
Deep Bayesian Bandits: Exploring in Online Personalized
Recommendations

Dalin Guo∗
dag082@ucsd.edu
UC San Diego
La Jolla, USA

Sofia Ira Ktena†
iraktena@google.com

Twitter
London, UK

Ferenc Huszar‡
fh277@cam.ac.uk

Twitter
London, UK

Pranay Kumar Myana
pmyana@twitter.com

Twitter
London, UK

Michael Kneier
mkneier@twitter.com

Twitter
San Francisco, USA

Sourav Das
sdas@twitter.com

Twitter
San Francisco, USA

Wenzhe Shi
wshi@twitter.com

Twitter
London, UK

Alykhan Tejani
atejani@twitter.com

Twitter
London, UK

ABSTRACT
Recommender systems trained in a continuous learning fashion are
plagued by the feedback loop problem, also known as algorithmic
bias. This causes a newly trained model to act greedily and favor
items that have already been engaged by users. This behavior is
particularly harmful in personalised ads recommendations, as it
can also cause new campaigns to remain unexplored. Exploration
aims to address this limitation by providing new information about
the environment, which encompasses user preference, and can lead
to higher long-term reward. In this work, we formulate a display
advertising recommender as a contextual bandit and implement
exploration techniques that require sampling from the posterior
distribution of click-through-rates in a computationally tractable
manner. Traditional large-scale deep learningmodels do not provide
uncertainty estimates by default. We approximate these uncertainty
measurements of the predictions by employing a bootstrapped
model with multiple heads and dropout units. We benchmark a
number of different models in an offline simulation environment
using a publicly available dataset of user-ads engagements. We
test our proposed deep Bayesian bandits algorithm in the offline
simulation and online AB setting with large-scale production traffic,
where we demonstrate a positive gain of our exploration model.

∗DG was an intern at Twitter UK when the work was done.
†SK is currently affiliated with Google DeepMind.
‡FH is currently affiliated with University of Cambridge.

This work is licensed under a Creative Commons Attribution International 4.0 License.
RecSys ’20, September 22–26, 2020, Virtual Event, Brazil
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7583-2/20/09.
https://doi.org/10.1145/3383313.3412214

CCS CONCEPTS
•Computingmethodologies→Reinforcement learning;Neu-
ral networks; • Information systems → Display advertising.

KEYWORDS
Recommender Systems, Algorithmic bias, Contextual bandit
ACM Reference Format:
Dalin Guo, Sofia Ira Ktena, Ferenc Huszar, Pranay Kumar Myana, Michael
Kneier, Sourav Das, Wenzhe Shi, and Alykhan Tejani. 2020. Deep Bayesian
Bandits: Exploring in Online Personalized Recommendations. In Fourteenth
ACM Conference on Recommender Systems (RecSys ’20), September 22–26,
2020, Virtual Event, Brazil. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3383313.3412214

1 INTRODUCTION
Deep learning is widely deployed to support a range of person-
alization use-cases [33]: from content recommendations [8, 10],
to display and performance advertising [14, 31]. To keep up with
shifting user preferences [14] and deal with cold-start problems,
models are often updated in a continuous training loop: repeatedly
fine-tuned using recent data while a previous version was deployed
to serve content. This introduces a feedback loop as training data
was selected by the model, a problem known as algorithmic (or
selection) bias [5]. This bias may result in unjustified amplification
of certain items based on spurious patterns in the data, or a failure
to explore promising candidates to users altogether.

There are twomain toolkits to address algorithmic bias: causal in-
ference [4] or bandit theory and reinforcement learning (RL) [7, 17].
A central concept is exploration: all items are presented to all users
uniformly to form an unbiased dataset; however, overly exploring
reduces user satisfaction. The exploration/exploitation trade-off is
naturally formulated as a (contextual) multi-armed bandit task, for
which an ϵ-greedy policy is a simple yet powerful approach. How-
ever, as the number of candidate items is usually large, and only a
handful will yield engagement for a given user, uniform exploration
can have a revenue loss whilst providing little to no information

456

https://doi.org/10.1145/3383313.3412214
https://doi.org/10.1145/3383313.3412214
https://doi.org/10.1145/3383313.3412214
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3383313.3412214&domain=pdf&date_stamp=2020-09-22


RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Dalin Guo et al.

and future expected gain. Alternative methods that are driven by
uncertainty, such as Upper Confidence Bound (UCB) [3, 15] and
Thompson sampling (TS) [1, 30], have been proposed with theoret-
ical guarantees of regret bounds.

Applying bandit algorithms to real-world settings can be chal-
lenging, as the performance relies on accurate assumptions about
the reward environment, which can be highly complex. For example,
the reward rate can be a nonlinear function of the context. UCB and
TS also require sampling from the posterior distribution, which is
computationally challenging if the value function is approximated
by a deep neural network to capture non-linearity.

Deep neural networks have been successfully used to predict
the click through rate (CTR) for the item candidates [8, 14] and to
approximate nonlinear value functions in RL setups [21]. However,
traditional neural network architectures provide point estimates
without uncertainty. Bayesian deep learning [22] provides a natural
solution, but it is computationally expensive and challenging to
train and deploy as an online service. Other methods [12, 16, 28]
have been proposed to approximate the posterior distributions or
estimate model uncertainty of a neural network.

This paper is inspired by bandit algorithms and posterior approx-
imation algorithms for deep neural networks. We focus on applying
them tractably in large-scale deep learning-based recommender
systems. We also propose a hybrid model that contains dropout
units only in the second-to-last layer, which can also be viewed as a
bootstrapped model with multiple heads and shared bottom layers.
We use UCB exploration, where we numerically estimate confi-
dence intervals. We focus our experiments on display advertising,
but our method can be easily adapted to other applications.

We compare our model with baselines in an offline simulated en-
vironment to show its effectiveness, and further perform an online
A/B test to demonstrate its positive impact. Our main contributions
are three-fold:

(1) We propose an offline simulation environment using a public
dataset, and benchmark exploration techniques.

(2) We propose an efficient deep Bayesian bandits algorithm
showing significant gains offline.

(3) We present results of the proposed model in an online A/B
testing experiment with large scale Twitter data.

2 RELATEDWORK
2.1 Contextual Bandits
Traditional approaches to recommender systems commonly face
the cold-start problem, where contextual bandits have emerged
as a viable alternative [17, 20, 24, 35]. [17] proposes LinUCB algo-
rithm to efficiently compute the confidence interval in closed form,
which shows a better performance compared to context-free model
and ϵ-greedy policy. LinUCB assumes a linear payoff model [9],
and is evaluated offline with logged events that was collected ran-
domly [18]. [35] proposes a partial personalization approach that
uses users’ latent class structure to train a set of model parameters
for each class, reducing the need on the user features to fully capture
the variability. Their approach provides good recommendations for
new users more quickly and yields lower regret bound.

Bart was proposed [20] to jointly optimize recommendations
and associated explanations and provide more transparent sugges-
tions to users for music recommendations. Bart is incorporated
with ϵ-greedy exploration for easier implementation in produc-
tion and propensity scoring when jointly optimizing for items and
recommendation explanations. In the personalized music recom-
mendations space, [32] leverages UCB exploration with context.

2.2 Deep Reinforcement Learning
Deep neural networks provide a powerful nonlinear payoff model,
while introducing challenges of sampling from the posterior distri-
bution. Bootstrapped DQN adapts TS allows temporally extended
exploration through randomized value functions by approximat-
ing a distribution over Q-values via the bootstrap [23]. A recent
work [25] performs an extensive investigation of deep Bayesian
bandit methods from an empirical standpoint under the prism of
TS, in downstream bandit tasks with simulators generated with
synthetic and real-world datasets. Another recent work [27] di-
rectly compares the accuracy of predictive uncertainty under input
distribution shifts.

Deep reinforcement learning approaches are adopted in recom-
mender systems. [19] aims to model long-term rather than imme-
diate rewards and captures the dynamic adaptation of user prefer-
ences and the interactive nature between users and recommender
systems, with an “actor-critic” structure. DeepPage [34], a page-
wise recommendation framework, jointly optimizes a page of items
and incorporates real-time user feedback. The latter approach is
evaluated in a simulated online environment of an e-commerce
product illustrating potential for a production system, while that is
not the case for the former.

3 OUR APPROACH
Here, we formulate the ads recommendation as a contextual bandit
problem, where the context contains both user and ad features.
To trade-off between exploration and exploitation, we consider
two exploration algorithms - UCB and Thompson sampling. To
address the lack of an uncertainty estimate with neural networks,
we consider using dropout, bootstrapping, and propose a hybrid
method that combines the idea of dropout and bootstrapping.

We use a neural network to predict CTR and additionally use a
posterior approximation algorithm to obtain the model uncertainty.
Given the samples of the CTR estimates for all candidate ads, an
exploration algorithm picks K items to display for the given user.
The user actions for the recommended items are logged and later
used to fine-tune the neural network after some fixed duration.

3.1 Exploration techniques
3.1.1 ϵ-greedy. ϵ-greedy does not take into account of any uncer-
tainty estimate. It ‘greedily‘ recommends itemwith the highest CTR
with probability 1-ϵ and randomly selecting other items uniformly
with probability ϵ .

3.1.2 Thompson Sampling (TS). Thompson sampling [30] is also
known as posterior sampling or probability matching, as it samples
from the posterior distribution of CTR of each item once, and acts
‘greedily‘ according to those samples. Thus, it selects an item with
a probability that this item is optimal given the current knowledge,

457



Deep Bayesian Bandits: Exploring in Online Personalized Recommendations RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

Figure 1: Online model. Left: original wide-and-deep model. Right: Modified multihead wide-and-deep model.

i.e. the probability of this item having a higher CTR than all other
items.

3.1.3 Upper Confidence Bound (UCB). UCB [2, 3] chooses ‘greed-
ily‘ according to the upper confidence bound of each item. It adds
an uncertainty bonus to the mean estimation, based on the prin-
ciple of optimism in the face of uncertainty. Here, we numerically
estimate the confidence bound by empirical CDF value estimator
given the samples [11].

3.2 Posterior Approximation algorithms
As UCB and TS require at least samples from the posterior, we
consider two previously proposed algorithms that enable us to
draw samples from the posterior distribution of a neural network.
Both methods are computationally costly in some ways, therefore
we propose an alternative method that requires less computation.

3.2.1 Bootstrapping. Bootstrapping obtains the uncertainty by
trainingmultiple identical models on different subsets of the dataset [16].
It is computationally expensive: (a) During training, we need to (i)
partition and store the masks of data, and (ii) train multiple neural
networks. (b) During prediction, we need run the forward pass of
all bootstrapped networks once (if using TS) or multiple times (if
using UCB). The forward pass can be expensive in a recommender
system with large dataset and/or large network, which might not
meet the latency requirement of an online service.

To mitigate this problem, multi-head networks have been pro-
posed [23]. This approach suggests to share the bottom (early) layers
across bootstrapped networks, with each subset passing through
a different "head" during training. During testing, we can obtain
the estimation from all neural networks in one forward pass by
taking the outputs of all the heads. However, we still need to parti-
tion the dataset. Previous studies have found that the randomness
introduced by the stochastic gradient descent (SGD) optimizer and
random initialization is sufficient to provide good performance
in downstream tasks [23, 25]. Here, we compare all the variants
of bootstrapping methods, including the original bootstrapping
method (Bootstrap), using a multi-head neural network (Multi-
head), multiple networks trained on the same whole dataset (SGD),
and multi-head network with heads trained on the whole dataset
(Multihead SGD).

3.2.2 Dropout. Dropout during inference phase has been proposed
to approximate the posterior distribution with good empirical per-
formance and theoretical guarantees [12]. To obtain model un-
certainty, the model makes predictions through multiple forward
passes with different dropout units to obtain samples from the
posterior distribution. Compared to bootstrapping, dropout has a
lower computational cost; however, it usually takes longer to train a
neural network with dropout [29], and running the forward passes
multiple times can be expensive as discussed above.

3.2.3 A Hybrid Method. We combine the ideas of bootstrapping
and dropout with the following objectives: (1) dynamically assign
membership of each data point to subsets without storing the mem-
bership mask; (2) avoid training multiple neural networks and (3)
reduce the computational cost of running multiple forward passes
through the whole neural network required by the dropout method.
Our model adds an additional dropout layer as the second-to-last
layer. Thus, when sampling from the posterior distribution, we
only need to compute the bottom layers once, and multiples pass
through the dropout layer with small number of units can be done
in parallel with matrix manipulation. The dropout layer approxi-
mately acts as the "heads" equivalent in the multi-head network,
and the dropout automatically provides a Bernoulli mask for each
training data point without explicitly partitioning the dataset.

3.3 Neural network architectures
3.3.1 Offline simulation. We use a fully-connected feed-forward
network. The network inputs the concatenated user and ads fea-
tures, while its output is a scalar value that corresponds to the score
of the CTR for this user – ad pair.

3.3.2 Online Experiment. We use a (modified) wide-and-deep neu-
ral network [8]. In the original model (Fig. 1 left), the wide com-
ponent corresponds to a generalized linear model, while the deep
component corresponds to a feed-forward neural network. To adapt
it for our proposed posterior approximation method, we add one
additional layer that can be viewed as a multi-head layer (Fig. 1
right). The loss function used is proposed in [14].

458



RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Dalin Guo et al.

Table 1: Offline simulation: performance comparison

Model CTR (+%) PR-AUC
Random 0 0.5
Greedy 91.77 0.6565
ϵ-greedy 91.94 0.6501

Dropout TS 94.60 0.6421
Dropout UCB 97.16 0.5236
Bootstrap TS 94.83 0.5519
Bootstrap UCB 139.03 0.5307

SGD UCB 127.95 0.5335
Multihead UCB 112.79 0.5279

Multihead SGD UCB 96.30 0.5218
Hybrid TS 67.56 0.6311
Hybrid UCB 82.44 0.5165

Table 2: Offline simulation: Warm-start the hybrid model

Model (# epochs) train PR-AUC CTR (+%) test PR-AUC
Random 0.5 0 0.5

ϵ-greedy (100) 0.5951 94.30 0.6692
Hybrid (100) 0.5001 85.99 0.5108
Hybrid (200) 0.5584 60.51 0.5165
Hybrid (500) 0.5895 128.66 0.5294

4 EXPERIMENT
4.1 Setup
4.1.1 Continuous Training and Self-training Setup. Ad impressions
are served to users and the label is then published to a data stream
which the model’s training service subscribes to. The model is
warm-started from the previous version, and fine-tuned with newly
collect data. In the offline simulation, the model is updated every
after 20 users. In the online experiment, the continuous training
process outputs models every 10 minutes to serve online traffic.
The model is only trained with the data that is generated by that
model, forming a self-training loop.

4.2 Offline Simulation.
Off-policy evaluation is challenging and the accuracy of existing
approaches are reliable when the two policy are similar [13], or the
logged data is random [18], which is not practical sometimes as
the data was collected with pure exploitation. We first evaluate the
models in a simulated environment generated by a small dataset to
validate our approach, without making strong assumptions on user
behavior.

4.2.1 Dataset. ADS-16 dataset [26] is a publicly available dataset
that contains ratings of 300 ads shown to 120 users. The dataset
contains full user-ad interaction matrix, which is not the case for
some other popular publicly available datasets such as Criteo [6].
Each user provided a numerical ratings of how likely they will click
on the ads, ranging from 1-star (negative) to 5-stars (positive). We
convert the numerical ratings to binary click/no click by a threshold
suggested by the original paper [26]. We extract the users and ads

Table 3: Predictive performance ofmodels self-trained in on-
line A/B test

Model RCE ROC-AUC(%)
Hybrid 8.12 68.37
Control 7.95 67.13

features, which results in 250 user features and 323 ads features. The
categorical features are one-hot encoded. We randomly held-out 5
ads for each user as the test set.

4.2.2 Metrics. We use area under precision-recall curve (PR-AUC)
to evaluate the trained model predictive performance. We use ac-
cumulated averaged CTR to measure the reward obtained by the
model, which is negatively related to the regret that is commonly
used to evaluate bandit algorithms.

4.2.3 Hyperparameters. The model randomly chooses ads for 20
users to begin with. For each user, the model selects seven different
ads. The hyperparameters used for the experiments are: RMSProp
optimizer; learning rate 0.1; decay rate 0.5; batch size 64; training
epochs 100; dropout rate 0.5; ϵ 0.1 (for ϵ-Greedy); # samples for
UCB (# of bootstrapped networks/heads): 10; 90% confidence bound:
2th largest value of ten samples. The feedforward neural network
contains 2 layers with 100 and 50 units each, with an additional
layer of 20 units for the hybrid method.

4.3 Online Experiment
4.3.1 Dataset. For the offline model evaluation based on Twitter
data, we trained on 1 day of data and test on the first hour of the
following day. The training data is ∼ 550 million ads, while the
testing data is ∼ 20 million. In online experiment, models were
each serving and trained on a continuous data stream of 2 % of
production traffic in real time for twoweeks. To evaluate the trained
models, we use a test data that were collected by a random policy
serving 1% of production traffic (∼ 160,000), which is unbiased and
representative of the distribution of the user-ads pairs.

4.3.2 Metrics. Weuse area under an receiver operating characteristic
Curve (ROC-AUC) and relative cross entropy (RCE) to evaluate the
model predictive performance. RCE measures the improvement of
a model relative to the naive prediction, e.g. average CTR of the
training set, in cross entropy [14].

4.3.3 Hyperparameters. The hyperparameters are: stochastic gra-
dient descent (SGD) optimizer, learning rate 0.01; decay rate 0.000001;
batch size 32; dropout rate: 0.5; # of samples: 100; UCB confidence
bound: 5th largest value. The deep part of the wide-and-deep model
consists of 4 layers with sizes [400, 300, 200, 100] with ReLU activa-
tion function applied for the intermediate layers. The weights are
initialized using Glorot initialization.

We observed that the over-prediction of the hybrid model in-
teracts with other parts of the system, which results in undesired
downstream consequences. We scaled down the score by multiply-
ing with a constant to mitigate, which does not affect the ranking
of the items.

459



Deep Bayesian Bandits: Exploring in Online Personalized Recommendations RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

4.4 Results
4.4.1 Offline evaluation. We test the bootstrapping and dropout
methods with TS and UCB in the simulated environment, and the re-
sults are shown in Table 1. We calculated the percentage of increase
of CTR against the random policy, and PR-AUC of the final model
on the test set. We observe a trade-off between averaged increased
CTR and PR-AUC, as the model trained on more random data is
expected to perform better. UCB in general earns more reward than
TS. Bootstrap UCB earns the highest rewards, while having the
highest computational cost. The performance drops as we reduce
the computational cost of the Bootstrap UCB model by using other
variants, including the Hybrid model.

One hypothesis that the dropout-based method does not perform
well is that a neural networkwith dropout units usually takes longer
to converge, typically 2-3 times [29]. One potential solution is to
offline warm-start the hybrid model with longer training epochs
before deploy it online. To test this hypothesis, we warm-start the
models with a dataset collected by a greedy policy, which is also
available for an online service deployment in general. We keep
the same online training epoch for all models. The training PR-
AUC is much lower for the neural network with dropout units
(Hybrid) compared to without dropout units (ϵ-greedy) under same
short training epochs (100), shown in Table 2. As we train the
dropout network longer, the training PR-AUC increases, and also
the accumulated CTR and test PR-AUC. With longer offline training
epochs, the hybrid model perform comparable to SGD UCB while
has lower computational cost. Note that the test PR-AUC of this
dropout network, given short online training epochs, is not much
lower than the networkwithout dropout (e.g. SGDUCB), suggesting
that the good predictive performance of a dropout network can
be maintained at least for a period of time. This results provide a
potential pipeline for online deployment of the hybrid model, that
the model can be warm-started offline with longer training epochs
before deployment, or even periodically if the predictive accuracy
starts to drop too low with limited online training epochs.

4.4.2 Online evaluation. To ensure themodifiedwide-and-deep has
a similar performance as the production model, we first validate
it on offline Twitter data. We perform a quick hyperparameter
tuning of the number of dropout units and dropout rate. The model
with the best hyperparameters (25 dropout units, 0.5 dropout rate)
achieves similar RCE (-0.0253) as the production model. We do not
find any advantage of training the model with additional epochs.

We compare our proposed hybrid model with current production
model (greedy policy) in an online A/B experiment. We find that
the cost of exploration is not significant – serving +2% impressions
with a flat revenue (no significant +/-), and no significant decrease
in training and serving speed. We observe no direct improvement
in product metrics in our experiment. Note that serving more ads
might not linearly result in revenue gain, as the quality of ads
decreases.

We further evaluate the benefit of the information gained from
exploration, i.e., a higher predictive performance. We disabled the
dropout units for model evaluation. We took a snapshot of the
models at time t hour, and evaluated on randomly served ads from t
to t+1 hour. The hybridmodel trainedwith data selected by itself has
a higher RCE and ROC-AUC than the production model (Table 3). It

indicates that exploratory data collected by hybrid model improves
the model performance, since the differences of model architectures
results in a lower RCE for the hybrid model.

We also tested ϵ-greedy policy in a previous online A/B experi-
ment, which resulted in 100% increase in negative engagement rate
(users negatively engaging with the ad, dismiss etc.), indicating a
negative impact of ϵ-greedy on user experience. With our proposed
hybrid model, we observe no increase in negative engagement rate
(2% decrease). This can be a result of the directed exploration of
UCB, which only shows ads that more or less consistent with user’s
preferences (i.e., ads has high predictive CTR and high uncertainty),
rather than randomly picking ads for exploration.

5 CONCLUSION
In this paper we have explored combining bandit algorithms with
deep neural networks, to address the algorithmic bias issue and to
optimize for long-term reward. We proposed a hybrid method that
contains dropout units only in the second-to-last layer, acting as
"heads” in a multihead network. We performed offline comparison
and online AB testing with large scale in-house data, showing good
performance of our proposed method with a lower computational
cost.

We did not observe direct or immediate benefit in production
metrics; however, the improvement in model performance will
potentially lead to revenue gain in the long-run. In addition, we did
not modify other components of the online service, such as pricing
strategy. Future work can include a suitable pricing strategy for a
recommender system with exploratory behavior, in which a more
careful calibration of the model is needed.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2013. Thompson sampling for contextual

bandits with linear payoffs. In International Conference on Machine Learning.
127–135.

[2] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397–422.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[4] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: The example of computational
advertising. The Journal of Machine Learning Research 14, 1 (2013), 3207–3260.

[5] Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. 2018. How
algorithmic confounding in recommendation systems increases homogeneity
and decreases utility. In Proceedings of the 12th ACM Conference on Recommender
Systems. 224–232.

[6] Olivier Chapelle. 2014. Modeling delayed feedback in display advertising. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1097–1105.

[7] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[9] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual ban-
dits with linear payoff functions. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 208–214.

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[11] Terry Dielman, Cynthia Lowry, and Roger Pfaffenberger. 1994. A comparison of
quantile estimators. Communications in Statistics-Simulation and Computation
23, 2 (1994), 355–371.

460



RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Dalin Guo et al.

[12] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. 1050–1059.

[13] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham,
and Simon Dollé. 2018. Offline a/b testing for recommender systems. In Proceed-
ings of the Eleventh ACM International Conference on Web Search and Data Mining.
198–206.

[14] Sofia Ira Ktena, Alykhan Tejani, Lucas Theis, Pranay Kumar Myana, Deepak
Dilipkumar, Ferenc Huszar, Steven Yoo, and Wenzhe Shi. 2019. Addressing
delayed feedback for continuous training with neural networks in CTR prediction.
In Proceedings of the 13th ACM Conference on Recommender Systems. ACM, 187–
195.

[15] Tze Leung Lai and Herbert Robbins. 1985. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics 6, 1 (1985), 4–22.

[16] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple
and scalable predictive uncertainty estimation using deep ensembles. In Advances
in neural information processing systems. 6402–6413.

[17] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. 661–670.

[18] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline
evaluation of contextual-bandit-based news article recommendation algorithms.
In Proceedings of the fourth ACM international conference on Web search and data
mining. 297–306.

[19] Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye, Haokun Chen,
Huifeng Guo, and Yuzhou Zhang. 2018. Deep reinforcement learning based
recommendation with explicit user-item interactions modeling. arXiv preprint
arXiv:1810.12027 (2018).

[20] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues
Bouchard, Alois Gruson, and Rishabh Mehrotra. 2018. Explore, exploit, and
explain: personalizing explainable recommendations with bandits. In Proceedings
of the 12th ACM Conference on Recommender Systems. 31–39.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[22] RM Neal. 1995. Bayesian learning for neural networks [PhD thesis]. Toronto,
Ontario, Canada: Department of Computer Science, University of Toronto (1995).

[23] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. In Advances in neural information
processing systems. 4026–4034.

[24] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning di-
verse rankings with multi-armed bandits. In Proceedings of the 25th international
conference on Machine learning. 784–791.

[25] Carlos Riquelme, George Tucker, and Jasper Snoek. 2018. Deep Bayesian Bandits
Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson
Sampling. International Conference on Learning Representations, ICLR.

[26] Giorgio Roffo and Alessandro Vinciarelli. 2016. Personality in computational
advertising: A benchmark. In 4 th Workshop on Emotions and Personality in
Personalized Systems (EMPIRE).

[27] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian
Nowozin, D Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. 2019. Can you
trust your model’s uncertainty? Evaluating predictive uncertainty under dataset
shift. In Advances in Neural Information Processing Systems. 13969–13980.

[28] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. 2015.
Scalable bayesian optimization using deep neural networks. In International
conference on machine learning. 2171–2180.

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[30] William R Thompson. 1933. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285–294.

[31] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[32] Xinxi Wang, Yi Wang, David Hsu, and Ye Wang. 2014. Exploration in interac-
tive personalized music recommendation: a reinforcement learning approach.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 11, 1 (2014), 1–22.

[33] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1–38.

[34] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM Conference on Recommender Systems. 95–103.

[35] Li Zhou and EmmaBrunskill. 2016. Latent contextual bandits and their application
to personalized recommendations for new users. In Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence. 3646–3653.

461


	Abstract
	1 Introduction
	2 Related Work
	2.1 Contextual Bandits
	2.2 Deep Reinforcement Learning

	3 Our approach
	3.1 Exploration techniques
	3.2 Posterior Approximation algorithms
	3.3 Neural network architectures

	4 Experiment
	4.1 Setup
	4.2 Offline Simulation.
	4.3 Online Experiment
	4.4 Results

	5 Conclusion
	References

