
Positive Aging Admits Fast Asynchronous Plurality Consensus

GREGOR BANKHAMER and ROBERT ELSÄSSER, University of Salzburg, Austria

DOMINIK KAASER, Universität Hamburg, Germany

MATJAŽ KRNC, University of Primorska, Slovenia

We study distributed plurality consensus among n nodes, each of which initially holds one of k opinions. The goal is to eventually agree

on the initially dominant opinion. We consider an asynchronous communication model in which each node is equipped with a random

clock. Whenever the clock of a node ticks, it may open communication channels to a constant number of other nodes, chosen uniformly

at random or from a list of constantly many addresses acquired in previous steps. The tick rates and the delays for establishing

communication channels (channel delays) follow some probability distribution. Once a channel is established, communication between

nodes can be performed instantaneously.

We consider distributions for the waiting times between ticks and channel delays that have constant mean and the so-called positive

aging property. In this setting, asynchronous plurality consensus is fast: if the initial bias between the largest and second largest

opinion is at least

√
n logn, then after O (log logα k · logk + log logn) time all but a 1/polylogn fraction of nodes have the initial

plurality opinion. Here α denotes the initial ratio between the largest and second largest opinion. After additional O (logn) steps all
nodes have the same opinion w.h.p., and this result is tight.

If additionally the distributions satisfy a certain density property, which is common in many well-known distributions, we show

that consensus is reached in O (log logα k + log logn) time for all but n/polylogn nodes, w.h.p. This implies that for a large range of

initial configurations partial consensus can be reached significantly faster in this asynchronous communication model than in the

synchronous setting.

To obtain these results, we first assume the existence of a designated base station and later present fully distributed algorithms.

Additionally, we derive tail bounds on the Pólya-Eggenberger distribution, which might be of independent interest.

Additional Key Words and Phrases: Plurality Consensus, Asynchronicity, Positive Aging, Pólya-Eggenberger Distributions

© 2020 Copyright is held by the owner/author(s). This is the author’s version of the work. It is posted here for personal

use, not for redistribution. An extended abstract was published by ACM in the Proceedings of the ACM Symposium on

Principles of Distributed Computing (PODC’20), August 3–7, 2020, Virtual Event https://doi.org/10.1145/3382734.3406506

Authors’ addresses: Gregor Bankhamer, gbank@cs.sbg.ac.at; Robert Elsässer, elsa@cs.sbg.ac.at, University of Salzburg, Austria; Dominik Kaaser,

dominik.kaaser@uni-hamburg.de, Universität Hamburg, Germany; Matjaž Krnc, matjaz.krnc@upr.si, University of Primorska, Slovenia.

1

ar
X

iv
:1

80
6.

02
59

6v
2

 [
cs

.D
C

]
 1

6
Ju

l 2
02

0

https://doi.org/10.1145/3382734.3406506

2 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Contents

Abstract 1

Contents 2

1 Introduction 3

1.1 Related Work 3

1.2 Model 5

1.3 Our Results 5

2 Protocol with a Base Station 8

2.1 Our Protocol 9

2.2 Core Concepts of our Analysis 10

3 Decentralized Protocol 12

3.1 Description of the Consensus Protocol 13

3.2 Core Concepts of the Analysis 15

3.3 Termination 16

4 Breaking the Lower Bound on Synchronized Protocols 16

5 Conclusion 17

Acknowledgments 18

References 18

A Preliminaries 21

A.1 Measuring Time 21

A.2 Description of Notation and Conventions 23

B Analysis of the Asynchronous Model with a Base Station 24

B.1 Measuring Time 24

B.2 Total time to Increase a Generation 27

B.3 Concentration Results 28

C Analysis of the Decentralized Algorithm 34

C.1 A Simple Clustering Algorithm 34

C.2 Global Sampling Gadget 35

C.3 Extended Clustering Algorithm 36

C.4 Extended Description of the Decentralized Protocol 39

C.5 Analysis of the Algorithm 42

D Analysis of the Accelerated Consensus Protocol 49

D.1 The Accelerated Consensus Protocol 49

D.2 Analysis of the Accelerated Consensus Protocol 51

E Extending our Protocols 54

E.1 Extension 1: Termination 54

E.2 Extension 2: Poisson Clocks and the Accelerated Consensus Protocol 56

F The Pólya-Eggenberger Distribution 58

Positive Aging Admits Fast Asynchronous Plurality Consensus 3

1 INTRODUCTION

Plurality Consensus is a fundamental problem in distributed computing.

We are given a set of n nodes, each of which starts with its own initial opinion (or color) from a set of size k . The

goal is to design an efficient distributed protocol which ensures that all nodes agree on the opinion, which is initially

supported by the most nodes, provided a sufficiently large initial bias is given.

In failure-rate distributions, the concept of aging describes how a component or a system improves or deteriorates

with age. “No aging” means that the age of a component has no effect on the distribution of residual lifetime of the

component. This unique case describes a Poisson-clock based survival distribution, which is widely used to describe

asynchronous models. The family of positive aging distributions describes the more general situation where the residual

lifetime decreases or remains the same with increasing age of a component [40]. Such situations are common in

reliability engineering where components tend to become worn out with time due to increased wear and tear, as well as

in real-life waiting time scenarios. Prominent members of this family of distributions include the exponential, Rayleigh,

Weibull (with shape parameter at least 1), and Gamma (with parameter at least 1) distributions.

In this paper we consider an asynchronous communication model, where nodes are equipped with a random clock.

If the clock of a node advances, then the node is activated, and we say that this node ticks. Upon a tick, nodes may start

establishing communication channels to constantly many other nodes. The opening of communication channels is

subject to random delays, and communication partners may be chosen uniformly at random or from a list containing

constantly many node addresses acquired in previous communication steps. As long as both – the ticking time and the

channel delay – satisfy the positive aging property, our protocols guarantee fast convergence to the initial plurality

opinion. Moreover, if these distributions also satisfy what we call the q-density property (see Property 2) – fulfilled by a

number of well-known distributions (e.g. exponential, Rayleigh or Weibull with shape parameter at least 1) – then all

but n/polylogn nodes agree w.h.p.
1
on the initially dominant opinion significantly faster than in the corresponding

synchronous setting for a large range of initial configurations. In that sense, our algorithms break the lower bound for

plurality consensus in the synchronous model, see Section 4.

1.1 Related Work

Synchronous Protocols. Plurality consensus in the synchronousmodel is closely related to randomized rumor spreading.

Two early papers [35, 42] focused on pull voting in networks modeled as a graph. This process is executed in synchronous

rounds during which each node contacts a neighbor uniformly at random and takes its opinion. If each node is initially

assigned one of two possible opinions, the probability for one opinion to win is proportional to the number of edges

incident at nodes supporting this opinion. Bounds on the convergence time – the number of rounds until one opinion

prevails – have been derived in [17, 20, 35, 38].

While pull voting requires convergence time Ω(n), multiple variants have been introduced to significently improve

the performance. In [21] the two-choices voting process is introduced, which has convergence time O(logn) in case the

initial bias is large enough. In this process, each node contacts two random enighbors, and if the two opinions coincide,

then the opinion is adopted. In addition, further variants of pull voting have been studied. See, e.g., the work by [1] on

five-sample voting, or the more general analysis of multi-sample voting [24] on the complete graph.

Making the step from pull voting with two opinions to plurality consensus, the authors of [10] analyzed the 3-majority

dynamics for k opinions. In this protocol, each node samples three neighbors and adopts the majority opinion among

1
The expression with high probability (w.h.p.) refers to a probability of at least 1 − n−Ω(1) .

4 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

the sample, breaking ties uniformly at random. The authors prove a tight running time of Θ(k · logn) for this protocol,
given a sufficiently large bias. In [9], the three-state population protocol from [6] is adopted and generalized to k

opinions. The resulting bound on the running time depends on the 2-norm of the initial opinion configuration. More

recently, a detailed study and comparison of the 3-majority dynamics and the related two-choices process has been

performed by [12]. Subsequently, a tight analysis of these processes was presented in [32]. Together, [32] and [12] cover

a large range of parameters k .

In [15], two plurality consensus protocols are proposed. Both assume a complete graph and realize communication via

the random phone call model. The first protocol is very simple and, w.h.p., achieves plurality consensus withinO(log(k) ·
log logα n + log logn) rounds w.h.p. using Θ(log logk) bits of additional memory. The second, more sophisticated

protocol achieves plurality consensus within O(log(n) · log logα n) rounds w.h.p. using only 4 overhead bits. Here,

α denotes the initial ratio between the largest and second-largest opinion. They require an initial absolute bias of

ω(
√
n log2 n). In [29] and [33], two similar protocols were presented which achieve (almost) the same running time

bounds.

Asynchronous Protocols. Population protocols [7] are a model for asynchronous distributed computation. In the basic

variant, nodes are modeled as finite state machines. The protocols run in discrete time steps, where in each step a pair

of nodes is chosen uniformly at random to interact. The interacting nodes update their states according to a simple

deterministic rule.

In [6], a three-state population protocol for majority (consensus with two opinions) was proposed that converges

afterO(n logn) interactions (O(logn) parallel time) w.h.p. If there is a bias of at leastω(
√
n logn), the protocol converges

to the majority w.h.p.

Two similar four-state protocols that solve exact majority were presented in [26, 41]. The protocols are guaranteed to

converge to the initial majority opinion regardless of the initial bias, but they require Ω(n2) interactions in expectation.

Recently, a large number of papers has considered the stabilization time for exact majority, see [3–5, 11, 13, 14]. The

currently best known protocol from [11] requires O(logn) states and O(log3/2 n) parallel time.

Plurality consensus and the related dual problem of coalescing random walks [2] have also been considered in certain

asynchronous models. For an arbitrary number of initial random walks which evolve according to some reversible

Markov chain generator, the expected coalescence time is bounded by the largest hitting time of an element in the state

space [43]. This time corresponds to the expected time needed for the corresponding pull voting process to converge. In

[23], the so-called linear voting model has been introduced, which covers a number of synchronous and asynchronous

voting protocols. They show that the expected time of asynchronous pull voting on a graph with minimum degree

dmin and conductance Φ is bounded byO(nm/(dminΦ)). Here, asynchronicity means that at each step one single node is

selected u.a.r., and this node chooses a random neighbor for communication. So-called discordant voting processes

have been considered in [19], where in every time step a pair of nodes with different opinions is selected for an

interaction. In [16], plurality consensus in general graphs and for general bias is solved using load balancing in different

communication models. In [29], plurality consensus in a synchronous and an asynchronous model is considered. In

the asynchronous case, they assume that each node has a Poisson clock ticking with rate 1. Whenever the clock of

a node ticks, it may choose up to a constant number of random neighbors, and revise its opinion based on the set of

received opinions. They show that if initially the size of the largest opinion exceeds the size of the second largest one

by some factor (1 + ϵ), ϵ > 1 constant, and the number of opinions is O(exp(logn/log logn)), then (partial) consensus

Positive Aging Admits Fast Asynchronous Plurality Consensus 5

is achieved in time O(logn) w.h.p. Note that there are no communication delays and once a communication partner is

chosen, communication happens instantaneously.

1.2 Model

Our model comes with two different forms of asynchronicity, the waiting time between local operations (ticking time)

and the delay required to engage in communication (channel delay). For the ticking time, every node is equipped with

a random clock following a distribution with the positive aging property. This property (also known as decreasing

conditional survival or increasing failure rate) is defined as follows.

Property 1 (Positive Aging). Let T be a non-negative distribution and X ∼ T . Then T has the positive aging property if

and only if P(X > s) ≥ P(X > t + s |X > t) for all s, t > 0.2

When a node ticks, it may start establishing communication channels to a constant number of nodes, chosen either

uniformly at random or from a list of constantly many addresses acquired in some previous communication steps. In

contrast to the synchronous case, we assume that after initiating a communication channel, some time is required to

build up a connection to the sampled node. This time – the channel delay – is also assumed to follow a distribution

with the positive aging property. Once the channels to all requested nodes are established, messages can be exchanged.

For such an exchange of messages no additional time is required. This reflects the fact that in various scenarios (e.g.

three-way handshake, DNS lookup, or key-exchange for encryption) the time required for opening a communication

channel may dominate the time required for the entire communication. For both the ticking time and the channel delay

we assume that their distributions take values from a non-negative domain with constant mean.

Remembering Node Addresses. Many of the results in synchronous and asynchronous plurality consensus assume

that each node may only contact random neighbors [16, 29, 33]. In our work we assume that nodes may remember the

addresses of constantly many nodes, which may be reused for communication in future steps. This allows nodes to

communicate with a designated base station or set of leader nodes. We note that such a modification of the random

phone call model in rumor spreading leads to improvements of the running time [8, 25, 34] or computational complexity

[30] of standard push-pull protocols. Also in plurality consensus remembering node IDs has lead to extended results in

certain cases, see, e.g., [22].

1.3 Our Results

We are given n nodes, each of which holds initially one of k different opinions. We assume that 2 ≤ k ≤ nε for any

constant 0 < ε < 1/2. Let a0 and b0 be the (relative) size of the initially largest and second largest opinion, respectively.

We assume that the initial (absolute) bias n · (a0 − b0) is at least
√
n logn and we use α to denote the corresponding

relative bias, defined as α = a0/b0.

Algorithmic Approach. Similar to the protocols mentioned above, our plurality consensus algorithms employ well-

known population dynamics. In particular, we use pull voting and the 2-majority dynamics (also called the two-choices

process). The nodes pass through a sequence of numbered stages, which we call generations. The intuition is that a

certain generation implies a certain chance for the nodes to have the initially dominant opinion. This latter property

makes the concept of generations a crucial part of our algorithms.

2
Our results (except Theorem 12) still hold if we require this to only hold for s > C for some constant C . For the sake of readability of our analysis we

assume that C = 0.

6 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

The essential idea of our approach is the following. Every time a node v becomes active, it may sample two nodes.

Depending on the sample, it may perform one of the following two actions. A so-called two-choices step is executed if

(i) the two sampled nodes are in the same, i-th generation,

(ii) this generation is at least as high as v’s generation,

(iii) they have the same opinion, and

(iv) the total number of nodes of that generation is large enough.

In this case v adopts the sampled opinion and proceeds to generation i + 1. Otherwise, the node v performs a so-called

propagation step, where it adopts the generation and opinion of the node with the highest generation among the sample,

provided this generation is higher than its own (breaking ties arbitrarily). In the analysis we will show that the ratio

between the largest and second largest opinions grows rapidly as the generations become higher. As a consequence,

any node has the initial plurality opinion once it reaches a certain generation.

Positive Aging in Plurality Consensus. Many important distributions we consider for clock ticks and channel delays

do not allow consensus among all nodes in time less than Ω(logn). However, as we show later, partial consensus can be

achieved much faster. Here, partial consensus means that all but at most n/polylogn nodes agree on the initial majority

opinion. In particular, we show that in our setting partial consensus is reached in O(log logα k · logk + log logn) time

w.h.p. Afterwards, O(logn) further steps suffice for all nodes to agree on the initial majority opinion, w.h.p.

We apply aforementioned algorithmic approach and use the concept of generations as well as the method of

alternating between two-choices and propagation steps. In order to determine the time when a two-choices step may

be performed (see requirement (iv) above), we introduce a leader-based mechanism, which allows the system to be

aware of the moments in time when the number of nodes in the highest generation is large enough (which, in turn,

results in the creation of a new generation).

We first present an algorithm where we assume that there is one predefined base station in the system. This base

station has a restricted amount of memory (O(logn) bits) and if a node sends a request to this node, then it answers

with the values stored in this memory. More precisely, the base station has a value for the highest generation allowed

to be created in the system (initially set to 1), and it stores a bit which indicates whether the nodes should perform

two-choices or propagation steps.

When a nodev is activated by a tick, it contacts the base station and two randomly chosen nodes. If the base station’s

bit allows two-choices and the generation stored in it’s memory is higher than the generation of v , then v performs

a two-choices step – if conditions (i)-(iii) are fulfilled as described above (see Algorithmic Approach). Once the base

station allows the creation of a new generation, that is, its bit is set so that two-choices steps are allowed, it starts

counting the number of so-called incoming signals sent out by the nodes. After a linear number of signals have been

received, it flips its bit to allow propagation. This ensures that for a constant time frame the nodes promote themselves

to a new generation using only the two-choices dynamics and thus a new generation of a certain size is created by the

two-choices mechanism only.

If a node receives a bit from the base station which allows propagation, it performs a propagation step as described

in the algorithmic approach above. When a node contacts the base station, it sends its generation number to it so that

the base station can maintain the number of nodes in the highest generation created so far. Once the majority of all

nodes are in the highest generation, the base station allows the nodes to promote themselves to a higher generation by

setting the corresponding bit accordingly and allowing two-choices steps. These alternating two-choices/propagation

Positive Aging Admits Fast Asynchronous Plurality Consensus 7

stages are repeated until the last generation created is monochromatic w.h.p. A formal description of this protocol is

given in Section 2.

Finally, we extend the algorithm described above to a distributed systemwithout a predefined base station in Section 3.

First, we partition almost all nodes into clusters of size polylogn. During this procedure, leaders emerge in all these

clusters. Then, these leaders act in a distributed manner to coordinate the actions of the nodes, and we derive an

algorithm that mimics the procedure designed for the case with a base station. This allows us to show a similar result

as in the previous case, however, without assuming the existence of a designated base station.

Comparison with Related Work. For initial configurations with k = Θ(1) our protocols match the optimal O(logn)
convergence time for full consensus. A similar result is achieved by [6, 29] with respect to the Poisson-clock model and

population protocols. If k = ω(1) then our protocols reach partial consensus faster than related approaches [16, 23, 29]

that operate in a comparable asynchronous model (i.e., Poisson-clock model, population protocols and sequential model

of [16] with O(logn) bits of memory per node). Some of this improvement is related to the fact that our model allows

nodes to remember (and reuse) addresses of constantly many nodes (see Section 1.2).

Our algorithmic approach can also be implemented in the synchronous round-based model. This algorithm achieves

(full) plurality consensus inO(logk · log logα n + log logn) rounds w.h.p. Note that this matches current state-of-the-art

results of approaches operating in the synchronous setting (e.g. [15, 29, 33]). The basic idea is to define a sequence

of rounds {ti }i≥1 at which each node is allowed to perform a two-choices step. Then, at every ti , a new generation i

is created via two-choices step w.h.p. This sequence of time steps is chosen in such a way that throughout the steps

ti , ti + 1, . . . , ti+1 − 1 the generation created at time ti grows to a constant fraction of nodes. We achieve this by setting

ti+1 − ti = C · logk for some sufficiently large constant C .

Breaking the Lower Bound for Synchronous Consensus Processes. Many well-known distributions such as exponential,

Rayleigh or Weibull with shape parameter at least 1 satisfy besides positive aging also the q-density property (Property 2,

formally defined in Section 4). This property guarantees that within any time frame of length 1/logn any node ticks and

establishes its communication channels to constantly many nodes with probability at least 1/polylogn. If the distribution
of the waiting time between two ticks as well as of the channel delays satisfy this additional property, then the partial

consensus time can significantly be reduced. We show that under these conditions, in time O(log logα k + log logn)
all but n/polylogn nodes agree on the initial majority opinion w.h.p. For a large range of initial configurations, this

convergence time is significantly better than any synchronous algorithm can achieve with the same limitations on

the number of communication partners of a node per time step as in the asynchronous model. Note that a similar

phenomenon has been observed in rumor spreading w.r.t. synchronous vs. asynchronous algorithms [31]. Furthermore

we show that, assuming that communication can be performed instantly and nodes are activated according to Poisson

clocks, partial consensus can be reached in time as low as O(log logn) for an initial bias of at least 2

√
n log4 n. This is a

significant improvement over the O(logn) (partial) convergence time of [29]. While their model does not allow node

addresses to be stored, they otherwise operate in this Poisson clock based model and consider a much higher initial bias

of α > (1 + ε) for constant ε > 0. See Section 4 for further discussion.

Tail Bounds on the Pólya-Eggenberger distribution with s = 1. We model parts of our analysis with the help of a

so-called Pólya-Eggenberger urn process [28]. The process starts with a black and b white balls and consists of n steps

in total. In each step, a black ball is added with probability corresponding to the fraction of black balls currently in the

system. Otherwise, a white ball is added to the urn. The related distribution – called Pólya-Eggenberger distribution –

8 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Algorithm 1 Consensus protocol for node u.

0 initialize (u .gen, u .col[0]) ← (0, initial color of node u)

1 for each tick of node u do
2 send signal 0 to the base station ℓ.

3 if a previous tick is still being processed then
4 skip the remainder of the procedure

5 sample nodes v1 and v2 u.a.r.

6 wait for communication channels to ℓ, v1, and v2 to open

7 w.l.o.g. assume v1.gen ≥ v2.gen

8 if ℓ.mode = propagate and v1.gen > u .gen then ▷ Propagation
9 (u .gen, u .col[v1.gen]) ← (v1.gen, v1.col[v1.gen])
10 send signal u .gen to the base station ℓ

11 if ℓ.mode = TC and ℓ.gen > u .gen and ▷ Two-Choices
11 v1.col[ℓ.gen − 1] = v2.col[ℓ.gen − 1] , NIL then
12 (u .gen, u .col[ℓ.gen]) ← (ℓ.gen, v1.col[ℓ.gen − 1])
13 send signal u .gen to the base station ℓ

models the number of black balls added throughout these n steps, and is denoted by PE1(a,b,n) in the following. It

is known (e.g. page 181 of [37]) that this distribution is equivalent to the binomial distribution Bin(n, P), where the
success probability P is drawn a priori from the beta distribution Beta(a,b). Using this representation together with a

recently developed tight bound on the Beta distribution [44], we state a result that might be of independent interest.

Additional discussion, including a proof of this statement, can be found in Appendix F starting on page 58.

Theorem 1. Let A ∼ PE1(a,b,n − (a + b)), µ := (a/(a + b))n and a + b ≥ 1 as well as n ≥ a + b. Then, for any δ with

0 < δ <
√
a it holds for some universal constant c2 > 0 that

P
(
a +A < µ −

√
a · n

a + b
· δ

)
< 4 exp(−c2 · δ2)

P
(
a +A > µ +

√
a · n

a + b
· δ

)
< 4 exp(−c2 · δ2)

2 PROTOCOLWITH A BASE STATION

The main difficulty in analyzing our asynchronous protocols lies in the fact that we cannot predict (accurately) when a

new generation has to be created, since the nodes lack a global notion of time. This is further complicated by the fact

that nodes cannot easily decide based on their local view when to execute two-choices and propagation steps. As a

first approach, we therefore resort to a so-called base station that is constrained to O(logn) bits of memory. Later, we

present a fully distributed algorithm, which does not require any base station. Our intermediate result is the following.

Theorem 2. Assume a designated base station is present. The protocol defined in Algorithm 1 reaches partial consensus in

O
(
log logα k · logk + log logn

)
time w.h.p. Within additional O(logn) time, all nodes have the initially dominant opinion w.h.p.

Positive Aging Admits Fast Asynchronous Plurality Consensus 9

Algorithm 2 Consensus protocol for the base station.

0 initialize (ℓ.gen, ℓ.mode, ℓ.gensize, ℓ.ticks) ← (1, TC, 0, 0)

1 for each incoming signal i do
2 if i = 0 then
3 ℓ.ticks← ℓ.ticks + 1
4 if ℓ.ticks = H(C1) · n ▷ allow propagation
5 ℓ.mode← propagate

6 if i = ℓ.gen then
7 ℓ.gensize← ℓ.gensize + 1
8 if ℓ.gensize ≥ n/2 ▷ start next generation
9 (ℓ.gen, ℓ.mode, ℓ.gensize, ℓ.ticks) ← (ℓ.gen + 1, TC, 0, 0)

2.1 Our Protocol

We analyze the protocol defined in Algorithm 1, where we assume that a base station is present. This base station

receives signals from nodes and performs simple counting operations, which are defined in Algorithm 2. It’s purpose is

to orchestrate the distributed computation by providing two variables, gen and mode. The variable gen represents the

currently highest allowed generation in the system, initially set to 1. The variable mode, initially set to TC (meaning

two-choices), indicates whether nodes in generation gen should perform two-choices steps.

When a node ticks, it requests the state of the base station and uses its variable mode to decide which operation

to execute (see Line 8 and Line 11 of Algorithm 1). If a tick occurs while waiting for the channel(s) in Line 6 to be

established, we only allow v to send out a 0-signal to the base station. The remaining operations are skipped in such a

case. Note that a 0-signal may need time to reach the base station (the channel opening delay), but nodes do not need to

wait for the actual channel to be established.

Besides knowledge of n, we require that the base station knows upper and lower bounds on the means of the waiting

time and channel delay distributions (hidden in the constantH(C1)).
For simplicity of presentation we defined Algorithm 1 in such a way that node u stores the opinion of generation i as

u .col[i]. Note that this is done in the pseudocode for presentation purposes only. For our analysis, it suffices that nodes

store their current opinion and the opinion of the previous generation, u .col[u .gen] and u .col[u .gen − 1], respectively.
If a node u does not hold any opinion for generation i , we say that u .col[i] = NIL. This is initially the case for all i > 0

and might occur, e.g., if node u jumps two generations in a propagation step. For the range of initial configurations we

consider, O(logk + log logn) bits are required for the transmission and storage of the color and generation values.

Notation and Conventions. We define gi (t) to be the fraction of nodes of generation i at time t . Furthermore, we

denote by c j,i (t) the fraction of these gi (t) · n nodes which have v .col[i] = j, and let pi (t) =
∑
j c j,i (t)2. Note that

1/k ≤ pi (t) holds as long as дi (t) > 0. Let αi (t) denote the relative ratio between the most and second-most dominant

color in generation i at time t . We denote by ti the point in time when generation i was first allowed by the base station,

and let ti (γ) correspond to the time when generation i globally reaches cardinality γ · n. Throughout the analysis we
may fix a generation i and time t and let a and b be the opinions with the largest and the second largest support in

generation i at time t , respectively. We then define ai (t) = ca,i (t) and bi (t) = cb,i (t) for easier readability. Furthermore,

for variables with generation subscript i we sometimes omit the parameter t to denote time ti+1 (e.g., ai = ai (ti+1)).

10 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Also, if we say that a node v is of color j at some time t , we mean v .col[v .gen] = j. Similarly, we will say v takes (or

adopts) color j, if v increases its generation to some generation i and sets v .col[i] ← j.

2.2 Core Concepts of our Analysis

Time Measures. At the core of the analysis lies the so-called time unit. A time unit denotes the number of time steps

C1 with the following property: Within any time interval of length C1, each node establishes with probability 0.9 the

channels to three nodes chosen for communication. The crucial point is that this time unit is independent of the nodes

execution history. If the distributions of the channel delays and the time between ticks have the positive aging property,

we show that such a time unit C1 is of constant length. Unless explicitly stated otherwise, we measure the time in time

units.

Counting 0-signals in Algorithm 2 allows the base station to approximate the time accurately. Here,H(·) is a linear
functions, which is specified in detail as part of Lemma 16 on page 24. Additionally, µ0 and µℓ denote the means of the

distributions for waiting time and establishing communication channels.

Corollary 3. Consider a set of nodesU sending 0-signals to a designated nodev upon each activation, where |U | ≥ log
2+ε n

for some constant ε > 0. Let T = Ω(1). Then, v receivesH(T) · |U | many 0-signals in

(1) at least T and

(2) at most S(T) := (H(T) + 1) · 16 ·max{µ0, µℓ} = O(T) time steps w.h.p.

In this section, the designated node v is the base station, andU contains all other nodes.

Time Between Consecutive Generations. We now consider a fixed generation i . That means, we consider the time

frame [ti , ti+1) in which the base station has ℓ.gen = i . We are interested in an upper bound on the time frame ti+1 − ti .
Starting from time ti , we know by Corollary 3 that after Θ(1) time units the condition in Line 4 of Algorithm 2 becomes

satisfied w.h.p. Throughout this time, sufficiently many nodes promote themselves to generation i via two-choices steps.

Proposition 4. Fix some generation i and assume that дi−1 ≥ 1/2. Let ti + t ′ denote the time when the base station allows

promotions to generation i via propagation. Then, дi (ti + t ′) ≥ pi−1/5 w.h.p.

From time ti + t
′
until ti+1, the base station only allows propagation steps. Therefore, one can see the set of nodes

of generation i as a set of informed nodes, which grows by pull broadcasting (cf. [39]). That is, the set of nodes of

generation i increases by a constant factor in every time unit w.h.p.

Proposition 5. Fix some generation i and let ti + t ′ denote the time when the two-choices phase of generation i ends.

Then, t ′′ = log
1.4(3/pi−1) time units after the base station starts allowing propagation steps, the cardinality of the i-th

generation exceeds n/2 w.h.p.

Remember that as soon as ti (1/2) is reached, generation i +1 is allowed by the base station (see Line 8 of Algorithm 2).

Therefore, it follows that ti+1 − ti = O(log(1/pi−1)). For the proofs of the previous two statements and a more detailed

discussion we refer to Appendix B.2.

Concentration Results. We again consider some fixed generation i . Let a and b be the largest and second largest

opinion in generation i − 1 at time ti . We show that the color fractions ai (t) and bi (t) are well concentrated around

their expectation. Throughout the analysis we assume that color b still has significant support, i.e., bi−1 ≫ 1/
√
n.

Here x1 ≫ x2 means that there exists a constant ε > 0 s.t. x1 ≥ x2 · nε . Otherwise ai−1 = 1 − o(1), and within O(1)

Positive Aging Admits Fast Asynchronous Plurality Consensus 11

generations, the first monochromatic generation is reached. A monochromatic generation i∗ w.r.t. color a is a generation

where all nodes v either have v .col[i∗] = a or v .col[i∗] = NIL at any time t .

We start by focusing on the time frame [ti , ti + t ′], where t ′ is defined s.t. at time ti + t
′
the two-choices phase of

generation i ends. Observe that a node v that attempts a two-choices step (see Line 11 in Algorithm 1) at time exactly ti ,

samples two nodesv1,v2 with defined color value andv1.col[i − 1] = v2.col[i − 1] with probability exactly c2j,i−1 ·д
2

i−1.

As in the time frame [ti , ti + t ′] the base station only allows two-choices steps to generation i , no other node v ′ will

modify its v ′.col[i − 1] field. Hence, any node that joins generation i throughout [ti , ti + t ′] takes some fixed color j

with probability exactly c2j,i/pi−1. This allows us to state the following.

Lemma 6. Let a and b be the largest and second largest opinion in generation i − 1 at time ti and assume that ai−1 >

bi−1 ≫ 1/
√
n. Let ti + t ′ be the time when the propagation phase for the i-th generation begins. Then w.h.p.

ai (ti + t ′) =
(ai−1)2
pi−1

(
1 ± 1

ai−1

√
logn

n

)
, and

bi (ti + t ′) =
(bi−1)2
pi−1

(
1 ± 1

bi−1

√
logn

n

)
.

Note that this implies that ai (ti + t ′)/bi (ti + t ′) > (ai−1/bi−1)2 · (1 − o(1)), i.e., the ratio between the most and

second-most dominant color fractions roughly squares throughout the two-choices phase. From ti + t
′
until ti+1, the

base station only allows propagation steps. The idea is to show that throughout the propagation phase, this ratio does

not deviate by much. Each time a node performs a successful propagation step it does so based on randomly sampled

neighbors. Hence, if we denote by t (1), t (2), ..., t (r) with r = n · (1/2 − дi (ti + t ′)) the points in time at which nodes

join generation i throughout [ti + t ′, ti+1], then the sequence [c j,i (t (ℓ))]ℓ forms a martingale for any color j. However,

standard techniques (namely Azuma-Hoeffding) fail to provide tight enough bounds. Instead, we model the number of

j-colored nodes that join throughout the remainder of generation i with the help of a Pólya-Eggenberger process. The

idea is the following. We consider an urn, initially containing n ·дi (ti + t ′)many balls – one for each node of generation

i at time ti + t
′
– with a c j,i (ti + t ′) fraction of these balls being black. Each time a node v joins generation i at time t (h)

for some 1 ≤ h ≤ r , we draw a randomly selected ball from the urn. In case we draw a black ball, we assign color j to v

and add a black ball to the urn. Otherwise, we conclude that v did take some color other than j and add a white ball to

the urn. We repeat this approach for every of the r nodes that join throughout the propagation phase. The number of

black balls added throughout this process corresponds exactly to the number of nodes that take color j in [ti + t ′, ti+1].
We discuss this process in the Pólya-Eggenberger section (Appendix F) and use the corresponding results to show the

following.

Lemma 7. Let a and b be the largest and second largest opinion in generation i − 1 at time ti and assume that ai−1 >

bi−1 ≫ 1/
√
n. Let ti + t ′ be the time when the propagation phase of generation i begins. Then w.h.p.

ai = ai (ti + t ′)
(
1 ±O

(√
logn

n

1

ai−1

))
, and

bi = bi (ti + t ′)
(
1 ±O

(√
logn

n

1

bi−1

))
.

Combining Lemma 7 and Lemma 6, we can describe how color fractions behave throughout generation i , and we

show that the bias almost squares when generation i + 1 is arises.

12 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Lemma 8. Let a and b be the largest and second largest opinion in generation i − 1 at time ti and assume that ai−1 >

bi−1 ≫ 1/
√
n. Let b ′ be the second largest opinion in generation i at time ti+1. If ai−1 − bi−1 ≥ logn/

√
n, then w.h.p.

(1) a is the largest opinion in generation i at time ti+1,

(2) αi > (αi−1)1.5, and
(3) ai − b ′i ≥ logn/

√
n.

A repeated application of the above gives us that the initially most supported color stays dominant, and after

O(log logα0

n) generations the second-most dominant color is of insignificant size. This implies that after O(1) further
generations the first monochromatic generation appears w.h.p. The proofs for the above statment can be found in be

found in Appendix B.3.

Putting Everything Together. Summarizing, we established that ti+1 − ti = O(log(1/pi−1)) = O(logk). As the relative
bias is roughly squared each time a new generation is created, the generation log

1.5 logα0

n+O(1)will be monochromatic.

Note that from this point on (i) every further generation will also be monochromatic, and (ii) at least n/2 nodes carry
the majority opinion. Hence, O(log logn) time units suffice to reach partial consensus. This translates into a required

time of O(log logα n · logk + log logn). This bound can be tightened slightly to yield the result stated in Theorem 2 by

observing that αi−1 ≥ k implies ti+1 − ti = O(1).

3 DECENTRALIZED PROTOCOL

The centralized approach with a predefined base station from Section 2 violates the distributed computing paradigm

and has several drawbacks. Most notably, a huge number of requests is induced on the base station in each time step

and thus the base station becomes the bottleneck of the execution of the protocol. Furthermore, the system becomes

highly vulnerable against attacks, since an adversary can compromise the entire computation by taking over the base

station. To avoid these drawbacks and decentralize the computation, we introduce some changes to our protocols,

which guarantee a maximum congestion of O(polylogn) per node.
The execution of the protocol runs in two parts, clustering and consensus. In the clustering part we first use a

distributed algorithm to cluster the nodes into groups of roughly polylogn nodes and each cluster elects its own leader.

In the consensus part we define the behavior of the leaders of different clusters and their interactions with non-leader

nodes, such that all of them collaborate in order to emulate the protocol described in Section 2. For both parts, the

required storage per node as well as the size of information exchanged through each communication channel can be

bounded by O(logn) bits. Formally, we show the following statement.

Theorem 9. The decentralized protocol reaches partial consensus in O
(
log logα k · logk + log logn

)
time w.h.p. Within

additional O(logn) time, all nodes have the initially dominant opinion w.h.p.

The Clustering Algorithm. In the first part, all but a fraction of O(1/polylogn) nodes are partitioned into clusters of

polylogarithmic size, each containing a distinguished node which is the leader of this cluster. Our clustering algorithm

achieves this w.h.p. in O(log logn) time. It also ensures that, w.h.p., each such cluster has size at least log
c−1 n, where

c > 4 is an arbitrary constant that is governed by the algorithm. In that way, we no longer have one designated base

station, but Θ(n/polylogn) decentralized cluster leaders. Additionally, these cluster leaders trigger the start of the

consensus algorithm. The clustering algorithm is presented and analyzed in Appendices C.1 and C.3.

Positive Aging Admits Fast Asynchronous Plurality Consensus 13

3.1 Description of the Consensus Protocol

After the above-mentioned clustering algorithm, all nodes have to perform our consensus protocol, however the

nodes that emerged as leaders throughout the clustering protocol also have to carry out so called leader tasks. We

start by describing the protocol for the follower nodes as it does not differ much from the centralized procedure (see

Algorithm 1).

The Follower Perspective. Each time the clock of a nodev ticks, it sends a 0-signal to its leader and (unless an execution

started by a previous tick is still in progress) executes the following algorithm. It opens channels to three nodes v1,

v2 and v3 chosen uniformly at random, as well as to its own leader l and to l3, the leader of node v3. As soon as all

connections are established, v requests the current opinion and generation from v1 and v2. Furthermore, the state of

the leader l3 is pulled. Recall that once the channels are established, this information can be retrieved instantly and

simultaneously. The possible actions of v are very similar as in the centralized protocol; however, they depend on

the generation number and propagation bit of the (almost) uniformly sampled l3 instead of its own leader l . If the

information provided by v1 and v2, together with the state of l3 satisfies the two-choices conditions, then a two-choices

step is performed. More precisely, if

• v1 and v2 have non-NIL color values for generation i − 1 as well as v1.col[i − 1] = v2.col[i − 1], and
• the highest generation allowed by l3 is i , and l3 allows promotion via two-choices steps

then, v will adopt the opinion of v1 and v2 and set its generation to i . If according to l3 a propagation step is to be

performed, then v executes a propagation step just as in the centralized procedure (see Line 8 of Algorithm 1). That

is, v adopts the color and generation of either v1 or v2 in case one of them is of generation higher than v . Finally, v

transfers state information of l3 to its own leader l , together with v’s possibly increased generation value.

The Leader’s Perspective. As opposed to the centralized case, where the base station simply switches between two-

choices and propagation mode, leaders now pass through two additional phases. These two additional phases, called

sleeping and preparation phase, ensure that leaders progress through their generations quite synchronously. For one,

achieve that leaders start allowing any fixed generation i at roughly the same time. Additionally, prevent leaders from

allowing two-choices steps while other leaders allow propagation (or vice versa), in order to reuse many parts of the

analysis of the centralized case, where the two-choices and propagation phase are properly separated.

With this in mind, the leaders procedure can be described as follows. Consider some leader l that just started allowing

nodes to promote themselves to a new generation i . This leader will employ a counter l .ticks (just as in the centralized

case, see Algorithm 2) in order to count all 0-signals it receives from its followers. At the beginning of a generation

i , the leader starts by allowing two-choices steps towards generation i , and keeps counting the received 0-signals of

its followers to measure time. After receiving sufficient 0-signals (an amount linear in the number of its followers),

the leader enters the so-called sleeping sub-phase. Note that the 0-signal counting threshold is set to ensure that w.h.p.

there exists a one time-unit frame in which all leaders simultaneously allow promotions via two-choices before the first

leader enters the sleeping phase.

During this sleeping sub-phase, which lasts for a constant amount of time, the leader again counts incoming 0-signals

to measure time, but neither allows two-choices nor propagation steps. This forces leaders to wait for some time before

entering the propagation phase and allowing promotion via propagation, preventing an interleaving of two-choices and

propagation phases throughout the system. Recall that l receives the state information of randomly sampled leaders

l3 at each execution of its followers. In case l is currently in the sleeping phase and some leader l3 already allows

14 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Allow nodes to perform two-choices steps

Two-choices subphase

Sleeping subphase

Propagation subphase

Deny both two-choices and propagation steps

Allow nodes to perform propagation steps

Keep allowing propagation steps

Preparation subphase

Routine of Leader l with n′ Followers

Increase generation value i← i+ 1

Deny both two-choices and propagation steps

...
Z
zZ

z
...

...
Z
zZ

z
...

time

G
en

eration
i
from

t
i
to

t
i+

1

Slow Leader Fast Leader

estimate that more then 1/2 of all nodes

......

... ...

l.ticks reaches H(Ctc) · n′

l.ticks reaches H(Cslp) · n′

Sleep

Prop

Prep

TC

TC

Prop

Prep

TC

TC

Sleep

belong to generation i.

Set l.ticks← 0 and l.gen← i

1 time unit

l.ticks reaches (H(5C1) +H(Cpre)) · n′

l.ticks← 0

l.ticks← 0

l.ticks← 0

l.ticks reaches H(5C1) · n′

Fig. 1. Routines executed by leader nodes throughout the consensus mode. On the right side, we describe how the set of leaders
progresses through some fixed generation almost synchronously.

propagation steps, l will stop sleeping and switches to the propagation phase immediately. This way we ensure that no

leader is left asleep while some of them may already be finishing their propagation phase.

After the sleeping sub-phase ends, the leader starts allowing propagation steps and thereby enters the propagation

phase. The idea behind this sub-phase is the same as in the centralized case, to quickly spread generation i . However,

when it comes to determining when the next generation i + 1 should be allowed, a more elaborate mechanism than

then the one from the centralized algorithm in Section 2 is needed. In the centralized protocol, the base station simply

incremented a counter each time a node promotes to generation i . As in this decentralized case each leader only has a

limited view consisting of its followers, a different approach needs to be employed to estimate the time at which at least

1/2 of all nodes belong to generation i . We interrupt our explanation of the leaders protocol to explain how this can be

achieved.

Estimating Global Properties. Recall that each follower sends the state of the randomly sampled leader l3 to its

own leader l upon each execution of the follower procedure. This state information allows leaders to harvest some

information about the global state of the network. Indeed, if a leader receives polylogn of such randomly sampled

leader-states, it may accurately predict the (global) fraction of leaders satisfying a certain property. For example, let R

be such a leader-property which is satisfied whenever the majority of this leaders followers is of generation i . Clearly,

a leader l can determine this property by maintaining an l .gensize variable. Suppose now that l receives polylogn

Positive Aging Admits Fast Asynchronous Plurality Consensus 15

consecutive messages regarding random leaders l3 satisfying property R. In this case l can be (almost) sure that globally

1/2 of all nodes are already in generation i . A detailed description of this sampling mechanism together with its analysis

can be found in the full version Appendix C.2.

Using the above approach, the leaders are only allowed to enter the preparation sub-phase after estimating that at

least 1/2 of all nodes belong to generation i . This guarantees w.h.p. that no leader will start this sub-phase too early.

Upon entering the preparation sub-phase, a leader will still allow propagation steps for some time, but additionally it

will again count the incoming 0-signals. This is done to ensure further Θ(1) waiting time after which all the leaders are

guaranteed to have reached this sub-phase w.h.p. Afterwards, the leader denies both two-choices and propagation steps

for Θ(1) time, which prevents propagation steps from occurring during the two-choices phase of the next generation

i + 1. Finally, the leader resets its counters, increases its highest allowed generation to i + 1 and starts passing through

the 4 sub-phases as part of generation i + 1.

A visualization of the leaders procedure is given in the left image of Figure 1. A more detailed explanation of the

above algorithm (including the values of the required constants Ctc ,Cbr and Cpre) can be found in Appendix C.4.

3.2 Core Concepts of the Analysis

Roughly, the correctness of our algorithm follows from the analysis results of the centralized approach. To show this

we start by the following observations: (i) a follower node v will perform two-choices or propagation steps based on

the leader l3 that is chosen independently of the nodes v1,v2 and l , (ii) if at some point all leaders allowed the same

generation and sub-phase (e.g. two-choices), then the protocol mimics the behavior of the centralized approach, and (iii)

leaders progress through some fixed generation i almost synchronously. To further elaborate on the third point, we now

state a selection of the most important invariants which are maintained as the leaders progress through the mentioned

sub-phases of arbitrary generation i . We employ the same notation as defined on page 9, with the exception of ti now

denoting the time at which the fastest leader starts allowing generation i . The proofs can be found in Appendix C.5 as

parts of Propositions 28 and 32 as well as in Lemma 31. Cbr and C1 are constants defined in Appendix C.4.

Lemma 10. Fix some generation i . Under assumption that all leaders start allowing this generation within time frame of

Cbr /C1 time units, the following statements hold w.h.p. :

(1) All leaders allow two-choices steps towards generation i for at least one simultaneous time unit.

(2) Starting at ti , no leader allows any propagation steps until every leader exits the two-choices sub-phase.

(3) The last leader enters the propagation phase at most O(1) time after the first does so.

(4) No leader enters the preparation phase before ti (1/2).
(5) Every leader allows generation i + 1 before time ti+1 +Cbr /C1.

Note that Item 5 implies that w.h.p. all the above statements hold in the following generations as well. To this end,

define t ′ such that at time ti + t
′
even the slowest leader has just finished its two-choices phase. In the analysis of the

centralized approach, we established that if the base station allows two-choices steps for (at least) one full time unit,

then Proposition 4 follows. Hence, Item 1 allows us to carry over this result. Furthermore, by Item 3 it follows that

leaders quickly allow nodes to start spreading generation i via pull propagation, implying the statement of Proposition 5.

Therefore, the time between ti+1 and ti follows the asymptotic bounds as in the centralized case. Also, Item 4 guarantees

that majority of all nodes belong to generation i before the two-choices phase of the next generation starts.

16 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

When it comes to the concentration of color fractions and evolution of the bias, Item 2 is of importance. It implies that

w.h.p. leaders never allow two-choices and propagation steps at the same time. Hence, each time a node in [ti , ti + t ′]
promotes to generation i , it is a result of a successful two-choices step. Due to similar reasons as in the centralized case

(see paragraph before Lemma 6), and because l3 is selected independently from v1 and v2, such a promotion will cause

the node to take color j with probability c2j,i−1/pi−1. This is the main ingredient of the proof of Lemma 6. Furthermore,

starting at time ti + t
′
, nodes will join generation i via propagation steps only. This allows us to again model the set of

nodes that take some color j when promoting to generation i during [ti + t ′, ti+1] with a Pólya-Eggenberger process.

This leads to the statement of Lemma 7 and finally Lemma 8.

Summarizing, we show the same asymptotic guarantees as in the centralized case for both the required number

of generations, as well as for the increase of bias with each further generation. A detailed discussion regarding these

results can be found in Appendix C.5.

3.3 Termination

This algorithm as well as the centralized algorithm in Section 2 guarantee that the nodes eventually reach partial and

full consensus, w.h.p. However, without additional modifications neither of both procedures terminate such that nodes

eventually know that they are in (global) consensus and cease the execution of the protocol. In Appendix E.1 we present

an extension to our algorithms that achieves proper termination.

4 BREAKING THE LOWER BOUND ON SYNCHRONIZED PROTOCOLS

In this section we first outline the Accelerated Consensus Protocol, a modification of the decentralized protocol from

Section 3 and then we argue that this protocol breaks a lower bound on plurality consensus protocols in the synchronous

model. As before, we assume that all but n/polylogn nodes are partitioned into clusters of size at least polylogn. For

the accelerated protocol we now assume that in addition to the positive aging property the distributions for the waiting

time between ticks and the channel delays are q-dense for some constant q > 0.

Property 2 (q-dense distribution). Let T be a non-negative distribution and X ∼ T . Then T is q-dense if and only if

there exists a constant t > 0 such that P(X < s) > sq for all 0 < s < t .

The main difference to the decentralized protocol is the following. All nodes in a cluster share the same generation

and color, which are stored at the cluster leader. Each time a follower performs a two-choices or propagation step, the

shared variable of its cluster leader is updated (instead of its own as part of the decentralized procedure). So whenever a

two-choices or propagation step updates color or generation, this change is reflected at the leader. Similar, each time a

node is queried for its color or generation, it will answer with its leaders shared values instead. That way, followers

only act as proxies and help to achieve consensus among the shared color values that are stored at each cluster.

Property 2 together with positive aging guarantees that in every time frame of length O(1/logn) a follower of each
cluster ticks and establishes communication channels to all chosen nodes w.h.p., as long as the clusters are of large

enough (polylogarithmic) size. In case of the decentralized protocol, leaders spend most of their time in the propagation

sub-phase (which is the only sub-phase taking ω(1) time each generation). Now, consider the Accelerated Consensus

Protocol, and assume that at some point during generation i , all leaders allow propagation to generation i . As at least one

follower of each cluster ticks within every time frame of O(1/logn), this can be seen as spreading generation i between

clusters via pull broadcast at an Ω(logn) accelerated rate. This way, the time between two consecutive generations,

ti+1 − ti , can be reduced to O(1) w.h.p. More details and an analysis can be found in Appendix D.

Positive Aging Admits Fast Asynchronous Plurality Consensus 17

Theorem 11. Assume that the initial absolute bias is greater than 2

√
n logc

′
n for any constant c ′ > 4q + 4. Then the

Accelerated Consensus Protocol reaches partial consensus in O(log logα k + log logn) time w.h.p.

For a simple lower bound on synchronous protocols, we consider the classical synchronous model [9, 10], where we

assume that each node may communicate with O(polylogn) nodes per round. Additionally, we assume that the nodes

do not know the set of initial opinions (however k may be known to the nodes). For a node to adopt a certain opinion

in this model, it must have interacted at least once with a node that knows about the existence of this opinion. As each

node may communicate with at most O(polylogn) other nodes in each round, in order to spread the initially dominant

opinion a (with initial relative support a0) to at least n/polylogn nodes, one needs Ω(log(1/a0)/log logn) time steps.

To compare the running time of the asynchronous protocol with this lower bound, consider for example an initial

configuration with α = 2 and k = nε for some constant 0 < ε < 1/2. If, initially, all opinions besides the majority

opinion have roughly the same support, then our algorithm requires O(log logn) time to reach partial consensus w.h.p.

Any protocol operating in the synchronous round-based model requires Ω(logn/log logn) time for this task.

Further Acceleration. In case all nodes are activated by Poisson clocks with mean 1, and the exchange of information

can be performed instantly, above protocol can be further improved. Instead of being constrained to approximate

time frames of (at least) constant length via counting of 0-signals (see Corollary 3), leaders can approximate time

frames of length 1/polylogn accurately in this setting – as long as their cluster is of large enough polylogarithmic size.

This is implied by the so-called memoryless property of the exponential distribution, as well as the fact that instant

communication implies that during some time frame [t ′, t ′′], leaders will only receive 0-signals that were initiated

exactly during this time frame. This allows us to speed up not only the propagation phase but also every other phase by

a factor of Ω(log2 n) – in some sense this can be seen as reducing the length of a time unit to O(1/log2 n). This allows
full consensus between leaders to be reached afterO(1) time. The total running time is then dominated by the clustering

procedure and the time followers require to collect the final color values of their leaders. We show the following in

Appendix E.2.

Theorem 12. Assume the waiting time between ticks follows Exp(1) and information between nodes can be exchanged

instantly. Then, the Accelerated Consensus Protocol can be modified s.t. for an initial bias of at least 2
√
n log4 n, it reaches

partial consensus in time O(log logn).

5 CONCLUSION

In this paper we considered the plurality consensus problem for the setting where we require a certain initial bias

between the largest and second largest opinion. We focused on a particular variant of an asynchronous communication

model and showed that asynchronous plurality consensus is fast: afterO(log logα k · logk + log logn) time steps all but

a 1/polylogn fraction of nodes have the initial majority opinion. Furthermore, we modify these algorithms such that

for a large range of initial configurations and distributions, partial consensus is achieved faster than in any algorithm

that operates in the corresponding synchronous setting.

In the future we would like to look at several related questions which are still open. One possible extension would

be to model communication delays on a message basis instead of a channel basis. However in such a model it seems

that one cannot avoid the interleaving of the two-choices sub-phase with the propagation sub-phase within the same

generation. An even more ambitious question would be to try analyze the leaderless variant of the protocol: each time a

node ticks it samples two random nodes and executes a propagation step or a two choices step (whichever possible).

18 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

In such a setting there are no limitations when, e.g., a higher generation is allowed. While this approach raises many

technical difficulties related to the analysis of the running time, our experimental results show that this leaderless

algorithm, despite its simplicity, behaves similarly as the ones described in this paper.

ACKNOWLEDGMENTS

The authors would like to thank Felix Biermeier and Janko Gravner for helpful discussions and important hints.

All authors were partially supported by the Austrian Science Fund (FWF) under grant no. P 27613 ("Distributed

Voting in Large Networks"). The first and the second author received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement no. 824115 (HiDALGO). The fourth author acknowledges

partial support of the Slovenian Research Agency (research programs P1-0383, P1-0297 and research projects J1-1692,

J1-9187) and the European Commission for funding the InnoRenew CoE project (Grant Agreement no. 739574) under

the Horizon 2020 Widespread-Teaming program and the Republic of Slovenia.

REFERENCES
[1] Mohammed Amin Abdullah and Moez Draief. 2015. Global majority consensus by local majority polling on graphs of a given degree sequence.

Discret. Appl. Math. 180 (2015), 1–10. https://doi.org/10.1016/j.dam.2014.07.026

[2] David Aldous and James Allen Fill. 2002. Reversible Markov Chains and Random Walks on Graphs. (2002). Unpublished. http://www.stat.berkeley.

edu/~aldous/RWG/book.html.

[3] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. 2017. Time-Space Trade-offs in Population Protocols. In

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19.
SIAM, 2560–2579. https://doi.org/10.1137/1.9781611974782.169

[4] Dan Alistarh, James Aspnes, and Rati Gelashvili. 2018. Space-Optimal Majority in Population Protocols. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018. SIAM, 2221–2239. https://doi.org/10.1137/1.

9781611975031.144

[5] Dan Alistarh, Rati Gelashvili, andMilan Vojnovic. 2015. Fast and Exact Majority in Population Protocols. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015. ACM, 47–56. https://doi.org/10.1145/2767386.2767429

[6] Dana Angluin, James Aspnes, and David Eisenstat. 2008. A simple population protocol for fast robust approximate majority. Distributed Comput. 21,
2 (2008), 87–102. https://doi.org/10.1007/s00446-008-0059-z

[7] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. 2007. The computational power of population protocols. Distributed Comput. 20, 4
(2007), 279–304. https://doi.org/10.1007/s00446-007-0040-2

[8] Chen Avin and Robert Elsässer. 2018. Breaking the logn barrier on rumor spreading. Distributed Comput. 31, 6 (2018), 503–513. https://doi.org/10.
1007/s00446-017-0312-4

[9] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Riccardo Silvestri. 2015. Plurality Consensus in the Gossip Model.

In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015. SIAM,

371–390. https://doi.org/10.1137/1.9781611973730.27

[10] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri, and Luca Trevisan. 2017. Simple dynamics for

plurality consensus. Distributed Comput. 30, 4 (2017), 293–306. https://doi.org/10.1007/s00446-016-0289-4
[11] Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. 2020. An O (log3/2 n) Parallel Time Population Protocol for Majority with O (logn)

States. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2020, Virtual Event, Italy, August 3-7, 2020. to appear.

[12] Petra Berenbrink, Andrea E. F. Clementi, Robert Elsässer, Peter Kling, Frederik Mallmann-Trenn, and Emanuele Natale. 2017. Ignore or Comply?:

On Breaking Symmetry in Consensus. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, July 25-27, 2017. ACM, 335–344. https://doi.org/10.1145/3087801.3087817

[13] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz Radzik. 2018. Majority & Stabilization in Population

Protocols. CoRR abs/1805.04586 (2018). arXiv:1805.04586 http://arxiv.org/abs/1805.04586

[14] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz Radzik. 2018. A Population Protocol for Exact Majority

with O(log5/3 n) Stabilization Time and Theta(log n) States. In 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA,
USA, October 15-19, 2018 (LIPIcs), Vol. 121. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:18. https://doi.org/10.4230/LIPIcs.DISC.2018.10

[15] Petra Berenbrink, Tom Friedetzky, George Giakkoupis, and Peter Kling. 2016. Efficient Plurality Consensus, Or: the Benefits of Cleaning up from

Time to Time. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy (LIPIcs), Vol. 55.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 136:1–136:14. https://doi.org/10.4230/LIPIcs.ICALP.2016.136

https://doi.org/10.1016/j.dam.2014.07.026
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-017-0312-4
https://doi.org/10.1007/s00446-017-0312-4
https://doi.org/10.1137/1.9781611973730.27
https://doi.org/10.1007/s00446-016-0289-4
https://doi.org/10.1145/3087801.3087817
https://arxiv.org/abs/1805.04586
http://arxiv.org/abs/1805.04586
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.4230/LIPIcs.ICALP.2016.136

Positive Aging Admits Fast Asynchronous Plurality Consensus 19

[16] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn, and Chris Wastell. 2016. Plurality Consensus in Arbitrary Graphs: Lessons

Learned from Load Balancing. In 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark (LIPIcs), Vol. 57.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:18. https://doi.org/10.4230/LIPIcs.ESA.2016.10

[17] Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and Frederik Mallmann-Trenn. 2016. Bounds on the Voter Model in Dynamic

Networks. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy (LIPIcs), Vol. 55.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 146:1–146:15. https://doi.org/10.4230/LIPIcs.ICALP.2016.146

[18] Fan R. K. Chung and Lincoln Lu. 2006. Survey: Concentration Inequalities and Martingale Inequalities: A Survey. Internet Math. 3, 1 (2006), 79–127.
https://doi.org/10.1080/15427951.2006.10129115

[19] Colin Cooper, Martin E. Dyer, Alan M. Frieze, and Nicolás Rivera. 2018. Discordant Voting Processes on Finite Graphs. SIAM J. Discret. Math. 32, 4
(2018), 2398–2420. https://doi.org/10.1137/16M1105979

[20] Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. 2013. Coalescing Random Walks and Voting on Connected Graphs. SIAM J.
Discret. Math. 27, 4 (2013), 1748–1758. https://doi.org/10.1137/120900368

[21] Colin Cooper, Robert Elsässer, and Tomasz Radzik. 2014. The Power of Two Choices in Distributed Voting. In Automata, Languages, and Programming
- 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II (Lecture Notes in Computer Science), Vol. 8573.
Springer, 435–446. https://doi.org/10.1007/978-3-662-43951-7_37

[22] Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga. 2015. Fast Consensus for Voting on General Expander Graphs.

In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings (Lecture Notes in Computer Science),
Vol. 9363. Springer, 248–262. https://doi.org/10.1007/978-3-662-48653-5_17

[23] Colin Cooper and Nicolas Rivera. 2016. The Linear Voting Model. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy (LIPIcs), Vol. 55. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 144:1–144:12. https://doi.org/10.4230/

LIPIcs.ICALP.2016.144

[24] James Cruise and Ayalvadi Ganesh. 2014. Probabilistic consensus via polling and majority rules. Queueing Syst. Theory Appl. 78, 2 (2014), 99–120.
https://doi.org/10.1007/s11134-014-9397-7

[25] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. 2011. Social Networks Spread Rumors in Sublogarithmic Time. Electron. Notes Discret. Math.
38 (2011), 303–308. https://doi.org/10.1016/j.endm.2011.09.050

[26] Moez Draief and Milan Vojnovic. 2012. Convergence Speed of Binary Interval Consensus. SIAM J. Control and Optimization 50, 3 (2012), 1087–1109.

https://doi.org/10.1137/110823018

[27] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University

Press. http://www.cambridge.org/gb/knowledge/isbn/item2327542/

[28] F. Eggenberger and G. Pólya. 1923. Über die Statistik verketteter Vorgänge. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 3, 4

(1923), 279–289. https://doi.org/10.1002/zamm.19230030407

[29] Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik Mallmann-Trenn, and Horst Trinker. 2017. Brief Announcement: Rapid Asynchronous

Plurality Consensus. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017. ACM, 363–365. https://doi.org/10.1145/3087801.3087860

[30] Robert Elsässer and Thomas Sauerwald. 2008. The power of memory in randomized broadcasting. In Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008. SIAM, 218–227. http://dl.acm.org/citation.cfm?

id=1347082.1347107

[31] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Thomas Sauerwald. 2012. Ultra-fast rumor spreading in social networks. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012. SIAM, 1642–1660.

https://doi.org/10.1137/1.9781611973099.130

[32] Mohsen Ghaffari and Johannes Lengler. 2018. Nearly-Tight Analysis for 2-Choice and 3-Majority Consensus Dynamics. In Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018. ACM, 305–313. https:

//dl.acm.org/citation.cfm?id=3212738

[33] Mohsen Ghaffari and Merav Parter. 2016. A Polylogarithmic Gossip Algorithm for Plurality Consensus. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016. ACM, 117–126. https://doi.org/10.1145/2933057.2933097

[34] Bernhard Haeupler and Dahlia Malkhi. 2014. Optimal gossip with direct addressing. In ACM Symposium on Principles of Distributed Computing,
PODC ’14, Paris, France, July 15-18, 2014. ACM, 176–185. https://doi.org/10.1145/2611462.2611489

[35] Yehuda Hassin and David Peleg. 2001. Distributed Probabilistic Polling and Applications to Proportionate Agreement. Inf. Comput. 171, 2 (2001),
248–268. https://doi.org/10.1006/inco.2001.3088

[36] Kumar Joag-Dev and Frank Proschan. 1983. Negative Association of Random Variables with Applications. Ann. Statist. 11, 1 (03 1983), 286–295.
https://doi.org/10.1214/aos/1176346079

[37] Norman Lloyd Johnson and Samuel Kotz. 1977. Urn Models and Their Application: An Approach to Modern Discrete Probability Theory. Wiley.

[38] Varun Kanade, Frederik Mallmann-Trenn, and Thomas Sauerwald. 2019. On coalescence time in graphs: When is coalescing as fast as meeting?:

Extended Abstract. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019. SIAM, 956–965. https://doi.org/10.1137/1.9781611975482.59

https://doi.org/10.4230/LIPIcs.ESA.2016.10
https://doi.org/10.4230/LIPIcs.ICALP.2016.146
https://doi.org/10.1080/15427951.2006.10129115
https://doi.org/10.1137/16M1105979
https://doi.org/10.1137/120900368
https://doi.org/10.1007/978-3-662-43951-7_37
https://doi.org/10.1007/978-3-662-48653-5_17
https://doi.org/10.4230/LIPIcs.ICALP.2016.144
https://doi.org/10.4230/LIPIcs.ICALP.2016.144
https://doi.org/10.1007/s11134-014-9397-7
https://doi.org/10.1016/j.endm.2011.09.050
https://doi.org/10.1137/110823018
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://doi.org/10.1002/zamm.19230030407
https://doi.org/10.1145/3087801.3087860
http://dl.acm.org/citation.cfm?id=1347082.1347107
http://dl.acm.org/citation.cfm?id=1347082.1347107
https://doi.org/10.1137/1.9781611973099.130
https://dl.acm.org/citation.cfm?id=3212738
https://dl.acm.org/citation.cfm?id=3212738
https://doi.org/10.1145/2933057.2933097
https://doi.org/10.1145/2611462.2611489
https://doi.org/10.1006/inco.2001.3088
https://doi.org/10.1214/aos/1176346079
https://doi.org/10.1137/1.9781611975482.59

20 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

[39] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. 2000. Randomized Rumor Spreading. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA. IEEE Computer Society, 565–574. https:

//doi.org/10.1109/SFCS.2000.892324

[40] Chin-Diew Lai and Min Xie. 2006. Stochastic Ageing and Dependence for Reliability. Springer.
[41] George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and Paul G. Spirakis. 2017. Determining majority in networks with local

interactions and very small local memory. Distributed Comput. 30, 1 (2017), 1–16. https://doi.org/10.1007/s00446-016-0277-8
[42] Toshio Nakata, Hiroshi Imahayashi, and Masafumi Yamashita. 1999. Probabilistic Local Majority Voting for the Agreement Problem on Finite

Graphs. In Computing and Combinatorics, 5th Annual International Conference, COCOON ’99, Tokyo, Japan, July 26-28, 1999, Proceedings (Lecture
Notes in Computer Science), Vol. 1627. Springer, 330–338. https://doi.org/10.1007/3-540-48686-0_33

[43] Roberto Imbuzeiro Oliveira. 2012. On the coalescence time of reversible random walks. Trans. Amer. Math. Soc. 364, 4 (2012), 2109–2128.
[44] Anru Zhang and Yuchen Zhou. 2018. On the Non-asymptotic and Sharp Lower Tail Bounds of Random Variables. (2018). http://arxiv.org/abs/1810.

09006v2

https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1007/s00446-016-0277-8
https://doi.org/10.1007/3-540-48686-0_33
http://arxiv.org/abs/1810.09006v2
http://arxiv.org/abs/1810.09006v2

Positive Aging Admits Fast Asynchronous Plurality Consensus 21

APPENDIX

A PRELIMINARIES

Since our model allows a variety of distributions to be used, and as most of our standard notations are expressed in

terms of time units, we devote the first subsection to the concept of measuring time, where we cover several important

properties regarding our time measurements. Additionally, in Appendix A.2 we will define some further notation and

conventions we did not cover at the end of Section 2.1.

A.1 Measuring Time

In the context of our asynchronous communication model, let T0 denote the distribution of the waiting time between two

ticks of a node. Furthermore let Tf and Tℓ correspond to the distributions of the time required to open communication

channels to the base station (leader in the decentralized case) or to a follower, respectively. We assume that T0, Tf , and
Tℓ each fulfill the positive aging property (Property 1) defined in Section 1.2.

Taking a closer look at Algorithm 1, when a node ticks it will start establishing communication channels (to three

nodes) unless it is still waiting for channel openings triggered by a previous tick. Note that as long as a node waits for

establishing communication channels after a tick, it is not allowed to start opening further communication channels, if

during that time another tick occurs. However, in any case a 0-signal (see Line 2 of Algorithm 1) is sent to the base

station.

Any tick that is not blocked due to ongoing channel establishments initiated by a previous tick, will cause the node

to wait for time distributed as max{Tf ,Tf ,Tℓ} until all communication channels are opened. Since the signal sent to

the base station in Line 2 of Algorithm 1 does not need a confirmation, it is assumed that it does not cause any waiting

time; however, the arrival time still follows the distribution Tℓ . Now, our model allows information from all partners to

be read atomically and instantly as soon as all channels are established. That is, no time passes between reading the

information and deciding which action to take.

This brings us to the notion of a time unit, as described in Section 2.2. Remember that a time unit denotes the

number of time steps C1, with the following property: Within any interval of such length C1, each node establishes all

three communication channels required for one execution of Algorithm 1, with probablility 0.9. Another important

requirement for this time unit is to be independent of the nodes actions before the start of this time interval. In the

following we establish that, within our distribution assumptions, this time unit is of constant length.

We simplify the analysis of the time unit by assuming that the communication channels for any fixed node are

opened one after another instead of concurrently. That is, the distribution T0 + Tf + Tf + Tℓ gives us the next time all

channels have opened, as long as we are at the exact point in time where at which the previous execution finished.

It is easy to see that upper bounds on the time unit in this modified process carry over to the original scenario. The

following lemma is specified in a general manner (such that it can be applied also in the decentralized where additional

communication channels need to be established, see Section 3). Keep in mind that in the case of Algorithm 1 we have

h = 3, T0 is the same is defined above, T1,T2 = Tf , as well as T3 = Tℓ .

Lemma 13. Consider some node v . Then, the time until v finishes its next full execution of Algorithm 1 can be majorized

by
∑h
i=0 Ti , independent of the node’s execution history. Here T0 denotes the distribution for the time between ticks and Ti

for 1 ≤ i ≤ h are the distributions that denotes the required time to open the i-th communication channel, respectively.

22 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Proof. W.l.o.g. assume that the current time is 0, and t time steps ago the previous execution ofv ended. Furthermore

let Xi ∼ Ti for 0 ≤ i ≤ h describe the waiting times of the current execution. In order to majorize the remaining

waiting time, we assume that all channels at time (−t) are opened after another instead of simultaneously. As we

assume v to be currently waiting for the next time all channels are opened, there must exist values i and t ′ such that (i)

X0 +X1 + .. +Xi−1 = t ′ with t ′ < t , and (ii) Xi > t − t ′. Fixing those values of i and t ′, we can state the probability that

the remaining waiting time exceeds some arbitrary time unit s as

P
(
t ′ + Xi + Xi+1 + ... + Xk > s + t | Xi > t − t ′

)
= P

(
Xi > (s − Xi+1 − ... − Xk) + (t − t ′) | Xi > t − t ′

)
. (1)

Now we use that Property 1 (Positive Aging) holds for the distribution of Xi . That is, for all e ∈ R, f ∈ R+ it holds

that P(Xi > e) ≥ P(Xi > e + f | Xi + f). Hence, setting e := (s − Xi+1 − · · · − Xk), and f = (t − t ′) implies that the

probability in (1) can be upper-bounded by P(Xi + Xi+1 + ... + Xk > s) < P(X0 + X1 + ... + Xk > s). □

Corollary 14. Let µ0, µf and µℓ denote the means of T0,Tf and Tℓ respectively. Then a time unit is of constant length

C1 < 40 · (µ0 + 2µf + µℓ).

Proof. By Lemma 13 we know that the time until some node v completes the next execution of Algorithm 1 can be

majorized by X0 + X1 + X2 + X3 where X0 ∼ T0 and X1,X2 ∼ Tf as well as X3 ∼ Tℓ . A Markov inequality application

yields for any i that P(Xi > 40E[Xi]) < 1/40. Therefore P(X0+X1+X2+X3 < 40(E[X0]+E[X1]+E[X2]+E[X3])) > 9/10
when applying union bounds. □

One may of course also achieve a sharper bound on the time unit C1 when considering the distributions T0, Tf and

Tℓ directly.

Example 1. If T0 = Exp(1) and Tf = Tℓ = Exp(λ), then C1 < 8/min{λ, 1} time steps. Here Exp, denotes the exponential

distribution and λ > 0 is a constant.

Proof. The exponential distribution fulfills Property 1, which is just a weaker version of memorylessness. That is,

according to Lemma 13 we can majorize a time unit by T0 + Tf + Tf + Tℓ , which can in turn be majorized by the Erlang

distribution Erl(min{1, λ}, 4). Using its CDF we get

P(T0 + Tf + Tf + Tℓ ≤ x) ≥ 1 − e−min{1,λ }·x
3∑
i=0

(min{1, λ} · x)i
i!

.

Plugging in, for example, the value x = 8

min{λ,1} guarantees a probability of more than 90%. □

Before heading further we present a list of properties that are implied by the positive aging property.

Lemma 15. Let X be a non-negative random variable whose distribution fulfills Property 1 and has constant mean µ. Then

(1) P(X > s) · P(X > t) ≥ P(X > s + t) for all s, t > 0,

(2) P(X > x)2i ≥ P(X > x · 2i) for all x > 0 and i ∈ N0,
(3) (1/2)2i ≥ P(X > 2µ · 2i) for all i ∈ N0,
(4) E[X 2] is a constant smaller than 72µ2, in particular, V [X] is constant.

Positive Aging Admits Fast Asynchronous Plurality Consensus 23

Proof. The first statement follows directly from the main property of conditional probabilities. The second follows

from the first when setting s = t = x and (inductively) repeating this approach i times. The third statement follows

from the second and the Markov inequality as (1/2) > (X > 2µ).
The proof of the fourth statement is more involved. Consider a random variable X 2

. Additionally we define Xe ∼
Exp((1/2) ln(2)), which implies that P(Xe > x) = (1/

√
2)x . Note that P(X 2 > x2) = P(X > x) and therefore the third

statement implies for all i ∈ N0 that

P(X 2 > 4µ2 · 22i) ≤ (1/2)2i = P(X 2

e > 2
2(i+1)).

Define functions f (i) = P(X 2 > 4µ2 · 22i) and fe (i) = P(X 2

e > 2
2i), which are both monotonously decreasing. Above

inequality showed that for any arbitrary i ≥ 0 it holds that f (i) ≤ fe (i + 1). Monotonicity implies for all j ∈ [i, i + 1]
that f (j) ≤ fe (i + 1) as well as fe (i + 1) ≤ fe (j) must hold. Hence we conclude that

∀j ∈ [i, i + 1] : f (j) < fe (j),

which implies for any j ′ ≥ 0 that f (j ′) < fe (j ′). Setting j ′ = (1/2) log(x) implies that

P(X 2 > 4µ2 · x) ≤ P(X 2

e > x),

for any x ≥ 1. Finally, we consider the second moment of X as

E[X 2] =
∫ ∞
0

P(X 2 > y)dy =
∫

4µ2

0

P(X 2 > y)dy +
∫ ∞
4µ2

P(X 2 > y)dy

< 4µ2 + 4µ2
∫ ∞
1

P(X 2 > 4µ2x)dx

≤ 4µ2 + 4µ2
∫ ∞
1

P(X 2

e > x)dx ,

where at the start of the second line we crudely bounded the first integral and substituted y = 4µ2x in the second.

Therefore it follows that

E[X 2] < 4µ2 + 4µ2 · E[X 2

e].

Remember, that Xe follows and exponential distribution with λ = (1/2) · loge (2). As both variance and mean of Xe are

well known we deduce that

E[X 2] ≤ 4µ2 + 4µ2 ·
(
2 ·
√
2

loge (2)

)
2

= O(1). □

Note that the second and third statement governs information about the distributions right tail. That is, P(X > 2µ · x)
decreases exponentially fast in x .

Having covered the important concepts regarding the time measurements in our model, we are now ready to define

the basic notions used in throughout the analysis of our algorithms.

A.2 Description of Notation and Conventions

We start by noting that in Section 2.1 on page 9, we already described most of the employed notation. There, we define

ti , ti (γ), c j,i (t),дi (t),pi (t),αi (t) and explain that we usually fix a and b to the largest and second largest opinion in

some generation i − 1 at time ti . Furthermore, we noted that we sometimes omit the function parameter t for the ease

of readability.

24 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

In addition to previous definitions, by T0, Tf and Tℓ with means µ0 and µf , µℓ , we denote the distributions of the nodes

time between ticks and channel delays to follower and leader nodes (in this case the base station), respectively. Also, we

will denote with Bin(n,p), Beta(a,b), PE1(a,b,n) and Exp(λ) the binomial, beta, Pólya-Eggenberger (see Appendix F)

and exponential distribution, respectively. Further conventions include that, unless the base of a logarithm is explicitly

given, logn = log
2
n while lnn = loge n. Complementing the definition of x1 ≫ x2 on page 10, we say x1 ≪ x2 if there

exists a constant ε > 0 s.t. x1 · nε ≤ x2. Additionally, x1 ∼ x2 if x1 3 x2 and x1 4 x2. Also, we will sometimes specify

concentration statements in the form of x1 = x2 · (1 ± δ) for some values x1,x2 and error term δ . Formally this denotes

x1 ≥ x2 · (1 − δ) ∧ x1 ≤ x1 · (1 + δ).

Remark 1. Let a and b denote the largest and second largest opinion in generation i at time ti+1. Then the following

statements hold

(1) bi ≫ 1√
n

⇔ αi ≪
√
n

(2) bi ∼ 1√
n

⇔ αi ∼
√
n

(3) bi ≪ 1√
n

⇔ αi ≫
√
n.

Proof. Let bi ≪ 1√
n
or bi ∼ 1√

n
. Because k ≪

√
n, it holds that ai ≥ (1− (k − 1)bi) = 1−o(1) even if all other colors

are of equal size bi . In this case αi = ai/bi is determined by 1/bi , since ai is roughly 1.

Now, if bi ≫ 1√
n
it follows that αi = ai/bi ≪ ai

√
n ≤
√
n, since ai is bounded by 1. □

B ANALYSIS OF THE ASYNCHRONOUS MODELWITH A BASE STATION

In this section we describe the main ingredients of our analysis. We first consider the 0-signal counting mechanism

that is employed by the base station to measure global time. That is, we will see that at least 1 and at most O(1) time

units after the creation of generation i at ti , the condition in Line 4 of Algorithm 1 will be fulfilled. This effectively

guarantees that the two-choices lasts for at least 1 time unit, implying that the set of nodes of generation i after the

two-choices phase is large enough. Next, we upper bound the time needed for the algorithm to increase the amount of

nodes of generation to at least n/2 by propagation steps, and thereby bound the required time between the creation of

two successive generations. In the following part of the analysis we consider the behavior of the color fractions of nodes

of generation i in the time frame [ti , ti+1]. We will see that the two-choices phase causes the ratio between two colors

in the following generation to roughly square. We then establish that until the end of the propagation phase, these

fractions remain highly concentrated. We achieve this result by fitting our process to a so-called Pólya-Eggenberger

urn model and using the tail bounds from Appendix F on the corresponding distribution. These results are then used to

show that w.h.p. from one generation to the next the ratio between the largest and second largest opinion is squared

(up to some small error term). From this we then compute how many generations are needed in order to guarantee a

monochromatic generation w.h.p. and conclude the proof.

B.1 Measuring Time

Consider Line 4 of Algorithm 2. The general idea is to ensure that in any generation the two-choices phase lasts for at

least one time unit. To that end we study how accurately the counting mechanism in Line 4 approximates the global

time. To state a general result that can later also be used in Section 3, where multiple leaders are assumed to be present,

we relax the size ofU . Keep in mind that throughout this section v is the base station, andU = V .

Positive Aging Admits Fast Asynchronous Plurality Consensus 25

Lemma 16. Consider a set of nodesU sending 0-signals to a designated nodev upon each activation, where |U | ≥ log
2+ε n

for some constant ε > 0. Fix [t , t + L], a time interval of length Ω(1) ≤ L ≤ O(logn) and letW be the amount of 0 signals

received by v throughout this interval. Then, it holds that

L(L) · |U | <W < H(L) · |U |,

with L(L) := 1

4

⌊
L

4µm

⌋
(1 − o(1)) andH(L) := (8µℓµ0 +

2L
µ0 + 3C

′ + 3)(1 + o(1)) for µm = max(µ0, µℓ) and C ′ < 600.

Proof. We will prove the lower and upper bounds separately.

Lower bound. Let µm = max{µ0, µℓ} and consider some time interval of length 4µm time steps. Assuming the current

global time is at the start of this interval, we are interested in the amount of nodes ticking in the first half 2µ of this

interval. Consider some node vi and let Xi denote a r.v. with Xi ∼ T0. As T0 follows Property 1, we can lower bound the

probability that vi ticks in the next 2µm time steps by P(Xi < 2µm), independent of the nodes previous ticks. Using the

results of Lemma 15 it follows that P(Xi < 2µm) > 1/2. A Chernoff bound application yields that at least
|U |
2
· (1− o(1))

nodes will tick throughout the first 2µm time steps w.h.p.

Upon a node ticks and sends a 0-signal, additional time distributed according to Tℓ is required for the signal to arrive

at the leader. Note that, a signal sent throughout the first 2µm time steps will land inside the 4µm sized interval, if its

delivery takes at most 2µm time to arrive. We can repeat the above approach, applying Markov and then Chernoff

bounds to deduce that
|U |
2
· (1 − o(1)) · 1

2
· (1 − o(1)) ≈ |U |

4
signals will be received in this interval. As we are interested

in an interval of length L, we apply this result ⌊L/4µm⌋ times and deduce that at least
|U |
4
· ⌊ L

4µm ⌋(1 − o(1)) 0-signals
will be received by the leader throughout the interval [t , t + L] w.h.p.
Upper bound. We start by bounding the number of ticks inside a time interval of length L. Consider some node v and

assume for now that the previous tick finished just before the interval started. Denote by {X1, ...,Xi } the next i tick
waiting times of v , where X j ∼ T0. Then, if X :=

∑i
j=1 X j < L we can say that v ticked at least i times throughout the

interval. Clearly E[X] = µ0 · i and together with the inequality in Theorem 3.5 of [18] we deduce that

P(X < E[X] − (iµ0 − L)) = P(X < L) ≤ exp

(
−(iµ0 − L)

2

2iE[X 2

j]

)
.

where E[X 2

j] is a constant according to Lemma 15. Note that this probability decreases exponentially fast for increasing i

as long as µ0 · i is sufficiently larger than L. Therefore, if we let Yv denote the number of ticks taken byv throughout the

time interval of L, we can deduce that roughly P(∑i
j=1 X j < L) = P(Yv ≥ i) < e−Ω(i) for large enough i . If L = O(logn)

one can immediately see that P(Yv ≥ C · logn) < 1/n2 for large enough constant C depending on T0 and L. For the

expected value we crudely estimate

E[Yv] =
∞∑
i=0

P(Yv ≥ i) < 2L

µ0
+

∞∑
i>2L/µ0

exp

(
−

iµ2
0

8E[X 2

j]

)
=

2L

µ0
+C ′,

where the second sum corresponds to a geometric series and therefore C ′ a constant again depending on T0. With the

help of Item 4 of Lemma 15 one may crudely bound C ′ ≤ 600.

Consider now the set U and define Y =
∑
v ∈U

Yv
C logn . Observe that all Yv are independent from each other and

w.h.p. it holds that 0 < Yv
C logn < 1. This allows us – considering only the probability space in which all Yv are smaller

than C logn – to apply Chernoff bounds on Y . That is, E[Y] = |U | · E[Yv] · 1

C logn = ω(logn) because of |U | > log
2+ε n

and this immediately yields Y < E[Y](1 + o(1)) w.h.p. When undoing the C · logn normalization we get that during

26 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

an interval of length L at most (2Lµ0 +C
′)|U |(1 + o(1)) ticks occur in the interval. Remember that initially we assumed

that at the start of the interval no ticks are in progress. To account for this, we add 1 · |U | to the expression above.

Summarizing, we now know that during an interval off length L = Ω(1) at most

R(L) :=
(
2L

µ0
+C ′ + 1

)
|U |(1 + o(1)). (2)

many ticks will occur w.h.p.

We are, however, interested in bounding the number of received signals. Consider again a time interval [t , t + L] of
length L. To upper bound the number of received signals in this interval, we assume the algorithm has already been

running for O(log2 n) many time steps, even though it might have just started. Consider now the signals originating

from ticks inside the interval [t − 2µℓ , t]. We crudely assume that every tick in this interval corresponds to a received

signal in the interval [t , t + L]. That is we have R(2µℓ) of them when using the result of (2). Next take a look at the

interval [t − 4µℓ , t − 2µℓ] and assume that our target interval is actually [t ,∞). Let S be the set of ticks occurring in the

interval [t − 4µℓ , t − 2µℓ] and for each s ∈ S consider the corresponding signal delay Xs ∼ Tℓ . A signal started from

a tick in this set will arrive in [t ,∞) with probability less than P[Xs > 2µℓ] < 1/2 (follows from Lemma 15). Using

Chernoff bounds we get that at most R(2µℓ) · 1/2 · (1 + o(1)) such ticks will arrive at a time step in [t ,∞). In general we

can apply the results of Lemma 15 to derive that a signal originating from [t − 2i+1µℓ , t − 2i µℓ] will hit [t ,∞) with
probability at most (1/2)2i . Therefore when applying Chernoff bounds we deduce that at most

R(2i µℓ) ·
(
1

2

)
2
i

(1 + o(1)) =
(
2
i+1 · µℓ

µ0
+C ′ + 1

)
|U |(1 + o(1)) ·

(
1

2

)
2
i

(3)

many signals originate from a tick within such an interval w.h.p. – as long as i < c · log log |U | for some constant c .

From any interval of further distance to t , i.e. i > c · log log |U |, at most O(logn) signals will arrive w.h.p. As O(log2 n)
steps suffice for our algorithm to reach consensus, we only need to consider intervals with i = O(log logn). Hence,
in total, at most O(logn · log logn) = |U | · o(1) signals that originate from intervals with i > c · log log |U | will arrive
w.h.p. Combining this with (3), which is dominated by a double-exponentially shrinking term, we get that at most

R(2µℓ) + |U | · o(1) many signals started in the interval [t −O(log2 n), t − 2µℓ] will arrive in [t ,∞). Finally, we count
the received signals which originate from ticks inside [t , t + L]. We crudely assume that every tick inside this interval

corresponds to a received signal, leading to further (2Lµ0 +C
′+1)|U |(1+o(1)) received signals. All the above is summarized

in the following table

Interval of origin Number of signals received w.h.p.

[t , t + L] ≤ R(L)
[t − 2µℓ , t] ≤ R(2µℓ)

[t −O(log2 n), t − 2µℓ] ≤ R(2µℓ) + |U | · o(1)

When hiding some terms into |U | · o(1) this sums up to

H(L) := (8 µℓ
µ0
+
2L

µ0
+ 3C ′ + 3)|U |(1 + o(1)) □

The above lemma directly implies the statement that was given in the introduction.

Corollary 3. Consider a set of nodesU sending 0-signals to a designated nodev upon each activation, where |U | ≥ log
2+ε n

for some constant ε > 0. Let T = Ω(1). Then, v receivesH(T) · |U | many 0-signals in

(1) at least T and

Positive Aging Admits Fast Asynchronous Plurality Consensus 27

(2) at most S(T) := (H(T) + 1) · 16 ·max{µ0, µℓ} = O(T) time steps w.h.p.

In Algorithm 2 the base station counts untilH(C1). As C1 bounds the time unit, above result implies that the base

station will allow two-choices steps for at least one time unit per generation.

Corollary 17. Let ti be the time the base station first allows generation i and let t ′ denote the number of time units

starting from ti until the condition in Line 4 of Algorithm 2 is satisfied. Then, ti + 1 < ti + t
′ < ti +O(1) w.h.p.

B.2 Total time to Increase a Generation

In this section we examine the time difference between the time points ti and ti+1, i.e., starting from the time the

base station allowed generation i we are interested how long it takes until it allows generation i + 1 for the first time.

Remember that we want to allow the fraction of nodes in generation i to grow until at least 1/2 before generation i + 1
starts. Fixing some generation i , we denote by ti + t

′
the time at which the two-choices phase ended. At this point, as

we will see in Proposition 4, at least n · pi−1/5 nodes are of generation i w.h.p. Throughout the remainder of generation

i , the base station only allows propagation steps (see Line 8 of Algorithm 1) until it detects that at least n/2 of all

nodes belong to generation i . Note that this process corresponds to simple pull broadcasting with the goal of spreading

generation i . That is, after log(1/pi−1) = O(logk) steps the desired amount of nodes of generation i is reached.

Proposition 4. Fix some generation i and assume that дi−1 ≥ 1/2. Let ti + t ′ denote the time when the base station allows

promotions to generation i via propagation. Then, дi (ti + t ′) ≥ pi−1/5 w.h.p.

Proof. We want to show that the counting time of our base station (i.e., t ′ time units) suffices for the generation i to

grow to contain at least a
pi−1
5

-th fraction of nodes. Throughout the time frame [ti , ti + t ′] nodes join generation i due

to fulfilling the conditions in Line 11 of Algorithm 1 only. Assuming a node of generation i − 1 finishes an execution of

Algorithm 1 at time exactly ti , it would sample two nodes of the same color and generation i with probability exactly

pi−1 · д2i−1 = 1/4 · pi−1. By Lemma 19 we get that this indeed corresponds to the probability of promoting to generation

i via Line 11 of Algorithm 1. This is because Items 1 and 2 of Lemma 19 imply that the probability of v promoting and

taking some fixed color j is c j,i (ti)2 · д2i−1. Summing this probability over all colors j yields the aforementioned result.

Now, Corollary 17 states that, w.h.p., the time frame [ti , ti + t ′] is of length at least 1 time unit. The definition of a

time unit implies that each node will perform one full execution in [ti , ti + t ′] with probability at least 0.9. Combining

this with the above allows us to minorize дi (ti + t ′) by Bin(n, 0.9 · (1/4) · pi−1). As pi−1 ≥ (1/k), the result follows from
a Chernoff bound application. □

In the time frame [ti + t ′, ti+1], the base station only allows its followers to promote via propagation, which

corresponds to pull gossiping w.r.t. generation i .

Proposition 5. Fix some generation i and let ti + t ′ denote the time when the two-choices phase of generation i ends.

Then, t ′′ = log
1.4(3/pi−1) time units after the base station starts allowing propagation steps, the cardinality of the i-th

generation exceeds n/2 w.h.p.

Proof. By construction, during the time frame

[
ti + t

′, ti
(
1

2

)]
, nodes will only join generation i via propagation

steps. To examine the growth of the set of nodes of generation i during one time unit, we consider an arbitrary time

frame [t , t + 1] with t , (t + 1) ∈
[
ti + t

′, ti
(
1

2

)]
. We define x = дi (t) and x ′ = дi (t + 1), where by Proposition 4 we have

that x ≥ pi−1
5

. If during the time interval [t , t + 1], an arbitrary node v (i) arrived from generation at most i − 1, (ii)

28 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

sampled a node from generation i , and (iii) executed a complete operation in the mentioned time-unit, then surely v

increased its generation to i . In fact, it is enough to only consider such promotions which may be modeled directly as

x ′ ≥ x +
1

n
Bin(n(1 − x), 0.9 · x)

w.h.p.

> 1.4 · x

where in the first step we crudely neglect the increase in probability for propagation steps to succeed by assuming that

x does not increase throughout the time interval [t , t + 1]. To prove that дi (ti + t ′ + t ′′) ≥ 0.5, it is enough to iterate the

above process t ′′ times. Indeed,

дi (ti + t ′ + t ′′) ≥ 1.4t
′′ · pi−1

5

≥ 1

2

. □

Hence, Proposition 5 gives us that, starting from ti + t
′
, O(log(1/pi−1)) = O(logk) time units of propagation suffice

to reach ti+1. Furthermore, by Corollary 17 we know that the counting mechanism on the base stations end ensures

that the two-choices phase lasts for constant time only. This directly leads to the following statement.

Corollary 18. The time between the start of two consecutive generations ti+1 − ti is less than O(log(1/pi−1)) time units

w.h.p.

B.3 Concentration Results

In this section, we examine how the bias behaves throughout some fixed generation i . That is, starting with αi−1 we

will see that the bias evolves and almost squares until the start of the following generation. More precisely, as long as

the second largest opinion is still of non-negligible size, we have that αi > (αi−1)1.5. Similar as in the previous section,

we will split the concentration analysis into two parts and start with statements concerning actions in the time frame

[ti , ti + t ′] – the time at which the base station starts allowing propagation steps.

Concentration during the Two-Choices Phase. We fix some generation i in the time frame [ti , ti + t ′] at which the base

station has ℓ.mode = TC and only allows promotion to generation i via two-choices steps. Assume that a node samples

two neighbors at time exactly ti . Then, with probability c2j,i−1 · д
2

i−1, it hits two nodes of generation i − 1 and color j.

In order to reflect the idea of a two-choices step as part of our algorithmic approach (see Section 1.3), we want this

to be the probability that the node promotes to generation i and take color j. However, this probability may deviate

throughout the time-frame [ti , ti + t ′], e.g., if some nodes leave generation i − 1 by promoting to generation i .

To circumvent this problem, we carefully specified the two-choices step in Line 8 of Algorithm 1. During a [ti , ti + t ′]
a nodev of generation less than i , promotes to generation i whenever it samples two nodesv1 andv2 s.t.v1.col[i − 1] =
v2.col[i − 1] and both these values are defined. However, this implies the desired property we stated above and is

formalized as follows.

Lemma 19. Consider some fixed generation i throughout [ti , ti + t ′] and define

Si−1, j (t) = {v | v has (v .col[i − 1] = j) at time t}.

Assume a node v of generation i − 1 finished establishing all required communication channels at t ∈ [ti , ti + t ′]. Then,

(1) v will promote to generation i and take color j if and only if both sampled nodes v1 and v2 lie in Si−1, j (t).
(2) ∀t ∈ [ti , ti + t ′] : Si−1, j (t) = Si−1, j (ti) and |Si−1, j (ti)|/n = c j,i−1 · дi−1.
(3) Si−1, j (t) ∩ Si−1, j′(t) = ∅ for every pair of colors j, j ′ with j , j ′.

Proof. The first point follows directly from Line 8 of Algorithm 1 and the fact that ℓ.mode = TC in [ti , ti + t ′].

Positive Aging Admits Fast Asynchronous Plurality Consensus 29

Next, the second point. Fix again some color j . It is easy to see that nodes are not removed from Si−1, j (t) throughout
[ti , ti + t ′] as nodes only take color values when promoting to higher generations and never overwrite old color values.

This implies that Si−1, j (ti) ⊆ Si−1, j (t) for any t ∈ [ti , ti + t ′]. As in [ti , ti + t ′] only two-choices steps to generation i are
allowed, no node v sets its v .col[i − 1] field during [ti , ti + t ′]. Therefore, Si−1, j (t) ⊆ Si−1, j (ti) which combined with

the above implies that Si−1, j (t) = Si−1, j (ti). As Si−1, j (ti) is the set of color j nodes at time ti , it immediately follows

that |Si−1, j (ti)|/n = c j,i−1(ti) · дi−1.
Regarding the final statement. When following Algorithm 1, nodes only change their color iff they increase their

generation. That is, it is impossible for any node v to overwrite a color value stored in v .col[i − 1]. □

This way, given the set G of nodes that promoted to generation i via two-choices, we can model the number of nodes

of generation i and color j at ti + t
′
with the help of a binomial distribution. More formally, we can show that Lemma 6

holds, which we restate for convenience.

Lemma 6. Let a and b be the largest and second largest opinion in generation i − 1 at time ti and assume that ai−1 >

bi−1 ≫ 1/
√
n. Let ti + t ′ be the time when the propagation phase for the i-th generation begins. Then w.h.p.

ai (ti + t ′) =
(ai−1)2
pi−1

(
1 ± 1

ai−1

√
logn

n

)
, and

bi (ti + t ′) =
(bi−1)2
pi−1

(
1 ± 1

bi−1

√
logn

n

)
.

Proof. We start by giving a lower bound on bi (ti + t ′), the number of b−colored nodes in generation i at time ti + t
′
.

To that end, we define G, the set of nodes of generation i at the end of the two-choices phase with |G| = n · дi (ti + t ′).
During the time frame [ti , ti + t ′], every node is promoted to generation i due to Line 11 of Algorithm 1 only. Consider

one such nodev ∈ G. By Lemma 19 it follows that the execution of Algorithm 1 that lead tov’s promotion to generation

i did so with probability exactly

∑
j c

2

j,i−1 · д
2

i−1 = pi−1 · д
2

i−1.

Above observation leads to the following two-step process. First, we determine G and assume that the color v .col[i]
of nodes v in G is still unknown. Second, we uncover the color of each node in G after another to derive the amount of

them taking color b. It is important to note, Item 2 of Lemma 19 guarantees that the order in which we uncover the

nodes does not matter, i.e., the probability for the next revealed node taking color b will always be (bi−1)2/pi−1. Hence,
we can model bi (ti + t ′) with the help of a binomial distribution and apply Chernoff bounds as follows:

1

|G| · Bin
(
|G|, (bi−1)

2

pi−1

)
w .h .p .
>

(bi−1)2
pi−1

(
1 −O

(
1

(bi−1)2
·
√

logn

n

))
.

The high probability guarantee follows from the fact that, according to Proposition 4, |G| = Ω(n ·pi−1)w.h.p. A repetition

of above analysis also yields an upper bound on bi (ti + t ′) as well as corresponding bounds on ai−1(ti + t ′). □

Assuming that the currently second-most dominant colorb has sufficient support in generation i−1, i.e.,bi−1 ≫ 1/
√
n,

it follows from above result that ai (ti + t ′)/bi (ti + t ′) ≥ (αi−1)2(1 − o(1)).

Concentration during the Propagation Phase. We consider some fixed generation i and assume that at time ti + t
′
the

base station starts allowing propagation steps. In the time frame [ti + t ′, ti+1], nodes may join generation i via Line 8 of

Algorithm 1 only. One can see this as generation i being spread by pull broadcasting until the base station confirms

that at least n/2 of all nodes belong to generation i (see Line 8 of Algorithm 2). As discussed in Section 2.2, the color

30 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

fractions c j,i (t) for t ∈ [ti + t ′, ti+1] form a martingale when sequentialized by the points in time at which nodes join

generation i . However standard techniques, e.g. Azuma-Hoeffding, fail to provide tight enough bounds.

Assuming we start at ti + t
′
we are interested in the absolute amount of color j nodes at ti+1. We can model this value

by the following urn process. The urn initially contains c j,i (ti + t ′) · n · дi (ti + t ′) many black balls, i.e., as many black

balls as there are nodes of generation i and color j at ti + t
′
. Furthermore, we add a white ball for each remaining node in

generation i that is not of color j at ti + t ′. Now, each step of the process starts with drawing a random ball from the urn.

Then, an additional ball is placed inside the selected urn corresponding to the color of the drawn ball. This experiment

is then repeated until n/2 − n · дi (ti + t ′) balls have been added, leading to both urns combined containing n/2 balls in
total. In our original process, each time a node joins generation i , a step of the process is triggered. Hence, answering

the question of how many black balls throughout the process, gives us the number of nodes that join generation i and

take color j until time ti+1.

The urn process we just described is called Pólya-Eggenberger process (with s = 1). The corresponding distribution

exactly describes the number of added black balls as desired. A more detailed discussion, including some useful

tail-bounds on this distribution can be found in Appendix F and allows us to achieve the following result.

Lemma 7. Let a and b be the largest and second largest opinion in generation i − 1 at time ti and assume that ai−1 >

bi−1 ≫ 1/
√
n. Let ti + t ′ be the time when the propagation phase of generation i begins. Then w.h.p.

ai = ai (ti + t ′)
(
1 ±O

(√
logn

n

1

ai−1

))
, and

bi = bi (ti + t ′)
(
1 ±O

(√
logn

n

1

bi−1

))
.

Proof. We start by showing the bounds on bi . The absolute number of nodes of generation i and color b in the

time frame [ti + t ′, ti+1] follows a Pólya-Eggenberger process. Let G with |G| := n · дi (ti + t ′) denote the initial set of
generation i nodes at the end of the two-choices phase at ti + t

′
. Assuming G and bi (ti + t ′) to be fixed, we consider

the random variable X with

X ∼ |G| · bi (ti + t ′) + PE1
(
bi (ti + t ′) · |G| , (1 − bi (ti + t ′)) · |G| , (n/2) − |G|

)
,

modeling the value n · дi+1(ti) · bi = (n/2) · bi . Here we used the notation PE1(.) as defined in Appendix F to describe

the Pólya-Eggenberger distribution introduced in the paragraph above this lemma.

Applying the result of Theorem 46 together with δ = c
−1/2
2
·
√
logn immediately yields, w.h.p., that

X = bi (ti + t ′) · (n/2) ± c−1/2
2
·
√
bi (ti + t ′) ·

(n/2)√
|G|

√
logn

= bi (ti + t ′) · (n/2)
(
1 ±

√
logn

bi (ti + t ′) · |G| · c2

)
= bi (ti + t ′) · (n/2)

(
1 ±O

(
1

bi−1
·
√

logn

n

))
.

The last line follows by Lemma 6 and Proposition 4 which imply that, w.h.p.,

bi (ti + t ′) = Ω

(
(bi−1)2
pi−1

)
= Ω

(
(bi−1)2
дi−1

)
= Ω

(
n · (bi−1)2
|G|

)
.

Positive Aging Admits Fast Asynchronous Plurality Consensus 31

As the proof w.r.t. the concentration of ai (ti + t ′) is similar, we omit a detailed proof. □

Hence, we established that the color fractions do not deviate much throughout the propagation phase of generation

i . Moreover, the error terms are of the same order as those in Lemma 6.

Combining Two-Choices and Propagation. In Lemma 6 we established that ai (ti + t ′)/bi (ti + t ′) = α2i−1,ti−1(1 − o(1))
as long as bi−1 is still of significant size. Furthermore, by Lemma 7 we get that this fraction remains close to α2i−1
throughout the propagation phase. That means, the bias between a and b roughly squares throughout the two-choices

phase of generation i and remains concentration until generation i + 1 is allowed by the base station.

The following lemma formalizes above notion of ‘roughly squaring’. Additionally, we show that the initial additive

bias of

√
n logn does not diminish over time. This implies that the initial majority color remains dominant in every

generation w.h.p.

Lemma 8. Let a and b be the largest and second largest opinion in generation i − 1 at time ti and assume that ai−1 >

bi−1 ≫ 1/
√
n. Let b ′ be the second largest opinion in generation i at time ti+1. If ai−1 − bi−1 ≥ logn/

√
n, then w.h.p.

(1) a is the largest opinion in generation i at time ti+1,

(2) αi > (αi−1)1.5, and
(3) ai − b ′i ≥ logn/

√
n.

Proof. Starting at time ti , fix the values of ai−1 and bi−1, and assume they indeed follow the lemmas requirements.

Combining the concentration results of both the two-choices and propagation phase – stated in Lemma 7 and Lemma 6

respectively – we immediately get that

1

αi,ti+1
=

bi
ai
<

(
bi−1
ai−1

)
2

(
1 +O

(
1

bi−1
·
√

logn

n

))
. (4)

Now, using bi−1 ≫ 1/
√
n, we can initiate the following inequality chain(

1 +O

(
1

bi−1
·
√

logn

n

))
2

<

(
1 +

1

bi−1

logn
√
n

)
<

(
bi−1
bi−1

+
ai−1 − bi−1

bi−1

)
=

ai
bi
,

where we used in the second step that ai−1 − bi−1 > logn/
√
n. Combining this result with (4) immediately yields that

bi
ai
<

(
bi−1
ai−1

)
1.5

.

Note that it is possible that (∃j , a,b : c j,i > bi), i.e., color b is overtaken. However, it is easy to see that for every

x ≥ 0 it holds that P(c j,i > x) ≤ P(bi > x) as smaller colors are less likely to be selected in both two-choices and

propagation steps of our protocol. Hence, we apply union bounds over k − 1 colors and deduce that αi > (ai−1/bi−1)1.5.

32 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

To show the third statement, we again make use the of concentration statements in Lemma 7 and Lemma 6 to derive

that w.h.p.

ai − bi >
a2i−1 − b

2

i−1
pi−1

−O
(
(ai−1 + bi−1)

√
logn

pi−1
√
n

)
=

ai−1 + bi−1
pi−1

(
(ai−1 − bi−1) −O

(√
logn
√
n

))
.

Note that pi−1 =
∑
j c

2

j,i−1 ≤
∑
j c j,i−1 · ai−1 = ai−1 as a is the majority color. In case ai−1 − bi−1 > log

2 n/
√
n, the

result follows immediately as (ai−1 +bi−1)/pi−1 > 1 and the difference between ai−1 and bi−1 dominates the error term.

In case logn/
√
n ≤ ai−1 − bi−1 ≤ log

2 n/
√
n it holds that ai−1 = bi−1(1 + o(1)) because of ai−1 ≥ pi−1 ≥ 1/k . Hence, in

this case it holds for n large enough and w.h.p. that

ai − bi > (2 − o(1))
(
logn
√
n
−O

(√
logn
√
n

))
>

logn
√
n
.

Just as before, we conclude with a union bound argument, yielding that also every other color that had less (or equal)

support than b at time ti adheres to this required absolute bias. □

Next, we consider how the bias evolves over multiple generations. The following is an immediate consequence of a

repeated application of above lemma.

Corollary 20. Consider an initial bias of α0 > 1 + 1

b0
· logn√

n
. Then, w.h.p.,

(1) after at most ⌈log
1.5 logα k⌉ generations the bias will exceed k , and

(2) after at most ⌈log
1.5 logα n⌉ generations the bias is at least asymptotically similar (∼) to

√
n.

As soon as the bias reaches value roughly

√
n, it follows by Remark 1 that the second-largest color is no longer of

significant size. That is, our previous concentration results, including the squaring in Lemma 8, are no longer applicable.

However, we can use the fact that at this point at least a (1 − o(1)) fraction of nodes in the highest generation belong

to the same color w.h.p. This way, we can deduce that after at most 2 further generations, the first monochromatic

generation will be created.

Lemma 21. If in generation i − 1 it holds that αi−1 ∼
√
n, then ,w.h.p., αi ≫

√
n. Likewise, if in generation i − 1 it holds

that αi−1 ≫
√
n, then generation i + 1 will be monochromatic.

Proof. First assume that αi−1 ∼
√
n and let a and b be the largest opinions in generation i − 1 at time ti . Given the

configuration at time ti , consider result of the two-choices phase of generation i which takes place in the time frame

[ti , ti + t ′]. Similar as in the proof of Lemma 6, we denote by G the set of nodes that join generation i by two-choices

steps with |G| := n · дti+t ′(i). Just as in the proof of Lemma 6 we apply Lemma 19 and deduce that the probability that

one of these nodes sets its color to b is exactly b2i−1/pi−1. This way, we model |G| · bi (ti + t ′) as Bin
(
|G| , b2i−1/pi−1

)
with expected value µ ∼ 1. This expected value is implied by bi−1 ∼ 1/

√
n and pi−1 = Ω(1), which follows from

αi−1 ∼
√
n. Hence, a Chernoff bound application yields that |G| · bi (ti + t ′) < nε w.h.p. for any arbitrary small ε > 0.

Now, let N = n/2 denote the number of nodes of generation i just before the start of generation i + 1 at ti+1. Then,

we may modelN ·bi as |G| ·bi (ti + t ′)+PE1(|G| ·bi (ti + t ′) , |G| − |G| ·bi (ti + t ′) , N − |G|). According to Theorem 47

Positive Aging Admits Fast Asynchronous Plurality Consensus 33

we can bound a r.v. that follows such a distribution by

N · bi < max{1 , n

|G| } ·max{3|G| · bi (ti + t ′) , O(logn)}

w.h.p. As pi−1 = Ω(1) it follows by Proposition 4 that |G| = Ω(n) w.h.p. Therefore, w.h.p., N · bi < 3nε . Setting ε to

some constant value less than 1/2, this implies that bi ≪ 1/
√
n. We now apply a repetition of this whole argument to

every other color j , a,b. This way, a union bound application yields that c j,i ≪ 1/
√
n for every color besides a, which

in turn implies αi ≫ 1/
√
n.

To show the second statement of the lemma we assume that αi−1,ti ≫
√
n and note that the proof for this case is

similar to the previous one. Following the previous approach it is easy to see that |G| · bi (ti + t ′) = O(logn) , w.h.p., as
E[|G| · bi (ti + t ′)] ≪ 1. Applying the same Pólya-Eggenberger result as before, we now derive that N · bi = O(logn)
w.h.p. That is, color b only has support ofO(logn) in generation i at the start of generation i+1. The probability for color

b to survive the following two-choices phase, i.e., bi+1(ti+1 + t ′) , 0, is now at most 1 − (1 −O(log
2 n

n2
))n < polylog/n.

A final union application yields that no color besides a will be present in generation i + 1. □

When combining all the statements we derived during Section 2, the proof of Theorem 2 follows. Most notably

Corollary 20 together with Lemma 21 state the number of required generations to reach the first monochromatic one.

Additionally Corollary 18 indicates that the time between the birth of two consecutive generations is constant as soon

as the bias reaches value k . The following result finalizes the proof.

Moving on from the monochromatic generation. From Corollary 20 and Lemma 21 we get that a monochromatic

generation emerges among the first O(log logα n) generations. At the end of this generation, at least 1/2 of all nodes
will be of the same color. We now show the following

Lemma 22. Let i∗ denote the first monochromatic generation. Then, at time ti∗ +O(log logn), partial consensus will be
reached. After further O(logn) steps, every node shares the same opinion.

Proof. Let a denote the dominating color of generation i∗. Clearly, if i is monochromatic then so will be every

generation i > i∗. Also, every node of generation at least i∗ must be of color a. Fix, now such a generation i > i∗ and

some node v of generation less than i∗. If it finishes an execution of Algorithm 1 during the two-choices phase of

generation i , it will with probability at least 1
2 · д2i−1 = Ω(1) promote to generation i . This follows from Lemma 19

and ai−1 = 1. On the other hand, if it finishes an execution during the propagation phase in [ti + t ′, ti+1], it will with
probability at least дi (ti + t ′) = Ω(1) sample a node of generation i and promote to generation i via propagation. Hence,

each time v finishes Proposition 5 it will promote to generation i – and thereby also take color a – with at least constant

probability. According to the definition of a time unit,v will perform such an execution with probability 0.9 in each time

unit. Hence, v will be of color a afterO(log logn) time with probability 1/polylogn – and afterO(logn) time w.h.p. □

We are now ready to finalize the proof of Theorem 2. According to Corollary 20 the bias reaches k afterO(log logα k)
generations. Now, by Proposition 5 we have that the time between two generations can always be bounded above by

O(logk) w.h.p. The remaining O(log logk n) generations that are required for the bias to hit n (see again Corollary 20),

each take constant time only (because αi−1 > k implies that pi−1 = Ω(1)). This time is dominated by the O(log logn)
time requirement of Lemma 22. In total we therefore reach partial consensus after O(log logα k · logk + log logn) time

units. By Lemma 22 we have that O(logn) time later, full consensus is reached.

34 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

C ANALYSIS OF THE DECENTRALIZED ALGORITHM

C.1 A Simple Clustering Algorithm

In the following we will describe a simple clustering algorithm, which satisfies the desired property of clustering all

but O(1/polylogn) nodes into clusters of polylogarithmic size. Later in Appendix C.3, we extend this algorithm and

describe how nodes may transition into the consensus protocol after the leader election has been completed.

The simple clustering works as follows. At the beginning, each node flips a coin and with probability 1/logc n, the
node becomes a leader, where c is a sufficiently large constant. The other nodes are followers. Whenever the clock of a

node ticks, this node establishes communication channels to its own leader (if any), and to three other nodes chosen

uniformly at random
3
. These neighbors send the address of their leaders to the node they were contacted by, and then

one of these leaders is called by that node. If a follower (not assigned to a cluster so far) contacts a leader, then it joins

the cluster of that leader as long as the cluster has size less than log
c−1 n. The leader nodes keep track of the size of

their clusters, and if a follower joins the cluster of some leader, then this leader notifies the follower that the request

to join was successful (recall that establishing a communication channel requires time, but the exchange of messages

is instant). The nodes in a cluster keep sending 0-signals to their leader at each tick of their individual clocks, which

enables the leader to count the time (similar as in the centralized procedure). Once the size log
c−1 n is reached, the leader

starts counting 0-signals, and rejects any further request until its counter reaches valueH(c2 log logn ·C1) · logc−1 n.
Remember, according to Corollary 3, this counting ensures that at least c2 log logn time units pass w.h.p. (note that the

constant c needs to be chosen s.t. c − 1 > 3). Throughout this phase we say such a leader is in the waiting state. As

soon as theH(c2 log logn ·C1) · logc−1 n’th signal is received, the leader starts indefinitely accepting further followers

to its cluster. After further S(c2 log logn · C1)/C1 = O(log logn) time units most leaders have stopped waiting, and

O(log logn) time units later, all but a 1/polylogn fraction of nodes belong to clusters. In the following we let L denote

the set of cluster leaders. It is easy to see, that the initial coin flip guarantees |L| = (n/logc)(1 ± o(1)) w.h.p.

Lemma 23. Let t (w)f denote the time when the first leader stopped waiting. Let B be the set of leaders with clusters of

size less than log
c−1 n at time t (w)f . Then, |B | < |L|/logC ′ n and at time t (w)f + S(c2 log logn ·C1)/C1 = O(log logn) all

clusters in L \ B stopped sleeping w.h.p. Here C ′ > 0 is a constant depending on c .

Proof. As described in the algorithm, each node starts by flipping a coin and becomes a leader with some probability

1/logc n. Using simple Chernoff bounds, it follows that there will be n(1 ± o(1))/logc n leaders w.h.p. We assume in

this proof that all nodes flip their coins at the beginning, and flipping a coin is not related to the ticks of the clocks;

however, this could also be relaxed by assuming that the nodes flip their coins at their first tick, and the result of the

theorem would not change. Let the set of leaders be denoted by L.

First, we show that within c log logn time there will be at least |L|(1 − 1/log2C ′ n) leaders having at least c ′ log logn

members in its cluster w.h.p., where C ′ and c ′ are constants depending on c . As in the centralized case, we call a time

unit the period of time C1 in which a node performs a complete execution of one clustering step with probability 9/10.
That is, in this case a time unit is the time needed for a node to perform a good tick and to establish connections to a

leader and two randomly chosen nodes with probability 9/10. We know that a time unit has constant length. We divide

now the time frame of length c log logn into a sequence of non-overlapping time units. Having in mind that for a time

frame of length at least c(1 − o(1)) log logn no leader will have more than log
c−1 n members in its cluster, there will be

3
It would be enough to just contact one randomly selected node. However, in order to select the same number of nodes as in the consensus algorithm, we

allow here the selection of three randomly chosen neighbors as well.

Positive Aging Admits Fast Asynchronous Plurality Consensus 35

w.h.p. 9n/10 · (1 − o(1)) nodes communicating with another node in a time unit of the sequence of time units defined

above. Thus, a leader is contacted with probability at least

1 −
(
1 − 1

n

)
9n/10·(1−o(1))

= 1 − e−9(1−o(1))/10.

Using Chernoff bounds, we obtain that in Θ(log logn) time units, all but |L|(1/log2C ′ n) leaders have been contacted by

at least c ′ log logn other nodes w.h.p., where the constant hidden in Θ(log logn) governs C ′ and c ′. Thus, choosing c
accordingly we obtain our claim.

We consider now the next (c2 − c) log logn time steps and, again, we divide the time into a sequence of time units.

As long as no cluster has larger size than log
c−1 n, in each time unit 9n/10 · (1 − o(1)) nodes try to join a cluster. Note

that the counting of 0-signals during the waiting phase guarantees that no leader exceeds size log
c−1 n before time

c2 log logn . Let Lv be the cluster of a leader v , and assume that |Lv | ≥ c ′ log logn at the beginning of the sequence of

time units defined above. We call a time unit successful, if the size of the cluster grows by a factor of 3/2 in this time

unit or the cluster has size log
c−1 n at the end of the time unit. As before, we know that within a time unit, a node of

the cluster is contacted with probability at least

1 −
(
1 − 1

n

)
9n/10·(1−o(1))

= 1 − e−9(1−o(1))/10.

Using simple Chernoff bounds, we obtain that a time unit is successful with probability at least 1− 1/log2C ′ n, whereC ′

depends on the size of that cluster at the beginning of the time unit, i.e., in the first time unit of the sequence,C ′ depends

on c ′. Hence, if there are enough time units in the sequence of length Θ(log logn), then there will be (c − 1) log logn
successful time units for Lv , with probability at least 1 − 1/log2C ′−1 n. Thus, the expected number of clusters, for which

the number of successful time units is less than (c − 1) log logn, is less than |L|/log2C ′−2 n. Note that these events
are not independent between clusters. However, applying the method of bounded differences, we obtain that at most

|L|/logC ′ n clusters have size less than log
c−1 n at the end of this sequence of time units, w.h.p., provided the constant c

is large enough. We denote these cluster leaders by the set B.

In the following S(c2 log logn ·C1)/C1 time units all cluster leaders in L \ B will stop waiting (see Corollary 3). The

lemmas results follow. □

At time t
(w)
f +O(log logn) at least n/polylogn nodes lie in clusters that passed the waiting phase and accept further

followers. In the following O(log logn) time units, the set of unclustered nodes follows the behavior of uninformed

nodes in pull-broadcasting [39]. Therefore, after further O(log logn) time at least n(1 − 1/logn) nodes lie in clusters.

Corollary 24. In the O(log logn) time units following t (w)f + S(c2 log logn · C1)/C1, all but an O(1/logn) fraction of

nodes lies in some cluster of size at least logc−1 n w.h.p. This corresponds to a total time requirement of O(log logn).

C.2 Global Sampling Gadget

Consider some time unit t , node v ∈ V and property R : V → {true, false}. We say R(v) is true, or holds, in case R is

satisfied by v ∈ V . Now, for the set Rt := {v ∈ V | R(v) holds at time t} we can define rt := |Rt |/n, which denotes the

ratio of nodes satisfying property R. Imagine that some leader wants an estimation on this global ratio rt . Assume that

every follower v of the leader executes a routine upon a tick (e.g. something similar to Algorithm 1 or the clustering

routine). Furthermore assume that throughout this routine, a node v waits until communication channels to at least

one randomly chosen nodew and v’s own leader l are established. Just before the routine would terminate, leading to

36 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

v closing the established communication channels, we employ an extension as follows. The node v collects the state

information fromw and evaluates R(w). Finally, v informs its leader l whether R(w) holds or not. Both these operations

can be performed via the already established communication channels. This way we may interweave the nodes usual

execution (for example the nodes routine throughout the leader election) with a sampling gadget without requiring

additional time spent. Note that, when also opening a channel to the leader lw of w , the node v may even evaluate

properties of the form R(w, lw). We will make use of this special case in Section 3.1. This still can be seen as a property

R(w), as the leader lw belongs to the state ofw and communication via established channels is instant. Finally, observe

that R(w) can alternatively also be evaluated one the end of l , in case v transfers all the necessary state information to

its leader l .

On the leaders side two additional counters ofO(log logn) bits are employed, denoted by r1 and r2 – both initially set

to 0. Each time the leader is informed by one of his follower w.r.t. one such evaluation of the property R, it increments

r1 by one and, in case R(w) holds, also increments r2. After r1 reaches value 0.8 · log2+ε n for some small constant ε , the

value r ′ = r2/r1 is evaluated. Hence, r ′ can be seen as an approximation of the ration rt . The leader can then react

depending on r ′ and/or restart the sampling by setting r2 = r1 = 0.

In the following we say that some leaders sampling started at time t ′, if at time t ′ the counters r1 and r2 were set to

0. Similarly we say that the sampling ended at time t ′′, if at this time the counter r1 reached value 0.8 · log2+ε n. If the
leaders cluster has size at least log

2+ε n, this estimation r ′ will be accurate, and completed in at most one time unit.

More precisely the following holds.

Theorem 25. Consider some fixed leader l with at least log2+ε n followers. Assume the leader starts a sampling at t ′,

which ends at time t ′′ > t ′ and results in the ratio r ′. Let rt denote the global ratio of nodes satisfying the sampled property

R at time t , and assume rt ∈ [a,b] for t ′ ≤ t ≤ t ′′. Then, with probability 1 − n−ω(1) it holds that

(1) if a = Ω(1/logn), then r ′ > a(1 + o(1))
(2) if b = Ω(1/logn), then r ′ < b(1 + o(1))
(3) t ′′ − t ′ < 1

Proof. Let S be a sampling performed by leader l , as assumed in the theorems statement. Let {si | 1 ≤ i ≤
0.8 · log2+ε n} be the set of all samples the leader receives in the time frame [t ′, t ′′]. Fix some such sample si sent

by node v . It contains the information whether R holds w.r.t. some node w , sampled u.a.r at some time t . As v had

already opened channels to w and its leader l at the time point of sending si , the evaluation of R(w) takes place at
the same time as l receives si . Therefore it must hold for t that t ′ ≤ t ≤ t ′′ and therefore P(R(w) is true) ∈ [a,b]. The
number X of received messages, which contain a property that was evaluated to true, can therefore be majorized by

Bin(0.8 log2+ε n,b) and minorized by Bin(0.8 log2+ε n,a). Applying Chernoff bounds immediately yields the first two

statements. Similar, the third claim follows from Chernoff bounds, as Postive Aging (Property 1) guarantees that each

node prepares with probability greater 0.9 at least one sample throughout one time unit. □

C.3 Extended Clustering Algorithm

In the following we describe the clustering algorithm that allows nodes and leaders to properly transition into the

consensus algorithm (see Section 3.1). It consists mainly of the simple clustering algorithm, described in Appendix C.1

extended by a global sampling gadget (see Appendix C.2) as follows. We consider the property R(w) ⇔ (w is not

assigned to a cluster) and assume the above described global sampling gadget is employed by followers as soon as

they have a leader, and on the leaders end as soon as their clusters reach size log
c−2 n (note that c is the clustering

Positive Aging Admits Fast Asynchronous Plurality Consensus 37

constant from Appendix C.1 – it needs to be set such that c > 4). The leader repeats the sampling process, until it

witnesses that r ′ < 0.9/logn, ensuring w.h.p. that less than a 1/logn fraction of nodes remains un-clustered. In this

case, the leader sets up a counter, initiated by 0, and counts incoming follower 0-signals sent by the first log
c−2 n nodes

that joined the cluster. Such a leader keeps following the simple clustering protocol as usual, but until its counter

reaches H(C1) logc−2 n we say that this leader prepares for consensus mode. As soon as the counter reaches value

H(C1) logc−2 n, the leader decides whether to switches to consensus mode by checking the size of its cluster. If it’s size is

at least log
c−1 n, then it participates in the consensus protocol (see Section 3.1) and signals its followers do to so as well.

If the cluster’s size is less than log
c−1 n, the leader rejects any requests related to the consensus protocol. In any case,

the leaders no longer allow nodes to join its clusters anymore. This extended leader election algorithm, guarantees the

following.

Theorem 26. Let c > 4 be an arbitary constant. When following the Extended Clustering Algorithm, all but O(1/logn)
many nodes each belong to one of the at least n/logc ·(1 − o(1)) clusters of size at least logc−1 n that switch to consensus

mode after O(log logn) time units w.h.p. Furthermore, the cluster leaders of such nodes will enter consensus mode with a

time difference of at most Cℓ = S(C1) + 2 ·C1 time steps, and the remaining leaders will not participate in the consensus

protocol.

Proof. We consider the property R to be defined as just above the lemma and utilize the notation of Theorem 25.

Clearly rt , the fraction of un-clustered nodes, decreases monotonically for increasing time t . Let tf be the first time

that rtf ≤ 1

logn . Consider a sampling with starting and ending times t ′ and t ′′. Then, if t ′ ≤ t ′′ ≤ tf it follows that

rt ∈ [1/logn , 1]. Together with Theorem 25 and a union bound application, this implies w.h.p. that no leader will

perform a sampling s.t. r ′ < (1 − o(1))/logn. Hence, no leaders starts to prepare for consensus mode before time tf .

A similar argument can be mode to show that, every sampling started after tl , with tl being the first time such that

rtl ≤ 0.8
logn , will succeed. We will now argue that tf − tl ≤ 1. Let L with |L| = n

log
c n (1 ± o(1)) be the set of all leaders

that were initialized after the coin flip of the simple consensus protocol. By a simple counting argument, it follows that

at most |L| · logc−1 n = O(n/logn) nodes belong to waiting clusters (see Appendix C.1 for the description of the waiting

phase) at any point in time. Hence, in the time unit following tf , an unclustered node will remain unclustered with

probability at most O(1/logn). It follows that tf − tl ≤ 1 (note that the counting of 0-signals prevents leaders from

exiting the clustering algorithm before tl is reached w.h.p.). Any leader that is of size log
c−2 n at tf therefore starts

preparing for consensus mode before time tl + 3 w.h.p. Summarizing, we have:

(1) The first leader enters the preparation phase after tf .

(2) Every leader that is of size log
c−2 n at tf starts to prepare for consensus mode before tl ≤ tf + 3.

We now partition the leaders into 3 sets depending on their size at tf . S1 is the set of leaders of size larger or equal

log
c−1 n, S2 contains the leaders of size smaller log

c−1 n but larger (or equal) log
c−2 n, and S3 contains the remaining

leaders of size less than log
c−2 n. We will now show that the following holds w.h.p.

(1) All leaders of S1 enter the consensus mode at most Cℓ time steps after the first leader.

(2) Only some leaders of S2 enter consensus mode. However, all of them decide whether or not to enter consensus

mode at most Cℓ time steps after the first leader.

(3) No leader in S3 enters the consensus mode.

We prove the first and second point at the same time. Consider some leader l in S1 ∪ S2. As established above, such a

leader will start to prepare for consensus mode before tf + 3. It then decides whether or not to enter the consensus

38 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

mode after reachingH(C1) · logc−2 n many 0-signals. If it’s cluster is of size at least log
c−1 n (which is true for all l ∈ S1),

it will decide to enter the consensus mode. Otherwise it will remain inactive. The leader l finishes this counting of

0-signals before tl +S(C1) (see Corollary 3) w.h.p. Following a similar argument, the first leader will not enter consensus

mode before tf + 1 due to the required counting of 0-signals. Hence, if l enters the consensus mode it does so at most

tl +S(C1) − (tf + 1) time after the first leader. This corresponds to the time difference we denoted byCℓ in the theorems

statement.

Now, consider the last point.We know that a leader l ∈ S3 is not of size logc−2 n at time tf . Even if it’s cluster eventually

reaches size log
c−2

at some time t̂ > tf , then it will prepare for consensus before time max{t̂ + 2, tl + 2} = t̂ +O(1)
w.h.p., and furtherO(1) time later decide whether to enter consensus mode or not. Hence, l only enters consensus mode

iff it grows from log
c−2 n to log

c−1 n in constant time. It is easy too see that this does not happen w.h.p.

We conclude that the leaders that enter consensus mode do so with a time difference of Cℓ time steps. Also, before

the first leader stops waiting at t
(w)
f (waiting phase as described in Appendix C.1), at most |L| · logc−1 n = O(n/logn)

nodes lie in clusters. Therefore, it needs to hold that tf > t
(w)
f as, w.h.p., no leader performs a successful sampling

if only O(n/logn) nodes lie in clusters. By Lemma 23 we have that, already at t
(w)
f , most clusters are of size at least

log
c−1 n. In other words, |S1 | > n/logc n · (1 − o(1)) and all of these leaders enter the consensus mode. Furthermore,

observe that when it comes to the number of unclustered nodes, the extended and simple clustering algorithms behave

identically until the first leader entered the preparation phase. As established above, the first leader starts preparing for

consensus mode before tl w.h.p. Time tl is reached when the fraction of unclustered nodes hits 0.8/logn. This amount

of unclustered nodes can easily be reached by our simple clustering algorithm in O(log logn) time. Hence, also the

extended clustering algorithm comes with a time requirement of O(log logn). □

We finish our discussion of the clustering algorithms with a statement that implies that the congestion of any leader

indeed lies in O(polylogn) w.h.p.

Lemma 27. The load is well balanced between all leaders that switch to consensus mode. That is, none of the clusters

created by the Extended Clustering Algorithm will exceed size of polylogn w.h.p.

Proof. We know that the clustering takes time at most O(log logn). Using the inequality in Theorem 3.5 of [18],

similar as in the proof of Corollary 3 we deduce that some fixed nodev will tick more thanO(log logn) times throughout

the clustering with probability at most 1/logn. The same inequality together with a union bound application shows

that no node will tick more than O(logn) times w.h.p. Since the nodes tick independent from each other, a Chernoff

bound application yields that at least an (1 − 1/logn) fraction of nodes tick O(log logn) times. The remaining 1/logn
fraction of nodes ticks O(logn) times at most. Therefore in total O(n log logn) ticks will occur w.h.p.

For simplicity assume that a node only contacts a single other random partner per execution during the clustering

algorithm. Now fix some cluster of size log
c−1 n that started accepting followers again and consider the following

alternate process: Our system consists of O(n log logn) nodes, each sampling one random node upon each tick and if

this sample belongs to the cluster, they join the cluster without any additional delay. Observe that in this alternate

process the size of the cluster will always be larger than in the original one. In the original process, each node can only

join a cluster once, and communication delays need to be accounted for. We analyze the modified process as follows.

Assuming that the cluster has not reached size 2 log
c−1 n a node will join it part of its next execution with probability

p less than 2 log
c−1 n/n. Applying a Chernoff bound with p, we deduce that n

2
(1 − o(1)) many attempts of joining a

Positive Aging Admits Fast Asynchronous Plurality Consensus 39

Allow nodes to perform two-choices steps

Two-choices subphase

Initialize l.ticks, l.gensize = 0 and l.gen = i

Sleeping subphase

Propagation subphase

Deny both two-choices and propagation steps

Allow nodes to perform propagation steps

l.ticks reaches H(Ctc) · n′

l.ticks reaches H(Cslp) · n′

Keep allowing propagation steps

Initialize r1 = r2 = r′ = 0

r1 exceeds 0.8 · log2+ε n

Compute r′ = r2/r1

Preparation subphase

Main Routine of Leader l with n′ Followers

Set l.ticks = 0

Set l.ticks = 0

l.ticks reaches H(5C1) · n′

Repeat for generation i+ 1

Sampling Routine of l

r′ hits value 1

Initialize boolean variables l.flag, l.wakeup to false

l.w
a
k
e
u
p
b
ecom

es
tru

e

Follower Message Handler of l

l.ticks++

if increased to = l.gen then l.gensize++

if l3.flag = true and l3.gen = l.gen then r2 ++
r1 ++

if l3.gen = l.gen

0-signal arrives

State message arrives

Containing:
l3.gen, l3.mode, l3.flag, increased to

if l.gensize ≥ (1/2 + β)n′ set l.flag=true

if l.gensize ≥ (1/2 + β)n′

and l3.state = Propagation or Preparation
then l.wakeup = true

and l.mode = Propagation or Preparation
then l.flag = true

Set l.ticks = 0
Deny both two-choices and propagation steps

l.ticks reaches H(Cpre) · n′

Fig. 2. Routines executed by leader nodes throughout the consensus mode as well as the handlers for incoming messages of the
leaders followers.

cluster will not suffice to bring the cluster cardinality to 2 log
c−1 n. We deduce that more than

n
2
(1 − o(1)) attempts are

necessary to double the clusters size.

We repeat this approach for x =
O (n log logn)
(n/2)(1−o(1)) steps and deduce that no cluster will be of size larger than 2

x
log

c−1 n

at this point. Clearly this number is some value polylogarithmic in n. As the cluster size in this modified process serves

as an upper bound, we conclude the proof after applying union bounds over all n/polylogn many clusters. □

C.4 Extended Description of the Decentralized Protocol

In the following we extend the description of our algorithm in Section 3. The leaders and followers full procedures are

presented Figure 2 and Figure 3, respectively. We list all required parameters and constants to implement this algorithm

in a paragraph that follows later in this section.

The Leaders Routine. We start by discussing the leaders routine in Figure 2 and consider some fixed leader l . The

main and sampling routines operate passively and only act when information from the followers of l arrives. As usual,

upon each received 0-signal, the leader increments its counter l .ticks, causing the leader to eventually progress certain

40 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Establish communication channels to v1 v2 v3,
own leader l and l3 leader of v3

Check subphase of l3

l3 allows two-choices

Containing: l3.gen, l3.mode, l3.flag and increased to

l3 allows propagation

Propagation(v1, v2, l3)

Two-choices(v1, v2, l3)

Transfer State Message to l

l3 does not allow either

Initialize increased to = (-1)
Set increased to=v.gen if the node’s generation increased

Fig. 3. The main procedure of follower node v . Executed each time v ticks while no previous execution of the procedure is still
ongoing.

phases (e.g. from the two-choices to the sleeping phase) in case a certain threshold is surpassed. Additionally, another

type of message is sent by the followers. It encapsulates the state information of a randomly sampled leader l3 and

is sent by followers each time they establish a communication channel to such a leader l3 (remember, l3 is the leader

of a randomly sampled node v3). Furthermore, this message contains information whether the follower increased its

generation due to a two-choices or propagation step. This information is then used by the leader l to (i) track the

number of it’s followers that are of generation l .gen, (ii) eventually raise his l .flag (set it to true), in case l .gensize

surpasses half the amount of its total followers, (iii) wake up from the sleeping phase with the help of the l .wakeup bit

in case a message indicates that another leader l3 already passed the sleeping phase (iv) count the number of leaders l3

that have l3.flag raised, and (v) increase the value of l .gensize in case some of the leader’s followers promoted to

v .gen.

In the description of the consensus protocol in Section 3, we mentioned that a sampling mechanism is employed

to control when leaders enter the preparation phase. This is done to guarantee that no leader enters generation i + 1

before at least n/2 of all nodes belong to generation i . We may achieve this as follows: Throughout any generation

i , followers and leaders employ the sampling mechanism described in Appendix C.2 w.r.t. the property R(w) ⇔(the

leader l ′ ofw has its l ′.flag set to true and allows generation i). This samplings are implemented on the leaders end by

incrementing a variable r1 each time a State Message arrives. Only in case this message indicates that l3.flag is raised

and l3 allows generation i currently, the variable r2 is incremented as well. Hence r2/r1 contains the ratio of leaders that
were recently sampled and lead to R(w) being true. As required in Theorem 25 these samplings are performed in batches

of size 0.8 · log2+ε for some small constant ε > 0, and after each batch is completed the value r ′ = r2/r1 is evaluated. If
r ′ = 1 is observed for the first time , then Appendix C.2 guarantees that, indeed, globally a large fraction of nodes must

belong to generation i . At this point the leader switches from the propagation into the preparation sub-phase.

Positive Aging Admits Fast Asynchronous Plurality Consensus 41

The Followers Routine. Figure 3 depicts the procedure any follower v follows. Most important details were already

explained in Section 3 (e.g. how two-choices and propagation steps are to be performed). The only thing to note is

the State Message, which as already described above, contains information about the randomly sampled leader l3

as well as whether the node v itself increased its generation. It is important to note that, while not reflected in the

image, followers still sends 0-signals upon each tick, and only start an execution of the procedure in Figure 3 in case no

previous execution is currently still ongoing (just as ensured by Line 4 of Algorithm 1).

Required Variables, Parameters and Constants. In the following we present a list of the most important required

variables. We start with the variables needed for the followers routine.

• the current generation v .gen (initially 0) and color values v .col[·] just as in the centralized procedure (see

Algorithm 1) to be used throughout two-choices and propagation steps.

• an address of its own leader l

A leader node l requires the following state information. l set to its own address. However, it also provides followers

access to the following public variables

• l .gen, the currently highest allowed generation.

• l .gensize, the cardinality of the latest generation in the cluster

We note that leaders may also behave as regular follower nodes in addition to following the leaders routine. This

allows them to eventually take the initial majority color. However, we want to emphasize that when talking about l .gen

of a leader l , we always talk about the field containing the highest generation he allows. This fields has nothing to do

with the (different) field l .gen of the same name that is required for l to fulfill his duties as a follower.

Additionally, the following private variables are used by leader nodes throughout the procedure.

• n′ ∈ N, the precise cardinality of the cluster, initially set to 1,

• r1, r2, r
′ ∈ N, the variables used by the sampling gadget as described in Appendix C.2.

• boolean variable l .flag used to indicate that at least (1/2 + β)n′ followers of the cluster are of generation l .gen.
• boolean variable l .wakeup, indicating that the leader should skip the sleeping phase.

In order to properly execute the leaders routine, the following values, including H(·) and S(·) (see Lemma 16

and Corollary 3 for their definition), need to be known to the leader nodes. Note that all of them can be computed as

long as an estimate of n as well as the distributions for the waiting time and channel delays are known to the leader.

• C1 – the number of time steps in a time unit, see Appendix A.1.

• Cbr = Cpre + S(Cpre) = O(1) – upper bound on the number of time steps between the first and last cluster

allowing any fixed generation i .

• Ctc = Cbr +C1 = O(1) – the lower bound for the duration of the two-choices phase in time steps

• Cslp = S(Ctc) +Cbr = O(1) – the lower bound on the number of time steps required to move from start of the

sleeping phase to propagation

• Cpre = S(5C1) = O(1) – time required for any leader to count untilH(5 ·C1) · n′.
• β – an arbitrary constant 0 < β < 1/4, where (1/2 + β)n′ is the threshold of followers of generation i , necessary

for the leader to set its flag to true

• ε – an arbitrary constant larger 0 such that for the clustering constant c , it holds that c ≥ 4 + ε (see Theorem 26).

In other words, ε is chosen such that each (active) cluster is of size at least log
3+ε n w.h.p.

42 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

C.5 Analysis of the Algorithm

As mentioned in Section 3, we assume that before the start of the consensus algorithm all but n/polylogn of all nodes

lie in active clusters of size at least log
3+ε n for some constant ε > 0. Furthermore, we assume that the leaders of these

clusters start the consensus algorithm with a time difference of at most Cbr time steps, which can for example by

achieved by the Extended Clustering Algorithm described in Appendix C.3 (see Theorem 26).

Remark: During the following analysis we will neglect the existence of nodes in faulty clusters, i.e., in clusters that

remain inactive after the clustering procedure. As established in Theorem 26 at most a 1/polylogn fraction of them will

exists. If a node v contacts such a node as either v1,v2 or v3, it will not reply to consensus requests and instead start a

new execution upon its next tick. Remember, the node v will act in some time unit with probability at least 0.9. Above

scenario will prevent v from acting with probability at most O(1/polylogn). This way v will act during one time unit

with probability 0.9(1− o(1)). It is easy to see that this could be accounted for by elongating the length of a time unitC1

slightly. This illustrates that accounting for inactive nodes does not change the results of the analysis. For the sake of

easier readability we therefore assume that all nodes lie in active clusters. Additionally, in order to allow nodes in faulty

cluster to eventually reach consensus, they can for example periodically contact a random neighbor and adapt its color.

In the following, we will reuse the notation of the centralized algorithm, defined at the end of Appendix A.2. In the

context of multiple leaders, we will use ti to denote the point in time when generation i is allowed for the first time by

any leader. The remaining notation remains unchanged.

Dealing With Asynchrony. For any fixed generation, each cluster goes through the following (sub)phases (see Section 3

for a description): (1) the two-choices phase, (2) the sleeping phase, (3) the propagation phase, and (4) the preparation

phase. While the nodes may be highly dis-synchronized in a given time-step (a node may wait logn time units before

ticking), this is not the case for the leaders. Indeed, each leader is contacted whenever any of its (at least log
3+ε n)

followers ticks, and therefore we expect the leaders to be much better synchronized. This behavior is illustrated in

Figure 4. The time between the first and last leader allowing specific sub-phases of some generation i might differ by up

to O(1). However, among other properties, we will establish that all leaders allow two-choices steps for at least one

time unit simultaneously. Additionally, we want that the first leader and last leader enter every generation within a

time difference of at most Cbr time steps, no matter how many generations have already passed.

In what follows, we will fix some arbitrary generation i ≥ 1 and assume that leaders start allowing generation i

within a time difference of at most Cbr time steps. An important gadget to achieve some synchronicity among the

leaders are the counters l .ticks, each of which is used by a leader l to switch from the two-choices to the sleeping

phase, as well as from the sleeping to the propagation phase. Remember that we stated Lemma 16 and Corollary 3 such

that they are applicable for leaders with |U | > log
2+ε n followers (for some constant ε > 0). As in our case clusters are

size at least log
3+ε n, we are able to use these results to derive some statements about the global life-cycle of generation

i . We start by showing that our algorithm achieves the desired behavior of disjoint two-choices and propagation phases,

while allowing 1 time unit of simultaneous two-choices. A more precise formulation of the statement can be found in

the following proposition.

Positive Aging Admits Fast Asynchronous Plurality Consensus 43

TC Sleep Prop Prep TC

Cbr

. . . ZzZz . . .

. . . ZzZz . . .Last Leader

First Leader
t

Sleep Prop Prep TCTC

Generation i from ti to ti+1

Cbr

Fig. 4. Starting times of the subphases a leader allows throughout generation i . Color encoding corresponds to Figure 2. The colored
areas indicate whether the leader currently allows two-choice or propagation steps.

Proposition 28. Fix a generation i and consider the following statements regarding the flow of the leaders throughout its

life cycle. Under assumption that even the slowest leader allows generation i earlier than at time unit ti +Cbr /C1, it holds

w.h.p. that

(1) When the fastest leader starts sleeping, every cluster leader allowed two-choices to generation i for at least one

simultaneous time unit.

(2) The first leader does not wake up before every other leader started sleeping

(3) The slowest leader enters the propagation phase at most S(Cslp) = O(1) time steps after the leader who allowed

propagation first.

Proof. Corollary 3 is the main ingredient of this analysis. As every cluster is of size at least log
2+ε n, we can apply

its results. It states that, if a leader with n′ followers counts toH(L) ·n′ for L = Ω(1), at least L and at most S(L) = O(L)
time steps will pass. We will now start to proof the statements one after another.

(1) Remember thatCtc = Cbr +C1, therefore counting untilH(Ctc) is guaranteed to takeCbr +C1 time steps w.h.p.

From our assumption we know that all leaders start the two-choices phase within a difference of at most Cbr

time steps.

(2) Slow leaders finish the two-choices phase at mostCslp = Cbr +S(Ctc) time steps after generation i first appeared.

At this point in time, the fastest spent at most Cslp −C1 < Cslp sleeping w.h.p. As we require the leaders to

countH(Cslp) · n′ additional incoming ticks before leaving the sleeping phase, the result follows.

(3) The previous item implies that the last leader enters the propagation phase at most S(Cslp) time steps after the

fastest leader. Note that some leaders might even skip parts of the sleeping phase due to being woken up. This

only reduces this difference further. □

By Theorem 26 we already know that the leaders allow the first generation within a time difference of at most

Cl < Cbr = O(1) time steps. In the following we will show that the sampling gadget described in Appendix C.2 allows

to establish this property for any later generation as well. Note that this is also depicted in Figure 4: The first leader

starts the two-choices phase of some generation i at most Cbr /C1 time units before the last, which in turn results into

leaders allowing the two-choices phase of the next generation within a time difference less than Cbr /C1 time units.

We start by showing a statement that follows from the fact that a leader may only transition into the preparation

phase upon observing that every leader out of a sample of size 0.8 · log2+ε n has its flag set to true. Only clusters with at

44 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

least a (1/2 + β) fraction of followers at generation i set their flag. Therefore, globally, at least half of the nodes belong

to generation i when the first leader enters the preparation phase. We formalize this as follows.

Lemma 29. Let tf denote the time unit when the first leader allowed the preparation phase of generation i . Then, it holds

that tf > ti (1/2), and at tf at least (1 − ε ′)n nodes have leaders that set their flag to true w.h.p. Here ε ′ is an arbitrary

small constant with ε ′ < β .

Proof. In the following we employ the notation of Theorem 25. Let lf be the first leader to enter the preparation

phase at tf . To enter the preparation phase, it must have performed a sampling in which all involved followers observed

nodes w , s.t. R(w) ⇔ (w ′s leader has the flag set to true and allows generation i) holds. Let t∗ denote the time at

which rt ∗ ≥ (1 − ε ′) for any small constant β > ε ′ > 0. Consider some sampling starting at t ′ and ending at t ′′ with

t ′ ≤ t ′′ ≤ t∗. Clearly, for any t with t ′ ≤ t ≤ t ′′ it holds that rt ∈ [0, (1 − ε ′)]. Hence, according to Theorem 25, for

any result of such sampling it holds that r ′ < (1 − ε ′)(1 + o(1)) < 1. This implies that tf > t∗ w.h.p. In other words, at

least T > (1 − ε ′)n nodes have leaders which have their flag set to true at time tf (this implies that second statement of

the lemma). Let L be the set of clusters leaders that have their flag set to true at tf . Assume |Lj | for Lj ∈ L denotes the

size of the j-th such cluster. It follows that T =
∑
Lj ∈L |Lj |. Now, we know that in each cluster Lj at least |Lj |(1/2 + β)

nodes are of generation i , otherwise the leader of Lj would not have set its flag to true. As T > (1 − ε ′)n we have that∑
Lj ∈L
|Lj |(1/2 + β) > (1 − ε ′)(1/2 + β)n > (1/2)n

many nodes are of generation i at tf . □

Next, we make use of the fact that – as long as all leaders keep allowing propagation steps – the ratio of nodes of

generation i will quickly approach the global ratio. More specifically we will soon require the following statement in

our analysis.

Lemma 30. Let t ≥ ti (1/2) and assume that every leader currently allows propagation steps to nodes of generation i for at

least two more time units. Then, before time unit t + 2 each leader l has l .gensize > (1/2 + 1/4)n′ and it’s l .flag set to
true w.h.p.

Proof. Consider some node v of generation less than i at time t . With probability 0.9, it will perform a full

execution throughout the following time unit, and with probability at least (1 − 1/4) sample at least one node in

generation i . As every leader currently allows propagation, v will therefore join generation i with probability at least

0.9 · (1 − 1/4). In the worst-case it holds that дt (i) = 1/2. Even in this case a simple Chernoff bound application shows

that дt+1(i) > 1/2 + 0.8(1 − 1/4) > 1/2 + 1/4.
Now, consider the following time unit together with some fixed cluster C of size n′. At this point it holds that

дt+1(i) > 1/2 + 1/4. Hence any node in C that is not of generation i , will join generation i with probability at least

0.9 · (1 − 1/16). A simply Chernoff bounds application shows that even if C has no generation i nodes yet, in the

following time unit at least (1/2 + 1/4) · n′ of nodes in C ′ will be of generation i . □

Now, we again consider the time tf at which the first leader enters the preparation phase. We make use of the fact

that at time tf most leaders must allow propagation steps already. As stated in Lemma 29, most leaders must have

their flag set at tf . These leaders must have passed the sleeping phase already, as they cannot set their flag to true

otherwise. Nodes that encounter such a leader signal their own leaders to wake up in case they are still sleeping. Hence,

Positive Aging Admits Fast Asynchronous Plurality Consensus 45

any remaining sleeping leaders are woken up shortly after tf . The next statement guarantees that all the nodes enter

the preparation phase at roughly the same time, formalized as follows.

Lemma 31. Let tf denote the time unit when the first leader entered the preparation phase of generation i . Then, the

following statements hold w.h.p.

(1) Even the fastest leader does not stop allowing propagation steps before time tf + 5.

(2) At time unit tf + 3, every leader has its flag set to true.

(3) Every leader entered the preparation phase before time unit tf + 5.

Proof. The first statement follows from the fact that after entering the preparation phase, each leader with n′

followers needs to receiveH(5 ·C1) · n′ many 0-signals in order to stop allowing propagation steps.

Next, the second statement. We know according to Lemma 29 that after tf , at least (1 − ε ′)n of all nodes have leaders

that have set their flag to true. These leaders are already either in the propagation or preparation phase. Remember that

once a follower encounters such a leader, it will inform its own leader, waking it up in case it still is in the sleeping

phase. It is easy to see that during one time unit any such sleeping leader is woken up by some follower. Hence, w.h.p.,

at time tf + 1 every leader allows propagation steps. Observe that Item 1 guarantees two more time units of propagation

steps following tf + 1. Hence, Lemma 30 guarantees that each leader l has l .gensize > (1/2 + 1/4)n′ at time tf + 3 and

thereby also sets its flag.

Now for the final point. At tf + 3 every leader has the flag set to true. Therefore the next sampling performed by any

leader must yield r ′ = 1 and succeed. It takes at most 2 time units to perform such a sampling, as another currently

running sampling might need to be concluded first. Note that until this point no leader allows generation i + 1 yet (see

Item 1). That is, the flags have not been reset for the following generation. □

The following is mostly implied by above statements. We show that we indeed achieve that the leaders allow

generation i + 1 within a time frame of at most Cbr time steps of each other. Additionally, we state that the during the

two-choices phase of the following generation i + 1, no leader will allow propagation steps anymore.

Proposition 32. Assume that the leaders entered generation i within a time difference of at most Cbr time steps. Then,

the following statements hold w.h.p.

(1) The first leader enters the preparation phase at time tf where ti (1/2) < tf < ti (1/2) +O(1).
(2) All leaders entered the second half of the preparation phase (and thereby stopped allowing propagation steps) before

time ti+1
(3) The last leader allows generation i + 1 at most Cbr time steps after the first.

Proof. We start with the first statement. The lower bound was already established in Lemma 29. Assume that at

time ti (1/2) the first leader did not enter the preparation phase yet. We know by Proposition 28 that at most O(1) time

later, every leader must allow propagation steps. By Lemma 30 it follows that at ti (1/2) + 2 every leader set its flag to

true w.h.p. Therefore, after ti (1/2) + 2 every sampling performed by a leader causes it to enter the preparation phase

w.h.p.

Next, the second statement. We know by Item 3 of Lemma 31 that every leader entered the propagation phase

before time tf + 5. Each such leader countsH(5 ·C1) · n′ many 0-signals at which point it stops allowing propagation

steps, where n′ denotes the number of its followers. That is, at time tf + 5 + Cpre for Cpre = S(5 · C1), no leader

allows propagation steps anymore w.h.p. Observe that every leader – in particular also the leader that first entered the

46 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

preparation phase at tf – needs w.h.p. at least 5+Cpre time steps to count sufficient 0-signals to pass the second half of

the preparation phase. The result follows accordingly.

Finally, by Items 1 and 3 of Lemma 31 we know that every leader enters the preparation phase before the first leader

allows generation i + 1. Slow leaders require Cpre + S(Cpre) = Cbr time to count sufficient 0-signals for passing on to

generation i + 1. □

Carrying over the Synchronous Case Analysis. The results we just established, satisfy some important invariants

which allow us to use a similar analysis as in Section 2. Indeed, while the vertices may be far from synchronized, the

leaders behave quite synchronized in several aspects. In particular, for any fixed generation i:

• The leaders of all clusters will be allowing two-choices steps for at least one time unit at the same time.

• Throughout the time any leader allows two-choices steps to promote to generation i , no leader allows propagation

to generation i − 1 anymore.

• No node may be promoted to i as a result of two-choices after the first node has joined generation i through a

propagation step.

• Every leader allows promotions via propagation at most O(1) time units after the first leader does so.

• No leader will allow the next generation to be created before time ti (1/2).
• Leaders enters the following generation i + 1 within a time difference of at most Cbr time steps from each other.

We start by carrying over results considering the growth of some arbitrary generation i . At it’s core, this algorithm

mimics the behavior of the centralized one analyzed in Appendix B. It is important to emphasize that a nodev determines

whether two-choices or propagation steps are allowed by inquiring a leader l3 of a node v3 that is selected uniformly at

random – independently from the other two nodes v1 and v2. Therefore, this information does not depend on the state

of v1 or v2 but rather on the global ratio of nodes that have leaders allowing these steps.

We start with a result, which corresponds to Lemma 19 of the centralized case, implying that the color fraction in

generation i − 1 remain stable throughout the time frame [ti , ti + t ′]. As in this case, we consider a set of leaders, we

assume ti to be the time the first leader allowed generation i , and ti + t
′
the time when the last leader entered the

sleeping phase of generation i (and therefore stopped allowing two-choice steps).

Corollary 33. Consider some fixed generation i throughout [ti , ti + t ′] and define

Si−1, j (t) = {v | v has v .col[i − 1] = j at time t}.

Assume a node v of generation i − 1 finished establishing all required communication channels at t ∈ [ti , ti + t ′]. Then,

(1) v will promote to generation i and take color j if and only if both sampled nodes v1 and v2 lie in Si−1, j (t),
and the sampled leader l3 allows two-choices steps;

(2) ∀t ∈ [ti , ti + t ′] : Si−1, j (t) = Si−1, j (ti) and |Si−1, j (ti)|/n = c j,i−1(ti) · дi−1;
(3) Si−1, j (t) ∩ Si−1, j′(t) = ∅ for every pair of colors j, j ′ with j , j ′.

The above result follows as two-choices steps (on the followers end) are performed almost as in the centralized case

with the only difference being that l3 is consulted instead of the own leader. That is, it is still necessary for a nodes

to sample two nodes out of the set Si, j (t) to promote to generation i via two-choices. Additionally, Item 1, needs to

account for the fact that not all leaders allow two-choices steps in every time unit of [ti , ti + t ′]. Note that, in order

for Item 2 to hold, it is required that no node may promote to generation i − 1 via propagation steps anymore. This,

however, is guaranteed by Item 2 of Proposition 32.

Positive Aging Admits Fast Asynchronous Plurality Consensus 47

Similar as in the centralized case, we may use above result to deduce that, the next time a node v of generation

i − 1 finishes an execution, it will promote to generation i with probability pi−1 · д2i−1 · r
2

l3
(t). Here rl3 (t) denotes the

probability that the leader l3 allows two-choices steps at the time t where t denotes the time when v has all its required

communication channels established. Additionally, if v promotes to i in [ti , ti + t ′] it will still join color fixed color j

with probability exactly c j,i (ti)/pi−1.
Now, observe that pi−1 · д2i−1 · r

2

l3
(t) = pi−1 · д2i−1 = Ω(pi−1), in case all leaders currently allow two-choices steps.

By Item 1 of Proposition 28 there indeed exists t̃ , t̃ ′ ∈ [ti , ti + t ′] such that t̃ = t̃ ′ − 1 and in [t̃ , t̃ ′] every leader allows

two-choice steps. Using above notion, this implies that rl3 (t) = 1 for t ∈ [t̃ , t̃ ′]. By our definition of a time unit, each

node of generation i − 1 before time t̃ will join i before time t̃ ′ with probability at least 0.9 · Ω(pi−1). Hence, the proof
of the centralized case (which also considered only 1 time unit of two-choices steps) can easily be adapted to yield.

Corollary 34. Fix some generation i and assume that дi−1 ≥ 1/2. Let ti + t ′ denote the time at which the last enters the

sleeping phase of generation i . Then, дi (ti + t ′) ≥ pi−1/5 w.h.p.

Now, consider the time tw at which the first leader concluded the sleeping phase of generation i . As the leaders enter

generation i with difference at most Cbr = O(1), and count signals to approximate constant time frames, it follows

that tw − (ti + t ′) = O(1). Furthermore, by Item 3 of Proposition 28 we have that even the slowest leaders will start

allowing propagation steps at most O(1) time later. As no leader enters preparation phase before ti (1/2) (see Item 1 of

Proposition 32), it follows that in [tw +O(1) , ti (1/2)] all nodes allow propagation steps and generation i will be spread

quickly along the lines of pull gossiping (just as in the centralized case). Therefore, the following result can easily be

achieved.

Corollary 35. Fix some generation i . Then, ti (1/2) < ti +O(log(1/pi−1)) w.h.p.

Item 1 of Proposition 32 implies that shortly after ti (1/2), the first leader enters the preparation phase. After O(1)
time it will have counted sufficient 0-signals to switch to generation i + 1. It follows that ti+1 < ti +O(log(1/pi−1)),
which is a similar result as the one in Corollary 18 w.r.t. the centralized procedure

When it comes to the concentration of color fractions, we start by arguing that Lemma 6 of the synchronous case is

also applicable in this case. We already established in Corollary 33 that each time a node in the time frame [ti , ti + t ′]
is promoted to i , (i) it does so via a two-choice step, and (ii) it takes color j with probability c2j,i−1/pi−1, independent
from the actions of other nodes throughout this time frame. This, together with Corollary 34, are the main ingredients

required in the proof of Lemma 6, which therefore also applies in this setting.

Corollary 36 (Time ti → ti + t
′
.). Let a and b be the largest and second largest opinion in generation i − 1 at time ti and

assume that bi−1 ≫ 1/
√
n. If ti + t ′ corresponds to the time when the first leader enters the propagation phase, then it holds

w.h.p. that

ai (ti + t ′) =
(ai−1)2
pi−1

(
1 ± 1

ai−1

√
logn

n

)
, and

bi (ti + t ′) =
(bi−1)2
pi−1

(
1 ± 1

bi−1

√
logn

n

)
.

Throughout the remaining time frame [ti + t ′, ti+1] of generation i , leaders will no longer allow two-choice steps.

Consider the ordered points in time t(1), t(2), ... ∈ [ti + t ′, ti+1] at each of which some node (i) arrived from generation

i − 1, then (ii) sampled a node v1 or v2 of generation i , and (iii) sampled a node v3 that has a leader l3 allowing

48 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

propagation steps. Each such step leads to an increase in the number of nodes of generation i . As each node samples v1

and v2 u.a.r. and independently from v3 (see Section 3.1), it follows that such a node will join color j with probability

proportional to its current support in generation i . In other words, the sequence of color fractions at the points in time at

which nodes join generation i still follows a martingale. Just as explained in Section 2.2, it can be shown – with the help

of a Pólya-Eggenberger distribution – that the color fractions remain concentrated throughout the propagation phase

of generation i . At this point it is important that the sleeping phase guarantees that no nodes promote via two-choices

in this time frame (otherwise they would interfere with the above martingale). This desired property is established

in Item 2 of Proposition 28. There is one subtle difference: in the centralized case we could guarantee that the length

of the corresponding Pólya-Eggenberger process (as well as the length of the martingale) is exactly n/2 − n · дi−1(ti),
however, by Item 1 of Proposition 32 we can only say that the length will be at least as much as above value w.h.p. We

note that the proof of Lemma 7 can be easily adapted and this does not have any effects on our results.

As Lemma 7 and Lemma 21 only rely on the possibility of modeling c j,i with the help of above Pólya-Eggenberger

process and Corollary 36, we can apply their results also in the decentralized case.

This, combined with the concentration result Corollary 36 implies that Corollary 20 and Lemma 8 hold in this case

as well, allowing us to expresses how the bias evolves over multiple generations. Summarizing, we can therefore say

the following

Corollary 37. Consider an initial bias of α0 > 1 + 1

b0
· logn√

n
. Then, w.h.p.,

(1) after at most ⌈log
1.5 logα k⌉ generations the bias will exceed k , and

(2) generation ⌈log
1.5 logα n⌉ + 2 will be monochromatic.

We conclude the analysis of this section with the following statement, which gives us a similar result as Lemma 22

in the analysis of the centralized protocol.

Lemma 38. At mostO(log logn) time units after the first monochromatic generation is reached, all but an 1− 1/polylogn
fraction of nodes will be of the same color w.h.p. Additionally, after furtherO(logn) time units, every node will be of color i .

Proof. Let i∗ be the first such monochromatic generation. Consider some fixed generation i > i∗. Clearly this

generation i is monochromatic as well. After Corollary 35 we established, that ti+1 − ti = O(log(1/pi−1)) = O(1). If
we denote by tf the time at which the first leader entered the preparation phase of generation i , then it follows by

Lemma 31 that in the time frame [tf + 3, tf + 5], every leader allows propagation to generation i . Fix now some node v

that is of generation less than i∗. Such a node will propagate to i with at least constant probability during the time frame

[tf + 3, tf + 5], as Corollary 34 guarantees that with probability Ω(1) a node of generation i is sampled throughout

this time frame. Hence Θ(log logn) generations following i∗, the node v will remain in a generation less than i∗ with

probability at most 1/polylogn. And, after O(logn) further generations, no node will be of generation less than i∗,

which in turn implies that all nodes share the same color. □

Putting everything together, we have that – (i) the number of required generations to reach a monochromatic

generation, (ii) the duration of each generation, and (iii) the time required to spread the majority color after the first

monochromatic generation is reached – follow (asymptotically) the same bounds as in the centralized case. Therefore,

we conclude the proof of Theorem 9.

Positive Aging Admits Fast Asynchronous Plurality Consensus 49

D ANALYSIS OF THE ACCELERATED CONSENSUS PROTOCOL

In the following section we present a modification of the decentralized protocol given in Section 3. We call the resulting

algorithm the Accelerated Consensus Protocol and assume that the waiting time and channel delay follow distributions

that are q-dense for some constant q > 0 (see Property 2). This allows us to achieve faster partial consensus than any

plurality consensus protocol operating in the classical synchronous model, for large ranges of k and initial bias α , as

long as the maximum congestion lies in O(polylogn).

D.1 The Accelerated Consensus Protocol

The Accelerated Consensus Protocol can be described as follows. In the first step the Extended Clustering algorithm (see

Appendix C.1) is employed as in the decentralized procedure to partition the nodes into clusters of size polylogn 4
. Next,

a modified version of the decentralized consensus protocol described in Section 3.1 is executed. We will now list the

required modifications. After the leader election is complete, follower nodes discard their generation and color values.

Only the cluster leaders l keep their initial color value and store it in l .cluster_col[0]. Here l .cluster_col is an array

used to store color values (just as u .col in Algorithm 1). Additionally, l is equipped with a variable l .cluster_gen

which is initially set to 0. Conceptually, this two new fields should be seen as shared memory that is accessible by

the followers of l . That is, each time a follower v of l attempts a two-choices or propagation step, it does so based on

l .cluster_gen and l .cluster_col instead of consulting its own v .gen and u .col variables.

Similarly, each time a follower v would read the color and generation of the two sampled nodes v1 and v2 as part

of the decentralized protocol (see description in Section 3), it reads l1.cluster_gen and l1.cluster_col as well as

l2.cluster_gen and l2.cluster_col instead. Here l1 and l2 denote the leaders of v1 and v2 respectively. In order to

make this possible, we assume that follower nodes inquire the addresses of l1 and l2 and also opens communication

channels to these leader nodes.

In some sense, this causes only the leaders to increase in generation and change their colors, with followers acting as

relays to facilitate communication between the leaders. Additionally, all followers in a cluster share the generation and

color information stored at their leaders. This way, a successful propagation or two-choices step performed through

one single follower suffices to modify the generation and/or color values of a whole cluster.

Note that the leaders still possess their leadership variables and flags as described in Appendix C.4 and progress

through the leaders procedure described in Section 3.1 as usual. The only exception concerns the variable l .gensize,

which is now set to n′ as soon as the cluster of l increases its generation to l .gen (remember n′ denotes the cluster’s

size and l .gensize denotes the number of nodes of the current generation in the leaders clusters). This reflects the fact

that the whole cluster increases its generation at the same time.

Intuitively, this approach solves the plurality consensus problem among leader nodes, where nodes "help" their

leaders to reach said consensus at an accelerated rate. Remember, a key property used in the previous analysis was

that the nodes v1 and v2 are sampled u.a.r. when reading their values of gen and col. Therefore, we need to make sure

that l1 and l2 appear to be sampled u.a.r as well. However, this would only be the case whenever all the clusters are of

equal size. As this is not guaranteed, we need to implement another modification. Each time some follower v requests

information stored in li .cluster_col and li .cluster_gen fields of some leader li with i ∈ {1, 2}, then li sends with

probability 1 − logc−1 n/n′ the values li .cluster_gen = −1 and li .cluster_col[i ′] = NIL (for any i ′ > 0) instead of

its real values. Remember, log
c−1 n is a lower bound of the clusters size, where the constant c can be controlled by the

4
The clustering algorithm (Theorem 26), needs to be configured to yield clusters of size at least log

c−1 n, for constant c − 1 ≥ 8q + 4 .

50 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

clustering algorithm, and n′ denotes the cluster size of li . This way, the probability that some leader is contacted as li

for i ∈ {1, 2} and provides some information that does not immediately lead to a failed two-choices or propagation step,

is the same for every leader.

In order to allow for all nodes to eventually reach consensus (not only the leaders), we assume that followers

periodically copy the color values that is stored at their leader. This way, followers reach consensus shortly after their

leaders.

Enabling Acceleration. To achieve an improvement upon the algorithm in Section 3 we require an additional property.

Remember that each time a follower ticks, it appears as if the leaders performed an action according to the follower

routine described in Section 3.1. Hence, we want to guarantee that the time between these actions lies in o(1), which
would imply that the leader acts multiple time per time unit. In the following we assume that the distributions T0,Tℓ
and Tf fulfill Property 2 for some constant q > 0. In other words, T0,Tℓ and Tf are q-dense.

While this property might seem artificial at first glance, it is indeed fulfilled by most of the distributions, which are

used to model waiting times. Most notably the following holds for exponentially distributed waiting times.

Example 2. Let X ∼ Exp(1). Then, it holds for x ≤ 1 that

P(X < x) ≥ 0.6 · x .

Furthermore, Exp(1) is (1 + ε)-dense for any arbitrary constant ε > 0.

Proof. For 0 ≤ x ≤ 1 and q ≥ −1 we have (1 + q)x ≤ 1 + qx per Bernoulli’s inequality. Setting q = −(e − 1)/e , we
get that e−x ≤ 1 − e−1

e x < 1 − 0.6 · x . Now, consider some X ∼ Exp(1). Then,

P(X < x) = 1 − e−x ≥ 1 − (1 − 0.6x) = 0.6x .

Note that 0.6x > x (1+ε) holds for every constant ε > 0 as long as we consider small enough values of x . More precisely

for 0 ≤ x ≤ t(ε) where t(ε) = 0.61/ε is a constant that depends on ε . This implies that Exp(1) is (1 + ε)-dense for any
ε > 0. □

Using the q-density property we now deduce that within a time frame of O(1/logn) every leader will have at least

one follower that manages to open all necessary communication channels as long as the Extended Clustering Algorithm

(see Appendix C.3) was configured to partition the nodes into clusters of size at least 8q + 3.

Lemma 39. Assume that Property 2 holds for T0,Tℓ and Tf . Fix an arbitrary leader l of size at least log8q+3 n and at time

t . Then, independent of events prior to t the following statements hold w.h.p. :

(1) in the time frame [t , t +O(1/logn)] some follower of l has its communication channels established and observes

that l1.cluster_gen, l2.cluster_gen ≥ 0, and

(2) if the event in Item 1 occurs, then the leaders l1 and l2 appear to be sampled uniformly at random.

Proof. Fix some follower nodev at time t . To tick the next time, it needs to pass at most 8 waiting times. Specifically,

it might need to tick and then contact l ,v1,v2,v3, l1, l2 and l3. By the q-dense property (set s = 1/logn) and positive

aging, it follows that, with probability 1/log8q n, v will have all its channels opened within 8/logn time steps. Now

consider qi with i ∈ {1, 2} denoting the probability that the channel to li has been accepted, i.e , the probability that li

answers with li .gen = −1. The node v will hit a fixed cluster of size n′ and be accepted by its leader li with probability

Positive Aging Admits Fast Asynchronous Plurality Consensus 51

exactly

log
c−1 n
n′

· n
′

n
=

log
c−1 n
n

.

As this probability is the same for every cluster, the second statement follows. After the extended clustering algorithm

(see Theorem 26) at least (n/logc n)(1− o(1)) active leaders of size at least n/logc−1 exist w.h.p. Therefore, we can easily

lower bound qi by
n

log
c n
(1 − o(1)) · log

c−1

n
=

1

logn
(1 − o(1)).

As the leaders li for i ∈ {1, 2} result from independent samplings, it follows that with probability q > 1/log2 n · (1−o(1))
both of the leaders answer with gen ≥ 0

Combining our results we have that with probability at least 1/log8q+2 n · (1 − o(1)), a fixed follower opens channels

to all partners without receiving gen = −1 after O(1/logn) time. In case a cluster contains at least log
c−1 n many

followers with constant c − 1 > 8q + 3, it follows that such a cluster will have at least one follower throughout every

time frame of length O(1/logn) w.h.p. □

D.2 Analysis of the Accelerated Consensus Protocol

The correctness of this algorithm follows largely from the analysis of the decentralized consensus protocol in Ap-

pendix C.5. In the following, we say that a cluster is of generation i or color j, if the leader l of the cluster has

l .cluster_gen = i and l .cluster_col[l .gen] = j.

Generation Lifecycle In the following we will examine how the set of leaders progresses a fixed generation i as part

of their leaders routine. Luckily, most results can be carried over from the decentralized analysis. Leaders pass most of

the sub-phases by counting 0-signals of its followers until a certain threshold is reached (see Figure 2 on page 39). Note

that this mechanism remains completely unchanged in the Accelerated Protocol. This allows us to carry over multiple

results of the decentralized analysis such as Proposition 28.

Additionally, the switch from the propagation into the preparation phase is still made by estimating whether

0.8 log2+ε n sampled leaders have their flag set to true. In the Accelerated Protocol, a leader only sets this flag in case

it’s cluster reaches generation i . Hence, Theorem 25 of the sampling analysis section, indicates that no leader enters

the preparation phase before at least a (1 − ε ′) fraction, for any small constant ε ′ > 0, of all nodes have clusters of

generation i . Using the notation we employed in the analysis of the decentralized case, this means for the time tf at

which the first leader enters the preparation phase, that tf > ti (1 − ε ′). This guarantee is stronger than the one we

could make in the decentralized case, where we only stated tf > ti (1/2) (see Lemma 29). Furthermore, it is easy to see

that once ti (1) is reached, every leader will have set its flag only O(1) time later. The main benefit of the Accelerated

Consensus Protocol is the speed in which this time ti (1) can be reached.

Lemma 40. Consider some fixed generation i . Assume that all leaders allow generation i before ti +Cbr . Then, it holds

that tf > ti (1/2) and tf − ti = O(1) w.h.p.

Proof. In the paragraph above the lemma we already established that the first statement holds. Hence, we start

with the second statement. As Item 1 of Proposition 28 still holds, each leader will allow one time unit of two-choices

simultaneously. Due to the acceleration described in Lemma 39, every cluster appears if having attempted Ω(logn)
two-choices steps throughout this time unit. For the purpose of this lemma, it is enough to state that at least one cluster

will promote to generation i during the two-choices phase, which easily holds w.h.p. Due to the counting of 0-signals,

every leader will allow propagation steps before time t ′′ = ti +O(1) w.h.p. Assume tf > t ′′. As each leader allows

52 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

propagation steps at t ′′, it is easy that at time t ′′ +O(1), all clusters are of generation i , and therefore have set their

flag. This follows as generation i can be seen as being spread between clusters along the lines of pull broadcasting at an

Ω(logn) accelerated rate. Further 2 time units after ti (1) is reached, every leader has performed a successful sampling

and enters the preparation phase w.h.p. □

Also, note that ti (1)−ti (1/2) = o(1) in case every leader currently allows propagation steps. This is because generation
i is spread among clusters via pull broadcasting at an Ω(logn) accelerated rate. Soon after ti (1) is reached, every leader

must have entered the propagation phase (every sampling will succeed) and all leaders will enter the preparation phase

within a time difference of O(1) w.h.p. All above statements allow the results of Lemma 31 and Proposition 32 to be

established also in case of this Accelerated Consensus Protocol.

Concentration of Colors. In the following we consider c j,i (t) , дi (t),pi (t) and αi (t) as well as ti (γ) to be defined w.r.t.

the generation and color of clusters instead of individual nodes. For example, c j,i (t) denotes the fraction of clusters at

generation i and time t that are of color j.

Throughout the previous paragraph –just as in the decentralized case analysis– we established the following two

crucial properties: (i) all leaders allow two-choices steps for at least 1 simultaneous time unit, and (ii) after the two-

choices phase, propagation steps will be performed until ti (1), and (iii) the following generation begins shortly after

and leaders enter this generation withing a time difference of O(1). Also in this accelerated scenario leaders behave

synchronous enough to guarantee that two-choices and propagation steps never overlap w.h.p. Note, that for the

two-choices and propagation steps in (i) and (ii), Item 2 of Lemma 39 is important. It guarantees that clusters appear to

be performing two-choices and propagation steps based on the color and generation of randomly sampled clusters.

Just as in the decentralized analysis in Appendix C.5, the above statements allow us to reuse multiple analysis results

of the centralized case. In the centralized case, one time unit of two-choices was already enough to create a sufficient

foundation of nodes of generation i before the start of propagation steps. However, in case of the Accelerated Consensus

Protocol, clusters appear to attempt Ω(logn) two-choices attempts throughout this time frame (see Item 1 of Lemma 39).

Therefore, it is easy to see that Proposition 4 can be carried over, when denoting by ti + t
′
the time at which even the

last leader stops allowing promotion via two-choices steps to generation i .

Furthermore, the proof of Lemma 6 only depends on Proposition 4 together with the fact that two-choices steps are

performed w.r.t. randomly sampled partners. Similar, throughout the time frame [ti + t ′, ti+1] when only propagation

steps are allowed by any leader, the clusters joining generation i and some fixed color j can again be modeled with

the help of a Pólya-Eggenberger distribution. This allows all concentration results to be carried over (most notably

Lemmas 7 and 8), and thereby guarantees that the bias indeed roughly squares with every further generation and w.h.p.

There remains one thing to check. Remember that the above mentioned concentration results require an initial

absolute bias of

√
n logn in favor of the majority opinion. However, this accelerated approach only operates on the set

of colors initially assigned to leaders. To guarantee a bias of at least

√
n logn among clusters, we need a slightly larger

initial bias. We use the fact that the set of elected leaders can be seen as a uniform sample of size n/polylogn drawn out

of all nodes. Note that the constant c in the following result denotes the clustering constant.

Lemma 41. Let A and α denote the initial absolute and relative bias of colors among all nodes, respectively. Similar, let A′

and α ′ be the initial biases when only considering the colors of active leaders. Then, if A > 2 ·
√
n logc/2+1 n and k ≪

√
n it

holds that

(1) log logα ′m = max{O(log logn),O(log logα n)}

Positive Aging Admits Fast Asynchronous Plurality Consensus 53

(2) A′ >
√
m logm, wherem denotes the number of active leaders

(3) k ≪
√
m

Proof. Nodes become leaders by successfully flipping a biased coin. Hence, it follows that the color distribution of

them ≥ (n/logc n)(1 − o(1)) active leaders (see Theorem 26 for a bound on the number of leaders) can be modeled by a

uniform sampling without replacement out of the global color distribution.

Assume a and b are the initially largest and second largest opinion. Let B′ denote the initial absolute number of

leaders with color b. Observe that B′ follows a hypergeometric distribution. That is, to determine B′ we drawm balls

out of n total balls of which b0 · n are colored black, and ask the question how many of the drawn balls are black. The

corresponding distribution follows the negative association property [36], which according to Theorem 3.1 of [27] allows

us to bound B′ via Chernoff bounds on Bin(m,b0). More specifically for b ′
0
:= B′/m, it holds that

b ′
0
≍ Bin(m,b0)

m

w.h.p.

= b0 ·
(
1 ± C ′
√
b0
· log

c/2 n
√
n

)
(5)

where C ′ is a large enough constant, and assuming that b0 ≫ 1/n. In case b0 ∼ 1/n or even b0 ≪ 1/n (which implies

a0 = 1 − o(1)) it is easy to see that log logα ′m = O(log logn). Now, if b0 ≫ 1/n, we repeat above approach to derive the

color fraction a′
0
. Then, we apply union bounds, and argue that all colors besides a′ also adhere to the upper bound on

b ′
0
in (5). This in turn implies for the bias of colors among leaders α ′ that

α ′ > α ·
(
1 − 3C ′
√
b0
· log

c/2 n
√
n

)
>

(
1 +

2

b0

log
c/2+1 n
√
n

)
·
(
1 − 3C ′
√
b0
· log

c/2 n
√
n

)
, (6)

where we assumed in the second step that the initial bias A > 2

√
n logc/2+1 n. Since b0 <

√
b0 and log

c/2+1 n > log
c/2 n

it is easy to see that the rightmost term is dominated by α , even if α is chosen to correspond to the smallest initially

allowed bias. Therefore, log logα ′m = O(log logα m) = O(log logα n) follows accordingly.
The second statement follows from the fact that n =m log

c n(1 ± o(1)) w.h.p. In case of b0 ∼ 1/n or even b0 ≪ 1/n it

follows that α = 1 − o(1) and the statement easily follows by a Chernoff bound application. If b0 ≫ 1/n we have that

b ′
0
= b0(1 ± o(1)) w.h.p. and, using the two rightmost factors in (6), we get

α ′ >
(
1 +

1

b ′
0

logm
√
m

)
.

The term on the right hand side implies that A′ >
√
m logm, which concludes the proof. The final statement follows

immediately as n ∼m. □

By Lemma 8 we have that after O(log logα ′m) generations, the first monochromatic generation is reached. The first

item of Lemma 41 guarantees that this time lies in O(log logα n + log logn) = O(log logα k + log logn) as desired. It is
easy to see, that in the two-choices phase of the following generation, every cluster will take this majority color value.

After further O(log logn) time partial consensus among all nodes is reached, as followers periodically copy the color

values of their clusters. The result of Theorem 11 follows.

54 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

E EXTENDING OUR PROTOCOLS

E.1 Extension 1: Termination

While our previous algorithms guaranteed fast partial and complete consensus, the nodes themselves are unaware

of the fact that consensus has been reached. That is, nodes do not know when they are done with the protocol and

may consider their current color value as the final result. In the following we present an extension to our algorithm,

circumventing this problem.

Centralized Algorithm. We start by considering the following modification of the centralized algorithm in Section 2.

To allow proper termination, we extend each node (including the base station) with two additional state variables

terminated and final_color. The idea is that as soon as terminated is set to true, the nodes may consider the color

stored in final_color as result of the consensus algorithm.

Additionally, we employ a counter t ′ and variable c on the leaders end, initiated to 0 and null at the start of each

generation. Each time a follower increases its generation, it also notifies the base station with its color (e.g. by appending

v .col[v .gen] to the notification in Lines 10 and 13 of Algorithm 1). If the base station ℓ receives such a notification

while ℓ.gensize = 0, then it sets c to the color value contained in this notification. Throughout the two-choices phase

(i.e while l .mode = TC on the leaders end), the leader counts in t ′ the number of followers that joined the current

generation and are of color c .

As soon as the condition in Line 4 of Algorithm 2 is fulfilled, and the leader stops allowing promotion via two-choices,

it checks whether t ′ = ℓ.gensize. If this is the case, all nodes in the current generation must have taken the color

stored in c . The leader may now set final_color to c , and terminated to true.

On the followers end, we assume that they read the terminated bit and the final_color variable of their leader

each time they establish communication channels. For example just after Line 6 in Algorithm 1. As soon as a follower v

witnesses that the leader set terminated to true, v sets its own terminated variable to true, and copies the leader’s

value of final_color into its own respective variable. From this point on v does no longer need to actively execute

Algorithm 1, and v can consider the color in final_color as the result of the consensus protocol.

Proposition 42. The results of Theorem 2 still hold after performing above modifications to the centralized algorithm.

Furthermore, after O
(
log logα k · logk + log logn

)
time, all but n/polylogn nodes have final_color set to a, and after

further O(logn) steps every node has set final_color to a w.h.p. Here a denotes the initial plurality opinion.

Proof. Clearly, the leaders terminated flag will be set exactly when the first monochromatic generation i∗ is

reached. In Appendix B we established that this takes at most O
(
log logα k · logk + log logn

)
time. From this point on,

every node will pull the terminated flag together with final_color upon the next time it contacts the leader, and the

result follows. □

Decentralized Case. A termination mechanism employed in the decentralized algorithm follows a similar idea. That

is, nodes and leader also employ the terminated and final_color variables. However, it is not enough that one

cluster leader observes that all his followers belong to the same color after the two-choices phase, as this might not be

discovered by all leaders in the same generation. Instead, we employ another instance of the sampling gadget, described

in Appendix C.2 into our algorithm.

Throughout the execution of the consensus protocol, the leaders perform consecutive samplings R(w) ⇔ (w is

currently of color j). These samplings are performed one after another, until a fraction r ′ > (1 − 1/logn) of received

Positive Aging Admits Fast Asynchronous Plurality Consensus 55

samples confirm that R(w) is indeed true. The idea is that if this sampling succeeds, then j is the majority color w.h.p.

Observe that the color j needs to be specified for such a sampling to be properly defined, as otherwise the leader would

require Ω(k · log logn) bits to maintain samplings w.r.t. all colors simultaneously. As explained in Appendix C.2, the

leader may evaluate R(w) on its end. That is, the followers will instead of sending the evaluated R(w), send the color of

w to the leader (e.g as part of the State Message in Figure 3). At the start of each sampling process, the leader sets j to

the first color it received by some of its followers.

Upon performing a successful sampling, the leader sets final_color to j , and stops evaluating further samples. The

leader (of size n′) now counts 0-signals until in total Θ(log logn) · n′ of them have been received
5
. Then, it sets the

terminated flag to true, and stops following the consensus protocol in Section 3.1 actively. From this point on the

leader only needs to let nodes read its values of terminated and final_color.

Followers encountering a leader (the leader l3 of v3 or their own leader, see Figure 3) or any other node with

terminated set to true, adopt the values of terminated and final_color. In sequel such nodes may stop following

the consensus protocol actively, and only need to keep letting other nodes read their terminated and final_color

fields.

Additionally we make a modification similar to the mechanism of weaking up leaders from the sleeping phase,

described in Section 3.1. Each time a follower node observes a terminated flag of some leader to be true, it informs its

own leader of this fact together with the observed value of final_color. This leader then also sets its terminated to

true and sets final_color to the received color, if it has not set final_color any time earlier.

Proposition 43. The results of Theorem 2 still hold after performing above modifications to the decentralized algorithm.

Furthermore, after O
(
log logα k · logk + log logn

)
time, all but n/polylogn nodes have final_color set to a, and after

further O(logn) steps every node has set final_color to a w.h.p. Here a denotes the initial plurality opinion.

Proof. Along the lines of Theorem 25 it is easy to see that no leader will set its terminated flag to true before a

1 − 2/logn fraction of nodes belong to the same color globally. Let now i ′ denote the currently allowed generation at

the point in time tf – the point in time when the first leader performed a successful sampling. Similar let tℓ denote the

time at which at least (1 − 1/logn) of all leaders managed to perform such a successful sampling.

As established above, it holds w.h.p. that almost every node is of color a. Therefore, globally, color a is polylogn

times more dominant than any other color. Without giving a detailed proof, it is easy to see that this must also hold for

the currently highest generation i ′, i.e., αi′ > polylogn. According to Lemma 8, which also holds in the decentralized

case, the bias is roughly squared with each subsequent generation. Along the lines of Corollary 20 and Lemma 21,

this implies that a monochromatic generation is reached after log logn + 2 further generations. As ai′ = (1 − o(1)),
each of these generations takes O(1) time at most. A similar argument as in the proof of Lemma 38 shows that after

O(log logn) further steps, at least a (1 − 1/(2 logn)) fraction of nodes will be of a color a. At this point, every leader

will perform a successful sampling. It can be shown that the time required for this whole process can be bounded by

Cterm = 3 log logn · (Cbr + S(Ctc) + S(Cslp) + S(5C1) + S(Cpre) + 10 ·C1) = O(log logn) time steps w.h.p.

As leaders are required to count toH(Cterm) before setting the terminated flag, every leader is able to perform a

successful sampling before any leader stops following the consensus protocol. Hence,Cterm +S(Cterm) = O(log logn)
time following tf , every leader will have set the terminated flag. This leads to final_color being set at a (1−1/polylog)
fraction and all nodes after O(log logn) and O(logn) further time, respectively. □

5
the exact counting threshold of H(Cterm) · n′ is given in the proof of Proposition 43

56 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

E.2 Extension 2: Poisson Clocks and the Accelerated Consensus Protocol

Throughout the analysis of the Accelerated Consensus Protocol in Appendix D.2 we established that the q-dense

property together with the fact that followers act as relays to feed information to their leaders allowed us to speed-up

the propagation phase by a factor of Ω(logn). In the following we will expand upon this idea and show that also other

parts of the protocol can be improved. For now, we will focus on the consensus part of the protocol. That is, we assume

that nodes follow the Accelerated Consensus Protocol and already lie in clusters of sufficient polylogarithmic size.

For further simplification, assume that communication channels are opened instantly and the ticking time of nodes

follows Exp(1). As illustrated part of an example (see Example 2 on page 50) this distribution is (1 + ε)-dense for any
constant ε > 0, and in particular for X ∼ Exp(1) it holds that P(X < 1/log2 n) > 0.6/log2 n. This way, a large enough
polylogarithmic cluster size implies the following observations.

(1) As communication takes no time, it follows that throughout any 1/log2 n time frame each cluster has a follower

that ticks and opens all communication channels w.h.p.

(2) In case all leaders currently allow propagation to generation i , the spreading of generation i can be seen as pull

gossiping at an 1/log2 n accelerated rate.

(3) If two-choices steps are allowed for at least 1/log2 n time steps simultaneously by all leaders then every cluster

has at least one follower that performs a two-choices step for its cluster.

(4) Leaders can employ the Sampling Gadget which yields a full sampling after at most 1/log2 n time (i.e. the time

t ′′ − t ′ in Theorem 25 may be bounded by O(1/log2 n))

We note that all the above can also be achieved even when accounting for channel opening delays under the

assumption that all waiting time distributions are q-dense and follow the positive aging property. This makes it seem as

if the time between two generations ti+1 − ti could be reduced to length O(1/logn) = o(1) and raises the question why

we only sped-up the propagation as part of the Accelerated Consensus Protocol. The reason for this is that the counting

of 0-signals performed by the leaders (see Figure 2 on 39) only allows us to accurately approximate time frames that are

of at least constant length (see Corollary 3). This is mostly due to the following two reasons: (i) considering a time

interval [t , t + L] of length L, there may be many 0-signals arriving that were sent before time t , and (ii) the q-dense

property alone does not exclude the possibility of multiple nodes ticking at roughly the same time, causing the leader to

be flooded with 0-signals in the aforementioned interval. However, making use of instant communication as well as the

memoryless property of the exponential distribution, we can overcome these two challenges and show the following.

Lemma 44. Assume that all nodes are equipped with Poisson clocks with rate λ = 1 and that the establishment of

communication channels takes no time. If a leader with |U | > log
3+ε n followers (for some arbitrary constant ε > 0)

starts counting incoming 0-signals at time step t , then the counter will reach valueW := 2|U |/log2 n in the time interval

[t + 1

log
2 n
, t + 4

log
2 n
] w.h.p.

Proof. We start by showing that in the 4/log2 n time steps following t , at least 2|U |/log2 n many 0-signals are

received by the leader. Let the r.v. X (v) denote whether the first tick of some node v following time t lands in

the interval [t , t + 4/logn]. Due to memorylessness it follows that X (v) ∼ Exp(1) and by Example 2 we have that

P(X (v) < 4/log2 n) > 2.4/log2 n. We define the indicator variable Y (v) with Y (v) = 1 iff X (v) < 3/log2 and 0 otherwise.

As the variables Y (v) forv ∈ V are independent, we apply Chernoff bounds w.r.t. X =
∑
v ∈U Y (v) and deduce that w.h.p.

X > |U |(2/log2 n). Hence, the leaders counter will reachW before t + 4/log2 n.

Positive Aging Admits Fast Asynchronous Plurality Consensus 57

Next, we consider how many signals the leader will at most receive in the interval [t , t + 1/logn]. Let the r.v. Y (v)i
now indicate whether the i-th tick of v lands in the interval [t , t + 1/logn]. Let Z ∼ Exp(1), then it follows that

P
(
Y
(v)
1
= 1

)
= P

(
Z ≤ 1/log2 n

)
= 1 − exp(−1/log2 n)

≤ 1 −
((
1 − 1

log
2 n

)
log

2 n
)1/log2 n

= 1/log2 n,

where the first step holds due to memorylessness and we used that (1 − x)(1/x) ≤ 1/e for 0 < x ≤ 1. Let now

Yi =
∑
v ∈U Y

(v)
i . It follows that E(Y1) < |U |/log2 n and when applying the Chernoff bound we deduce that Y1 <

|U |(1/log2 n)(1 + o(1)) w.h.p. Observe that, for i > 0 and fixed v , P(Y (v)i = 1|Y (v)i−1 = 0) = 0 as well as P(Y (v)i =

1|Y (v)i−1 = 1) ≤ 1/log2 n. That is, node v can only tick i times inside [t , t + 1/logn] if the previous i − 1 ticks landed in

[t , t + 1/logn] as well. Hence, considering the values Yi for i > 0 in sequence, we can majorize Yi by Bin(Yi−1, 1/log2 n).
Until Yi−1 = o(log3 n) for the first time we thereby get that

Yi
w.h.p.

< |U |
(

1

log
2 n
(1 + o(1))

)i
.

Hence, it is easy to see that total number of ticks made in the time interval [t , t + 1/log2 n] – equaling to Y =
∑∞
i=1 Yi –

can be upper bounded by 2|U |/log2 n. As we assume communication channels to be established instantly, this upper

bounds the number of 0-signals received by the leader in [t , t + 1/log2 n]. □

A repetition of the above also allows to deduce that by counting untilW(y) := y · (2|U |)/log2 n many 0-signals are

received, a leader can guarantee that at least
y

log
2 n

and at most
4y

log
2 n

time passes for any y ≥ 1. Hence, arbitrary time

frames with length in multiples of 1/log2 n can be approximated. Throughout the execution of our previous consensus

protocols, leaders may count toH(T) for someT to ensure that at leastT time steps passed. These occurrences are now

replaced by having the leader count toW(T) instead. This way, at least T time slots of length 1/log2 n pass until the

counter hitsW(T), while at the same time guaranteeing that at most T /log2 n time passes.

Remember, throughout each such time frame each cluster leader will perform a two-choices or propagation step, using

its followers as a relay. Hence, many parts of the protocol that originally required Ω(1) time, e.g. the consecutive time

all leaders allowed two-choices in the decentralized protocol or the sleeping phase, can now be reduced to Θ(1/log2 n).
This corresponds to reducing the length of a time unit to O(1/log2 n) and leads to an improved running time of O(1) to
reach consensus among leaders. Further O(log logn) time later partial consensus is reached, leading to the following

statement.

Theorem 12. Assume the waiting time between ticks follows Exp(1) and information between nodes can be exchanged

instantly. Then, the Accelerated Consensus Protocol can be modified s.t. for an initial bias of at least 2
√
n log4 n, it reaches

partial consensus in time O(log logn).

The required initial bias (and cluster size) is determined as follows. First, we make a similar argument as in Lemma 39

(and use the fact that communication channels are opened instantly). This yields that configurating the clustering

procedure to generate clusters of size at least log
5 n is sufficient (i.e., the clustering algorithm needs to be configured

with c = 6 or larger- see Appendix C.1). Second, we apply Lemma 41 and deduce that this cluster size implies a required

initial bias of 2

√
n log3 n.

58 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

Adapting the Clustering Procedure. Initially we assumed that all nodes already lie in clusters. To achieve this, the

clustering procedure in Appendix C.3 needs to be employed before the start of the consensus routine, just as in case of

the Decentralized and Accelerated Consensus protocols. Note that here we still need to work with the usual notions of

a time unit, which lasts for constant time.

There is one modification that needs to be mode, however. As the consensus protocol described in this section

operates on time units of length O(1/log2 n) we need to make sure that leaders also transition from the clustering to

the start of the consensus routine within time difference at most O(1/log2 n). The protocol stated in Appendix C.3

only guarantees a time difference of Cℓ = Θ(1) (see Theorem 26) . However, this can be overcome as follows. Leaders

that enter the consensus mode first wait for at least Cℓ time by counting 0-signals and then trigger the broadcast of

a massage. This message is again spread among leaders by using their followers as relays. By Example 2 we have

for X ∼ Exp(1) that P(X < 1/log3 n) = Ω(1/log3 n) and therefore a follower of every large enough leader ticks every

O(1/log3 n) time steps w.h.p. This implies that this broadcast requires less than O(1/log2 n) time to be completed. Each

leader that receives such a message immediately enters consensus mode (without any additional waiting), yielding the

desired O(1/log2 n) time difference between the first and last leader entering consensus mode.

F THE PÓLYA-EGGENBERGER DISTRIBUTION

In what follows we describe a simple urn process consisting of a single urn and balls that are colored either black or

white. The process consists of a sequence of n steps and in every such step, the total amount of balls inside the urn

increases by s . The description of such a step k , for 1 ≤ k ≤ n, is quite simple: first, a random ball is drawn and put

back into the urn; then s additional balls that match the color of the drawn ball are added to the urn. Observe that this

implies that the probability of drawing a ball of a certain color evolves with each further step. Furthermore, this process

is subject to a “the rich get richer” effect.

What we just described is the so-called Pólya-Eggenberger process. We define by PEs (a,b,n) the corresponding
distribution, denoting number of black balls added throughout this process. Here s describes the batch size of balls

added per step (we will only consider s = 1) and a,b denote the number of initially present black and white balls,

respectively. Finally, n denotes the number of steps, which in case of s = 1 corresponds to the total number of balls

added throughout the process.

To the best of our knowledge there do not exist any tight tail bounds on this Pólya-Eggenberger distribution that are

simple to work with. To achieve such a result, we look at the Pólya-Eggenberger process from a different perspective. It

can also be seen as the result of the following two step process. Instead of considering a dynamic process where the

probability to hit the white urn evolves over time, we employ a static probability T drawn from a beta distribution with

parameters a and b at the start of the process. The total number of balls added to the white urn can then be described

by Bin(n,T) – a binomial distribution consisting of n experiments each succeeding with probability T . In other words,

for T ∼ Beta(a,b) and 0 ≤ w ≤ n, we have that

P
(
PE1(a,b,n) = w

)
= P

(
Bin(n,T) = w

)
.

A simple proof that this equality indeed holds can be found on page 181 of [37]. In order to derive a concentration result

for An ∼ PE1(a,b,n), we account for (i) the deviation of the value T from its mean, and (ii) the concentration of the

binomial distribution conditioned on T . Luckily, among other interesting concentration results, a tight tail bound on

the beta-distribution is given in [44]. We state a slightly modified version of their result as follows.

Positive Aging Admits Fast Asynchronous Plurality Consensus 59

Theorem 45 (simplified Theorem 8 of [44]). Let T ∼ Beta(α , β) where α , β ≥ 1. Then, it holds for 0 < δ <
√
α and some

universal constant c1 > 0 that

P

(
T ≥ α

α + β
+

√
α

α + β
· δ

)
< 2 exp

(
−c1δ2

)
and

P

(
T ≤ α

α + β
−
√
α

α + β
· δ

)
< 2 exp

(
−c1δ2

)
Proof. The second bound follows immediately from the second inequality in Theorem 8 of [44], when setting

x =
√
α

α+β · δ for 0 < δ <
√
α . Now to the bound for the right tail. We set x just as before and this time apply the first

inequality of Theorem 8 [44]. Note that this inequality requires x <
β

β+α and therefore only yields the desired result

for δ < β/
√
α . This might be more restrictive than δ <

√
α in case of α > β . However, for δ ≥ β/

√
α we can use that

the Beta distribution has non-zero support in (0, 1) only, i.e.,

P

(
T ≥ α

α + β
+

√
α

α + β
δ

)
≤ P

(
T ≥ α

α + β
+

β

α + β

)
= P(T ≥ 1) = 0. □

Above result allows us to derive the following.

Theorem 46. Let An ∼ PE1(a,b,n) with µ = (a/(a + b)) · n as well as a + b ≥ 1.

If n ≥ (a + b) then it holds for any 0 < δ <
√
a that

P
(
An > µ +

√
a · n

a + b
· δ

)
< 4 exp(−c2 · δ2), and (7)

P
(
An < µ −

√
a · n

a + b
· δ

)
< 4 exp(−c2 · δ2). (8)

Furthermore, if n < (a + b) it holds for any 0 < δ <
√
a ·

√
n/(a + b) that

P

(
An > µ +

√
a ·

√
n

a + b
· δ

)
< 4 exp(−c2 · δ2), and (9)

P

(
An < µ −

√
a ·

√
n

a + b
· δ

)
< 4 exp(−c2 · δ2). (10)

Finally, if n < (a + b) and
√
a ·

√
n/(a + b) ≤ δ <

√
a, we have

P
(
An > µ + δ2

)
< 4 exp(−c2 · δ2). (11)

Here c2 ≥ min{1/48, c1/4} is a universal constant with c1 originating from Theorem 45.

Proof. Lower Tail. We start with showing (8) and (10). Let ∆(δ) =
√
a

a+b · n · δ . For T ∼ Beta(a,b) we define

the event E :⇔ {T ≥ a/(a + b) −
√
a/(a + b) · (δ/2)} and consider any δ constrained to 0 < δ <

√
a. Let now

M(δ) := max{∆(δ),√µ · δ } and observe that ∆(δ)/n reflects the error term of Theorem 45. Then, by the law of total

probability we have that

P[An ≤ µ −M(δ)] = P(Bin(n,T) ≤ µ −M(δ) | T)

= P(Bin(n,T) ≤ µ −M(δ) | E) · P(E)

+ P(Bin(n,T) ≤ µ −M(δ) | ¬E) · (1 − P(E))

≤ P(Bin(n,T) ≤ µ −M(δ) | E) + 2 exp
(
−c1
4

· δ2
)
. (12)

60 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

In the last line we crudely bounded some factors by 1 and applied Theorem 45 to bound the term (1 − P(E)). Observe
that E(Bin(n,T)|E) ≥ µ − ∆(δ)/2 =: µ ′ as the conditioning on E can be seen as an a priori requirement on the success

probability of the binomial distribution. Hence, we may apply Chernoff bounds and deduce that

P

(
Bin(n,T) ≤ µ ′ ·

(
1 − δ

2

√
µ ′

) ��� E) < exp(−δ2/12).

Note that this Chernoff bound application requires δ/(2
√
µ ′) < 1. As µ ′ > a

a+b ·
n
2
is implied by δ <

√
a, this can

be achieved by the additional constraint δ <
√
a
√

n
a+b ·

√
2. Initially we considered δ <

√
a, therefore the combined

requirements on δ can be stated as

0 < δ <
√
a ·min{1,

√
n

a + b
}.

Next, observe that

µ ′ ·
(
1 − δ

2

√
µ ′

)
>

(
µ − ∆(δ)

2

)
− 1

2

√
µ · δ ≥ µ −max{∆(δ),√µδ } = µ −M(δ)

Hence, we deduce that P(Bin(n,T) ≤ µ −M(δ)|E) < exp (−δ2/12). When combining this with (12), the inequalities (8)

and (10) follow.

Upper Tail. In order to show the bounds (7), (9) and (11) for the upper tail, we follow a similar approach and consider

some arbitrary δ <
√
a. We again let ∆(δ) =

√
a

a+b · n · δ and define the event E :⇔ {T ≤ a/(a + b) +
√
a/(a + b) · (δ/2)}.

We slightly extend the definition ofM(δ) toM(δ) := max{∆(δ),δ√µ,δ2}. Just as with (12), we employ Theorem 45 and

the law of total probability to establish the following bound

P(An ≥ µ +M(δ)) ≤ P
(
Bin(n,T) ≥ µ +M(δ)

��� E) + 2 exp(−c1
4

· δ2
)
. (13)

This time, we observe that E(Bin(n,T)|E) ≤ µ + ∆(δ)/2 := µ ′ and apply Chernoff bounds to deduce that

P

(
Bin(n,T) ≥ µ ′ · (1 +max{ δ

4

√
µ
,
δ2

16µ
}) | E

)
< exp(−δ2/48). (14)

Next, we make the following observation when using that µ ′ = µ + ∆(δ)/2 and ∆(δ)/2 ≤ µ/2 < µ in the first step

µ ′ · (1 +max{ δ

4

√
µ
,
δ2

16µ
}) = µ +

∆(δ)
2

+ 2µ ·max{ δ

4

√
µ
,
δ2

16µ
}

< µ + 2max{∆(δ)
2

,max{δ
2

√
µ,

δ2

8

}} = µ +max{∆(δ),δ√µ, δ
2

4

} ≤ µ +M(δ).

In the second step we just crudely combined all terms with the help of maximas. When combining (13) and (14) with this

result, we get that P(An ≥ µ +M(δ)) ≤ exp(−Ω(δ2)) as desired. Depending on δ as well as n and (a + b) the expression
M(δ) might take different values. More specifically, the inequalities (7), (9) and (11) of the theorem follow because

M(δ) =


∆(δ) if n ≥ a + b and 0 < δ <

√
a

δ
√
µ if n < a + b and 0 < δ <

√
a
√

n
a+b =

√
µ

δ2 if n < a + b and

√
a
√

n
a+b ≤ δ <

√
a. □

Often it is useful to consider the total number of black balls that reside in the urn after a certain number of balls have

been added to the urns. In the following we will employ the result of Theorem 46 to bound the total amount of black

Positive Aging Admits Fast Asynchronous Plurality Consensus 61

balls after n − (a +b) balls have been added. That is, we bound the number of black balls after filling the urn with n balls

in total. This leads to the following convenient but slightly weaker result (c2 is the constant defined in Theorem 46).

Theorem 1. Let A ∼ PE1(a,b,n − (a + b)), µ := (a/(a + b))n and a + b ≥ 1 as well as n ≥ a + b. Then, for any δ with

0 < δ <
√
a it holds for some universal constant c2 > 0 that

P
(
a +A < µ −

√
a · n

a + b
· δ

)
< 4 exp(−c2 · δ2)

P
(
a +A > µ +

√
a · n

a + b
· δ

)
< 4 exp(−c2 · δ2)

Proof. We need to consider multiple cases.

Case 1. n − (a + b) ≥ (a + b). We only give a proof for the first inequality as the second is derived in a similar manner.

We apply (8) of Theorem 46 to A which implies for 0 < δ <
√
a that

P

(
a +A < µ −

√
a · n − (a + b)

a + b
δ

)
< 4 exp(c2 · δ2).

The term on the left-hand side can be simplified and lower bounded as follows

µ −
√
a · n − (a + b)

a + b
δ > µ −

√
a · n

a + b
· δ

and the result follows as P(X < x1) ≤ P(X < x2) for x1 < x2.

Case 2. n − (a + b) < (a + b). Here we need to further distinguish depending on δ .

Case 2a. 0 < δ <
√
a ·

√
n−(a+b)
(a+b) . We again only show the proof for the first inequality as the proof for the second

inequality is similar. First, we deduce by (10) of Theorem 46 that

P
©­«a +A < µ −

√
a ·

√
n − (a + b)
(a + b) δ

ª®¬ < 4 exp(−c2 · δ2).

The error term in this expression is smaller than the desired term

√
a n
a+b · δ . To observe this consider the following,

where the second inequality follows from n − (a + b) and a + b being smaller than n√
n − (a + b)

a + b
<

n

a + b
⇔

√
n − (a + b) ·

√
a + b < n.

Case 2b.
√
a ·

√
n−(a+b)
(a+b) ≤ δ <

√
a. We start by showing that the first inequality holds in this setting. Clearly it holds

that P(a + A < a) = 0, i.e., in the worst case not a single black ball is added to the urn. We show that in this setting

µ −
√
a n
a+b δ ≤ a holds. This implies that P(a + A < µ −

√
a n
a+b δ) = 0 and the desired result follows. Using that

√
a ·

√
n−(a+b)
(a+b) ≤ δ and n ≥

√
n − (a + b) ·

√
a + b in the first and second step, respectively, we observe

√
a

n

a + b
δ ≥ a · n

a + b

√
n − (a + b)
(a + b) ≥ a

a + b
(n − (a + b)).

This intermediate result can then be used to deduce that

µ −
√
a

n

a + b
δ ≤ µ − a

a + b
(n − (a + b)) = a

a + b
n − a

a + b
n + a = a

as desired.

To show the second inequality of the theorem we need to resort to Theorem 46. Using inequality (11) we get that

62 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaž Krnc

P(a +A > µ + δ2) = P

(
A < a · n − (a + b)(a + b) + δ

2

)
< 4e−c2δ

2

.

Hence, the desired statement follows in case µ + δ2 ≤ µ +
√
a n
a+b δ . It is easy to see that this indeed holds as

δ <
√
a ≤
√
a n
a+b . □

All our previous theorems require the δ factor in the error term to be bounded by

√
a from above. In case a lies in

o(
√
logn) our bounds cannot be employed to achieve probabilistic guarantees of order n−Ω(1). To circumvent this we

present the following theorem.

Theorem 47. Let A ∼ PE1(a,b,n − (a + b)) with 1 ≤ a ≤ b and n ≥ (a + b). Then, it holds that

P
(
a +A > M · (3a + c4 logn)

)
< 2n−2

whereM := max{1, (n − (a + b))/(a + b)} and c4 > 0 is a universal constant.

Proof. As the proof of this similar to the one of Theorem 46 we keep it short. We again model A as A ∼ Bin(n −
(a + b),T) with T ∼ Beta(a,b). We let c4 = (4c ′ + 6), where c ′ is a constant we will specify later, and distinguish two

cases depending on the size of b.

Case 1. b ≤ 2

c ′ logn,

In this case, observe that

P
(
a +A > M · (3a + c4 logn)

)
≤ P

(
A > M · (2a + c4 logn)

)
≤ P

(
A > n − (a + b)

)
= 0,

where we used that (2a + c4 logn) > (a + b) andM · (a + b) ≥ n − (a + b) in the second step.

Case 2. b > 2

c ′ logn.

The first tail bound in Theorem 8 of [44] can be used to achieve the following bound for any positive δ subject to

δ · a < b

P
(
T >

a

a + b
+ δ · a

a + b

)
< 2 exp{−c ′ · δ · a},

when we use that a ≤ b and assume that the constant c ′ > 0 is chosen accordingly. Then, setting δ such that

δ · a = (2/c ′) · logn implies that δ · a < b and we can employ above result to derive

P

(
T ≤ 1

a + b

(
a +

2

c ′
logn

))
≥ 1 − n−2. (15)

Now, for any arbitrary binomially distributed random variable B, Chernoff bounds give us that P(B > max{2 ·
E[B] , 6 logn}) < n−2. Using this and abbreviating the probabilistic event in (15) with E, we derive that

P

(
A > max

{
n − (a + b)

a + b

(
2a +

4

c ′
logn

)
, 6 logn

} ��� E) < n−2.

Finally, we setM := max{1, (n − (a + b))/(a + b)} and translate above result into a bound on a +A. We can express the

previous bound in the following slightly weaker form when using that max(x ,y) ≤ x + y for x ,y ≥ 0.

P
(
a +A > M ·

(
3a + (4/c ′ + 6) · logn

) ��� E) < n−2.

The result follows from the law of total probability as ¬E occurs with probability at most n−2. □

	Abstract
	Contents
	1 Introduction
	1.1 Related Work
	1.2 Model
	1.3 Our Results

	2 Protocol with a Base Station
	2.1 Our Protocol
	2.2 Core Concepts of our Analysis

	3 Decentralized Protocol
	3.1 Description of the Consensus Protocol
	3.2 Core Concepts of the Analysis
	3.3 Termination

	4 Breaking the Lower Bound on Synchronized Protocols
	5 Conclusion
	Acknowledgments
	References
	A Preliminaries
	A.1 Measuring Time
	A.2 Description of Notation and Conventions

	B Analysis of the Asynchronous Model with a Base Station
	B.1 Measuring Time
	B.2 Total time to Increase a Generation
	B.3 Concentration Results

	C Analysis of the Decentralized Algorithm
	C.1 A Simple Clustering Algorithm
	C.2 Global Sampling Gadget
	C.3 Extended Clustering Algorithm
	C.4 Extended Description of the Decentralized Protocol
	C.5 Analysis of the Algorithm

	D Analysis of the Accelerated Consensus Protocol
	D.1 The Accelerated Consensus Protocol
	D.2 Analysis of the Accelerated Consensus Protocol

	E Extending our Protocols
	E.1 Extension 1: Termination
	E.2 Extension 2: Poisson Clocks and the Accelerated Consensus Protocol

	F The Pólya-Eggenberger Distribution

