
Which Software Faults Are Tests Not Detecting?

Jean Petrić
Lancaster University

Lancaster, UK
j.petric@lancaster.ac.uk

Tracy Hall
Lancaster University

Lancaster, UK
tracy.hall@lancaster.ac.uk

David Bowes
Lancaster University

Lancaster, UK
d.h.bowes@lancaster.ac.uk

ABSTRACT

Context: Software testing plays an important role in assuring the

reliability of systems. Assessing the efficacy of testing remains

challenging with few established test effectiveness metrics. Those

metrics that have been used (e.g. coverage and mutation analysis)

have been criticised for insufficiently differentiating between the

faults detected by tests. Objective: We investigate how effective

tests are at detecting different types of faults and whether some

types of fault evade tests more than others. Our aim is to suggest to

developers specific ways in which their tests need to be improved to

increase fault detection. Method: We investigate seven fault types

and analyse how often each goes undetected in 10 open source

systems. We statistically look for any relationship between the test

set and faults. Results: Our results suggest that the fault detection

rates of unit tests are relatively low, typically finding only about

a half of all faults. In addition, conditional boundary and method

call removals are less well detected by tests than other fault types.

Conclusions:We conclude that the testing of these open source

systems needs to be improved across the board. In addition, despite

boundary cases being long known to attract faults, tests covering

boundaries need particular improvement. Overall, we recommend

that developers do not rely only on code coverage and mutation

score to measure the effectiveness of their tests.

CCS CONCEPTS

· Software creation and management → Software verification

and validation; · Software defect analysis→ Software testing and

debugging.

KEYWORDS

software testing, unit tests, test effectiveness

ACM Reference Format:

Jean Petrić, Tracy Hall, and David Bowes. 2020. Which Software Faults Are

Tests Not Detecting?. In Evaluation and Assessment in Software Engineering

(EASE 2020), April 15ś17, 2020, Trondheim, Norway. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3383219.3383236

1 INTRODUCTION

Software testing is important to ensure that faults are detected be-

fore system deployment. Testing is an expensive activity accounting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2020, April 15ś17, 2020, Trondheim, Norway

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383236

for more than 50% of development costs [4]. It is essential that test-

ing activities are effective. Typical measures of test effectiveness1

are based either on coverage or mutation testing. The limitation

of such measures is that high granularity information is generated

about test effectiveness. This information tends to be one overall

percentage (i.e. percentage lines exercised by tests or percentage

seeded faults detected by tests).

In this work, we aim to go beyond the overall numbers and anal-

yse the ability of test suites to detect seven different fault types.

Previous studies suggest that different faults are predicted by dif-

ferent machine learning models [15, 27], therefore it is likely that

different faults are detected by different tests. Our results should

allow developers to improve the overall effectiveness of their tests.

Previous studies have mostly been focused on investigating the

relationship between the traditional effectiveness measures (e.g.

code coverage) and faults. However, the overall figures computed

by those measures are insufficient to pinpoint how to improve the

ability of tests to detect more faults. Other factors have also been

investigated in terms of the ability of tests to uncover faults. Most

notably, test suite size [19], number of assertions [42] and number

of covered methods per test [31] have all been shown to have an

effect on test effectiveness. The relationship between fault type and

test effectiveness has not been adequately explored.

The aim of this study is to answer the following research ques-

tions:

RQ1. What is the overall effectiveness of tests to detect faults

in 10 open source systems?

RQ2. Which of seven fault types are least and most often de-

tected by tests in these 10 open source systems?

RQ3. How can tests be improved to ensure the seven fault

types covered in this study are effectively detected?

We answer these research questions by systematically selecting

10 open source systems in which we seed seven different types of

artificial faults. We use the mutation testing tool PIT to seed the

faults, which has been commonly used previously to simulate real

faults in systems [17, 20]. We then run the unit tests associated

with each system and record the faults detected and not detected.

Following the execution of the test suites, we perform statistical

analyses to establish which faults are detected more often than

others. Finally, we assess the relative impact of each fault type

on test effectiveness and suggest ways in which developers can

improve their tests.

Our overall contributions are:

1) There seems to be a relatively low fault detection rate in all

10 open source systems. For six systems, less than a half of

all faults are detected.

1Test effectiveness is usually defined as the ratio between the number of faults detected
by the tests and the total number of faults in the system.

EASE 2020, April 15ś17, 2020, Trondheim, Norway Petrić, et al.

2) The distribution of detected fault types varies with some

fault types detected more frequently than others. Condi-

tional boundary and method call removal faults go unde-

tected more often than increment and return value faults. In

particular, conditional boundary faults get under-detected

in all 10 systems analysed.

3) We demonstrate the relative impact on fault detection rate

for each fault type across the 10 open source systems. For

example, the lowest performing tests have a 10 times lower

detection rate (on average) for boundary faults compared to

other fault types.

4) Our results suggest ways in which developers can improve

their tests by designing test cases which more effectively

target faults that are infrequently detected.

This paper is structured as follows. In the following section we

provide a background to this study. In the third section we describe

the methodology, which is followed by results and discussion in the

fourth section.We then describe relatedwork in the fifth section and

subsequently report on the threats to validity in the sixth section.

Finally, in the last section we present the conclusions of this study.

2 BACKGROUND

Substantial effort is devoted to developing and maintaining test

suites [41]. Unlike production code, which is checked against a test

suite, the assessment of test effectiveness can be more challenging.

Many studies have predominantly used techniques such as coverage

and mutation score as proxies to assess test effectiveness [13, 16].

Other studies have investigated static features of tests to devise

good practices for producing effective unit tests [10]. However,

many challenges to ensure highly effective test suites remain.

Code coverage is a wide-spread technique to assess test effective-

ness. In its simplest form coverage checks which lines or statements

of code are covered by tests. A more complex form, branch cover-

age, assesses different paths in code with conditional expressions.

There has been a great amount of debate on whether coverage is

a suitable measure for test effectiveness. A weak but significant

correlation between code coverage and the number of faults was

found by Ahmed et al. [2]. Mockus et al. demonstrated that an

increase in coverage proportionally reduces the number of faults

[25]. Other researchers have raised concerns about coverage as a

measure of test effectiveness, reporting that once confounding vari-

ables (e.g. test suite size) are controlled coverage does not perform

well [18, 19].

Mutation testing seems increasingly popular as a technique to

assess test effectiveness [30]. Mutation testing is inspired by biologi-

cal processes, whereby the original code is slightly altered (mutated)

and tests are executed against those changes. Tests should ideally

fail when executed against mutated code (in the mutation analysis

jargon, it is said, they should łkillž the mutant). Modifications to

code are typically made by a predefined set of mutation operators,

where each creates a different type of fault. Table 1 lists the muta-

tion operators used in this study. Even though mutation testing is

more sophisticated compared to coverage, there is no consensus on

whether mutants are a valid replacement for real faults. Whilst An-

drews et al. and Just et al. find evidence that mutants are a suitable

replacement for real faults [5, 20], other researchers raise doubts

about their usefulness [16, 26]. Even if mutations do not represent

real faults currently in the code, it would be concerning if tests did

not expose such faults given that they could occur in the future.

Purushothaman et al. empirically demonstrated that 90% of post

release faults are complex; faults that can only be fixed bymodifying

code in multiple places [34]. Mutation testing has attempted to

match complex faults with the introduction of higher order mutants

(HOM). HOM are constructed by combining mutations of two or

more first order mutants [23]. The challenging barrier with HOM is

the rapid growth of the space of possible mutations which further

slows down the process of mutation testing. However, there have

been promising advances in reducing the space of possible mutants.

Most prominent attempts have used search based techniques in

order to reduce the HOM space (e.g. [24]). To date HOM is not

in widespread use by practitioners and the availability of tools is

limited.

Despite substantial efforts to deploy industry-scale mutation

testing, some practitioners have raised several concerns that are

yet to be addressed. Petrović et al. of Google argue that establishing

test effectiveness via mutation testing is expensive [33]. Petrović et

al. reported that even when redundant and equivalent mutants had

been removed, too many unproductive mutants remained. Redun-

dant mutants are a subset of mutants that have the same semantics,

whilst equivalent mutants have the same behaviour as the original

code from which they are derived. According to Petrović et al.,

unproductive mutants are those which are not useful in practice

[33]. Once unproductive mutants were removed Petrović et al [33]

reported that developers’ satisfaction with mutation testing drasti-

cally increased from 20% to 80%. In addition, developers reported

łmany perceived benefits of mutation testing, including stronger

tests, more effective debugging, prevention of bugs, and improved

code qualityž.

Petrović et al. further argued that the ultimate rationale of the de-

veloper is to make a test suite better, rather than to merely increase

mutation score. In line with this view, Bowes et al. investigated the

effectiveness of tests using metrics that capture various facets of

testing [10]. Consequently, several studies have empirically demon-

strated that some metrics, such as the number of asserts [42] and

methods invoked [31] by a test, are highly associated with faults. In

this work we analyse mutants to identify how tests can be improved

to cover specific types of fault.

Mutation testing approximates test effectiveness using mutation

score. Mutation score is the ratio between the number of killed

mutants (seeded faults exposed by a test) and overall mutants. The

values span from 0 to 1, where 0 indicates poor, whilst 1 indicates

perfect effectiveness. A notable caveat with respect to mutation

score is the equivalent problem. A proportion of generated mutants

might behave in the same way as the original code, in which case

the calculation of mutation score can be deflated. The detection of

equivalent mutants is a challenging and ongoing area of research

[29].

To compare how often different mutants get detected, it is im-

portant to account for the equivalent problem. Equivalent mutants

can make one type of fault appear more often than it can be killed,

deflating the mutation score and leading to incorrect conclusions.

To mitigate the equivalent problem, in this study we use the PIT mu-

tation testing tool, version 1.4.5. PIT employs various techniques to

Which Software Faults Are Tests Not Detecting? EASE 2020, April 15ś17, 2020, Trondheim, Norway

Table 1: The list of mutation operators used in this study (see 3.3 for selection criteria)

Name Mnemonic Description

Conditional Boundary Mu-

tator

CB The conditional boundary mutator replaces the relational operators <, <=, >, >=

with their boundary counterpart.

Increments Mutator I The increments mutator will mutate increments, decrements and assignment incre-

ments and decrements of local variables (stack variables). It will replace increments

with decrements and vice versa.

Invert Negatives Mutator IN The invert negatives mutator inverts negation of integer and floating point numbers.

Maths Mutator M The math mutator replaces binary arithmetic operations for either integer or floating-

point arithmetic with another operation.

Negate Conditionals Muta-

tor

NC The negate conditionals mutator will mutate all conditionals found, e.g. == to !=.

Return Values Mutator R The return values mutator mutates the return values of method calls.

Void Method Call Mutator V The void method call mutator removes method calls to void methods.

reduce the number of equivalent mutants, such as avoiding method

calls to common logging frameworks2. The recent comparison

study by Kintis et al. demonstrated that PIT produces substantially

fewer equivalent mutants in comparison to other popular mutation

testing tools (e.g. MuJava) [21], providing more reliable mutation

scores.

Apart from coverage and mutation testing, a few other promi-

nent approaches to improve test effectiveness have been proposed.

According to Garousi, substantial effort has been put into reducing

smells in tests [41]. Bavota et al. report their study of over 20 sys-

tems to investigate the effect of test smells on test maintainability

[8]. They found that some test smells pose a potential risk to test

maintenance. Tufano et al. demonstrated that some test smells in-

fluence code smells to appear in production code [37]. Other studies

have shown that certain test code patterns have the ability to detect

faults with high precision [38]. Athanasiou et al. also demonstrated

that the quality of test code has a negative impact on production

code [7].

Previous studies suggest that there are multiple facets which im-

pact test effectiveness. Relying on a single metric such as coverage

is unlikely to capture the underlying issues that make tests less

effective. It is important to look beyond the numbers and find ways

to improve tests. Mutation testing is a promising tool as it allows

the collection of test data on a large scale which would otherwise

be impractical to obtain. In comparison to coverage and test smells,

mutation information provides most insight into real faults. This

insight allows actionable improvements to tests by developers.

3 METHODOLOGY

3.1 Research Questions

In this study we are focused on answering three research questions.

RQ1. What is the overall effectiveness of tests to
detect faults in 10 open source systems?

Test effectiveness has traditionally been used in previous studies

to estimate how good tests are in detecting faults. In this study,

we also examine the overall effectiveness of unit tests associated

2http://pitest.org/quickstart/basic_concepts/

with the 10 analysed open source systems. We use overall mutation

score as a proxy for overall test effectiveness.

RQ2. Which of seven fault types are least and
most often detected by tests in these 10 open
source systems?

Our second research question is based on the assumption that the

detection rate of different fault types is not uniformly distributed.

If this is the case, it would be useful to know which faults seem to

remain undetected more than others. We use mutation operators

as a proxy for fault types.

RQ3. How can tests be improved to ensure the
seven fault types covered in this study are
effectively detected?

We propose actionable practices that testers can use to improve test

effectiveness.

3.2 Datasets

In this study we used 10 open source systems. To select the sys-

tems, we used the openly available list of 5000 GitHub repositories

provided by Borges and Valente [9]. To narrow down the search for

suitable systems to use in our analysis, we applied the following

criteria:

(1) The system is actively developed. We used the number of

commits to check whether the projects are active and look

for at least 50 commits in the last two years (2017/2018) to

consider a project.

(2) The system is popular in the community. Stars and forks

are used as a proxy to identify suitably popular systems. We

considered any project where the number of stars and forks

is over 100.

(3) Needs to be a Java desktop/server application. We used the

PIT tool [11]which is designed for runningmutation analysis

on Java projects.

(4) The build system needs to be Maven. Our data collection

tools were designed to work with the Maven build system.

EASE 2020, April 15ś17, 2020, Trondheim, Norway Petrić, et al.

Table 2: Demographic data of the datasets used in this study

Project Version KLOC Classes TestCases Coverage%1 Stars Forks Contributors

junit4 4.12 17 229 1463 86.80 5622 2184 142

dropwizard 1.3.8 33 537 320 86.40 5339 2335 331

guice 4.2.2 48 635 848 81.90 4432 734 49

metrics 4.0.5 13 206 226 80.80 4583 1224 167

jsoup 1.11.3 18 149 738 79.80 3860 1173 69

zxing 3.3.3 43 287 386 78.80 11884 5977 93

druid 1.1.11 219 1225 1986 73.20 5239 2711 105

activiti 7.0.9 152 1594 2097 66.80 1803 1795 161

retrofit 2.5.0 11 216 706 48.50 18399 3823 125

webmagic 0.7.3 12 196 49 39.20 3854 2148 34

1 Total Coverage Percentage calculated by Atlassian Clover

(5) Running tests should be straightforward using the ‘mvn test’

command or a description on how to execute tests should be

provided. Some projects rely on external dependencies and

services which were not readily accessible.

(6) We moved down the list of 5000 until we found first 10

projects that satisfy the above criteria. Running mutation

testing is a computationally demanding task which is why

we selected 10 projects.

Table 2 shows demographic information about the 10 datasets

selected. To collect the information about faults which get and do

not get detected for each dataset, we ran mutation testing individu-

ally for each test class that contains at least one test case. Results

were exported to a time-stamped directory per test class in the

XML format. To collect the information about individual mutation

survival rates we aggregated the PIT results from the XML files.

3.3 Mutation Operators

Table 1 summarises the seven default mutation operators defined

in PIT (i.e. fault types) which are used in this study. We use Con-

ditional Boundary, Increments, Invert Negatives, Maths, Negate

Conditionals, Return Values and Void Method Call operators. When

applied to a system under test, Conditional Boundary replaces a

relational operator with its boundary counterpart [11]. For example,

the relational operator < is replaced with <=, but not with > or >=.

Similar applies to the Maths operator, where the original operator

is replaced with its direct counterpart, for example the ‘+‘ sign is

replaced with ‘−‘. For more details on the other operators see [1].

The mutation operators we applied are the default operators

in PIT [11]. We chose the default mutation operators as they are

designed to łnot be easy to detectž and łminimise the number of

equivalent mutations that they generatež [1]. This is important for

our study as we wanted to compare the survival rates of different

mutation operators and avoid issues caused by equivalent mutants

(i.e. mutants that behave the same as the original code).

3.4 Mutation Score

In this study we used the following equation to calculate mutation

scores:

𝑚𝑆𝑐𝑜𝑟𝑒 =
𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑘𝑖𝑙𝑙𝑒𝑑

𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑘𝑖𝑙𝑙𝑒𝑑 +𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑
(1)

Where generated mutants are not possible to kill (i.e. equivalent

mutants), the use of𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 in Equation 1 may potentially

deflate mutation scores. It is possible to mitigate this issue by re-

placing𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 with𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑛𝑜𝑛−𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 . However, the

detection of equivalent mutants is a challenging task [29] which

is typically not readily available in mutation testing tools (e.g. PIT

[11]). Fortunately, PIT by default mitigates some of the issues caused

by equivalent mutants as described in Section 2. In addition, since

we did not favour any mutation operator, mutation scores were

calculated across the operators and datasets consistently.

3.5 Analysis

To answer our research questions required multiple analysis steps.

First, we calculated the overall mutation scores for each dataset.

We then analysed the mutation scores of each individual mutation

operator. The mutation scores of the individual mutation operators

were calculated in a similar way to the overall scores. We grouped

the statuses (i.e. killed or survived) of each fault by mutation op-

erator. For each mutation operator we then calculated mutation

scores according to Equation 1. To compare the mutation scores of

different mutation operators we used a box plot and the Kruskal-

Wallis non-parametric test. We set the significance level to 95%.

We chose the Kruskal-Wallis test as it allows the comparison of

3 or more groups. In addition to the Kruskal-Wallis test, we used

the Bonferroni correction to adjust for p-values involving multiple

groups. The non-parametric test was chosen as the data was not

normally distributed.

To assess the magnitude of the differences in mutation scores,

we used two different approaches. First, we presented the relative

distances of an individual mutation operator’s score from the overall

mutation operators’ mean for each dataset. Relative distances depict

the magnitude by how far each mutation operator is away from the

overall mean. Negative relative distances suggest that more faults

remain undetected by the tests, and vice-versa. Where a mutation

operator distances itself from the mean, tests are either not robust

enough to catch a fault, or perform better than the average. For our

second approach, we calculated the mean values of each mutation

operator across all datasets. This approach shows how the mutation

scores of each mutation operator are distributed across the datasets.

To present the relative magnitudes of mutation scores we used the

logarithmic scale [39].

Which Software Faults Are Tests Not Detecting? EASE 2020, April 15ś17, 2020, Trondheim, Norway

junit4 metrics retrofit webmagic zxing

activiti dropwizard druid guice jsoup

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

mutator

 lo
g

1
0
 m

s
c
o

re
a
v
g
(m

s
c
o
re

)

killed

KILLED

SURVIVED

Figure 1: The frequency of killed and survived mutants per type and dataset

3.6 Experiment

The experiment was carried out as follows. We first compiled the

source and test code of all projects reported in Table 2. We then

identified all classes in all Java’s test packages. To filter only test

classes, we searched for test cases within the classes which used the

@Test annotation placed before a test case. Tests using JUnit prior

to 4.0 where identified by looking for methods with test in their

method names. We manually searched for test classes as we expe-

rienced difficulties in running PIT on large multi-modal projects.

The output of the first stage was a list of test classes to be fed into

the PIT tool.

In the second stage we used a script to execute PIT for each test

class as an input. We used the targetTests flag to specify this. We

exported all results in XML and HTML formats and wrote a tool

to aggregate the results from all XML outputs. Once the results

were aggregated, we analysed them using R version 3.5.1. We make

all scripts and the aggregation tool used in this study publicly

available3 for other researchers to replicate or expand our results.

4 RESULTS AND DISCUSSION

4.1 RQ1: The overall effectiveness of tests in
the 10 open source systems

To get a better understanding of the results we first analyse the

overall figures obtained from mutation testing. Table 3 shows the

overall numbers for each dataset.MutTests is the total number of test

classes associated with source code for which mutants (i.e. faults)

were created. TotalMut is the total number of mutants created by

PIT, whilst Killed shows the count of TotalMut that were detected.

Finally, mScore is the ratio between the Killed and TotalMut. Figure

1 presents the distribution of killed and survived mutants in more

detail.

The overall figures suggest that in the best case less than two

thirds of all mutants were detected.Webmagic achieved the highest

mutation score of 62% (i.e. about 3 in 5 faults were detected by

3https://figshare.com/s/6ed9a2cfa72db88b5976

Table 3: Mutation information for each dataset

Project Version MutTests TotalMut Killed mScore

junit4 4.12 297 32501 9719 0.30

dropwizard 1.3.8 58 240 118 0.49

guice 4.2.2 633 81182 15985 0.20

metrics 4.0.5 74 595 232 0.39

jsoup 1.11.3 441 38871 5564 0.14

zxing 3.3.3 164 5448 2985 0.55

druid 1.11.1 1346 97151 27069 0.28

activiti 7.0.9 1426 53050 29103 0.55

retrofit 2.5.0 49 235 128 0.54

webmagic 0.7.3 20 253 156 0.62

the tests), however the same project has a relatively small number

of generated mutants (only 253). Larger projects seem to achieve

lower mutation scores which rarely go past 0.5. The exception to

this is activiti, where nearly 30000 mutants were detected achieving

the mutation score of 0.55. To check if there is any relationship

between the quantity of tests and mutation score we use a ratio

of the number of test cases per class (TCperCl). Table 4 shows this

relationship.

Table 4: Test cases per class information.

Project Classes TestCases TCperCl mScore Coverage

junit4 229 1463 6.39 0.30 86.80

jsoup 149 738 4.95 0.14 79.80

retrofit 216 706 3.27 0.54 48.50

druid 1225 1986 1.62 0.28 73.20

zxing 287 386 1.34 0.55 78.80

guice 635 848 1.34 0.20 81.90

activiti 1594 2097 1.32 0.55 66.80

metrics 206 226 1.10 0.39 80.80

dropwizard 537 320 0.60 0.49 86.40

webmagic 196 49 0.25 0.62 39.20

EASE 2020, April 15ś17, 2020, Trondheim, Norway Petrić, et al.

The two projects with the highest number of test cases per class,

i.e. junit and jsoup, achieved relatively low mutation scores. Simi-

larly, webmagic is the project with the lowest number of test cases

per class, but achieved the highest mutation score. These findings

suggest that more tests does not necessarily mean more effective

testing.

RQ1. What is the overall effectiveness of tests to de-

tect faults in 10 open source systems? Overall, the

open source systems in this study achieved relatively low

mutation scores. The systems with the highest mutation

scores are not necessarily those with the highest coverage

or the highest number of test cases per class.

4.2 RQ2: The least and most detected fault
types in the 10 open source test suites

0.00

0.25

0.50

0.75

1.00

C
B I

IN M

N
C R V

mutator

m
s
c
o

re

Figure 2: Overall mutation scores across the datasets permu-

tator

Figure 2 shows the average mutation scores for each of the

seven fault types across the 10 datasets. Figure 2 suggests that

some fault types are undetected more often than others (e.g. 𝐶𝐵 =

conditional boundary and𝑉 = void method call). On the other hand,

other fault types achieved median mutation scores of over 50% (e.g.

𝐼 = increment and 𝑅 = return value). To confirm whether these

differences are significant, we conducted the Kruskal-Wallis non-

parametric test for multiple groups. We obtained the 𝑝-value of 𝑝 =

0.006244 with a confidence level of 95%. The 𝑝-value indicates that

there is a significant difference in the mutation scores for different

fault types. To further investigate the differences, we performed

a post-hoc analysis where we employed the pairwise Wilcox test.

As we compared seven different groups we used the Bonferroni

correction to adjust the 𝑝-values. Table 5 depicts the 𝑝-values which

show whether the difference between each pair of a fault type is

significant or not.

The post-hoc pairwise comparison presented in Table 5 sug-

gests that𝐶𝐵 is the only fault type where a significant difference is

observed. In particular, 𝐶𝐵 obtains significantly lower𝑚𝑠𝑐𝑜𝑟𝑒 com-

pared to 𝑁𝐶 (negate conditionals) and 𝑅 (return values). The void

method call mutation operator is another fault type that achieves a

low𝑚𝑠𝑐𝑜𝑟𝑒 (< 0.25), however due to a greater dispersion of values

across the different datasets, its𝑚𝑠𝑐𝑜𝑟𝑒 is not significantly lower

than those of the other fault types.

Table 5: Pairwise Wilcox test with Bonferroni correction

Mutator CB I IN M NC R

I 0.10

IN 1.00 1.00

M 1.00 1.00 1.00

NC 0.02 1.00 1.00 1.00

R 0.01 1.00 1.00 1.00 1.00

V 1.00 0.29 1.00 1.00 0.60 0.06

Figure 3 presents the distribution of the fault types for each

individual system. Apart from junit4, Figure 3 suggests that 𝐶𝐵 is

indeed a fault type that often achieves the lowest𝑚𝑠𝑐𝑜𝑟𝑒 across

the datasets. Figure 1 complements this result suggesting that the

number of CBmutants created is generally aligned with the number

of generated mutants for other fault types. An exception to this

seems to be the dropwizard, retrofit and webmagic datasets. These

datasets appear to have a disproportional number of killed 𝐶𝐵

mutants in comparison with 𝐶𝐵 in the other datasets. However,

these three datasets have the lowest number of generated mutants

and no mutants for the increment (𝐼) and invert negatives (𝐼𝑁) fault

types.

Finally, we wanted to check the magnitude of the detection

rate (𝑚𝑠𝑐𝑜𝑟𝑒) for each fault type across different datasets. To do

that, we choose the average𝑚𝑠𝑐𝑜𝑟𝑒 calculated from the seven fault

types as a baseline. The average𝑚𝑠𝑐𝑜𝑟𝑒 values are calculated for

each individual dataset. We then plot the 𝑚𝑠𝑐𝑜𝑟𝑒 values of each

fault type against the average baseline. Figure 4 shows the relative

distance of 𝑚𝑠𝑐𝑜𝑟𝑒 for each fault type from the average 𝑚𝑠𝑐𝑜𝑟𝑒

on a logarithmic scale. A logarithmic scale is best to represent

ratio values [39]. Large deviations from the baseline indicate that

a particular fault type is either over-detected (above the baseline)

or under-detected (below the baseline) on average. From Figure 4

large relative differences can be observed for 𝐶𝐵. For example, in

the case of retrofit, 𝐶𝐵 achieves an𝑚𝑠𝑐𝑜𝑟𝑒 which is about 10 times

(10−1) below the baseline. One contributing factor to this could be

the lower average value of𝑚𝑠𝑐𝑜𝑟𝑒 for this dataset, as no faults were

generated for the types 𝐼 , 𝐼𝑁 and𝑀 . However, it appears that the

particularly low𝑚𝑠𝑐𝑜𝑟𝑒 in retrofit further extends to dropwizard

and webmagic. In addition, the𝑚𝑠𝑐𝑜𝑟𝑒 of CB is below average for

all the datasets. These results suggest that improving boundary

checks in tests could improve test effectiveness.

In addition to CB, there are several projects where the kill-rate for

the void method call mutator (𝑉) was substantially lower than other

fault types. Most notably, 𝑉 is particularly low in junit4 and guice.

These projects would benefit from tests with improved checking

of side effects. In contrast, it is interesting to observe that some

fault types were constantly detected more often than others. For

example, the return value mutator (𝑅) was generally detected by

tests. This is not too surprising as at a minimum the method results

should tested. Despite the high detection rates for 𝑅, it would still

be worth investigating why not all 𝑅 mutators were killed as that

Which Software Faults Are Tests Not Detecting? EASE 2020, April 15ś17, 2020, Trondheim, Norway

junit4 metrics retrofit webmagic zxing

activiti dropwizard druid guice jsoup

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

mutator

m
s
c
o
re

Figure 3: Mutation scores for the different fault types across all datasets. Where the bars are missing no faults of that type

were generated.

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

● ● ●

●

●

junit4 metrics retrofit webmagic zxing

activiti dropwizard druid guice jsoup

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

C
B I

IN M

N
C R V

10
−1.5

10
−1

10
−0.5

10
0

10
0.5

10
1

10
−1.5

10
−1

10
−0.5

10
0

10
0.5

10
1

mutator

 lo
g

1
0
 m

s
c
o

re
a
v
g
(m

s
c
o
re

)

Figure 4: Relative distances of the individual fault type mutation scores from the average scores by dataset. Where the dots

are missing no faults of that type were generated.

could further improve tests. Other mutators, such as maths and

negate conditional were generally well detected by the tests.

RQ2. Which of seven fault types are least and most

often detected by tests in these 10 open source sys-

tems? The conditional boundary fault type seems most

likely to slip through testing followed by the void muta-

tor. The return, maths, negate conditional and increment

mutators are typically more often detected by tests.

4.3 RQ3: Improving test effectiveness by
exploiting a non uniform distribution of
different fault types

Compared to other fault types, Table 5 indicates that CB is the

only amongst the seven for which exist a significant difference in

𝑚𝑠𝑐𝑜𝑟𝑒 (i.e. CB is significantly missed by tests compared to NC and

R, 𝑝 < 0.05). In the case of CB, tests seem to often miss differences

in the conditional boundaries of the system under test. The snippets

of Code 1 and 2 demonstrate one example of that. Where Code 1 is

EASE 2020, April 15ś17, 2020, Trondheim, Norway Petrić, et al.

the original version of functional code, Code 2 represents a slight

variation where the boundary condition is changed. Our results

suggests that tests often fail to detect this type of mistake. This is

surprising since boundary problems have been known about for

many years.

Insufficient testing of boundary conditions can have consequences

that span from minor issues to more serious security threats. For

example, iterating through an array of different possible choices

can lead to an item of the array at the boundary not being checked.

This type of mistake can often be quickly observed and fixed. How-

ever, in other cases, insufficient boundary checks can lead to major

security issues such as buffer overflow. Alhazmi et al. showed that

a significant number of high security vulnerabilities are caused by

buffer overflows which are linked to boundary condition problems

[3]. Therefore, it is of utmost importance that boundary conditions

are sufficiently tested. Our results suggest that this can largely

be improved by adding additional test cases that check boundary

conditions.

Our results suggest that another type of fault commonly missed

by tests is caused by the removal of void method calls. According

to our results, more than 75% of tests exercising a system under

test containing void method calls are affected by this potential is-

sue. We suspect that some faults which are not caught by tests

could relate to side effects caused by removing void method calls.

Side effects happen when a method modifies a non-local variable,

which can have an effect on other parts of code that use the same

non-local variable. As shown in Code 3, side effects can have con-

sequences that go beyond the system under test. In this example,

the calculate() method represents the system under test. Code

4 depicts an example of a test that checks its functionality. The

removal of closeAccount() from calculate() in Code 3 will not

have any effect on the unit test in Code 4. However, the effect on

the rest of the system can be significant. Any other part of code

which relies on the variable closed is now affected. Therefore, unit

tests may not be an appropriate way to comprehensively test the

calculate()method. Instead, more sophisticated integration tests

should be employed.

RQ3. How can tests be improved to ensure the seven

fault types covered in this study are effectively de-

tected? We show two common types of faults that are

likely to slip through testing and suggest practical im-

provements to tests. In particular, unit tests should more

comprehensively check boundary cases, whilst integration

tests should be used in situations where side effects can

have impact beyond the system under test.

5 RELATED WORK

One of the main goals in software testing research is to establish

ways in which tests can be effective, i.e. capable of exposing faults.

Traditionally, code coverage has been used as a proxy for measuring

test effectiveness, making it a defacto indicator of testing effective-

ness. The rationale being that tests which cover more lines and

independent paths in the code should be more effective in expos-

ing faults. However, an increasing number of studies have shown

that coverage is a weak proxy for test effectiveness. For example,

Antinyan et al. [6] demonstrated that the increase in code coverage

produced only a slight tendency for decreasing the number of faults

in a large telecommunication system (>2M LOC). Notably, in their

study the size of modules and their change rate were controlled for.

Kochhar et al. [22] arrived at a similar conclusion, i.e. there is no

significant correlation between coverage and post-release faults. It

is likely that the factors which impact test effectiveness are complex

and involves multiple factors.

The ability of tests to find specific types of fault has been studied

previously. Deng et al. empirically investigated the fault detection

rate of the Statement Deletion operator [14]. They reported a reduc-

tion of 80% in the number of generated mutants with only a modest

loss in test effectiveness. Delemaro et al. studied the Interface Muta-

tion operators specifically designed for integration testing to assess

their test effectiveness [12]. Their approach captured nearly all

seeded faults caused by an incorrect interaction between modules.

Code 1: Original code

i f (a <= b) {

/ / some code

}

Code 2: Faulty code

i f (a < b) {

/ / some code

}

Code 3: Code with side effects

boo lean c l o s e d = f a l s e ;

doub le c a l c u l a t e (doub le p r i c e) {

c l o s eAccoun t () ;

r e t u r n p r i c e ∗ 1 . 2 ;

}

vo id c l o s eAccoun t () {

c l o s e d = t r u e ;

}

Code 4: Accompanying unit test for the calculate method

@Test

vo id t e s t C a l c u l a t e () {

doub le expec t ed = 1 2 . 0 ;

doub le a c t u a l = c a l c u l a t e (1 0 . 0) ;

a s s e r t E q u a l s (expec ted , a c t u a l , 0 . 0 1) ;

}

Smith and Williams empirically evaluated multiple mutation op-

erators using a small back-end web application [36]. They found

that the usefulness of operators depend on the context, as for their

web-based application conditional operators were particularly use-

ful compared to arithmetic operators which were seldom used in

the system. In this study we also found that the conditional-based

faults need more testing. Petrović and Ivanković used mutation

testing in Google to analyse which fault types get detected most

often in their commercial systems [32]. They report that the sur-

vival rate amongst different fault types is stable and does not vary

significantly. In addition, Schwartz et al. investigated the relation-

ship between different fault types and test effectiveness to find that

some faults are detected more often than others [35].

Which Software Faults Are Tests Not Detecting? EASE 2020, April 15ś17, 2020, Trondheim, Norway

Other factors that have been reported in the literature to influ-

ence test effectiveness are test suite size, the number of covered

methods per test and the number of assertions. Inozemstva and

Holmes studied the effect of test suite size on test effectiveness and

discovered that coverage has moderate to high correlation if the

size of a test suite is not controlled [19]. Petrić et al. established that

robust tests (i.e. tests that cover multiple methods) are more likely

to expose real faults in the system [31]. Zhang and Mesbah on the

other hand demonstrated that the number of assertions in tests

is a strong indicator of test effectiveness [42], which aligns with

the previous finding that the robustness of tests makes them more

effective. In addition, Bowes et al. identified several other factors,

such as test maintainability and comprehensibility, influence test

effectiveness [10]. Our results align with these previous findings.

In particular, Bowes et al. suggested that developers need to write

more happy and sad tests (i.e. tests that verify and that break the

system) [10], as such tests increase the likelihood of covering border

cases.

In this study we investigated fault type as the potential factor

that influences test effectiveness. Fault type provides a finer grained

understanding of the shortcomings in the test suite by pinpointing

weaknesses in the tests. For instance, when a particular fault type

is more prominent in the system it is possible to improve testing to

be more effective in capturing that specific fault type. The work of

Schwartz et al. considered the relationship between fault types and

test effectiveness for systems satisfying high coverage [35]. Using

the MuJava mutation tool, they found that the arithmetic and rela-

tional operators replacement are more often detected compared to

other 17 traditional mutation operators they investigated. Contrary,

the conditional operator used in this study, which is most similar

to the MuJava’s relational operator replacement, is the least often

detected in the 10 open source systems. However, in our work we

focus our selection of datasets and tools to explicitly address the

equivalence problem without making presumptions on how well

code is covered. As mentioned in the background section, reducing

the equivalence problem is important to fairly compare different

fault types and their chance of being exposed by tests.

Our study sheds light on the additional factors that can improve

the detection of faults by tests. Most prominently, boundary checks

are undertested. Our results suggest that tests which robustly check

boundaries would improve test effectiveness. Similarly, covering

cases caused by side effects in method calls would improve the

overall effectiveness of the test suite.

6 THREATS TO VALIDITY

Here we consider the potential internal and external threats to

validity and our approaches to mitigate them. We used mutants as

surrogates for real faults in this study. Even though mutants might

be different from real faults, we believe that potential issues that

mutants reveal are worth considering in order to improve testing.

Another internal threat to this type of study is caused by equiv-

alent mutants. As explained in the background and methodology,

equivalent mutants can deflate mutation score values [28]. Yao et

al. demonstrated that some mutation operators are considerably

more prone to equivalent mutants than others [40]. Without con-

sidering their impact, equivalent mutants could significantly effect

the results of this type of study. We employed techniques to reduce

the number of equivalent mutants. First, amongst the available

mutation testing tools for Java, we selected PIT which has been

shown to generate the least number of equivalent mutants [21].

Second, we restricted ourselves to the seven mutants that are most

unlikely to generate equivalent mutants4.

The selection of the datasets in our study might pose threats

to external validity. To minimise this threat, we carefully selected

candidates to be included in our study. We ensured that only active

systems which are widely accepted and used by the community

are considered. In addition, we selected a diverse set of systems

to check whether our findings are local to the project or can be

generalised to a variety of different systems. We believe the selected

systems provide suitable diversity and are worthy of investigation.

7 CONCLUSIONS

By investigating the detection rate of different fault types, we show

that some types of faults are more likely to slip through testing

than others. In particular, conditional boundaries and faults relating

to potential side effects are more likely to be undetected by tests

in the 10 systems we investigated. Relying only on traditional test

effectiveness metrics is not sufficient to reveal those issues which

often go undetected. Our results suggest several practices to im-

prove test effectiveness. Developers should pay more attention to

boundary cases when writing tests. One approach is to write tests

that both, verify and break the system, to increase the coverage

of border cases. Developers should also look out for potential side

effects in the system under test. Developers need to understand

the consequences of particular code execution on the system. Our

results indicate that developers also need to consider trivial cases,

such as attending to a function’s return value. Even though the

return mutator is an obvious fault and it is detected frequently,

there are a considerable number of cases where this type of fault

goes undetected.

Researchers may also benefit from this research. More work is

needed to experiment with techniques for reducing the equiva-

lent mutant problem in order to include a greater number of fault

types. It is likely that by including more fault types we can get a

broader understanding of other common factors that can improve

test effectiveness. Further investigation of factors where tests are

more successful in finding a particular fault type could also increase

the understanding of what makes some tests more successful than

others in finding faults. Finally, we believe it is worth investigat-

ing tests where faults related to the return values go undetected.

Better understanding of those tests would likely be beneficial for

improving test effectiveness.

REFERENCES
[1] [n.d.]. Mutation operators. http://pitest.org/quickstart/mutators/. (Accessed on

02/20/2019).
[2] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen.

2016. Can Testedness Be Effectively Measured?. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2016). 547ś558. https://doi.org/10.1145/2950290.2950324

[3] Omar H Alhazmi, Sung-Whan Woo, and Yashwant K Malaiya. 2006. Security
vulnerability categories in major software systems.. In Communication, Network,
and Information Security. 138ś143.

4http://pitest.org/quickstart/basic_concepts/

EASE 2020, April 15ś17, 2020, Trondheim, Norway Petrić, et al.

[4] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, J. Jenny Li, and Hong Zhu. 2013. An orchestrated survey of methodolo-
gies for automated software test case generation. Journal of Systems and Software
86, 8 (2013), 1978 ś 2001. https://doi.org/10.1016/j.jss.2013.02.061

[5] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is mutation an appropriate
tool for testing experiments? [software testing]. In Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005. 402ś411. https://doi.org/10.
1109/ICSE.2005.1553583

[6] V. Antinyan, J. Derehag, A. Sandberg, and M. Staron. 2018. Mythical Unit Test
Coverage. IEEE Software 35, 3 (May 2018), 73ś79. https://doi.org/10.1109/MS.
2017.3281318

[7] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. 2014. Test Code Quality
and Its Relation to Issue Handling Performance. IEEE Transactions on Software
Engineering 40, 11 (Nov 2014), 1100ś1125. https://doi.org/10.1109/TSE.2014.
2342227

[8] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (01 Aug 2015), 1052ś1094. https://doi.org/10.1007/
s10664-014-9313-0

[9] Hudson Silva Borges and Marco Tulio Valente. 2017. Application Domain of
5,000 GitHub Repositories. https://doi.org/10.5281/zenodo.804474

[10] David Bowes, Tracy Hall, Jean Petrić, Thomas Shippey, and Burak Turhan. 2017.
How Good Are My Tests?. In Proceedings of the 8th Workshop on Emerging Trends
in Software Metrics (Buenos Aires, Argentina) (WETSoM ’17). IEEE Press, Piscat-
away, NJ, USA, 9ś14. https://doi.org/10.1109/WETSoM.2017..2

[11] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thonyVentresque. 2016. PIT: A PracticalMutation Testing Tool for Java (Demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbrücken, Germany) (ISSTA 2016). ACM, New York, NY, USA, 449ś452.
https://doi.org/10.1145/2931037.2948707

[12] M. E. Delamaro, J. C. Maidonado, and A. P. Mathur. 2001. Interface Mutation: an
approach for integration testing. IEEE Transactions on Software Engineering 27, 3
(March 2001), 228ś247. https://doi.org/10.1109/32.910859

[13] D. Delgado and A. Martinez. 2013. Cost Effectiveness of Unit Testing: A Case
Study in a Financial Institution. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. 340ś347. https://doi.org/10.
1109/ESEM.2013.50

[14] L. Deng, J. Offutt, and N. Li. 2013. Empirical Evaluation of the Statement Deletion
Mutation Operator. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. 84ś93. https://doi.org/10.1109/ICST.2013.20

[15] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia. 2017. Dynamic Selection
of Classifiers in Bug Prediction: An Adaptive Method. IEEE Transactions on
Emerging Topics in Computational Intelligence 1, 3 (June 2017), 202ś212. https:
//doi.org/10.1109/TETCI.2017.2699224

[16] R. Gopinath, C. Jensen, and A. Groce. 2014. Mutations: How Close are they to
Real Faults?. In 2014 IEEE 25th International Symposium on Software Reliability
Engineering. 189ś200. https://doi.org/10.1109/ISSRE.2014.40

[17] R. Gopinath, B. Mathis, and A. Zeller. 2018. If You Can’t Kill a Supermutant,
You Have a Problem. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 18ś24. https://doi.org/10.1109/
ICSTW.2018.00023

[18] Atul Gupta and Pankaj Jalote. 2008. An approach for experimentally evaluating
effectiveness and efficiency of coverage criteria for software testing. International
Journal on Software Tools for Technology Transfer 10, 2 (01 Mar 2008), 145ś160.
https://doi.org/10.1007/s10009-007-0059-5

[19] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (Hyderabad, India) (ICSE 2014). ACM, New York, NY,
USA, 435ś445. https://doi.org/10.1145/2568225.2568271

[20] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). ACM, New
York, NY, USA, 654ś665. https://doi.org/10.1145/2635868.2635929

[21] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos
Malevris, and Yves Le Traon. 2018. How effective are mutation testing tools? An
empirical analysis of Java mutation testing tools with manual analysis and real
faults. Empirical Software Engineering 23, 4 (01 Aug 2018), 2426ś2463. https:
//doi.org/10.1007/s10664-017-9582-5

[22] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan. 2017. Code Coverage and Postre-
lease Defects: A Large-Scale Study on Open Source Projects. IEEE Transactions on
Reliability 66, 4 (Dec 2017), 1213ś1228. https://doi.org/10.1109/TR.2017.2727062

[23] B. Kurtz, P. Ammann, J. Offutt, and M. Kurtz. 2016. Are We There Yet? How
Redundant and Equivalent Mutants Affect Determination of Test Completeness.
In 2016 IEEE Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). 142ś151. https://doi.org/10.1109/ICSTW.2016.41

[24] W. B. Langdon, M. Harman, and Y. Jia. 2009. Multi Objective Higher Order
Mutation Testing with Genetic Programming. In 2009 Testing: Academic and
Industrial Conference - Practice and Research Techniques. 21ś29. https://doi.org/
10.1109/TAICPART.2009.18

[25] A. Mockus, N. Nagappan, and T. T. Dinh-Trong. 2009. Test coverage and post-
verification defects: A multiple case study. In 3rd International Symposium on
Empirical Software Engineering and Measurement. 291ś301. https://doi.org/10.
1109/ESEM.2009.5315981

[26] Akbar Siami Namin and Sahitya Kakarla. 2011. The Use of Mutation in Testing
Experiments and Its Sensitivity to External Threats. In Proceedings of the 2011
International Symposium on Software Testing and Analysis (Toronto, Ontario,
Canada) (ISSTA ’11). 342ś352. https://doi.org/10.1145/2001420.2001461

[27] A. Panichella, R. Oliveto, and A. De Lucia. 2014. Cross-project defect prediction
models: L’Union fait la force. In 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE).
164ś173. https://doi.org/10.1109/CSMR-WCRE.2014.6747166

[28] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the Validity of Mutation-based Test Assessment. In Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbrücken, Germany) (ISSTA 2016). ACM, New York, NY, USA, 354ś365.
https://doi.org/10.1145/2931037.2931040

[29] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Compiler
Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective Equiv-
alent Mutant Detection Technique. In Proceedings of the 37th International Confer-
ence on Software Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, Pis-
cataway, NJ, USA, 936ś946. http://dl.acm.org/citation.cfm?id=2818754.2818867

[30] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation Testing Advances: An Analysis and Survey. In Advances
in Computers, Atif M. Memon (Ed.). Advances in Computers, Vol. 112. Elsevier,
275 ś 378. https://doi.org/10.1016/bs.adcom.2018.03.015

[31] Jean Petrić, Tracy Hall, and David Bowes. 2018. How Effectively Is Defective
Code Actually Tested?: An Analysis of JUnit Tests in Seven Open Source Systems.
In Proceedings of the 14th International Conference on Predictive Models and Data
Analytics in Software Engineering (Oulu, Finland) (PROMISE’18). ACM, New York,
NY, USA, 42ś51. https://doi.org/10.1145/3273934.3273939

[32] Goran Petrović andMarko Ivanković. 2018. State ofMutation Testing at Google. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). ACM, New York,
NY, USA, 163ś171. https://doi.org/10.1145/3183519.3183521

[33] G. Petrović, M. Ivanković, B. Kurtz, P. Ammann, and R. Just. 2018. An Industrial
Application of Mutation Testing: Lessons, Challenges, and Research Directions. In
2018 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 47ś53. https://doi.org/10.1109/ICSTW.2018.00027

[34] R. Purushothaman and D. E. Perry. 2005. Toward understanding the rhetoric of
small source code changes. IEEE Transactions on Software Engineering 31, 6 (June
2005), 511ś526. https://doi.org/10.1109/TSE.2005.74

[35] Amanda Schwartz, Daniel Puckett, Ying Meng, and Gregory Gay. 2018. Investigat-
ing faults missed by test suites achieving high code coverage. Journal of Systems
and Software 144 (2018), 106 ś 120. https://doi.org/10.1016/j.jss.2018.06.024

[36] B. H. Smith and L. Williams. 2007. An Empirical Evaluation of the MuJava
Mutation Operators. In Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION (TAICPART-MUTATION 2007). 193ś202. https:
//doi.org/10.1109/TAIC.PART.2007.12

[37] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An Empirical Investiga-
tion into the Nature of Test Smells. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (Singapore, Singapore) (ASE
2016). ACM, New York, NY, USA, 4ś15. https://doi.org/10.1145/2970276.2970340

[38] M.Waterloo, S. Person, and S. Elbaum. 2015. Test Analysis: Searching for Faults in
Tests (N). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 149ś154. https://doi.org/10.1109/ASE.2015.37

[39] Claus O. Wilke. 2018. Fundamentals of Data Visualization: A primer on making
informative and compelling figures. O’Reilly Media.

[40] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A Study of Equivalent and Stub-
born Mutation Operators Using Human Analysis of Equivalence. In Proceedings
of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE 2014). ACM, New York, NY, USA, 919ś930. https://doi.org/10.1145/2568225.
2568265

[41] Vahid Garousi Yusifoğlu, Yasaman Amannejad, and Aysu Betin Can. 2015. Soft-
ware test-code engineering: A systematic mapping. Information and Software
Technology 58 (2015), 123 ś 147. https://doi.org/10.1016/j.infsof.2014.06.009

[42] Yucheng Zhang and Ali Mesbah. 2015. Assertions Are Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). ACM, New
York, NY, USA, 214ś224. https://doi.org/10.1145/2786805.2786858

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Research Questions
	3.2 Datasets
	3.3 Mutation Operators
	3.4 Mutation Score
	3.5 Analysis
	3.6 Experiment

	4 Results and Discussion
	4.1 RQ1: The overall effectiveness of tests in the 10 open source systems
	4.2 RQ2: The least and most detected fault types in the 10 open source test suites
	4.3 RQ3: Improving test effectiveness by exploiting a non uniform distribution of different fault types

	5 Related Work
	6 Threats to Validity
	7 Conclusions
	References

