
PURS: Personalized Unexpected Recommender System for
Improving User Satisfaction

Pan Li
New York University

New York, USA
pli2@stern.nyu.edu

Maofei Que
Alibaba Youku Cognitive and

Intelligent Lab
Beijing, China

maofei.qmf@alibaba-inc.com

Zhichao Jiang
Alibaba Youku Cognitive and

Intelligent Lab
Beijing, China

zhichao.jzc@alibaba-inc.com

Yao Hu
Alibaba Youku Cognitive and

Intelligent Lab
Beijing, China

yaoohu@alibaba-inc.com

Alexander Tuzhilin
New York University

New York, USA
atuzhili@stern.nyu.edu

ABSTRACT
Classical recommender system methods typically face the filter
bubble problem when users only receive recommendations of their
familiar items, making them bored and dissatisfied. To address the
filter bubble problem, unexpected recommendations have been pro-
posed to recommend items significantly deviating from user’s prior
expectations and thus surprising them by presenting "fresh" and
previously unexplored items to the users. In this paper, we describe
a novel Personalized Unexpected Recommender System (PURS)
model that incorporates unexpectedness into the recommendation
process by providing multi-cluster modeling of user interests in the
latent space and personalized unexpectedness via the self-attention
mechanism and via selection of an appropriate unexpected activa-
tion function. Extensive offline experiments on three real-world
datasets illustrate that the proposed PURS model significantly out-
performs the state-of-the-art baseline approaches in terms of both
accuracy and unexpectedness measures. In addition, we conduct an
online A/B test at a major video platform Alibaba-Youku, where our
model achieves over 3% increase in the average video view per user
metric. The proposed model is in the process of being deployed by
the company.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender System, Unexpectedness, Personalization, Sequential
Recommendation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’20, September 22–26, 2020, Virtual Event, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7583-2/20/09. . . $15.00
https://doi.org/10.1145/3383313.3412238

ACM Reference Format:
Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin. 2020.
PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction. In Fourteenth ACM Conference on Recommender Systems (RecSys
’20), September 22–26, 2020, Virtual Event, Brazil. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3383313.3412238

1 INTRODUCTION
Recommender systems have been an important tool for online
commerce platforms to assist users in filtering for the best content
while shaping their interests at the same time. To achieve this
objective, collaborative filtering has been among the most popular
techniques and was successfully deployed for decades. However
as shown in the recent literature, classical collaborative filtering
algorithms often lead to the problem of over-specialization [2], filter
bubbles [33, 34] and user boredom [24, 25]. To make things worse,
users might get annoyed if they are recommended similar items
repeatedly in a short period of time.

To address these issues, researchers have proposed to incorporate
unexpectedness metric in recommendation models [32], the goal
of which is to provide novel, surprising and satisfying recommen-
dations. Unlike diversity, which only measures dispersion among
recommended items, unexpectedness measures deviations of recom-
mended items from user expectations and thus captures the concept
of user surprise and allows recommender systems to break from the
filter bubble. It has been shown in [1, 3] that unexpectedness leads
to significant increase of user satisfaction. Therefore, researchers
have introduced various recommendation algorithms to optimize
the unexpectedness metric and achieved strong recommendation
performance [3, 26, 28, 46].

However, very few of them have been successfully applied to
industrial applications or achieved significant improvements in real
business settings. This is the case for the following reasons. First, to
improve unexpectedness of recommended items, previous models
often have to sacrifice the business-oriented metrics [4, 50], such as
CTR (Click-Through-Rate) and GMV (Gross-Merchandise-Volume).
Second, most of the proposed unexpected recommendation algo-
rithms are not scalable and therefore cannot be deployed in large-
scale industrial applications. Third, the lack of personalization and

ar
X

iv
:2

10
6.

02
77

1v
1

 [
cs

.I
R

]
 5

 J
un

 2
02

1

https://doi.org/10.1145/3383313.3412238
https://doi.org/10.1145/3383313.3412238

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin

session-based design of recommender systems reduces user satis-
faction and their online browsing performance metrics. Thus, it
is important to overcome these problems and intelligently deploy
unexpected recommender systems in real-world applications.

Note that, while working on unexpected recommendations, it
is crucial to address the problem of heterogeneous user prefer-
ences by focusing on providing personalized recommendations
according to these preferences. For example, some people tend to
be ‘’variety-seekers” [30] and are more willing to click on novel
item recommendations, while others prefer to stay in their own
comfort zones and are in favor of familiar item recommendations.
In addition, even the same person might have different perceptions
of unexpectedness in different contexts, which also motivates us
to include session-based information into the design of an unex-
pected recommender system. For example, it is more reasonable
to recommend the next episode of a TV series to the user who
has just finished the first episode, instead of recommending new
types of videos to that person. On the other hand, if the user has
been binge-watching the same TV series in one night, it is better
to recommend something different to him or her.

To address these concerns, in this paper we propose the Person-
alized Unexpected Recommender System (PURS) that incorporates
unexpectedness into recommendations in an end-to-end scalable
manner. Specifically, we model user interests as clusters of the
previously consumed items in the latent space and subsequently
calculate unexpectedness as the weighted distance between a new
item and the clusters of these interests. Furthermore, we utilize
sequence modeling and the self-attention mechanism to capture
personalized and session-based user perception of unexpectedness.
We also propose a novel unexpected activation function to adjust
the network output for better unexpected recommendation per-
formance. To provide unexpected recommendations, we construct
a hybrid utility function by combining the aforementioned unex-
pectedness measure with estimated business performance metrics,
especially the click-through-rate. Finally, extensive offline exper-
iments on three real-world datasets illustrate that the proposed
model consistently and significantly outperforms the state-of-the-
art baseline approaches in both accuracy and novelty measures. We
also conduct an online A/B test on a major video platform Alibaba-
Youku, where our model achieves significant improvements over
the current production model. Based on these positive results, the
proposed model is in the process of being moved into production
in the company.

This paper makes the following research contributions. It
(1) presents a novel PURS model that efficiently and effectively

incorporates unexpectedness into recommendations;
(2) proposes to use the self-attention mechanism to model per-

sonalized and session-based user perception of unexpectedness;
(3) proposes to calculate unexpectedness as the distance between

a new item and clusters of user interests in the latent space;
(4) presents a novel unexpected activation function to optimize

performance of unexpected recommendations;
(5) presents extensive offline experiments and an online A/B test

that empirically demonstrate the strengths of the PURS model.

2 RELATEDWORK
In this section, we discuss prior literature related to our work
in three categories: unexpected recommendations, deep-learning
based recommendations and personalized & session-based recom-
mendations.

2.1 Unexpected Recommendations
As discussed in the previous section, to overcome the problem
of filter bubbles and user boredom, researchers have proposed to
optimize beyond-accuracy objectives, including unexpectedness,
serendipity, novelty, diversity and coverage [17, 32]. Note that, these
metrics are closely related to each other, but still different in terms
of definition and formulation. Specifically, serendipity measures
the positive emotional response of the user about a previously un-
known item and indicates how surprising these recommendations
are to the target users [6, 39]; novelty measures the percentage
of new recommendations that the users have not seen before or
known about [31]; diversity measures the variety of items in a rec-
ommendation list, which is commonly modeled as the aggregate
pairwise similarity of recommended items [51]; coverage measures
the degree to which recommendations cover the set of available
items [20].

Among them, unexpectedness has attracted particular research
interests, for it is shown to be positively correlated with user ex-
perience [3, 6]. It also overcomes the overspecialization problem
[3, 22], broadens user preferences [20, 46, 47] and increases user
satisfaction [3, 28, 46]. Unexpectedness measures those recommen-
dations that are not included in the users’ previous purchases and
depart from their expectations. Different from the diversity mea-
sure, unexpectedness is typically defined as the distance between
the recommended item and the set of expected items in the feature
space [3]. However, as pointed out in [26, 27], it is difficult to prop-
erly construct the distance function in the feature space, thus the
authors propose to calculate the distance of item embeddings in
the latent space instead.

Researchers have thus proposed multiple recommendation mod-
els to improve novelty measures, including Serendipitous Person-
alized Ranking (SPR) [28] that extends traditional personalized
ranking methods by discounting item popularity in AUC optimiza-
tion; Auralist [46] that balances the accuracy and novelty measures
simultaneously using topic modeling; Determinantal Point Process
(DPP) [7, 16] that utilizes the greedy MAP inference to diversify
the recommendation results; HOM-LIN [3] that use a hybrid utility
function of estimated ratings and unexpectedness to provide rec-
ommendations; and Latent Modeling of Unexpectedness [26, 27].
All of these models have successfully improved the unexpectedness
measure of recommendations.

However, these prior literature aim to provide uniform unex-
pected recommendations to all users under all circumstances, with-
out taking into account user-level heterogeneity and session-based
information, thus might not reach the optimal recommendation
performance. In addition, those models have the scalability issue
and might not work well in the large-scale industrial settings. In
this paper, we propose a novel deep-learning based unexpected
recommender system to provide personalized and session-based
unexpected recommendations in an efficient manner.

PURS: Personalized Unexpected Recommender System for Improving User Satisfaction RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

2.2 Deep-Learning based Recommendations
Another body of related work is around deep-learning based ap-
proaches to extract user preferences and provide recommendations.
Comparedwith classical recommender systems, deep-learning based
models are capable of conducting representation learning, sequence
modeling and nonlinear transformation to possess high level of flex-
ibility [45]. Some representative work include [14, 41, 42] that con-
struct heterogeneous information network embeddings to model
complex heterogeneous relations between users and items; [19,
37] that apply deep neural network (DNN) techniques to obtain
semantic-aware representations of users and items for efficient
learning and recommendation; and [21, 38] that utilize autoencoder
(AE) techniques to map the features of users and items into latent
embeddings and model their relationships accordingly.

In this paper, we adopt deep-learning based approaches to model
unexpectedness and subsequently provide unexpected recommen-
dations, thus obtaining all these advantages discussed above.

2.3 Personalized and Session-based
Recommendations

Note that different users might have different preferences towards
the same recommendation, and even the same user might have
different opinions towards the same recommendations on different
sessions. Therefore, personalized and session-based recommender
systems constitute important tools for providing satisfying recom-
mendations. Specifically, these models take user behavior sequences
into account to learn user behavior patterns and the shift of user
preferences from one transaction to another [44]. Recent work on
this field include DIN [49], DSIN [15], DIEN [48], DeepFM [18],
Wide & Deep [8] and PNN [36] that combine user features, item
features and user historic behaviors to provide useful recommen-
dations.

In this paper, we incorporate personalized and session-based
information into the model design to provide unexpected recom-
mendations and improve user satisfaction.

3 UNEXPECTEDNESS
3.1 Modeling of Unexpectedness
In [3], the authors define unexpectedness of a recommended item
as the distance between the new item and the closure of previous
consumptions in the feature space. As discussed in the related work
section, this approach might not achieve optimal performance, for
the distance function is typically difficult to define in the feature
space. Therefore in [26], unexpectedness is constructed in the la-
tent space instead of the feature space, which is calculated as the
euclidean distance to the entire latent closure of previous consump-
tions. This latent modeling approach of unexpectedness manages to
achieve strong recommendation performance and improve novelty
of recommendations without losing accuracy measures.

Note however, that many users have diverse interests, thus mak-
ing it unreasonable to use one single closure of consumed items to
model user interests. For example, in the movie recommendation
applications, a user might have several different types of movie
interests, including documentaries, fiction movies, comedies, an-
imation and so on. Therefore, it is suboptimal to use one single

closure to model wide interests and might be more appropriate
to model user interests in separate clusters instead. In addition,
as shown in Figure 1, if we take one single closure including all
items that the user has consumed as the expected set, it might lead
to the construction of an extremely large expected set and might
accidentally include some unexpected items into the expected set
as well. However, if we cluster the user’s historic consumptions
based on the diverse interests, it would be easier to identify the
behavior patterns within each cluster and model the expectation
sets accordingly. It also encourages those unexpected recommen-
dations that could bridge the diverse interests of the same user, as
illustrated in Figure 1.

Therefore, we propose to conduct clustering on embeddings of
previous consumptions and form user interest clusters accordingly.
We select the Mean Shift algorithm [9] to identify the clusters of
historic behaviors automatically in the latent space for the following
reasons. First, it is an unsupervised clustering algorithm, therefore
we do not have to explicitly specify the number of interest clusters
for each user, as we generally do not have that information as
well. Mean Shift algorithm is capable of optimally selecting the
best number of clusters without manual specification. Second, it is
powerful for the analysis of a complexmulti-modal feature space for
recommendation applications, and it can also delineate arbitrarily
shaped clusters in it [12].

Mean Shift clustering utilizes an iterative process to locate the
maxima of a density function given discrete data sampled from
that function. To handle the clustering procedure in our model, we
denote the kernel function as 𝐾 (𝑥𝑖 − 𝑥) given an initial estimate
𝑥𝑖 and observation 𝑥 . This kernel function determines the weight
of nearby points for re-estimation of the mean, which is typically
modeled as a Gaussian distribution

𝐾 (𝑥𝑖 − 𝑥) = 𝑒−𝑐 | |𝑥𝑖−𝑥 | |
2

(1)

The weighted mean of the density in the window determined by 𝐾
is calculated as

𝑚(𝑥) =
∑
𝑥𝑖 ∈𝑁 (𝑥) 𝐾 (𝑥𝑖 − 𝑥)𝑥𝑖∑
𝑥𝑖 ∈𝑁 (𝑥) 𝐾 (𝑥𝑖 − 𝑥)

(2)

where 𝑁 (𝑥) is the neighborhood of 𝑥 . The mean-shift algorithm
will reset 𝑥 as𝑚(𝑥), and repeat the estimation process until𝑚(𝑥)
converges.

For each user 𝑢, we extract the historic behavior sequence as
{𝑖1, 𝑖2, · · · , 𝑖𝑛} and their corresponding embeddings in the latent
space as {𝑤1,𝑤2, · · · ,𝑤𝑛} through sequence modeling. We subse-
quently apply Mean Shift algorithm to cluster these embeddings
into user interest clusters as {𝐶1,𝐶2, · · · ,𝐶𝑁 }. For each new item
recommendation 𝑖∗ for user 𝑢, unexpectedness is hereby modeled
as the weighted average distance between each cluster 𝐶𝑘 and
embedding of the new item𝑤∗:

𝑢𝑛𝑒𝑥𝑝𝑖∗,𝑢 =

𝑁∑︁
𝑘=1

𝑑 (𝑤∗,𝐶𝑘) ×
|𝐶𝑘 |∑𝑁
𝑘=1 |𝐶𝑘 |

(3)

3.2 Unexpected Activation Function
Though it is natural to directly include the unexpectedness obtained
from the previous section into the utility function, it is suboptimal
to do so, as our goal is to provide unexpected yet relevant and useful

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin

(a) Item Embeddings (b) One Single Latent Closure (c) Clustering of Latent Closure

Figure 1: Comparison of unexpectednessmodeling in the latent space. Blue points stand for the available items; Orange points
represent the consumed items; Green point refers to the new recommended item.We propose to define unexpectedness as the
distance between the new item and clusters of latent closure generated by all previous consumptions.

recommendations. If we explicitly combine unexpectedness into
the hybrid utility function, it will tend to recommend items with
very high unexpectedness, which are likely to be either irrelevant
or even absurd to the user. In [3], the authors propose to use a
unimodal function to adjust the unexpectedness input to the utility
function.

However, unimodality alone is not enough for any function to
serve as the unexpected activation function, as we also need to
balance between unexpectedness and relevance objectives. For ex-
ample, the unimodal Gaussian function does not obatin the optimal
recommendation performance, as shown in Section 6. We conse-
quently propose that the unexpected activation function 𝑓 (·) should
satisfy the following mathematical properties:

(1) Continuity For two items 𝑖1 and 𝑖2, if their unexpectedness
towards user𝑢 are close enough (|𝑢𝑛𝑒𝑥𝑝𝑢,𝑖1−𝑢𝑛𝑒𝑥𝑝𝑢,𝑖2 | < 𝜖),
then their unexpectedness output to respective utility should
also be close (|𝑓 (𝑢𝑛𝑒𝑥𝑝𝑢,𝑖1) − 𝑓 (𝑢𝑛𝑒𝑥𝑝𝑢,𝑖2) | < 𝛿), which
implies the continuity requirement of 𝑓 (·).

(2) Boundedness Note that the utility function 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑢,𝑖 for
any user 𝑢, item 𝑖 should be bounded, therefore the corre-
sponding unexpectedness output and the unexpected ac-
tivation function should also be bounded (|𝑓 (·) | < ∞). In
addition, when unexpectedness goes to zero or infinity, it sug-
gests the new item is either too similar to previous consump-
tions or totally irrelevant, thus its contribution to utility func-
tion should be negligible (𝑙𝑖𝑚𝑥→0 𝑓 (𝑥) = 0, 𝑙𝑖𝑚𝑥→∞ 𝑓 (𝑥) =
0).

(3) Unimodality For the optimization convenience, it is ideal
to have a unimodal unexpectedness output to the utility func-
tion instead of multi-peaks which require additional effort
for the recommendation model to balance between unex-
pectedness and relevance, as discussed in [3]. Therefore, we
need to select a unimodal function as the activation function.

(4) Short-Tailed To provide unexpected yet relevant recom-
mendations, it is important to note that relevance decreases
very fast after unexpectedness increases above certain thresh-
old, which indicates the use of a short-tailed or sub-Gaussian
distribution [35]. Specifically, a sub-Gaussian distribution is
a probability distribution with strong tail decay, whose tails
are dominated by or decay at least as fast as the tails of a
Gaussian. Therefore, the activation function should follow

Figure 2: Unexpected Activation Function

the sub-Gaussian distribution, the kurtosis of which should
be less than 3 [5].

Many functions satisfy the properties above and thus become
potential candidates for the unexpected activation function. To
simplify the model and accelerate the optimization process, in this
paper we choose a popular solution 𝑓 (𝑥) = 𝑥 ∗𝑒−𝑥 from the Gamma
function [13] as the unexpected activation function, which satis-
fies all four required mathematical properties–it is a continuous,
bounded and unimodal function with kurtosis value 1.5. As we
show in Section 6.3, the unexpected activation function contributes
significantly to the superior recommendation performance.

4 PERSONALIZED UNEXPECTED
RECOMMENDER SYSTEM

4.1 Overview
To provide unexpected recommendations, we propose to use the
following hybrid utility function for user 𝑢 and item 𝑖

𝑈 𝑡𝑖𝑙𝑖𝑡𝑦𝑢,𝑖 = 𝑟𝑢,𝑖 + 𝑓 (𝑢𝑛𝑒𝑥𝑝𝑢,𝑖) ∗ 𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖 (4)

which consists of the following components:
𝒓𝒖,𝒊 that represents the click-through-rate estimation for user 𝑢

towards item 𝑖 based on their features and past behaviors.
𝒖𝒏𝒆𝒙𝒑𝒖,𝒊 that represents the unexpectedness of item 𝑖 towards

user 𝑢, as introduced in the previous section.
𝒖𝒏𝒆𝒙𝒑_𝒇𝒂𝒄𝒕𝒐𝒓𝒖,𝒊 that represents the personalized and session-

based perception of unexpectedness for user 𝑢 towards item 𝑖 .
𝒇 (·) that stands for the activation function for unexpectedness

in order to effectively and efficiently incorporate this piece into the
utility function, as introduced in the previous section.

PURS: Personalized Unexpected Recommender System for Improving User Satisfaction RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

The proposed recommendation model is presented in Figure
3, which consists of two components: the base model, which esti-
mates the click-through-rate of certain user-item pairs, as we will
discuss in this section; and the unexpected model, which captures
unexpectedness of the new recommendation as well as user per-
ception towards unexpectedness, as we have discussed in the last
section. The unexpected recommendations are provided through
joint optimization of the utility function.

4.2 User and Item Embeddings
To effectively identify user interests and provide corresponding
item recommendations, it is crucial to capture the feature-level
information about the users and the items, which can be used for
recommendation purposes in many different ways.

In addition, the intrinsic nature of users and items play an im-
portant role in determining the success of the recommendations.
Some people, for example heavy users of the online video plat-
form, tend to trust more on the recommendations provided by the
platform. Thus for a certain recommendation for them, the utility
function tend to be higher. On the other hand, the quality of an
item is also crucial for the click-through-rate estimation, for the
better quality of recommended items would lead to an increase of
user satisfaction.

In this paper, we capture this user and item information in the
form of embeddings in the latent space and utilize the deep-learning
based autoencoder approach to obtain these user and item em-
beddings and also to capture their interactions in the latent space.
Specifically, we denote the explicit features for user 𝑢 and item 𝑖

as𝑊𝑢 = [𝑤𝑢1 ,𝑤𝑢2 , · · · ,𝑤𝑢𝑚] and𝑊𝑖 = [𝑤𝑖1 ,𝑤𝑖2 , · · · ,𝑤𝑖𝑛] respec-
tively, where𝑚 and 𝑛 stand for the dimensionality of user and item
feature vectors. The goal is to train two separate neural networks:
the encoder network that maps feature vectors into latent embed-
dings, and the decoder network that reconstructs feature vectors
from latent embeddings. Due to effectiveness and efficiency of the
training process, we represent both the encoder and the decoder as
multi-layer perceptron (MLP). The MLP network learns the hidden
representations by optimization reconstruction loss 𝐿:

𝐿 = | |𝑊𝑢 −𝑀𝐿𝑃𝑢
𝑑𝑒𝑐

(𝑀𝐿𝑃𝑢𝑒𝑛𝑐 (𝑊𝑢)) | | (5)

𝐿 = | |𝑊𝑖 −𝑀𝐿𝑃𝑖𝑑𝑒𝑐 (𝑀𝐿𝑃
𝑖
𝑒𝑛𝑐 (𝑊𝑖)) | | (6)

where 𝑀𝐿𝑃𝑒𝑛𝑐 and 𝑀𝐿𝑃𝑑𝑒𝑐 represents the MLP network for en-
coder and decoder respectively. The MLP network is separately
trained for obtaining user embedding and item embeddings, and is
updated through back-propagation from the utility function opti-
mization.

4.3 Click-Through-Rate Estimation (𝑟𝑢,𝑖) using
Self-Attentive GRU

For a specific recommended item 𝑖 , our goal is to predict whether
user 𝑢 would click on this recommendation or not, which largely
depends on the matching between the content of item 𝑖 and the in-
terest of user 𝑢. This indicates the importance of precisely inferring
user preferences from historic behaviors.

We denote the previous consumption of user 𝑢 as the sequence
𝑃𝑢 = [𝑖𝑢1 , 𝑖𝑢2 , · · · , 𝑖𝑢𝐾] The click-through-rate prediction model
obtains a fixed-length representation vector of user interests by

pooling all the embedding vectors over the user behavior sequence
𝑃𝑢 . We follow the idea of sequence modeling and utilize the bidirec-
tional GRU [10] neural networks to obtain the sequence embeddings.
It is important to use the recurrent neural network to model user
interests, for it is capable of capturing the time information and the
order of user purchase, as more recent behavior would naturally
have a higher impact on the current recommendation than previous
actions. In addition, compared with other recurrent models like
RNN or LSTM, GRU is computationally more efficient and better
extracts semantic relationships [11].

During the training process, we first map the behavior sequence
to the corresponding item embeddings obtained in the previous
stage. To illustrate the GRU learning procedure, we denote𝑊𝑧 ,𝑊𝑟 ,𝑈𝑧
and 𝑈𝑟 as the weight matrices of current information and the past
information for the update gate and the reset gate respectively. 𝑥𝑡
is the behavior embedding input at timestep 𝑡 , ℎ𝑡 stands for the
output user interest vector, 𝑧𝑡 denotes the update gate status and
𝑟𝑡 represents the status of reset gate. The hidden state at timestep 𝑡
could be obtained following these equations:

𝑧𝑡 = 𝜎𝑔 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (7)

𝑟𝑡 = 𝜎𝑔 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (8)
ℎ𝑡 = (1 − 𝑧𝑡) ◦ ℎ𝑡−1 + 𝑧𝑡 ◦ 𝜎ℎ (𝑊ℎ𝑥𝑡 +𝑈ℎ (𝑟𝑡 ◦ ℎ𝑡−1) + 𝑏ℎ) (9)
Note that, each historic consumption might have different influ-

ence on the current recommendation. For example, if a user have
watched the documentary “Deep Blue” from BBC and is very sat-
isfied with the viewing experience, the user will be more likely
to accept the current recommendation of documentary “Earth”,
also from BBC. Meanwhile, the historic record of watching James
Bond might have relatively smaller influence towards the accep-
tance of that documentary recommendation. Therefore, to capture
the item-level heterogeneity in the behavior sequence, we propose
to incorporate self-attentive mechanism [40] during the sequence
modeling process. Typically, each output element 𝑠𝑡 is computed
as weighted sum of a linearly transformed input elements

𝑠𝑡 =

𝑛∑︁
𝑖=1

𝛼𝑡𝑖 (𝑥𝑖𝑊 𝑡) (10)

Each weight coefficient 𝛼𝑡𝑖 is computed using a softmax function

𝛼𝑡𝑖 =
exp 𝑒𝑡𝑖∑𝑛
𝑖=1 exp 𝑒𝑡𝑖

(11)

where 𝑒𝑡𝑖 is computed using a compatibility function that compares
two input elements 𝑥𝑡 and 𝑥𝑖 correspondingly.

By iteratively calculating hidden step throughout every time step,
we obtain final hidden state at the end of the behavior sequence,
which constitutes the user interest embeddings 𝑅𝑢 that captures the
latent semantic information of the user’s historic actions. To provide
the click-through-rate estimation, we concatenate the obtained
user interest embeddings 𝑅𝑢 with user embeddings 𝐸𝑢 and item
embeddings 𝐸𝑖 extracted in the previous section and feed into a
MLP network to get the prediction: 𝑟𝑢,𝑖 = 𝑀𝐿𝑃 (𝑅𝑢 ;𝐸𝑢 ;𝐸𝑖)

4.4 Unexpected Factor (𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖) using
Self-Attentive MLP

As we have discussed in the previous section, different people might
have difference preferences towards unexpected recommendations,

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin

(a) Base (b) Unexpected

Figure 3: Overview of the proposed PURS model. The base model estimates the click-through-rate of certain user-item pairs,
while the unexpected model captures unexpectedness of the new recommendation as well as user perception towards unex-
pectedness.

and their perception of unexpectedness is also influenced by the
session-based information. Therefore, we need to take the user’s
historic actions in account when computing 𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖 and
provide personalized session-based recommendations.

We denote the previous consumption of user 𝑢 as the sequence
𝑃𝑢 = [𝑖𝑢1 , 𝑖𝑢2 , · · · , 𝑖𝑢𝐾] Following the idea of session-based recom-
mendation [29], instead of using the entire sequence to measure
the factor of unexpectedness, we propose to only use a window
of purchased items to identify the factor. The specific length of
the window 𝐾 is a hyperparameter that we can adjust to get the
optimal performance.

The most recent user actions in the window will then be ex-
tracted and serve as the input to the MLP network. To capture the
heterogeneity of the extracted historic behavior towards current
unexpected recommendations, we utilize the structure of local ac-
tivation unit [49] to determine whether the embedding of each
item will be fed into the network. Instead of expressing the user’s
diverse interests with the same network structure, local activation
unit is capable of adaptively calculating the relevance of historical
behaviors towards current candidate recommendations.

Specifically, local activation unit performs a weighted sum pool-
ing to adaptively calculate the activation stage of each behavior
embedding and generate one single representation. We denote the
sequence of item embeddings for user 𝑢 in the session-window as
𝑃𝑢 = [𝐸𝑖1 , 𝐸𝑖2 , · · · , 𝐸𝑖𝐾] For user𝑢 and item 𝑖 , the unexpected factor
𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖 for this user-item pair will be calculated as

𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖 = 𝑀𝐿𝑃 (𝐸𝑢 ;
𝐾∑︁
𝑗=1

𝑎(𝐸𝑢 , 𝐸𝑖 𝑗 , 𝐸𝑖)𝐸𝑖 𝑗 ;𝐸𝑖) (12)

where 𝑎(·) is a feed-forward network with output as the activation
weight for each past purchase.

5 EXPERIMENTS
In this section, we introduce extensive experiments that validate
the superior recommendation performance of the proposed model

in terms of both accuracy and novelty measures. The hyperparam-
eters are optimized through Bayesian optimization [43]. For all
experiments, we select 𝐾 = 10 and use SGD as the optimizer with
learning rate 1 and exponential decay 0.1. The dimensionality of
embedding vector is 32. Layers of MLP is set by 32 × 64 × 1. The
batch size is set as 32. The codes are publicly available1.

5.1 Data
We implement our model on three real-world datasets: the Yelp
Challenge Dataset 2, which contains check-in information of users
and restaurants; the MovieLens Dataset 3, which contains informa-
tions of user, movies and ratings; and the Youku dataset collected
from the major online video platform Youku, which contains rich
information of users, videos, clicks and their corresponding fea-
tures. We list the descriptive statistics of these datasets in Table
1. For the click-through-rate prediction purposes, we binarize the
ratings in Yelp and MovieLens datasets using the threshold 3.5 and
transfer them into labels of click and non-click.

Dataset Yelp MovieLens Youku
of Ratings 2,254,589 19,961,113 1,806,157
of Users 76,564 138,493 46,143
of Items 75,231 15,079 53,657
Sparsity 0.039% 0.956% 0.073%

Table 1: Descriptive Statistics of Three Datasets

5.2 Baselines and Evaluation Metrics
To illustrate that the proposed model indeed provide unexpected
and useful recommendations at the same time, we select two groups
of state-of-the-art baselines for comparison: click-through-rate pre-
diction models and unexpected recommendation models. The first
category includes:
1Codes are available at https://github.com/lpworld/PURS
2https://www.yelp.com/dataset/challenge
3https://grouplens.org/datasets/movielens/

https://github.com/lpworld/PURS

PURS: Personalized Unexpected Recommender System for Improving User Satisfaction RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

• DIN [49] Deep Interest Network designs a local activation
unit to adaptively learn the representation of user interests
from historical behaviors with respect to a certain item.

• DeepFM [18] DeepFM combines the power of factorization
machines for recommendation and deep learning for feature
learning in a new neural network architecture.

• Wide & Deep [8] Wide & Deep utilizes the wide model to
handle the manually designed cross product features, and the
deep model to extract nonlinear relations among features.

• PNN [36] Product-based Nerual Network model introduces
an additional product layer to serve as the feature extractor.

The second baseline category includes:

• SPR [28] Serendipitous Personalized Ranking extends tra-
ditional personalized ranking methods by considering item
popularity in AUC optimization.

• Auralist [46] Auralist is a personalized recommendation
system that balances between the desired goals of accuracy,
diversity, novelty and serendipity simultaneously.

• DPP [7] The Determinantal Point Process utilizes a fast
greedy MAP inference approach to generate relevant and
diverse recommendations.

• HOM-LIN [3] HOM-LIN is the state-of-the-art unexpected
recommendation algorithm, which provides recommenda-
tions through the hybrid utility function.

In addition, we select the following popular accuracy and nov-
elty metrics for the evaluation process: AUC, which measures the
goodness of recommendation order by ranking all the items with
predicted CTR and comparing with the click information;HR@10,
which measures the number of clicks in top 10 recommendations;
Unexpectedness, which measures the recommendations to users
of those items that are not included in their consideration sets and
depart from what they would expect from the recommender system
and is calculated as Equation (3); and Coverage, which measures
as the percentage of distinct items in the recommendation over all
distinct items in the dataset.

6 RESULTS
6.1 Recommendation Performance
We implement the proposed PURS model and baseline methods
in three real-world datasets. We conduct the time-stratified cross-
validation with different initializations and report the average re-
sults over these experiments. As shown in Table 2 and Figure 4,
our proposed model consistently and significantly outperforms all
other baselines in terms of both accuracy and unexpectedness mea-
sures across three datasets. Compare to the second-best baseline
approach, we witness an increase of 2.75% in AUC, 6.97% in HR@10,
24.64% in Unexpectedness and 43.71% in Coverage measures. Es-
pecially in Youku Dataset where rich user behavior sequences in
real business setting are available, PURS achieves the most signif-
icant improvement over other models. We also observe that all
deep-learning based approaches performs significantly better than
feature-based methods, which demonstrates the effectiveness of
latent models. We conclude that our proposed approach achieves

state-of-the-art unexpected recommendation performance and in-
deed provide satisfying and novel recommendations simultaneously
to the target user.

6.2 Ablation Study
As discussed in the previous section, PURS achieves significant
improvements over other baselines. These improvements indeed
come from incorporating the following four components into the
design of recommendation model: Unexpectedness, which aims
at providing novel and satisfying recommendations; Unexpected
Activation Function, which adjusts the input of unexpectedness
into the utility function; Personalized and Session-Based Fac-
tor, which captures the user and session-level heterogeneity of
perception towards unexpectedness; and Clustering of Behavior
Sequence, which extracts the diverse user interests and constructs
user expectations.

In this section, we conduct the ablation study to justify the
importance of each factor. Specifically, we compare the proposed
model with the following variations:

• PURS-Variation 1 (GaussianActivation)Thismodel users
Gaussian distribution to serve as the unexpected activation
function in the original design, and provides recommenda-
tions based on the following utility function 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑢,𝑖 =

𝑏𝑢 + 𝑏𝑖 + 𝑟𝑢,𝑖 + 𝑒𝑥𝑝 (−𝑢𝑛𝑒𝑥𝑝2𝑢,𝑖) ∗ 𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖
• PURS-Variation 2 (No Activation) This model removes
the unexpected activation function in the original design,
and provides recommendations based on the following utility
function𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑢,𝑖 = 𝑏𝑢+𝑏𝑖+𝑟𝑢,𝑖+𝑢𝑛𝑒𝑥𝑝𝑢,𝑖∗𝑢𝑛𝑒𝑥𝑝_𝑓 𝑎𝑐𝑡𝑜𝑟𝑢,𝑖

• PURS-Variation 3 (NoUnexpectedness Factor)Thismodel
removes the unexpected activation function in the original
design, and provides recommendations based on the follow-
ing utility function𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑢,𝑖 = 𝑏𝑢 + 𝑏𝑖 + 𝑟𝑢,𝑖 + 𝑓 (𝑢𝑛𝑒𝑥𝑝𝑢,𝑖)

• PURS-Variation 4 (No Unexpectedness) This model re-
moves the unexpected activation function in the original
design, and provides recommendations based on the follow-
ing utility function𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑢,𝑖 = 𝑏𝑢 + 𝑏𝑖 + 𝑟𝑢,𝑖

• PURS-Variation 5 (SingleClosure ofUser Interest)This
model provides the unexpected recommendations using the
same utility function, but instead remove the clustering pro-
cedure andmodel unexpectedness following [26] as𝑢𝑛𝑒𝑥𝑝𝑖∗,𝑢 =

𝑑 (𝑤∗,𝐶𝑢) where𝐶𝑢 is the entire latent closure generated by
all past transactions of user 𝑢.

As shown in Table 3, if we remove any of these four components
out of the recommendation model, we will witness significant loss
in both accuracy and unexpectedness measures, especially in cov-
erage metric. Therefore, the ablation study demonstrates that the
superiority of our proposed model really comes from the combi-
nation of four novel components that all play significant role in
contributing to satisfying and unexpected recommendations.

6.3 Improving Accuracy and Novelty
Simultaneously

In Table 2, we observe that unexpectedness-oriented baselines gen-
erally achieve better performance in unexpected measures, but
at the cost of losing accuracy measures, when comparing to the
CTR-oriented baselines. This observation is in line with the prior

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin

Algorithm Youku Yelp MovieLens
AUC HR@10 Unexp Coverage AUC HR@10 Unexp Coverage AUC HR@10 Unexp Coverage

PURS 0.7154* 0.7494* 0.0913* 0.6040* 0.6723* 0.6761* 0.2401* 0.7585 0.8090* 0.6778* 0.2719* 0.3732*
DIN 0.6957 0.6972 0.0688 0.1298 0.6694 0.6702 0.0391 0.6934 0.7021 0.6485 0.0887 0.2435

DeepFM 0.5519 0.5164 0.0333 0.2919 0.6396 0.6682 0.0412 0.6044 0.7056 0.6169 0.1275 0.3098
Wide&Deep 0.6807 0.6293 0.0472 0.3400 0.6698 0.6693 0.0392 0.7580 0.7940 0.6333 0.0944 0.3432

PNN 0.5801 0.5667 0.0593 0.1860 0.6664 0.6692 0.0391 0.7548 0.7140 0.6382 0.1318 0.3665
HOM-LIN 0.5812 0.5493 0.0602 0.4284 0.6287 0.6490 0.1433 0.5572 0.7177 0.5894 0.1116 0.1525
Auralist 0.5319 0.5250 0.0598 0.3990 0.6428 0.6104 0.1434 0.5442 0.6988 0.5710 0.1010 0.1333
SPR 0.5816 0.5156 0.0739 0.4668 0.6364 0.6492 0.1438 0.5849 0.7059 0.6122 0.1396 0.1728
DPP 0.6827 0.5777 0.0710 0.4702 0.5940 0.6414 0.1330 0.5072 0.7062 0.5984 0.1602 0.1908

Table 2: Comparison of recommendation performance in three datasets. The first block contains baselines for click-through-
rate optimization, while the second block contains baselines for unexpectedness optimization. ‘*’ represents statistical signif-
icance at the 0.95 level.

(a) Youku Dataset (b) Yelp Dataset (c) MovieLen Dataset

Figure 4: Comparison of recommendation performance in terms of accuracy and unexpectedness measures in three datasets.

Algorithm Youku Yelp MovieLens
AUC HR@10 Unexp Coverage AUC HR@10 Unexp Coverage AUC HR@10 Unexp Coverage

PURS 0.7154* 0.7494* 0.0913* 0.6040* 0.6723* 0.6761* 0.2401* 0.7585* 0.8090* 0.6778* 0.2719* 0.3732*
PURS-Variation 1 0.6826 0.7292 0.0828 0.5548 0.6682 0.6602 0.1298 0.7292 0.7757 0.6419 0.1812 0.3350
PURS-Variation 2 0.7067 0.7148 0.0707 0.3026 0.6692 0.6630 0.0412 0.7580 0.8041 0.6585 0.2471 0.3580
PURS-Variation 3 0.7036 0.6720 0.0762 0.1522 0.6508 0.6692 0.0391 0.7583 0.7666 0.6460 0.0888 0.2792
PURS-Variation 4 0.7063 0.5628 0.0688 0.1298 0.6702 0.6702 0.0391 0.6934 0.7586 0.6331 0.0887 0.2435
PURS-Variation 5 0.7038 0.7080 0.0477 0.2042 0.6701 0.6700 0.0395 0.7580 0.7715 0.6596 0.1727 0.3561

Table 3: Ablation Study of recommendation performance in three datasets. ‘*’ represents statistical significance at the 0.95
level.

literature [4, 50] discussing the trade-off between these two ob-
jectives. However, our proposed PURS model manages to surpass
baselines models in both accuracy and novelty measures at the
same time. In addition, PURS is capable of improving AUC and
unexpectedness metrics simultaneously throughout the training
process, as shown in Figure 5.

6.4 Scalability
To test for scalability, we provide recommendations using PURS
with aforementioned parameter values for the Yelp, MovieLens and
Youku datasets with increasing data sizes from 100 to 1,000,000
records. As shown in Figure 6, we empirically observe that the
proposed PURS model scales linearly with increase in number of
data records to finish the training process and provide unexpected
recommendations accordingly. The training procedure comprises
of obtaining user and item embeddings and jointly optimizing the
utility function. The optimization phase is made efficient using

batch normalization [23] and distributed training. As our experi-
ments confirm, PURS is capable of learning network parameters
efficiently and indeed scales well.

7 ONLINE A/B TEST
We conduct the online A/B test at Alibaba-Youku, a major video
recommendation platform from 2019-11 to 2019-12. During the
testing period, we compare the proposed PURS model with the
latest production model in the company. We measure the perfor-
mance using standard business metrics: VV (Video View, average
video viewed by each user), TS (Time Spent, average time that
each user spends on the platform), ID (Impression Depth, average
impression through one session) and CTR (Click-Through-Rate,
the percentage of user clicking on the recommended video). We
also measure the novelty of the recommended videos using the
unexpectedness and coverage measures described in Section 5.2.
We present the results in Table 4 that demonstrates significant and

PURS: Personalized Unexpected Recommender System for Improving User Satisfaction RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

VV TS ID CTR Unexpectedness Coverage
Improvement +3.74%* +4.63%* +4.13%* +0.80%* +9.74%* +1.23%*

Table 4: Unexpected recommendation performance in online A/B test: performance increase compared to the current model.
‘*’ represents statistical significance at the 0.95 level.

Figure 5: Improving accuracy and unexpectedness measures
simultaneously in each training epoch of PURS in the
MovieLens dataset

Figure 6: Scalability of PURS on the Yelp, MovieLens and
Youku datasets with increasing data sizes from 100 to
1,000,000 records.

consistent improvements over the current model in all the four busi-
ness metrics, and these improvements indeed come from providing
more unexpected recommendations, as demonstrated in Section
6. The proposed model is in the process of being deployed by the
company.

8 CONCLUSIONS
In this paper, we present the PURS model that incorporates un-
expectedness into the recommendation process. Specifically, we
propose to model user interests as clusters of embedding closures
in the latent space and calculate unexpectedness as the weighted
distance between the new items and the interest clusters. We utilize
the sequence modeling and the self-attention mechanism to capture
personalized and session-based user perception of unexpectedness.
We also propose a novel unexpected activation function to achieve
better unexpected recommendation performance. We subsequently
combine the CTR estimation with the degree of unexpectedness
to provide final recommendations. Extensive offline and online
experiments illustrate superiority of the proposed model.

As the future work, we plan to study the impact of unexpected
recommendations on user behaviors. Also, we plan to model the
user interests in a more explicit manner to provide better unex-
pected recommendations.

REFERENCES
[1] Panagiotis Adamopoulos. 2014. On discovering non-obvious recommendations:

Using unexpectedness and neighborhood selection methods in collaborative
filtering systems. In Proceedings of the 7th ACM international conference on Web
search and data mining. ACM, 655–660.

[2] Panagiotis Adamopoulos and Alexander Tuzhilin. 2014. On over-specialization
and concentration bias of recommendations: Probabilistic neighborhood selection
in collaborative filtering systems. In Proceedings of the 8th ACM Conference on
Recommender systems. ACM, 153–160.

[3] Panagiotis Adamopoulos and Alexander Tuzhilin. 2015. On unexpectedness in
recommender systems: Or how to better expect the unexpected. ACMTransactions
on Intelligent Systems and Technology (TIST) 5, 4 (2015), 54.

[4] Gediminas Adomavicius and YoungOk Kwon. [n.d.]. Overcoming accuracy-
diversity tradeoff in recommender systems: a variance-based approach. Citeseer.

[5] Valerii V Buldygin and Yu V Kozachenko. 1980. Sub-Gaussian random variables.
Ukrainian Mathematical Journal 32, 6 (1980), 483–489.

[6] Li Chen, Yonghua Yang, Ningxia Wang, Keping Yang, and Quan Yuan. 2019. How
Serendipity Improves User Satisfaction with Recommendations? A Large-Scale
User Evaluation. In The World Wide Web Conference. ACM, 240–250.

[7] Laming Chen, Guoxin Zhang, and Eric Zhou. 2018. Fast greedyMAP inference for
Determinantal Point Process to improve recommendation diversity. In Advances
in Neural Information Processing Systems. 5622–5633.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[9] Yizong Cheng. 1995. Mean shift, mode seeking, and clustering. IEEE transactions
on pattern analysis and machine intelligence 17, 8 (1995), 790–799.

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin

[12] Dorin Comaniciu and Peter Meer. 2002. Mean shift: A robust approach toward fea-
ture space analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence
5 (2002), 603–619.

[13] Philip J Davis. 1959. Leonhard Euler’s integral: A historical profile of the Gamma
function: In memoriam:Milton Abramowitz. The AmericanMathematical Monthly
66, 10 (1959), 849–869.

[14] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 135–144.

[15] Yufei Feng, Fuyu Lv, Weichen Shen, MenghanWang, Fei Sun, Yu Zhu, and Keping
Yang. 2019. Deep session interest network for click-through rate prediction.
arXiv preprint arXiv:1905.06482 (2019).

[16] Mike Gartrell, Ulrich Paquet, andNoamKoenigstein. 2017. Low-rank factorization
of determinantal point processes. In Thirty-First AAAI Conference on Artificial
Intelligence.

[17] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. 2010. Beyond
accuracy: evaluating recommender systems by coverage and serendipity. In
Proceedings of the fourth ACM conference on Recommender systems. ACM, 257–
260.

[18] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th interna-
tional conference on world wide web. International World Wide Web Conferences
Steering Committee, 173–182.

[20] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM Transactions
on Information Systems (TOIS) 22, 1 (2004), 5–53.

[21] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504–507.

[22] Leo Iaquinta, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, and Piero
Molino. 2010. Can a recommender system induce serendipitous encounters? In
E-commerce. InTech.

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. 448–456.

[24] Komal Kapoor, Vikas Kumar, Loren Terveen, Joseph A Konstan, and Paul Schrater.
2015. I like to explore sometimes: Adapting to dynamic user novelty preferences.
In Proceedings of the 9th ACM Conference on Recommender Systems. ACM, 19–26.

[25] Komal Kapoor, Karthik Subbian, Jaideep Srivastava, and Paul Schrater. 2015. Just
in time recommendations: Modeling the dynamics of boredom in activity streams.
In Proceedings of the Eighth ACM International Conference on Web Search and
Data Mining. ACM, 233–242.

[26] Pan Li and Alexander Tuzhilin. 2019. Latent Modeling of Unexpectedness for
Recommendations. Proceedings of ACM RecSys 2019 Late-breaking Results (2019),
7–10.

[27] Pan Li and Alexander Tuzhilin. 2020. Latent Unexpected Recommendations.
Forthcoming at ACM Transactions on Intelligent Systems and Technology (TIST)
(2020).

[28] Qiuxia Lu, Tianqi Chen, Weinan Zhang, Diyi Yang, and Yong Yu. 2012. Serendip-
itous personalized ranking for top-n recommendation. InWeb Intelligence and
Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM International Confer-
ences on, Vol. 1. IEEE, 258–265.

[29] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of session-based recom-
mendation algorithms. User Modeling and User-Adapted Interaction 28, 4-5 (2018),
331–390.

[30] Leigh McAlister and Edgar Pessemier. 1982. Variety seeking behavior: An inter-
disciplinary review. Journal of Consumer research 9, 3 (1982), 311–322.

[31] Sean M McNee, John Riedl, and Joseph A Konstan. 2006. Being accurate is
not enough: how accuracy metrics have hurt recommender systems. In CHI’06

extended abstracts on Human factors in computing systems. 1097–1101.
[32] Tomoko Murakami, Koichiro Mori, and Ryohei Orihara. 2007. Metrics for evaluat-

ing the serendipity of recommendation lists. In Annual conference of the Japanese
society for artificial intelligence. Springer, 40–46.

[33] Tien T Nguyen, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and Joseph A
Konstan. 2014. Exploring the filter bubble: the effect of using recommender
systems on content diversity. In Proceedings of the 23rd international conference
on World wide web. ACM, 677–686.

[34] Eli Pariser. 2011. The filter bubble: How the new personalized web is changing what
we read and how we think. Penguin.

[35] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender
systems and how to leverage it. In Proceedings of the 2008 ACM conference on
Recommender systems. ACM, 11–18.

[36] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, 1149–1154.

[37] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

[38] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web. ACM, 111–112.

[39] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems.
In Recommender systems handbook. Springer, 257–297.

[40] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155 (2018).

[41] Chuan Shi, Binbin Hu, Xin Zhao, and Philip Yu. 2018. Heterogeneous Information
Network Embedding for Recommendation. IEEE Transactions on Knowledge and
Data Engineering (2018).

[42] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2017. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering 29, 1 (2017), 17–37.

[43] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[44] Shoujin Wang, Longbing Cao, and Yan Wang. 2019. A survey on session-based
recommender systems. arXiv preprint arXiv:1902.04864 (2019).

[45] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 5.

[46] YuanCao Zhang, DiarmuidÓ Séaghdha, Daniele Quercia, and Tamas Jambor. 2012.
Auralist: introducing serendipity into music recommendation. In Proceedings
of the fifth ACM international conference on Web search and data mining. ACM,
13–22.

[47] Qianru Zheng, Chi-Kong Chan, and Horace HS Ip. 2015. An unexpectedness-
augmented utility model for making serendipitous recommendation. In Industrial
Conference on Data Mining. Springer, 216–230.

[48] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
5941–5948.

[49] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 1059–1068.

[50] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling,
and Yi-Cheng Zhang. 2010. Solving the apparent diversity-accuracy dilemma of
recommender systems. Proceedings of the National Academy of Sciences 107, 10
(2010), 4511–4515.

[51] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. ACM, 22–32.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Unexpected Recommendations
	2.2 Deep-Learning based Recommendations
	2.3 Personalized and Session-based Recommendations

	3 Unexpectedness
	3.1 Modeling of Unexpectedness
	3.2 Unexpected Activation Function

	4 Personalized Unexpected Recommender System
	4.1 Overview
	4.2 User and Item Embeddings
	4.3 Click-Through-Rate Estimation (ru,i) using Self-Attentive GRU
	4.4 Unexpected Factor (unexp_factoru,i) using Self-Attentive MLP

	5 Experiments
	5.1 Data
	5.2 Baselines and Evaluation Metrics

	6 Results
	6.1 Recommendation Performance
	6.2 Ablation Study
	6.3 Improving Accuracy and Novelty Simultaneously
	6.4 Scalability

	7 Online A/B Test
	8 Conclusions
	References

