which

a CRDT consists of some state and some operations affecting it,

where any two operations that may be performed concurrently

must commute. If twomachines’ local replicas go out of sync by ap-

plying different operations concurrently, they can later merge by

exchanging logs of applied operations and applying the other ma-

chine’s operations to their own state. The commutativity condition

ensures that both end up in the same final state, despite applying

the operations in different orders.

Below, we review several examples of CRDTs for counters and

sets. Formore details, see Shapiro et al.’s comprehensive survey [3].

1.1 The counter CRDT

The counter is a simple CRDT, whose state is an integer and whose

operations are increment and decrement. These commute, since

(n + 1) − 1 = n = (n − 1) + 1. This ensures that once all machines

have seen all operations, all will agree on the counter’s final value.

The counter CRDT is undoable: After incrementing wemay decre-

ment to restore the previous state, and likewise we can undo decre-

menting by incrementing.

Themodulo-n counter is a slight variant, where increment wraps

around from n − 1 to 0. Like the ordinary counter, all operations

on the modulo-n counter can be undone.

1.2 The G-Set CRDT

Another simple CRDT is the grow-only set or G-Set, whose state is

a set of elements and whose operations are add A for each possible

element A. Eventual convergence is guaranteed because add A and

add B commute.

Communication between replicas:

{} {A}
addi A

{}

removei A

{}

removei A

{A}
addj A

s

Sequences of operations performed to yield state s :

S1 = addi A; removei A; addj A; removei A

S2 = addi A; removei A; removei A; addj A

(a) First replica removes and re-adds

Communication between replicas:

{} {A}
addi A

{}

removei A

s ′

Sequences of operations performed to yield state s ′:

S1 = addi A; removei A

S2 = addi A; removei A

(b) First replica does nothing

Subscripts denote the IDs of add operations (relevant only for OR-Sets)

Figure 1: Example of undoing remove

However, as the name implies, a G-Set can never shrink. There

is no remove operationwith which to undo an add, and adding one

turns out to be tricky. Below, we review several approaches.

1.3 Sets with removal: the OR-Set

In an OR-Set (or add-wins set [1]) an element is present if it has

been added since it was last removed. We represent this with two

G-Sets, added and removed, each containing pairs of an element

and an ID. An element A is deemed present in the set if there is

some i such that (A, i) is in the added but not the removed set.

The add A operation inserts (A, i) into the added set (with some

fresh ID i), and the remove A operation inserts (A, j) into the re-

moved set, for each j where (A, j) is in the added set.

This means that each remove operation undoes all prior adds.

However, undoing a remove is less straightforward. Consider the

example in fig. 1a: we start with the empty set and add A to it,

at which point two replicas diverge. The first removes and then
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re-adds A, while the second just removes it. Afterwards, the two

replicas merge, yielding state s .

In fig. 1a, S1 and S2 describe the sequences of operations per-

formed by the two replicas after merging. The operations com-

mute, so both yield the same final state s . In state s , both the added

and removed sets contain (A, i), but only the added set contains

(A, j). The result is that A is present in the set s .

In fig. 1b, instead of removing and re-adding A, the first replica

does nothing. Here, A will not be present in the final state, as both

the added and removed sets contain only (A, i).

We expect that undoing an operation brings us to the same state

as if it had never occurred, but this is not the case for OR-Sets. Do-

ing and undoing a remove yields a different result from not remov-

ing at all. After removing an element from an OR-Set, there is in

general no way to revert to the previous state.

1.4 Sets with removal: the PN-Set

In a PN-Set, an element is present if it has been added more times

than it has been removed. The state is an unordered log of opera-

tions (add A and remove A), where an element A is deemed present

if there are more occurrences of add A than remove A.

On the same examples, the PN-Set gives a different result than

the OR-Set. In fig. 1a, in state s , the element A has been added twice

and removed twice, and is therefore absent. Similarly, in state s ′ of

fig. 1b, the element A has been added once and removed once, and

is therefore absent. Unlike an OR-Set, all PN-Set operations are

undoable: add and remove perfectly cancel each other out.

However, the PN-Set allows unexpected extra states. Consider

what happens when executing the sequence S2 from fig. 1a. After

performing add A; remove A; remove A, we reach a state in which

A is present -1 times: after performing add A, the set will be empty.

This suggests an alternative representation of PN-Sets, as one

copy of the counter CRDT for each possible element, where add

and remove are implemented as increment and decrement.

1.5 Sets with removal: the T-Set

The extra states of a PN-Set arise because the counters can take

values other than 0 and 1. We can eliminate these states by using

modulo-2 counters instead of unbounded ones.

However, in a modulo-2 counter increment and decrement are

the same operation, so add A and remove A have the same effect,

toggling the membership of A. We have eliminated the extra states,

but lost the distinction between add and remove.

1.6 A trade-off

In choosing between these CRDTs, we face a trade-off: the OR-Set

has intuitive semantics for add and remove, but does not support

general undo. The PN-Set and T-Set do support undo, but work

more like a tuple of counters than a set, causing side-effects: extra

states for PN-Sets and nonstandard semantics for T-Sets.

More sophisticated CRDTs exhibit the same trade-off. For in-

stance, the Logoot-Undo CRDT for collaborative editing [6] allows

all operations to be undone and redone, keeping count of how of-

ten each operation has been undone. This supports general undo

while maintaining commutativity, but like PN-Sets it can be driven

to a state where an operation has been performed -1 times, and

must be redone to reach the empty state. The generic undo of Yu

et al. [7] also keeps undo counters, keeping track of whether an

operation has been undone an even or odd number of times (like

a T-Set).

The point of this note is that this trade-off is fundamental: all

undoable CRDTs are equivalent to a tuple of counters.

2 FORMALISING CRDTS

To prove the theorem,wemust first formalise undoable CRDTs.We

adopt a formulation of operation-based CRDTs close to Shapiro

et al.’s CmRDTs, except that we omit some details (e.g. message

numbering) that are not relevant here.

A CRDT consists of a set S of abstract states s, t , . . . with a dis-

tinguished initial state s0, and a collection P of primitive operations

p,q, . . . . We assume that P is finite, or equivalently that there is

some upper bound on the message length needed to communicate

a single primitive operation. S may be infinite: there may be in-

finitely many distinct states reachable by sequences of primitive

operations.

Each primitive operation p ∈ P is a partial function from S to

S . That is, not all primitive operations need apply in all states. To

reduce parentheses, we write s · p · q instead of q(p(s)). We write

s · p · q ok when s · p · q is well-defined: that is, the operation p

applies in state s , and the operation q applies in state s · p. Note

that s · p · q ok implies s · p ok.

For simplicity, we assume that abstract states are neither impos-

sible nor redundant: we assume that distinct members of S repre-

sent logically distinct states, and all members of S are reachable

by some sequence of primitive operations starting from s0. If this

isn’t true for a concrete implementation, we can choose the ab-

stract states S by discarding unreachable states and picking one

representative among groups of logically equivalent states.

The propertymaking states and primitive operations into a CRDT

is commutativity: any two primitive operations that apply in the

same state commute. More formally, the structure is a CRDT if the

following axiom is satisfied (Definition 2.6 of Shapiro et al. [4]):

Axiom 1 (Commutativity). If s ·p ok and s ·q ok, then s ·p ·q ok,

s · q · p ok and s · p · q = s · q · p.

Here, we’re interested not in plain CRDTs but in undoable ones,

which also satsify the following:

Axiom 2 (Undoability). If s · p ok, then there exists some se-

quence of primitive operations q1, . . . ,qn such that s ·p ·q1 · . . . ·qn
is well-defined and equals s .

Usually, a primitive operation p will be undone using just one

operation q (so n = 1), but we avoid assuming this.

2.1 From operations to actions

Rather than dealing with individual operations p,q ∈ P , it is more

convenient to consider the set P∗ of actions. An action a,b ∈ P∗ is

a finite sequence of primitive operations, which we apply to states

using the same notation: if a = pq, then s · a = s · p · q. We write ϵ

for the empty action (so s · ϵ = s) and ab for the concatenation of

a and b (so s · ab = s · a · b).

The axioms can be recast in terms of actions (see appendix A):
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Proposition 1 (Commutativity of actions). If s · a ok and

s · b ok, then s · ab and s · ba are well-defined and equal.

Proposition 2 (Undoability of actions). If s ·a ok, then there

exists some action a−1s such that s · aa−1s = s .

2.2 Equivalent CRDTs

Next, we define what it means for two CRDTs to be equivalent.

This is more complicated that merely saying they have the same

states and primitive operations, becausewewant to view the counter

CRDT (with increment and decrement operations) as equivalent to

a counter CRDT that also exposes an “increment twice” operation.

So, we say that two CRDTs are equivalent if they have the same

states and both can implement each other’s operations. Formally,

a CRDT with states S1 and primitive operations P1 is equivalent

to one with states S2 and primitive operations P2 if there is a one-

to-one (invertible) mapping ϕ : S1 → S2 as well as functions ψ :

P1 → P∗2 and ψ ′ : P2 → P∗1 such that:

• ϕ(s0) = s
′
0

• If s · p ok, then ϕ(s) ·ψ (p) = ϕ(s · p)

• If s ′ · p ′ ok, then ϕ−1(s ′) ·ψ ′(p) = ϕ−1(s ′ · p ′)

In other words, two equivalent CRDTs are two representations

for the same data structure, and we can apply operations to states

in either representation. Two machines using equivalent CRDTs

can coexist on the same network: as long as they translate their

messages back and forth using ψ and ψ ′ neither will be able to

tell that the other is using a different internal representation. For

instance, the two representations of PN-Sets in section 1.4 (as un-

ordered logs and as per-element counters) are equivalent.

2.3 The tuple construction

Given two CRDTs A and B, we can combine both into a single

CRDT using a straightforward construction. The states of the com-

bined CRDT are pairs (sA, sB ) of a state of A and a state of B, and

all the primitive operations of A and B are primitive operations of

the combined CRDT, with the operations of PA acting on the left

half of the state and the operations of PB acting on the right.

Effectively, the combinedCRDT acts as two independent CRDTs,

one implementing A and one implementing B. This construction is

not limited to just two CRDTs: we may form tuples of n CRDTs in

the same way.

This gives us enough ingredients to formally state the theorem:

Theorem. Every undoableCRDT is equivalent to a tuple of counter

and modulo counter CRDTs.

2.4 The group of actions

The proof of this theorem relies on some classical group theory,

applied to the group of actions of an undoable CRDT.

First, given any undoable CRDT and a state s ∈ S , we define the

relation ≡s on actions so that a ≡s b whenever s ·a ok, s ·b ok and

s ·a = s ·b . This is a partial equivalence relation: it is transitive and

symmetric, but not reflexive since a ≡s a is not true in general, but

only when s · a ok.

Now, given a1 ≡s b1 and a2 ≡s b2, Commutativity tells us that

all of a1,a2,b1,b2 commute with each other (since all apply in state

s), and so: s ·a1a2 = s ·b1a2 = s ·a2b1 = s ·b2b1 = s ·b1b2. Therefore:

Fact 1. If a1 ≡s b1 and a2 ≡s b2, then a1a2 ≡s b1b2

By applying Commutativity with a = b , we learn that any valid

action can be done twice (since it may be performed independently

by two replicas, which later merge):

Fact 2. If s · a ok, then s · aa ok

Combining this with Undoability, we learn that actions can be

undone twice:

Fact 3. If s · a ok, then (s · a) · a−1s a−1s ok

But since s · aa−1s = s , this has the surprising consequence that

actions can be undone before they are performed:

Fact 4. If s · a ok, then s · a−1 ok

Commutativity then tells us that a and a−1s commute:

Fact 5. If s · a ok, then a−1s a ≡s aa
−1
s ≡s ϵ .

These facts mean that we can form a group Gs = P
∗/≡s of the

equivalence classes of ≡s : concatenation is a binary operation on

P∗/≡s thanks to fact 1, and inverses exist thanks to fact 5. In other

words, members of the groupGs are denoted by actions that apply

to state s , with two actions denoting the samemember of the group

if they yield the same result when applied to s . Since all members

of this group commute, the group is abelian.

2.5 Gs is finitely generated

Just as actions are built out of a finite set P of primitive operations,

elements of Gs are built out of a finite set P/≡s of generators. To

prove this, we first note that any action that can be performed later

can be performed now. If s · ab ok, then by fact 5 s · a−1s ok, and so

s · a−1s ab ok by Commutativity, whence:

Fact 6. If s · ab ok, then s · b ok.

Therefore, given any action a = p1p2 . . .pn such that s · a, we

have that s ·pi ok for all 1 ≤ i ≤ n: first by noting s ·p1p2 . . .pi ok,

and then by applying fact 6. So, each element ofGs can be written

as the concatenation of a sequence of primitive operations p that

apply in state s : in other words,Gs is generated by P/≡s .

So, in any undoable CRDT, the actions available from any state

have the structure of a finitely generated abelian group.

2.6 An old theorem

To show that undoable CRDTs are equivalent to tuples of counters,

it’s enough that they have isomorphic groups of actions, thanks to

the following (proof in appendix):

Proposition 3. If the groups of actionsGs0 andGs ′0
of two CRDTs

are isomorphic, then the CRDTs are equivalent.

The groups of actions of any counter CRDTs is a cyclic group:

either Z, the group of integers with addition (for unbounded coun-

ters), orZn , the group of integers with additionmodulon (for coun-

ters modulon). The group of actions of a tuple of n CRDTs is given

3



by an action for each of the n components of the tuple, composed

pointwise: this is the direct sum of their groups of actions.

Since the group of actions of an undoable CRDT is a finitely

generated abelian group, our theorem follows from an old result,

the fundamental theorem of finitely generated abelian groups:

Theorem (Poincaré 1900; Kronecker 1870, Noether 1926).

Every finitely generated abelian group is isomorphic to the direct sum

of finitely many cyclic groups.

See e.g. Rotman [2, p.318] for a proof, or Stillwell [5, p.175] for

a proof and some history.

3 DISCUSSION

This characterisation of undoable CRDTs has a number of immedi-

ate consequences, including:

All operations are always valid For instance, an undoable

CRDT cannot represent a nonnegative counter, in which

decrement is available only in nonzero states.

Negative states always exist For any action a, there is some

state s in which applying a will bring us back to the initial

state s0.

In the specific example of set CRDTs, we see that the trade-off

described in section 1.6 is unavoidable: in any CRDTwith 2n states

representing presence or absence of n elements, one of the follow-

ing must be true:

• Some operations are not undoable (like OR-Set)

• There are an infinite number of extra states, beyond the 2n

states representing membership (like PN-Set)

• All operationsmust be cyclic, undoing themselves after some

number of iterations (like T-Set)

In light of this, designers of distributed data structures must

limit themselves to tuples of counters, accept that some operations

will not be fully undoable, or use something other than CRDTs.
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A ADDITIONAL PROOFS

Proof of proposition 1. First, we show that if s · p ok and s ·

a ok then pa ≡s ap, by induction on the length of a. If a = ϵ ,

then the result follows. Otherwise a = qb . By axiom 1, s · p · q and

s · q · p are defined and equal. Thus, we have both (s · q) · p ok

and (s · q) · b ok, so the inductive hypothesis gives pb ≡s ·q bp or

equivalently qpb ≡s qbp. Gluing these together, we get:

pa = pqb ≡s qpb ≡s qbp = ap

Next, we use this fact to prove that if s · a ok and s · b ok then

ab ≡s ba by similar induction on the length of b . If b = ϵ then the

result is again trivial. Otherwise, b = pc and by above, pa ≡s ap.

Thus, we have both (s · p) · a ok and (s · p) · c ok, so the inductive

hypothesis gives ac ≡s ·p ca or equivalently pac ≡s pca, leading to:

ab = apc ≡s pac ≡s pca = ba �

Proof of proposition 2. Again, we proceed by induction on a.

If a = ϵ , then a−1s = ϵ suffices. Otherwise a = bp, so we choose

a−1s = q1q2 . . . qnb
−1
s , where qi are those given by axiom 2 for state

s · b . Then:

s · bpq1q2 . . . qnb
−1
s = s · bb

−1
s = s �

Proof of proposition 3. Given a CRDT with states S1 and op-

erations P1 and one with states S2 and operations P2, suppose that

an isomorphismψ exists betweenGs0 andGs ′0 . We define the map-

pings ϕ : S1 → S2,ϕ
−1 : S2 → S1 as follows:

ϕ(s) = s ′0 ·ψ (a) for some a such that s0 · a = s

ϕ−1(s ′) = s0 ·ψ
−1(a′) for some a′ such that s ′0 · a

′
= s ′

Such actionsa,a′must exist because all states are reachable in both

CRDTs. If several are possible, the choice of a,a′ does not matter,

since ψ respects ≡s0 and so must map all such a to equivalent ac-

tions.

These functions are inverses:

ϕ−1(ϕ(s)) = ϕ−1(s ′0 ·ψ (a)) = s0 ·ψ
−1(a′)

where s ′0 · a
′
= s ′0 ·ψ (a)

s0 · a = s

Since a′ ≡s ′0 ψ (a),

ψ−1(a′) ≡s0 ψ
−1(ψ (a)) ≡s0 a

So, s0 ·ψ
−1(a′) = s0 ·a = s . The proof that ϕ(ϕ

−1(s)) = s is identical.

From ψ , we get a mapping P1 → P∗2 (and likewise ψ−1 gives a

mapping P2 → P∗1 ). To prove the CRDTs equivalent, we must show

that these satisfy the three conditions from section 2.2:

• ϕ(s0) = s
′
0 ·ψ (a)where s0 ·a = s0. But since a ≡s0 ϵ ,ψ (a) ≡s0

ϵ and so ϕ(s0) = s
′
0.

• Suppose s · p ok. Then, for some a where s0 · a = s ,

ϕ(s) ·ψ (p) = s0 ·ψ (a) ·ψ (p) = s0 ·ψ (ap) = ϕ(s · p)

• As above �
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