
Goal-driven Command Recommendations for Analysts
Samarth Aggarwal

∗

Indian Institute of Technology Delhi

Delhi, India

cs1160395@cse.iitd.ac.in

Rohin Garg
∗

Indian Institute of Technology Kanpur

Kanpur, India

sronin@iitk.ac.in

Abhilasha Sancheti

Adobe Research

Bangalore, India

University of Maryland

College Park, USA

sancheti@adobe.com,sancheti@cs.umd.edu

Bhanu Prakash Reddy Guda

Adobe Research

Bangalore, India

guda@adobe.com

Iftikhar Ahamath Burhanuddin

Adobe Research

Bangalore, India

burhanud@adobe.com

ABSTRACT
Recent times have seen data analytics software applications be-

come an integral part of the decision-making process of analysts.

The users of these software applications generate a vast amount of

unstructured log data. These logs contain clues to the user’s goals,

which traditional recommender systems may find difficult to model

implicitly from the log data. With this assumption, we would like

to assist the analytics process of a user through command recom-

mendations. We categorize the commands into software and data

categories based on their purpose to fulfill the task at hand. On

the premise that the sequence of commands leading up to a data

command is a good predictor of the latter, we design, develop, and

validate various sequence modeling techniques. In this paper, we

propose a framework to provide goal-driven data command recom-

mendations to the user by leveraging unstructured logs. We use

the log data of a web-based analytics software to train our neural

network models and quantify their performance, in comparison

to relevant and competitive baselines. We propose a custom loss

function to tailor the recommended data commands according to

the goal information provided exogenously. We also propose an

evaluation metric that captures the degree of goal orientation of the

recommendations. We demonstrate the promise of our approach by

evaluating the models with the proposed metric and showcasing

the robustness of our models in the case of adversarial examples,

where the user activity is misaligned with selected goal, through

offline evaluation.

CCS CONCEPTS
• Human-centered computing; • Computing methodologies
→ Neural networks; • Information systems → Recommender
systems;

KEYWORDS
command recommendation; topic modeling; context-aware recom-

mendation; application logs; user goals

∗
Both authors contributed equally to this research. The work was done when all the

authors were affiliated with Adobe Research.

In the Proceedings of 14th ACM Conference on Recommender Systems(RecSys’20)

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil
https://doi.org/10.1145/3383313.3412255

ACM Reference Format:
Samarth Aggarwal, Rohin Garg, Abhilasha Sancheti, Bhanu Prakash Reddy

Guda, and Iftikhar Ahamath Burhanuddin. 2020. Goal-driven Command Rec-

ommendations for Analysts. In Fourteenth ACM Conference on Recommender
Systems (RecSys ’20), September 22–26, 2020, Virtual Event, Brazil. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3383313.3412255

1 INTRODUCTION
There has been tremendous growth in the domain of data analysis as

the volume of data has increased, and as the capabilities to support

processing of this data have advanced [16]. Analysts, and more

generally, users of data-centric software applications, need to make

several selections within the software application to achieve certain

objectives, gather insights from the data and make decisions [42].

Considering the sheer volume of data to be analysed, there is now

a demand on systems to query, analyze and draw inferences with a

low latency. This demand also carries over to users assigned with

the task of analysing the data. Recommender systems have been

used time and again in a variety of different applications to guide

the users. They solve two major concerns:

(1) When a user is faced with a raft of different options to choose

from, recommender systems act as a primary filter for op-

tions that are completely irrelevant. This leaves the user with

a choice among a relatively smaller number of options [39].

(2) When a novice user lacks the skills and knowledge to choose

from the different options provided, recommender systems

act as a guide for the user in making a selection [6]. We refer

to this click as a command or action that gets registered in

the log data when a user interacts with the interface of the

system.

The domain of analytics offers both these problems simultane-

ously, and our solution approach proposes to build a system that

caters to both of them. Introducing recommendations to help the

analysts decide what activity to perform and where to look in the

data to discover insights can boost productivity. However, recom-

mendations can be distracting if they are irrelevant to the analyst’s

goal and do not provide guidance towards the insights that the

analyst needs.

The interaction mechanism illustrated in this paper borrows the

notion of goal and applies it to software assistance that is provided

by a recommender system (Fig. 1). Specifically, the goal information

ar
X

iv
:2

01
1.

06
23

7v
1

 [
cs

.H
C

]
 1

2
N

ov
 2

02
0

https://doi.org/10.1145/3383313.3412255
https://doi.org/10.1145/3383313.3412255

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Aggarwal, Garg, Sancheti, Guda and Burhanuddin

provided as input by the user during a session of interaction with a

software application guides the recommendations the user receives.

Our study is under the purview of an interactive data analysis and

visualization software for web analytics. We believe that claims

and results presented here generalize to assistance in education

and other data-centric domains where the notion of goals can be

formalized. Our contributions in this work are summarized below.

(1) We conceptualize the notion of a goal in data analytics soft-

ware applications and propose models where goal informa-

tion is provided exogenously. We design, develop and eval-

uate sequence-based goal-driven models, which are better

predictors of data commands compared to traditional rec-

ommender systems that were unaware of the user’s goal.

We demonstrate the performance of our approach through

offline evaluations.

(2) We design a custom loss function for models which steer the

recommendations towards the user’s goal. The loss function

involves a probability distribution component, which is dif-

ferent for each of the identified goals, thereby generating an

ensemble of fine-tuned models.

(3) We also introduce a measure to evaluate the degree of goal

orientation in recommendations provided by the proposed

models.

To demonstrate the robustness of ourmodel, we report the perfor-

mance of our models on adversarial examples. The results showcase

how our models would operate in cases of misspecified information

where user’s activity is misaligned with provided goal information.

The paper is organized as follows. We present related work in

Section 2. In Section 3, we describe the dataset used in our ex-

periments. Sections 4 and 5 describe our goal-driven models and

baselines, and experimental results respectively. Next in Section 6,

evaluation metrics and results are showcased.

2 RELATEDWORK

Goal-driven recommendations:
There is a vast amount of literature related to the concept of

goals in process mining, web mining, education [21, 22, 48] and

HCI [8]. In the paper [19], a goal is defined as a set of target tasks
or subtasks at the focus of a user’s attention. We have applied this

definition to our setting, where the user selects the target task at

the start of the analysis session, tasks in turn are modeled as topics,

and recommendations are guided by the task selections.

While a significant amount of research has been carried out to

understand and analyze patterns in user behavior from application

log data [1, 10, 11, 26, 29], limited research has been published to

infer goals from usage logs and explicitly incorporate goal informa-

tion to recommend future commands [4, 31, 33, 45]. The paper [27]

models the workflows in event log data based on probabilistic suffix

trees (PST) and [26, 45] deploy the techniques of topic modeling to

determine the workflows or tasks. In [45], a system to recommend

video tutorials based on the command logs from the user activity is

discussed. Here a hierarchical approach that operates both at the

task and command level is proposed. The authors consider topics

determined through a topic model as tasks and at the command

level they utilize frequent pattern mining and itemset mining tech-

niques to extract frequent command patterns for videos. The paper

[45] builds its approach on top of a study of frequent user tasks

from product log data [11]. Additionally, they leverage topic mod-

eling as an antecedent layer to capture diverse behavior patterns.

This modification has allowed them to represent command patterns

from less frequent tasks more faithfully. Elsewhere the concept of

context is captured by representing the sessions through trees [31].

The paper [26] explored the problem in the same direction as

[45]. Unlike the latter approach, they intend to model the workflows

using probabilistic suffix trees. In a similar vein, [33] have proposed

neural network architectures TaskRNN and JTC-RNN to predict the

next command in the sequence. Their architecture is similar to that

of TopicRNN [12] from the domain of text analysis. In line with prior

work [26, 33, 45], we use topic modeling techniques to model goals

that users carry out by executing a sequence of commands. As topic

modeling techniques such as Latent Dirichlet Allocation (LDA)

[7] suffer from data sparsity issues, we have used Biterm Topic

Modeling (BTM) [46] to identify goals from the log data as typical

user sessions are small in size. We define the goals mathematically

based on the outputs of the BTMmodel. Researchers have proposed

architectures on incorporating the document context in the form of

topic-model like architecture, thereby granting a broader document

context outside of the current sentence [25]. Inspired by this lan-

guage modeling architecture, we propose methods to incorporate

current goal information for predicting the next data command in

the sequence. One of the major drawback of these approaches is

that they utilize standard cross-entropy loss function which does

not consider any goal information while penalizing their models.

To the best of our knowledge, there has also been no work which

introduces a loss function to steer the recommendations based on

the goal under consideration.

The Fine-tuning paradigm: Our proposed models employ the

technique of fine-tuning inspired by the Generative Pre-Training

(GPT) [37], Generative Pre-Training 2 (GPT-2) [38] modes of train-

ing. Both GPT and GTP-2 models demonstrated large gains on

natural language understanding tasks by pre-training of language

models on a diverse corpus of unlabeled text, followed by discrimi-

native fine-tuning on each specific task. The GPT and GPT-2 models

utilize task-aware inputs during fine-tuning to achieve effective

transfer while requiring minimal changes to the model architecture.

In this paper we apply a similar framework for the first time to

provide goal-driven recommendations by initializing parameters

from a trained model for generalized recommendations and fine-

tuning with custom loss function to achieve goal specific models.

This is very effective in providing recommendations where the user

activity is misaligned with the goal given as input.

3 DATASET
The application under consideration is a web-analytics system used

to track, report, analyze, and visualize web traffic. Traces of user

activity within this software is available as log data. This log data

contains the user interface clicks that are captured while the user

interacts with the system. We term these clicks as commands, and

they fall into the following two categories (1) Software Commands;

and (2) Data Commands. The first category of commands is related

Goal-driven Command Recommendations for Analysts RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

Figure 1: Left: The landing page of a user on logging into the analytics product. The goal selection panel contains the descriptions of the goals
from which the user selects. Right: The data command recommendations provided by our model. Transition: On clicking a software or data
command.

to analyzing data by the user through mental effort via tables and

visualizations, or by applying software tools with underlying statis-

tical or machine learning models. This set of commands is denoted

by SC for Software Commands. The commands which specify the

data to be analyzed fall into the second category. This second set

of commands is denoted by DC for Data Commands. Each of the

data commands can be split into a class and corresponding variable.

We observe that selection of these categories of commands is itera-

tive in nature. We would like to provide examples from a familiar

framework — spreadsheet applications. In spreadsheets, the soft-

ware commands refer to opening, loading or saving a spreadsheet,

changing the color of a cell, whereas data commands include mak-

ing column selections, sorting a data column in an increasing or

decreasing order, computing aggregation functions such as sum or

maximum or minimum of a data column. In this example the class

of data commands corresponds to sorting and the variable is the

value on which the data is sorted. We consider the data command

class along with the variable, to be a unique data command for the

rest of the paper.

Often, an analyst begins analysis with the goal to provide expla-

nations for certain patterns which are captured in the data. The

software commands merely facilitate data analysis. On the other

hand, the answers sought by the analyst are closely related to the

data that is being analyzed. Our objective is to build a system to

assist the user by providing guidance on where to look at in the data.

Therefore, out of these two sets of commands, we would like to

predict only the data commands. After pre-processing three months

of usage logs from April 2018 to June 2018, we have extracted data

for a few hundred users in the specified duration. The logs with

sparse user activity were dropped. The extracted logs were then

split into sessions
1
considering the sign-out software command as

the delimiter. To handle the cases where the user does not end the

session explicitly by issuing the sign-out software command, we

have considered six hours of inactivity as a signal for the end of the

session. The duration of inactivity we chose is well beyond the time

after which the application terminates the session automatically, if

no user response is recorded. The session thus captured were 55𝐾

in number. There were around 838 unique commands, which were

1
A session is a sequence of commands executed by a single user from entering the

application to exiting the application.

obtained after dropping the commands that were logged to indicate

user interface events and not explicitly executed by the users. Out

of these 838 commands, 766 commands were the data commands

(DC), and the rest of them were the software commands (SC). There

is a limited amount of our subjective judgement to arrive at this

categorization.

𝑆𝐶, 𝐷𝐶, 𝐷𝐶, 𝑆𝐶, ..., 𝑆𝐶, 𝑆𝐶, 𝑆𝐶,DC, 𝐷𝐶, 𝑆𝐶, ..

Figure 2: In this example session of user activity, sequence data is
generated for model training by placing a window at each position
in the session. The next command that needs to be predicted for the
sequence in the window is the immediate data command after the
window ends (command in bold).

After the pre-processing phase, the average number of com-

mands per session was found to be 30. For uniformity, sessions

with length less than 30 were dropped, and sessions with length

greater than 30 were handled based on sliding window approach

which is explained in Figure 2. A total of 2.7𝑀 sequences, thus gen-

erated, were split into training, validation and test sets on the basis

of sessions, with 75 : 12.5 : 12.5 split for the three sets respectively.

4 GOAL-DRIVEN MODELS
The interaction in our proposed system has the user selecting goals

represented by phrases at the start of a session in line with their

intended task. We reiterate that the validation of this proposal

is through offline evaluation as described in Section 6. Example

phrases for goals for the dataset under consideration are also pro-

vided in that section as well as in Figure 1.

To recommend data commands based on the goal information

provided by the user, we propose variants of sequence to sequence

(seq2seq) models which are compared against more traditional

approaches such as popularity based models, bag-of-commands

models, and Markov models. The goal information is delivered to

the seq2seq models using two approaches by (1) providing training

data that corresponds to each specific goal, and (2) by building

goal informed models. However, before recommending the data

commands, the first sub-problem is to identify the possible goals

from the user log data.

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Aggarwal, Garg, Sancheti, Guda and Burhanuddin

4.1 Goal Identification
The problem of making recommendations goal-aware requires solv-

ing two problems, goal identification and adding goal information

to the recommender system. The former is a pre-requisite for the

latter and was done from user log data, though does not affect the

latter.

In this section, we draw an analogy between a collection of nat-

ural language documents and a collection of command sequences.

A word, which is a fundamental unit of a document corresponds to

a command in a sequence. Unlike words, in our setting there are

two categories of commands, data commands (𝐷𝐶) and software

commands (𝑆𝐶) as described in Section 3. The words constitute

the documents and similarly the commands (𝐷𝐶 ∪ 𝑆𝐶) form the

sequences. The command distribution 𝜙𝐺 , obtained from the BTM

[46] model, contains the probability values for all the commands,

software and data commands. Each topic output of the BTM model

corresponds to a goal 𝐺 . We use BTM, instead of using more popu-

lar approaches like LDA, to alleviate the data sparsity problem. This

problem arises due to co-occurrence matrix for each and every pair

of commands being very sparse. As we aim to predict only the data

commands, those probabilities that pertain to the data commands

are considered and normalized to generate a distribution for the

goal 𝐺 .

𝑃 (𝑑𝑐 = 𝑑𝑐𝑖 |𝑔𝑜𝑎𝑙 = 𝐺) =
𝜙𝐺 [𝑑𝑐𝑖]∑
𝑐∈𝐷𝐶 𝜙𝐺 [𝑐] (1)

where 𝑑𝑐𝑖 ∈ DC is the 𝑖th data command, 𝜙𝐺 [𝑐] denotes the proba-
bility of the command 𝑐 in the command distribution for the goal

𝐺 . The computed distribution, 𝑃 (𝑑𝑐 |𝑔𝑜𝑎𝑙 = 𝐺), is considered as the

definition for the goal 𝐺 (Fig. 3).

4.2 Goal Coherence
To decide upon the correct number of goals, we utilize standard

coherence evaluation metrics, explained in this section. As an early

evaluation method of topic models, [2] defines an unsupervised

goal ranking measure based on three prototypes of irrelevant and

insignificant topics. Then, a topic significance score is computed

by applying various similarity measures such as cosine, correlation

and dissimilarity measures such as KL divergence [24] to these

three prototypes. It is unclear to what extent their unsupervised

approach and objective function agrees with human judgements,

however, as they present no user evaluations [34]. Consequently,

more and more works have been done to correlate the evaluation

measure with human judgement. Two such state-of-the-art goal

coherence (topic coherence) evaluation measures are the UCI and

UMass. Both the measures compute scores for all pairs of data

commands in a goal cluster. They differ in defining the score for a

pair of data commands.

The UCI measure [34] uses pairwise score function, Pointwise

Mutual Information (PMI) to compute the score between two data

commands. The UMass measure [32] uses a pairwise score function

similar to UCI.

𝑠𝑐𝑜𝑟𝑒UCI (𝑑𝑐𝑖 , 𝑑𝑐 𝑗) = log

𝑝 (𝑑𝑐𝑖 , 𝑑𝑐 𝑗)
𝑝 (𝑑𝑐𝑖)𝑝 (𝑑𝑐 𝑗)

(2)

𝑠𝑐𝑜𝑟𝑒UMass (𝑑𝑐𝑖 , 𝑑𝑐 𝑗) = log

𝑀 (𝑑𝑐𝑖 , 𝑑𝑐 𝑗) + 1

𝑀 (𝑑𝑐𝑖)
(3)

where 𝑝 (𝑑𝑐𝑖) represents the probability of seeing data command

𝑑𝑐𝑖 in a session, and 𝑝 (𝑑𝑐𝑖 , 𝑑𝑐 𝑗) is the probability of observing both

𝑑𝑐𝑖 and 𝑑𝑐 𝑗 co-occurring in a session computed as follows

𝑝 (𝑑𝑐𝑖) =
𝑀 (𝑑𝑐𝑖)
𝑀

and 𝑝 (𝑑𝑐𝑖 , 𝑑𝑐 𝑗) =
𝑀 (𝑑𝑐𝑖 , 𝑑𝑐 𝑗)

𝑀
(4)

where𝑀 (𝑑𝑐𝑖) is the count of sessions containing the command 𝑑𝑐𝑖 ,

𝑀 (𝑑𝑐𝑖 , 𝑑𝑐 𝑗) is the count of sessions containing both commands 𝑑𝑐𝑖
and 𝑑𝑐 𝑗 , and𝑀 is the total number or sessions. The UCI score for a

goal,𝐺 , is computed asmean{𝑠𝑐𝑜𝑟𝑒UCI (𝑑𝑐𝑖 , 𝑑𝑐 𝑗), 𝑑𝑐𝑖 , 𝑑𝑐 𝑗 ∈ 𝐺, 𝑖 ≠ 𝑗}.
The overall UCI score equals the mean UCI score of all the goals.

The overall UCI score for a model with 𝑡 goals, 𝐶𝑆UCI (𝑡) equals the
mean UCI score across those 𝑡 goals.

The overall UMass score,𝐶𝑆UMass , is computed similar to the UCI

measure. Higher UCI and UMass scores indicate better groupings,

since if two data commands in a goal really belong together we

would expect them to show up together very frequently. The process

of choosing optimal number of goals for our data by considering

both these measures is discussed in Section 5.

4.3 The Ensemble Approach
The information of goal can be implicitly incorporated into the

models through the data that is provided as input to them. Several

applications have used this approach earlier to generate models

specific to a data distribution observed in a particular class or task

in general. Multi-class classification [28, 30, 36, 40], is a classic

example of this approach where the data distribution of a class

is assimilated through an ensemble of models. Similar to this ap-

proach, we propose one model per goal, which is explicitly trained

to model the distribution of the data of that particular goal. The

technicalities of the model are as follows. Our proposed models use

multi-layered Long Short-Term Memory (LSTM) [18] to encode the

input sequences of commands into vectors of fixed dimensionality.

Given a sequence 𝑆 with 𝑐𝑖 ∈ DC ∪ SC, 𝑖 in [0, 𝐿] commands, we

first embed the commands through an embedding matrix. This se-

quence of embedded commands is then provided as an input to an

LSTM encoder which computes representations of the commands

by summarizing the information. The representation from the last

time step of the LSTM hidden unit, denotes the semantic represen-

tation of the command sequence in the latent space. It is then fed

as input to a fully connected layer, followed by a softmax layer [5]

for predicting the succeeding data command in the given sequence.

Mathematically, at each step of data command prediction, the fol-

lowing probabilities are computed to generate next data command

in the sequence 𝑆 :

𝑃𝑟 (ˆ𝑑𝑐 = 𝑑𝑐𝑖 |𝑐0, 𝑐1, . . . , 𝑐𝐿) (5)

𝐾 such models are trained, one for each of the 𝐾 goals iden-

tified through the BTM model. The commands which are model

predictions are the ones which have the top probabilities.

argmax

𝑑𝑐𝑖 ∈DC
𝑃𝑟 (ˆ𝑑𝑐 = 𝑑𝑐𝑖 |𝑐0, 𝑐1, . . . , 𝑐𝐿) (6)

[14] have shown the tantamount performance of convolutional

neural networks (CNN) compared to recurrent neural networks

(RNN) in sequence modeling. Compared to recurrent models, com-

putations over all elements can be fully parallelized during training

facilitating us to better exploit the GPU hardware and optimization.

Goal-driven Command Recommendations for Analysts RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

Figure 3: The probability distribution of commands for each of the identified 𝐾 = 6 goals: 𝑃 (𝑑𝑐 |𝑔𝑜𝑎𝑙). The commands are
grouped together goal-wise. This graph illustrates the distinguishable definitions of goals through their probability distribu-
tions.

This is due to two reasons (1) the fixed number of non-linearities

in the model architecture and (2) the independence between the

number of non-linearities and the length of input command se-

quence. Consequently, we have also explored the space of CNN’s

in modeling the command sequences.

We utilize the convolution operation with max-over-time pool-

ing operation layer [9, 23], to generate embedding representations

for the command sequences. The motivation behind this operation

is to capture the most significant feature—one with the highest

value—for each feature map. The max-over-time pooling operation

also handles the problem of having variable length command se-

quences. The features obtained from the convolutional filters, are

concatenated to produce a single representation of the command

sequence. This representation is further processed through dense

and softmax layers for predicting the next data command in the

given sequence. The mathematical representation of this model

remains the same as shown in formula 5.

4.4 Goal Informed Models
In this section, we propose models that are provided with goal in-

formation explicitly. While ensemble of classifiers method is a com-

petitive baseline for multi-class classification task, this approach

of providing the goal information implicitly fails in general while

predicting data commands for sequences which do not align with

the goal. Consequently, we impose additional constraint on the

seq2seq model to capture the relation between goal and the com-

mand sequence by providing the goal information explicitly [25, 33].

This approach has the advantage of training the model on relatively

larger set of data thereby resulting in better accuracy [3]. We ex-

periment with three ways of incorporating the goal information

into the models each of which perform in par with the other two

models.

The first two sets of experiments use the one-hot representa-

tion to provide goal information to the models. The reasons why

we chose one-hot representation for the goals are two-fold. (1) It

is desired that the goals should have distinguishable representa-

tions, and one-hot representation distinguishes each goal in the

goal vocabulary from every other goal. (2) The goals should not

be prioritized in terms of representations when a global model is

trained on data points from all the goals. Our first proposed model,

Goal Concatenated Representation (GCoRe), concatenates the one-
hot representation (1𝐺) of the goal to the effective representation

of the input command sequence, obtained after the LSTM encoder

layer. The second variant, Goal Concatenated Commands (GComm),

provides the goal information before the LSTM layer. It is expected

from this model to incorporate the goal information while repre-

senting the input sequences and thereby provide better results. The

one-hot representation of the goal is concatenated to each of the

embeddings of the commands in the sequence and is fed as input

to the LSTM encoder.

The third proposed model, Goal Appended Inputs (GAIn), as-
sumes the goals and the commands to be in the same latent rep-

resentation space [13]. The goal information is provided as input

at the first time step of the LSTM unit similar to the proposed ar-

chitecture in [44]. The goal and command embeddings are trained

together in the same 𝑘-dimensional space to generate cluster rep-

resentative embeddings for the goals. The embedding matrix is

modified to facilitate the embeddings for the goals. The goal is

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Aggarwal, Garg, Sancheti, Guda and Burhanuddin

Figure 4: Left: The architecture diagram for the vanilla LSTM model. Right: The architecture diagram for goal informed (a)
GAIn (b) GComm and (c) GCoRe models.

prepended to command sequence and is fed as input to the model.

The modified input sequence to the LSTM will be (𝐺, 𝑐0, 𝑐1, . . . , 𝑐𝐿).
The mathematical representation of the above proposed models is

given by:

𝑃𝑟 (ˆ𝑑𝑐 = 𝑑𝑐𝑖 |𝑐0, 𝑐1, . . . , 𝑐𝐿,𝐺) (7)

Here, 𝐺 is the goal assigned to the command sequence (𝑐0, 𝑐1, . . . ,
𝑐𝐿) by BTM. The modifications can be applied to the CNN models

as well, with the rest of the computations remaining intact.

4.5 Loss Function
So far the various proposed models are variations of next data com-

mand prediction models based on seq2seq modeling. The standard

cross-entropy loss function L𝐶𝐸 (\) [20], when applied to these

models, makes sure that the recommended data commands are actu-

ally aligned with the input sequence. However, a severe limitation

to this standard loss function in our setting is that this loss function

does not consider the goal orientation while penalizing the models.

These models do not have access to crucial information provided

by the BTM, which is the definition of a goal.

For this, we use the definition of goals, the probability distribu-

tion over data commands 𝑃 (𝑑𝑐 |𝑔𝑜𝑎𝑙), and incorporate it into the loss
function. In order to enforce this, we introduce a Kullback-Leibler

divergence term [24] into the loss function. The KL divergence

measures how much a probability distribution 𝑃 differs from a sec-

ond distribution 𝑄 and has an information theoretic interpretation.

Minimizing the KL divergence means optimizing the probability

distribution 𝑃𝑟 (ˆ𝑑𝑐 = 𝑑𝑐𝑚 |𝑐0𝑚 , 𝑐1𝑚 , . . . , 𝑐𝐿𝑚 ,𝐺𝑚) to be close to the

data command distribution of the goal 𝑃𝑟 (𝑑𝑐 |𝑔𝑜𝑎𝑙).
The distributions of interest in computing KL divergence are as

follows

LKL (\) = DKL (𝑃 | |𝑄) (8)

where 𝑃 = 𝑃𝑟 (ˆ𝑑𝑐 = 𝑑𝑐𝑚 |𝑐0𝑚 , 𝑐1𝑚 , . . . , 𝑐𝐿𝑚 ,𝐺𝑚) and𝑄 = 𝑃𝑟 (𝑑𝑐 |𝑔𝑜𝑎𝑙).
We want our model to give recommendations that have a high

𝑃𝑟 (𝑑𝑐 |𝑔𝑜𝑎𝑙) when the input from the user deviates from the chosen

goal. Cross-entropy loss penalizes prediction deviating from the

ground truth command. To penalize deviation from the goal, we

introduce a loss function,L(\), that takes care of both the penalties:

L(\) = 𝛼LCE (\) + (1 − 𝛼)LKL (\) (9)

The first term is a scaled version of the cross-entropy loss. The

second term is the KL Divergence between the predicted probability

distribution and the chosen goal distribution and 𝛼 is the balancing

factor for both the losses.

4.6 Fine Tuning
The loss function described in equation 9, when applied to the

models proposed in Section 4.4, steers the recommender systems to

produce data commands relevant to the goal under consideration.

The proposed loss function involves the component 𝑄 , which is

different for each goal. Therefore, it is not possible to train a single

global model for all the goals using this loss function. A simple

solution is to train 𝐾 different models for 𝐾 different goals, simi-

lar to what we proposed in the ensemble approach in Section 4.3.

However, models trained on large volume of diversified data from

different goals overcome the problem of overfitting [43]. For this

reason, the goal informed models, when trained on global data

using the loss function LCE (\), have an inherent advantage of

learning to represent the sequences better compared to the goal

specific data models. These representations are captured through

the embeddings, the hidden state weights of the LSTM layer, and

the fully connected layer parameters of these models. Therefore,

we utilize the trained weights of these models for initializing the

parameters of this experiment. We then fine tune the models to

be goal specific by retraining [35] the models on the data specific

to this goal with the modified loss function L(\). Consequently,
these fine tuned models were able to provide accurate and goal

relevant data command recommendations. Another indispensable

Goal-driven Command Recommendations for Analysts RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

advantage of these models is their superior performance for low

resource goals, that is, goals with less training data.

5 EXPERIMENTS
Limited research has been carried out in identifying and incorpo-

rating goal information for predicting next action in a sequence.

Therefore, in this section, we compare our proposed models with

simple, yet powerful, approaches used for next action prediction

such as popularity based prediction models and Markov models
2
.

5.1 Baseline Approaches
We provide a brief outline of the competing methods in the follow-

ing.

• Top 50 Frequency Model The probability distribution,

of the data commands is observed to follow Zipf’s law [49].

Few data commands have a high probability of being ob-

served in the dataset. With this observation, we modeled

this baseline approach to predict only the 50 most frequent

data commands. These 50 data commands constitute more

than 90% occurrence of the total number of data commands

in the dataset. The corresponding probability distribution is

generated by normalizing over these top 50 data commands

to a unit vector.

• Markov Models The traditional formula for computing

the probability of observing a data command, 𝑑𝑐𝑖 , given the

most recent command 𝑐𝐿 is:

𝑃𝑟 (ˆ𝑑𝑐 = 𝑑𝑐𝑖 |𝑐𝐿) =
𝑐𝑜𝑢𝑛𝑡 (𝑐𝐿, 𝑑𝑐𝑖)
𝑐𝑜𝑢𝑛𝑡 (𝑐𝐿)

(10)

where 𝑐𝑜𝑢𝑛𝑡 (𝑐𝐿) is the frequency of command 𝑐𝐿 in the

dataset and 𝑐𝑜𝑢𝑛𝑡 (𝑐𝐿, 𝑑𝑐𝑖) equals the frequency of the biterm
(𝑐𝐿, 𝑑𝑐𝑖). It is to be noted that the term biterm is used instead

of bigram in standard Markov model. Generating biterms

from the dataset is explained through the following exam-

ple. For a given sequence (𝑑𝑐1, 𝑑𝑐2, 𝑠𝑐1, 𝑠𝑐2, 𝑑𝑐3, 𝑠𝑐3, 𝑑𝑐4), the
biterm set is {(𝑑𝑐1, 𝑑𝑐2), (𝑑𝑐2, 𝑑𝑐3), (𝑠𝑐1, 𝑑𝑐3), (𝑠𝑐2, 𝑑𝑐3), (𝑑𝑐3,
𝑑𝑐4), (𝑠𝑐3, 𝑑𝑐4)}, where 𝑠𝑐𝑖 ∈ SC and 𝑑𝑐𝑖 ∈ DC. In generat-

ing the biterms for the first-order Markov model, the second

term in the biterm is always from the set DC, whereas the

first term can be from either command sets.

• CPT+ This is an incremental and easily adaptable approach

for a lossless compression of the training data so that all rel-

evant information is available for each prediction [15]. It

relies on a tree structure and a more complex prediction

algorithm to offer considerably more accurate predictions

than many state-of-the-art prediction models.

• VanillaModel (lstm4rec) The architecture of vanillamodel

(Figure 4) is similar to the proposed goal informed models

in Section 4.4 with no goal information being provided. It

is a deep neural seq2seq model trained on entire data to

predict the next data command in the sequence. This ap-

proach models user sessions with the help of an RNN with

2
State-of-the-art probabilistic sequence prediction models cannot be tested since the

data commands are not aligned with the actual sequence (ground truth label may occur

further down the actual sequence). A comparison against neural network approach as

baseline is presented in Table 1.

LSTM reminiscent to the one proposed in gru4rec [17] by

replacing the Gated Recurrent Units with LSTM units.

5.2 Goal Identification
The first task in identifying the goals from the dataset is to choose

the optimal number of goals for the dataset at hand.We have utilized

the measures described in Section 4.2 to decide upon this number.

We computed goal coherence scores 𝐶𝑆UCI (𝑡) and 𝐶𝑆UMass (𝑡) by it-

erating the number of goals from 𝑡 = 1 through 50 to determine the

optimal number of goals. Through a comparative analysis across

these scores for various values of 𝑡 , the value 𝑡 = 6 had the high-

est average coherence score. For goal identification using BTM,

standard Gibbs sampling [47] is used to compute the values of the

multinomial distributions. The choice of the hyperparameters 𝛼

and 𝛽 is based upon the desired output distribution of BTM. The

value of hyperparameter 𝛼 is set to 8.333 and 𝛽 is set to 0.005.

5.3 Model Configurations
The length of each session, 𝑆 , is chosen to be 30 (average command

sequence length). Each command 𝑐𝑖 is represented as a 200 dimen-

sional vector in the embedding space. The user is asked to choose

one of the goals from the list of the identified goals from the dataset

at the start of each session. The goal is represented as the same 200

dimensional vector for GAIn unlike the GComm and GCoRe models,

where it is represented as a one-hot vector. The number of hidden

LSTM units is set to 500 to generate the representation of the input

sequence, followed by a fully connected layer. We further utilize

dropout probability of 0.5 in the dense layer. During training, we

minimize the cross-entropy loss LCE (\) between the logits, the

predicted probability distribution over the entire data commands,

and the ground truth distribution. The optimizer used is a stochastic

gradient descent (SGD) with 0.01 learning rate, 0.9 momentum and

weight decay of 0.001 to train our models. The weights of these

models are initialized randomly with no prior distribution. For the

fine tuning experiments, the weights are initialized to the trained

values of GCoRe, GComm, GAIn models. During fine tuning, we set

the embeddings of the commands to be fixed after modifying the

loss function from L𝐶𝐸 (\) to L(\).

6 EVALUATION AND DISCUSSION
We start this section by evaluating the identified goals using a

human evaluator. We then proceed to compare the performance of

the various models proposed with the competing baselines. We also

propose a novel evaluation method to measure the degree of goal

orientation and report the performance of our models in adversarial

settings.

6.1 Goal Coherence
We recall that each goal is a probability distribution over the same

set of data commands. To evaluate the quality and coherence of

identified goals by BTM, which was trained in an unsupervised

fashion, we rely on the assessment of one expert who had several

years of experience with the software under consideration. This

expert was shown top 50 commands for each of the 6 goals and was

able to relate to each collection of commands and provide a phrase

describing each goal. These descriptions read as follows: product

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Aggarwal, Garg, Sancheti, Guda and Burhanuddin

Model Accuracy 𝐺𝑂1 Score

Mode of Goal Input

Specification

Top 50 Frequency 0.1633 0.1997

Not Specified

First-order MM 0.2621 0.2251

Second-order MM 0.3210 0.2322

CPT+ 0.3444 0.2542

vanilla (lstm4rec) 0.5875 0.3176

ensemble First-order MM 0.3043 0.2571

ensemble Second-order MM 0.3429 0.2679 Implicitly through

ensemble CPT+ 0.4154 0.2723 data partition

ensemble Vanilla (lstm4rec) 0.6894 0.3211

GCoRe 0.6839 0.3984

Encoded

GComm 0.6970 0.3959

GAIn 0.7189 0.3933 Representation

Table 1: Accuracy results and Goal Orientation𝐺𝑂1 scores of
various models, with best results in gray background. The
ensemble models corresponds to training one model per
goal.

analysis for campaign or marketing, search trends for campaigning

research, product conversions on different devices, navigational

research and funnel analysis, segment analysis for campaigning

research, and search trends for web-product analysis.

6.2 Accuracy of Models
To quantify the performance of our models, we computed the stan-

dard evaluation metric, the test accuracy. In our setting, the test

accuracy is defined as the number of examples where the predicted

data command matches with the target data command out of the

total number of examples. This is done at the granularity of each

command in the ground truth. For uniformity, the test set across

all the models was exactly the same.

From the accuracy values, it is empirically observed that the

models incorporating the goal information, in general, perform

better by at least 13% margin compared to the competing baseline

lstm4rec for session based recommendations without goal infor-

mation. Goal information influences the process of data command

recommendation to make it more germane which is clearly reflected

from the results reported in Table 1.

The three Goal Informedmodels introduced in Section 4.4,GCoRe,
GComm andGAIn, achieve similar accuracy values. TheGAInmodel

performed best among the three models as showcased in Table 1.

The goal-wise accuracy results are plotted in Figure 5. The fine-

tuned models also have obtained similar accuracy values with Fine-

tuned GAIn having best performance as observed from Table 2.

6.3 Goal Orientation Measure (GO-Measure)
Due to the very nature of the problem we attempt to solve, conven-

tional evaluation metrics such as test accuracy will not evaluate

the effectiveness of our model, as to what extent the problem is

solved. Accuracy does not convey how well the recommendations

were aligned with the selected goal. To bring in the notion of goal

awareness in the evaluation as well, we introduce the goal aware-

ness score: the probability of the recommendation given the goal

𝑃 (𝑑𝑐 |𝑔𝑜𝑎𝑙). Since the objective is to evaluate the model both in

terms of goal awareness score and accuracy, we utilize a measure

similar in spirit to the F-Measure [41], which we term as the GO-
measure and is defined as:

𝐺𝑂1 (𝑔𝑜𝑎𝑙) = 2 · 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 · 𝑃 (𝑑𝑐 |goal)
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝑃 (𝑑𝑐 |goal)

(11)

where 𝑃 (𝑑𝑐 |𝑔𝑜𝑎𝑙) is the average value of 𝑃 (𝑑𝑐 |𝑔𝑜𝑎𝑙) for the pre-

dicted data command 𝑑𝑐 across the test examples for the specified

goal.

The𝐺𝑂1 scores of the proposed models and fine-tuned models

are reported in Tables 1 and 2 respectively, with goal-wise results

plotted in Figure 5. The 𝐺𝐴𝐼𝑛 model performs better compared

to other models when trained on loss functions L𝐶𝐸 (\) as well
as L(\). The improved values of 𝐺𝑂1 reported in Table 2, after

fine-tuning the models, exhibit the recommended data commands

being goal aligned with accuracy being intact. Results point that we

can obtain significant improvements in terms of 𝐺𝑂1 through fine-

tuning, i.e., at least 12.7% indicating that this is very a promising

direction to pursue further investigations.

6.4 Adversarial testing
Models trained on data specific distribution often display aberrant

behavior when tested on an example from a different data distribu-

tion. For instance, that the user might deviate from the specified

goal while progressing the session. In such cases, it is expected from

the fine-tuned models to recommend data commands related to

the specified goal and bring back the user on track. In this section,

we test our models in such cases and display the robustness of the

fine-tuned models.

For this experiment, the model is provided inputs from data dis-

tributions different from what it was trained on. For each goal, the

specific fine-tuned model, datapoints corresponding to the other

goal are provided as input. The results are shown in Table 3. Though

the accuracy of the models has decreased, the goal awareness score

is intact. This provides evidence that the model is attempting to

recommend data commands that are more relevant to the goal

at hand. The decrease in accuracy can be interpreted as follows.

The fine-tuned models were trained to predict the accurate data

command for a given sequence, and then were altered to tune the

recommendations towards a specific goal. When the user deviates

from the specified goal, the sequence of commands might not map

to that goal. Such an example, when visualized in the latent rep-

resentation space of the sequences, lies outside the goal. Due to

this reason, recommendations provided might not align with the

original input sequence. However, the suggested data command

steers the user back towards the intended goal.

7 CONCLUSION AND FUTUREWORK
In this paper, we have investigated the effectiveness of incorporat-

ing goal information while recommending data commands to the

user. The results of our goal-aware data command recommendation

models, when compared to traditional goal-agnostic recommenda-

tion models, are quite promising and call for further explorations

along this line of work. To the best of our knowledge, this is the

first work which applies the fine-tuning paradigm to tailor the

data commands recommendations towards the specified goal. We

validate our models on a novel evaluation measure that balances

Goal-driven Command Recommendations for Analysts RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

G
oa
l 1

G
oa
l 2

G
oa
l 3

G
oa
l 4

G
oa
l 5

go
al
6

Goal

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
c
c
u
r
a
c
y

ensemble models vanilla GAIn Fine-tuned GAIn

G
oa
l 1

G
oa
l 2

G
oa
l 3

G
oa
l 4

G
oa
l 5

go
al
6

Goal

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
O
1
V
a
lu
e

ensemble models vanilla GAIn Fine-tuned GAIn

Figure 5: Accuracy values (left) and Goal orientation 𝐺𝑂1 scores (right) of proposed neural architecture models for each goal.
The reported values are for the LSTM version of the models. GAIn model outperforms for 4 out of the 6 identified goals in
terms of Accuracy. The fine-tuned GAIn model has a significant improvement in 𝐺𝑂1 score compared to other models.

Model Accuracy 𝐺𝑂1 Score

Vanilla 0.5563 0.3852

Fine-tuned GCoRe 0.6647 0.4322

Fine-tuned GComm 0.6820 0.4268

Fine-tuned GAIn 0.7010 0.4811

Table 2: Accuracy results and Goal Orientation𝐺𝑂1 scores of fine-tuned models with and without goal information. The fine-
tuning approach is always beneficial.

~
G
o
a
l
1

~
G
o
a
l
2

~
G
o
a
l
3

~
G
o
a
l
4

~
G
o
a
l
5

~
G
o
a
l
6

~Goal

0.1

0.2

0.3

0.4

0.5

0.6

G
O

1
V
a
lu
e

GAIn Fine-tuned GAIn

Figure 6: Goal-wiseGoal Orientation𝐺𝑂1 scores ofGAIn and
fine-tuned GAIn models on adversarial examples. The fine-
tuned GAIn model significantly outperforms GAIn for all
the goals. Note: The ∼Goal G on x-axis implies the model
fine-tuned for goal G and tested on data from rest of the
goals.

both accuracy and degree of goal orientation in the provided data

command recommendations.

In future work, we would like to explore the recent advances in

attention mechanisms and transfer learning to further boost the

performance of our models. Also, we will experiment with more

sophisticated models that can predict the user’s goal in real time

based on the progress of the session, which currently is an input

signal given by user at the start of the session. We believe that this

Model Accuracy 𝐺𝑂1 Score

ensemble vanilla 0.1525 0.2566

GAIn 0.4919 0.1966

Fine-tuned GAIn 0.2795 0.4823

Table 3: Accuracy results and Goal Orientation𝐺𝑂1 scores of
the proposed models when tested on adversarial examples.
The proposed 𝐺𝑂1 measure decreases sharply for the GAIn
model when trained on L𝐶𝐸 (\) loss function compared to
the fine-tuned GAIn model, which is trained on L(\) loss.

line of work can be extended to handle the problem of a novice

user mis-specifying goal thereby providing better user experience.

REFERENCES
[1] Sara Alspaugh, Bei Di Chen, Jessica Lin, Archana Ganapathi, Marti A Hearst,

and Randy H Katz. 2014. Analyzing Log Analysis: An Empirical Study of User

Log Mining.. In LISA. 53–68.
[2] Loulwah AlSumait, Daniel Barbará, James Gentle, and Carlotta Domeniconi.

2009. Topic significance ranking of LDA generative models. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
67–82.

[3] Michele Banko and Eric Brill. 2001. Scaling to very very large corpora for natural

language disambiguation. In Proceedings of the 39th annual meeting on association
for computational linguistics. Association for Computational Linguistics, 26–33.

[4] Biswarup Bhattacharya, Iftikhar Burhanuddin, Abhilasha Sancheti, and Kushal

Satya. 2017. Intent-Aware Contextual Recommendation System. In Data Mining
Workshops (ICDMW), 2017 IEEE International Conference on. IEEE, 1–8.

[5] Christopher M Bishop. 2006. Pattern recognition and machine learning. Springer.
115 pages.

[6] Ann Blandford. 2001. Intelligent interaction design: the role of human-computer

interaction research in the design of intelligent systems. Expert Systems 18, 1

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Aggarwal, Garg, Sancheti, Guda and Burhanuddin

(2001), 3–18.

[7] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993–1022.

[8] S.K. Card, T.P. Moran, and A. Newell. 1983. The psychology of human-computer
interaction. CRC.

[9] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,

and Pavel P. Kuksa. 2011. Natural Language Processing (almost) from Scratch. J.
Mach. Learn. Res. 12 (2011), 2493–2537.

[10] Brian D Davison and Haym Hirsh. 1998. Predicting sequences of user actions. In

Notes of the AAAI/ICML 1998 Workshop on Predicting the Future: AI Approaches to
Time-Series Analysis. 5–12.

[11] Himel Dev and Zhicheng Liu. 2017. Identifying frequent user tasks from applica-

tion logs. In Proceedings of the 22nd International Conference on Intelligent User
Interfaces. ACM, 263–273.

[12] Adji B. Dieng, Chong Wang, Jianfeng Gao, and John William Paisley. 2016. Top-

icRNN: A Recurrent Neural Network with Long-Range Semantic Dependency.

Computing Research Repository (2016).

[13] Nemanja Djuric, Hao Wu, Vladan Radosavljevic, Mihajlo Grbovic, and Narayan

Bhamidipati. 2015. Hierarchical neural language models for joint representation

of streaming documents and their content. In Proceedings of the 24th interna-
tional conference on world wide web. International World Wide Web Conferences

Steering Committee, 248–255.

[14] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

2017. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 1243–1252.

[15] Ted Gueniche, Philippe Fournier-Viger, Rajeev Raman, and Vincent S Tseng. 2015.

CPT+: Decreasing the time/space complexity of the Compact Prediction Tree.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,
625–636.

[16] Nicolaus Henke, Jacques Bughin, Michael Chui, James Manyika, Tamim Saleh,

Bill Wiseman, and Guru Sethupathy. 2016. The age of analytics: Competing in a

data-driven world. McKinsey Global Institute 4 (2016).
[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[19] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos Rommelse.

1998. The LumièRe Project: Bayesian User Modeling for Inferring the Goals

and Needs of Software Users. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI’98). 256–265.

[20] Katarzyna Janocha and Wojciech Marian Czarnecki. 2017. On loss functions for

deep neural networks in classification. arXiv preprint arXiv:1702.05659 (2017).
[21] Weijie Jiang and Zachary A. Pardos. 2019. Time Slice Imputation for Personalized

Goal-Based Recommendation in Higher Education. In Proceedings of the 13th
ACM Conference on Recommender Systems (Copenhagen, Denmark) (RecSys ’19).
Association for Computing Machinery, New York, NY, USA, 506–510. https:

//doi.org/10.1145/3298689.3347030

[22] Weijie Jiang, Zachary A. Pardos, and Qiang Wei. 2019. Goal-Based Course

Recommendation. In Proceedings of the 9th International Conference on Learning
Analytics & Knowledge (Tempe, AZ, USA) (LAK19). Association for Computing

Machinery, New York, NY, USA, 36–45. https://doi.org/10.1145/3303772.3303814

[23] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[24] Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.
[25] Jey Han Lau, Timothy Baldwin, and Trevor Cohn. 2017. Topically Driven Neural

Language Model. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 355–365.

[26] Xumin Liu. 2014. Unraveling and learning workflow models from interleaved

event logs. In 2014 IEEE International Conference on Web Services. IEEE, 193–200.
[27] Xumin Liu, Hua Liu, and Chen Ding. 2013. Incorporating User Behavior Patterns

to Discover Workflow Models from Event Logs. International Conference on Web
Services (2013), 171–178.

[28] Yi Liu and Yuan F Zheng. 2005. One-against-all multi-class SVM classification

using reliability measures. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Vol. 2. IEEE, 849–854.

[29] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. 2009. Com-

munityCommands: command recommendations for software applications. In

Proceedings of the 22nd annual ACM symposium on User interface software and
technology. 193–202.

[30] Eddy Mayoraz and Ethem Alpaydin. 1999. Support vector machines for multi-

class classification. In International Work-Conference on Artificial Neural Networks.
Springer, 833–842.

[31] Tova Milo and Amit Somech. 2016. React: Context-sensitive recommendations for

data analysis. In Proceedings of the 2016 International Conference on Management
of Data. ACM, 2137–2140.

[32] David Mimno, Hanna M Wallach, Edmund Talley, Miriam Leenders, and Andrew

McCallum. 2011. Optimizing semantic coherence in topic models. In Proceedings

of the conference on empirical methods in natural language processing. Association
for Computational Linguistics, 262–272.

[33] Aadhavan M Nambhi, Bhanu Prakash Reddy, Aarsh Prakash Agarwal, Gaurav

Verma, Harvineet Singh, and Iftikhar Ahamath Burhanuddin. 2019. Stuck? No

worries!: Task-aware Command Recommendation and Proactive Help for Ana-

lysts. In Proceedings of the 27th ACM Conference on User Modeling, Adaptation
and Personalization. ACM, 271–275.

[34] David Newman, YounNoh, Edmund Talley, Sarvnaz Karimi, and Timothy Baldwin.

2010. Evaluating topic models for digital libraries. In Proceedings of the 10th annual
joint conference on Digital libraries. ACM, 215–224.

[35] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–1359.

[36] Kemal Polat and Salih Güneş. 2009. A novel hybrid intelligent method based

on C4. 5 decision tree classifier and one-against-all approach for multi-class

classification problems. Expert Systems with Applications 36, 2 (2009), 1587–1592.
[37] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.

2018. Improving language understanding by generative pre-training.

https:// s3-us-west-2.amazonaws.com/openai-assets/ research-covers/ language-
unsupervised/ language_understanding_paper.pdf (2018).

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
Blog 1, 8 (2019).

[39] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM 40,

3 (1997), 56–59.

[40] Ryan M. Rifkin and Aldebaro Klautau. 2004. In Defense of One-Vs-All Classifica-

tion. J. Mach. Learn. Res. 5 (2004), 101–141.
[41] Yutaka Sasaki et al. 2007. The truth of the F-measure. Teach Tutor mater 1, 5

(2007), 1–5.

[42] Belle Selene Xia and Peng Gong. 2014. Review of business intelligence through

data analysis. Benchmarking: An International Journal 21, 2 (2014), 300–311.
[43] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1701–1708.

[44] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show

and tell: A neural image caption generator. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3156–3164.

[45] XuWang, Benjamin Lafreniere, and Tovi Grossman. 2018. Leveraging community-

generated videos and command logs to classify and recommend software work-

flows. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, 285.

[46] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. 2013. A Biterm Topic

Model for Short Texts. In Proceedings of the 22Nd International Conference on
World Wide Web (WWW ’13). 1445–1456.

[47] Ilker Yildirim. 2012. Bayesian inference: Gibbs sampling. Technical Note, Univer-
sity of Rochester (2012).

[48] X. Zhou, J. Chen, B. Wu, and Q. Jin. 2014. Discovery of Action Patterns and User

Correlations in Task-Oriented Processes for Goal-Driven Learning Recommen-

dation. IEEE Transactions on Learning Technologies 7, 3 (2014), 231–245.
[49] George Kingsley Zipf. 1949. Human behavior and the principle of least effort.

(1949).

https://doi.org/10.1145/3298689.3347030
https://doi.org/10.1145/3298689.3347030
https://doi.org/10.1145/3303772.3303814
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Goal-Driven Models
	4.1 Goal Identification
	4.2 Goal Coherence
	4.3 The Ensemble Approach
	4.4 Goal Informed Models
	4.5 Loss Function
	4.6 Fine Tuning

	5 Experiments
	5.1 Baseline Approaches
	5.2 Goal Identification
	5.3 Model Configurations

	6 Evaluation and Discussion
	6.1 Goal Coherence
	6.2 Accuracy of Models
	6.3 Goal Orientation Measure (GO-Measure)
	6.4 Adversarial testing

	7 Conclusion and Future work
	References

