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ABSTRACT
Session-based recommendation has received growing attention re-
cently due to the increasing privacy concern. Despite the recent
success of neural session-based recommenders, they are typically
developed in an offline manner using a static dataset. However,
recommendation requires continual adaptation to take into account
new and obsolete items and users, and requires “continual learning”
in real-life applications. In this case, the recommender is updated
continually and periodically with new data that arrives in each
update cycle, and the updated model needs to provide recommen-
dations for user activities before the next model update. A major
challenge for continual learning with neural models is catastrophic
forgetting, in which a continually trained model forgets user pref-
erence patterns it has learned before. To deal with this challenge,
we propose a method called Adaptively Distilled Exemplar Replay
(ADER) by periodically replaying previous training samples (i.e.,
exemplars) to the current model with an adaptive distillation loss.
Experiments are conducted based on the state-of-the-art SASRec
model using two widely used datasets to benchmark ADER with
several well-known continual learning techniques. We empirically
demonstrate that ADER consistently outperforms other baselines,
and it even outperforms the method using all historical data at every
update cycle. This result reveals that ADER is a promising solution
to mitigate the catastrophic forgetting issue towards building more
realistic and scalable session-based recommenders.
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1 INTRODUCTION
Due to new privacy regulations that prohibit building user prefer-
ence models from historical user data, utilizing anonymous short-
term interaction data within a browser session becomes popular.
Session-based Recommendation (SR) is therefore increasingly used
in real-life online systems, such as E-commerce and social media.
The goal of SR is to make recommendations based on user behavior
obtained in short web browser sessions, and the task is to predict
the user’s next actions, such as clicks, views, and even purchases,
based on previous activities in the same session.

Despite the recent success of various neural approaches [11, 16,
18, 20], they are developed in an offline manner, in which the recom-
mender is trained on a very large static training set and evaluated
on a very restrictive testing set in a one-time process. However, this
setup does not reflect the realistic use cases of online recommen-
dation systems. In reality, a recommender needs to be periodically
updated with new data steaming in, and the updated model is sup-
posed to provide recommendations for user activities before the
next update. In this paper, we propose a continual learning setup
to consider such realistic recommendation scenarios.

The major challenge of continual learning is catastrophic forget-
ting [6, 23]. That is, a neural model updated on new data distribu-
tions tends to forget old distributions it has learned before. A naive
solution is to retrain the model using all historical data every time.
However, it suffers from severe computation and storage overhead
in large-scale recommendation applications.

To this end, we propose to store a small set of representative
sequences from previous data, namely exemplars, and replay them
each time when the recommendation model needs to be trained
on new data. Methods using exemplars have shown great success
in different continual learning [3, 31] and reinforcement learning
[2, 34] tasks. In this paper, we propose to select representative
exemplars of an item using an herding technique [31, 38], and its
exemplar size is proportional to the item frequency in the near
past. To enforce a stronger constraint on not forgetting previous
user preferences, we propose a regularization method based on
the well-known knowledge distillation technique [12]. We propose
to apply a distillation loss on the selected exemplars to preserve
the model’s knowledge. The distillation loss is further adaptively
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Figure 1: An visualization of the continual learning setup. At each update cycle t , the model is trained with data Dt , and the
updated model f (θt ) is evaluated w.r.t. to data Dt+1 before the next model update.

interpolated with the regular cross-entropy loss on the new data
by considering the difference between new data and old ones to
flexibly deal with different new data distributions.

Altogether, (1) we are the first to study the practical continual
learning setting for the session-based recommendation task; (2)
we propose a method called Adaptively Distilled Exemplar Replay
(ADER) for this task, and benchmark it with state-of-the-art con-
tinual learning techniques; (3) experiment results on two widely
used datasets empirically demonstrate the superior performance of
ADER and its ability to mitigate catastrophic forgetting.1

2 RELATEDWORK
2.1 Session-based Recommendation
Session-based recommendation (SR) can be formulated as a se-
quence learning problem to be solved by recurrent neural net-
works (RNNs). The first work (GRU4Rec, [11]) uses a gated recurrent
unit (GRU) to learn session representations from previous clicks.
Based on GRU4Rec, [10] proposes new ranking losses on relevant
sessions, and [36] proposes to augment training data. Attention
operation is first used by NARM [18] to pay attention to specific
parts of the sequence. Base on NARM, [20] proposes STAMP to
model users’ general and short-term interests using two separate
attention operations, and [32] proposes RepeatNet to predict repet-
itive actions in a session. Recently, [39, 42] use graph attention to
capture complex transitions of items. Motivated by the recent suc-
cess of Tansformer [37] and BERT [5] for language model tasks, [16]
proposes SASRec using Transformer, and [35] proposes BERT4Rec
to model bi-directional information. Despite the broad exploration
and success, the above methods are all studied in a static and offline
manner. Recently, the incremental and steaming nature of SR is
pointed out by [9, 27].

Besides neural approaches, several non-parametric methods have
been proposed. [15] proposes SKNN to compare the current session
with historical sessions in the training data. Lately, variations [8, 21]
of SKNN have been proposed to consider the position of items in a
session or the timestamp of a past session. [7, 24–26] apply a non-
parametric structure called context tree. Although these methods
can be efficiently updated, the realistic continual learning setting
and the corresponding forgetting issue remain to be explored.

1Code is available at: https://github.com/DoubleMuL/ADER

2.2 Continual Learning
The major challenge for continual learning is catastrophic forget-
ting [6, 23]. Methods designed to mitigate catastrophic forgetting
fall into three categories: regularization [17, 19, 40], exemplar re-
play [3, 4, 31] and dynamic architectures [22, 33]. Methods using
dynamic architectures increase model parameters throughout the
training process, which leads to an unfair comparison with other
methods. In this work, we focus on the first two categories.

Regularization methods add specific regularization terms to con-
solidate knowledge learned before. [19] introduces knowledge dis-
tillation [12] to penalize model logit change, and it is widely em-
ployed by [3, 14, 31, 39, 41]. [1, 17, 40] propose to penalize changes
on parameters that are crucial to old knowledge according to var-
ious importance measures. Exemplar replay methods store past
samples, a.k.a exemplars, and replay them periodically to prevent
model forgetting previous knowledge. Besides selecting exemplars
uniformly, [31] incorporates the Herding technique [38] to select
exemplars, and it soon becomes popular [3, 14, 28, 39, 41]. [30]
proposes to store the most “surprising” samples that the model is
least confident.

3 METHODOLOGY
In this section, we first introduce some background in Section 3.1
and a formulation of the continual learning setup in Section 3.2.
In Section 3.3, we propose our method called “Adaptively Distilled
Exemplar Replay” (ADER).

3.1 Background on Neural Session-based
Recommenders

A user action in SR is a click or view on an item, and the task is to
predict the next user action based on a sequence of user actions in
the current web-browser session. Existing neural models f (θ ) typi-
cally contain two modules: a feature extractor ϕ(x) to compute
a compact sequence representation of the sequence x of previous
user actions, and an output layer ω(ϕ(x)) to predict the next user
action. Various recurrent neural networks [10, 11] and attention
mechanisms [16, 18, 20] have been proposed for ϕ, and the com-
mon choices for the output layer ω is fully-connect layers[11] or
bi-linear decoders [16, 18]. In this paper, we base our comparison
on SASRec [16], and we refer readers to model details in the original
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paper to avoid verbosity. Nevertheless, the techniques proposed
and compared in this paper are agnostic to f (θ ), therefore, a more
thorough comparison using different f (θ ) are left for interesting
future work.

3.2 Formulation of Continual Learning for
Session-based Recommendation

In this section, we formulate the continual learning setting for
the session-based recommendation task to simulate the realistic
use cases of training a recommendation model continually. To be
specific, at an update cycle t , the recommendation model f (θt−1)
obtained until the last update cycle t − 1 needs to be updated with
new incoming data Dt . After f (θt−1) is trained on Dt , the updated
model f (θt ) is evaluated w.r.t. the incoming data Dt+1 before the
next update cycle t + 1. A visualization of the continual learning
setup is illustrated in Fig. 1, where a recommendation model is
continually trained and tested upon receiving data in sequential
update cycles.

3.3 Proposed Solution: Adaptively Distilled
Exemplar Replay (ADER)

3.3.1 Exemplar Replay. To alleviate the widely-recognized cat-
astrophic forgetting issue in continual learning, the model needs
to preserve old knowledge it has learned before. To this end, we
propose to store past samples, a.k.a exemplars, and replay them
periodically to preserve previous knowledge. To maintain a man-
ageable memory footprint, we only store a fixed total number of
exemplars throughout the entire continual learning process. Two
decisions need to be made at each cycle t : (1). how many exemplars
should be stored for each item/label? (2). what is the criterion for
selecting exemplars of an item/label?

First, we design the number of exemplars of each appeared item
in It (i.e. the set of appeared items until cycle t ) to be proportional
to its appearance frequency. In other words, more frequent and
popular items contribute a larger portion of selected exemplars to
be replayed to the next cycle. Suppose we store N exemplars in
total, the number of exemplarsmt,i at cycle t for an item i ∈ It is:

mt,i = N ·
|{x,y = i} ∈ Dt ∪ Et−1 |

|Dt ∪ Et−1 |
, (1)

where the second term is the probability that item i appears in the
current update cycle, as well as in the exemplars Et−1 we kept from
the last cycle.

Therefore, the exemplar sizes of different items to be select in
the cycle t can be encoded as a vectorMt = [m1,m2, ...,m |It |].

Second, we need to decide which samples to select as exemplars
for each item. We propose to use a herding technique [31, 38] to
select the most representative sequences of an item in an iterative
manner based on the distance to the mean feature vector of the item.
In each iteration, one sample fromDt ∪Et−1 that best approximates
the average feature vector (µ) over all training examples of this
item (y) is selected to Et . The details are presented in Algorithm 1.

3.3.2 Adaptive Distillation on Exemplars. The number of ex-
emplars should be reasonably small to reduce memory overhead.
As a consequence, the constraint to prevent the recommender for-
getting previous user preference patterns is not strong enough. To

enforce a stronger constrain on not forgetting old user preference
patterns, we propose to use a knowledge distillation loss [12] on
exemplars to better consolidate old knowledge.

Algorithm 1 ADER: ExemplarSelection at cycle t

Input: S = Dt ∪ Et−1;Mt = [m1,m2, ...,m |It |]
for y = 1, ..., |It | do
Py ← {x : ∀(x,y) ∈ S}
µ ← 1

|Py |

∑
x∈Py ϕ(x)

for k = 1, ...,my do
xk ← argminx∈Py ∥µ −

1
k [ϕ(x) +

∑k−1
j=1 ϕ(x

j )]∥

end for
Ey ← {(x1,y), ..., (xmy ,y)}

end for
Output: exemplar set Et = ∪

|It |
y=1Ey

Algorithm 2 ADER: UpdateModel at cycle t
Input: Dt ,Et−1, It , It−1
Initialize θt with θt−1
while θt not converged do
Train θt with loss in Eq. (4)

end while
ComputeMt using Eq. (1)
Compute Et using Algorithm 1 with θt andMt

Output: updated θt and new exemplar set Et

At a cycle t , the set of exemplars to be replayed is Et−1 and
the set of items till the last cycle is It−1, the proposed knowledge
distillation (KD) loss is written as:

LKD (θt ) = −
1
|Et−1 |

∑
(x,y)∈Et−1

∑ |It−1 |

i=1
p̂i · loд(pi ), (2)

where [p̂1, . . . , p̂ |It−1 |] is predicted distribution (softmax of logits)
over It−1 generated by f (θt−1), and [p1, . . . ,p |It−1 |] is the predic-
tion of f (θt ) over It−1. LKD measures the difference between the
outputs of the previous model and the current model on exemplars,
and the idea is to penalize prediction changes on items in previous
update cycles.

LKD defined above is interpolated with a regular cross-entropy
(CE) loss computed w.r.t. Dt defined below:

LCE (θt ) = −
1
|Dt |

∑
(x,y)∈Dt

∑ |It |

i=1
δi=y · loд(pi ), (3)

In practice, the size of incoming data and the number of new items
varies in different cycles, therefore, the degree of need to preserve
old knowledge varies. To this end, we propose an adaptive weight
λt to combine LKD with LCE :

LADER = LCE + λt · LKD , λt = λbase

√
|It−1 |

|It |
·
|Et−1 |

|Dt |
(4)

In general, λt increases when the ratio of the number of old items
to that of new items increases, and when the ratio of the exemplar
size to the current data size increases. The idea is to rely more on
LKD when the new cycle contains fewer new items or fewer data to
be learned. The overall training procedure for ADER is summarized
in Algorithm 2.
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D
IG

IN
ET

IC
A week 0 1 2 3 4 5 6 7 8

total actions 70,739 37,586 31,089 32,687 30,419 57,913 52,225 57,100 69,042
new actions 100.00% 18.25% 13.26% 11.29% 10.12% 9.08% 6.64% 6.35% 5.42%

week 9 10 11 12 13 14 15 16 Total
total actions 82,834 82,935 50,037 63,133 70,050 71,670 56,959 77,065 993,483
new actions 5.22% 3.02% 3.01% 1.78% 1.83% 0.78% 0.45% 0.27% /

YO
O
C
H
O
O
SE

day 0 1 2 3 4 5 6 7 8
total actions 219,389 209,219 218,162 162,637 177,943 307,603 232,887 178,076 199,615
new actions 100.00% 3.04% 1.74% 1.29% 0.95% 0.57% 0.50% 1.09% 0.74%

day 9 10 11 12 13 14 15 16 Total
total actions 179,889 123,750 153,565 300,830 259,673 187,348 154,316 105,676 3,370,578
new actions 0.81% 1.08% 0.56% 0.56% 0.29% 0.41% 0.38% 0.35% /

Table 1: Statistics of the two datasets; “new actions” indicates the percentage of actions on new items in this update cycle;
week/day 0 is only used for training, while week/day 16 is only used for testing.

DIGINETICA YOOCHOOSE
Finetune Dropout EWC Joint ADER Finetune Dropout EWC Joint ADER

Recall@20 47.28% 49.07% 47.66% 50.03% 50.21% 71.86% 72.20% 71.91% 72.22% 72.38%
Recall@10 35.00% 36.53% 35.48% 37.27% 37.52% 63.82% 64.15% 63.89% 64.16% 64.41%
MRR@20 16.01% 16.86% 16.28% 17.31% 17.32% 36.49% 36.60% 36.53% 36.65% 36.71%
MRR@10 15.16% 16.00% 15.44% 16.43% 16.45% 35.92% 36.03% 35.97% 36.08% 36.14%

Table 2: Performance averaged over 16 continual update cycles on two datasets.

4 EXPERIMENTS
4.1 Dataset
Two widely used datasets are adopted: (1). DIGINETICA contains
click-streams data on an e-commerce site over 5 months, and it is
used for CIKM Cup 2016 (http://cikm2016.cs.iupui.edu/cikm-cup).
(2). YOOCHOOSE is another dataset used by RecSys Challenge
2015 (http://2015.recsyschallenge.com/challenge.html) for predict-
ing click-streams on another e-commerce site for over 6 months.

As in [11, 16, 18, 20], we remove sessions of length 1 and items
that appear less than 5 times. To simulate the continual learning
scenario, we split the model update cycle of DIGINETICA by weeks
and YOOCHOOSE by days as its volume is much larger. Different
time spans also resemble model update cycles at different granu-
lates. In total, 16 update cycles are used to continually train the
recommender on both datasets. 10% of the training data of each up-
date cycle is randomly selected as a validation set. Statistics of split
datasets are summarized in Table 1. We can see that YOOCHOOSE
is less dynamic, indicated by the tiny fraction of actions on new
items, that is, old items heavily reappear.

4.2 Evaluation Metrics
Two commonly used evaluation metrics are used: (1). Recall@k:
The ratio when the desired item is among the top-k recommended
items. (2).MRR@k: Recall@k does not consider the order of the
items recommended, while MRR@k measures the mean recipro-
cal ranks of the desired items in top-k recommended items. For
easier comparison, we report the mean value of these two metrics
averaged over all 16 update cycles.

4.3 Baseline Methods
Several widely adopted baselines in continual learning literature
are compared:

• Finetune: At each cycle, the recommender trained till the
last task is trained with the data from the current task.
• Dropout [29]: Dropout [13] is recently found by [29] that
it effectively alleviates catastrophic forgetting. We applied
dropout to every self-attention and feed-forward layer.
• EWC [17]: It is a well-known method to alleviate forget-
ting by regularizing parameters important to previous data
estimated by the diagonal of a Fisher information matrix
computed w.r.t. exemplars.
• ADER (c.f. Algorithm 2): The proposed method using adap-
tively distilled exemplars in each cycle with dropout.
• Joint: In each cycle, the recommender is trained (with dropout)
using data from the current and all historical cycles. This is a
common performance “upper bound” for continual learning.

The above methods are applied on top of the state-of-the-art
base SR recommender SASRec [16] using 150 hidden units and 2
stacked self-attention blocks. During continual training, we set the
batch size to be 256 on DIGINETICA and 512 on YOOCHOOSE.
We use Adam optimizer with a learning rate of 5e-4. A total of
100 epochs are trained, and early stop is applied if validation per-
formance (Recall@20) does not improve for 5 consecutive epochs.
Other hyper-parameters are tuned to maximize Recall@20. The
dropout rate of Dropout, ADER, and Jointis set to 0.3; 30,000 exem-
plars are used by default for EWC and ADER; λbase of ADER is set
to 0.8 on DIGINETICA and 1.0 on YOOCHOOSE.

4.4 Overall Results on Two Datasets
Results averaged over 16 update cycles are presented in Table 2,
and several interesting observations can be noted:
• Finetune already works reasonably well, especially on the
less dynamic YOOCHOOSE dataset. The performance gap
between Finetune and Joint is less significant than typical
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Figure 2: Disentangled Recall@20 (Top) and MRR@20 (Bottom) at each continual learning update cycle on two datasets.

10k 20k 30k
Recall@20 49.59% 50.05% 50.21%
Recall@10 36.92% 37.40% 37.52%
MRR@20 17.04% 17.29% 17.32%
MRR@10 16.17% 16.42% 16.45%

Table 3: Different exemplar sizes for ADER.

ERrandom ERloss ERherdinд ADERequal ADERf ix ADER
Recall@20 49.14% 49.31% 49.44% 49.92% 50.09% 50.21%
Recall@10 36.61% 36.65% 36.88% 37.21% 37.41% 37.52%
MRR@20 16.79% 16.90% 16.95% 17.23% 17.29% 17.32%
MRR@10 15.92% 16.02% 16.08% 16.35% 16.41% 16.45%

Table 4: Ablation study for ADER.

continual learning setups [14, 19, 31, 39]. The reason is that
catastrophic forgetting is not severe since old items can
frequently reappear in recommendation tasks.
• EWC only outperforms Finetune marginally, and it performs
worse than Dropout.
• Dropout is effective, and it notably outperforms Finetune,
especially on the more dynamic DIGINETICA dataset.
• ADER significantly outperforms other methods, and the im-
provement margin over other methods is larger on the more
dynamic DIGINETICA dataset. Furthermore, it even out-
performs Joint. This result empirically reveals that ADER
is a promising solution for the continual recommendation
setting by effectively preserving user preference patterns
learned before.

Detailed disentangled performance at each update cycle is plotted
in Figure 2. We can see that the advantage of ADER is significant
on the more dynamic DIGINETICA dataset. On the less dynamic
YOOCHOOSE dataset, the gain of ADER mainly comes from the
more dynamic starting cycles with relatively more actions on new
items. At later stable cycles with few new items, different methods
show comparable performance, including the vanilla Finetune.

4.5 In-depth Analysis
In the following experiments, we conduct an in-depth analysis of
the results on the more dynamic DIGINETICA dataset.

4.5.1 Different number of Exemplars. We study the effect of
a varying number of exemplars for ADER. Besides using 30k exem-
plars, we test using only 10k/20k exemplars, and results are shown
in Table 3. We can see that the performance of ADER only drops
marginally as exemplar size decreases from 30k to 10k. This result
reveals that ADER is insensitive to the number of exemplars, and it
works reasonably well with a smaller number of exemplars.

4.5.2 Ablation Study. In this experiment, we compare ADER
to several simplified versions to justify our design choices. (i).
ERherdinд : A vanilla exemplar replay different from ADER by using
a regular LCE , rather than LKD , on exemplars. (ii). ERrandom : It
differs from ERherdinд by selecting exemplars of an item at random.
(iii). ERloss : It differs from ERherdinд by selecting exemplars of an
item with smallest LCE . (iv). ADERequal : This version differs from
ADER by selecting equal number of exemplars for each item, that
is, the assumption that more frequent items should be stored more
is removed. (v). ADERf ix : This version differs from ADER by not
using the adaptive λt in Eq. (4), but a fixed λ.

Comparison results are presented in Table 4, and several obser-
vations can be noted: (1). Herding is effective to selected exemplars,
indicated by the better performance of ERherdinд over ERrandom
and ERloss . (2). The distillation loss in Eq. (2) is helpful, indicated
by the better performance of three versions of ADER over three
vanilla ER methods. (3). Selecting exemplars proportional to item
frequency is helpful, indicated by the better performance of ADER
over ADERequal . (4). The adaptive λt in Eq. (2) is helpful, indicated
by the better performance of ADER over ADERf ix .
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5 CONCLUSION
In this paper, we study the practical and realistic continual learning
setting for session-based recommendation tasks. To prevent the
recommender forgetting user preferences learned before, we pro-
pose ADER by replaying carefully chosen exemplars from previous
cycles and an adaptive distillation loss. Experiment results on two
widely used datasets empirically demonstrate the promising perfor-
mance of ADER. Our work may inspire researchers working from
similar continual learning perspective for building more robust and
scalable recommenders.
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