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Recent work has shown that, despite their simplicity, item-based models optimised through ridge regression can attain highly

competitive results on collaborative filtering tasks. As these models are analytically computable and thus forgo the need for often

expensive iterative optimisation procedures, they are an attractive choice for practitioners. We study the applicability of such closed-

form models to implicit-feedback collaborative filtering when additional side-information or metadata about items is available. Two

complementary extensions to the easer paradigm are proposed, based on collective and additive models. Through an extensive

empirical analysis on several large-scale datasets, we show that our methods can effectively exploit side-information whilst retaining

a closed-form solution, and improve upon the state-of-the-art without increasing the computational complexity of the original

ease
r approach. Additionally, empirical results demonstrate that the use of side-information leads to more łlong tailž items being

recommended, benefiting the recommendations’ coverage of the item catalogue.
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1 INTRODUCTION

Most modern approaches to recommendation are based on some form of collaborative filtering [8]. As a consequence,

the quest for more effective collaborative filtering algorithms is a very lively research area, where significant strides

forward are being made every year. A long-going line of work has repetitively shown the competitiveness of simple

linear models for collaborative filtering tasks [15, 19, 28, 32ś35]. Most notably and recently, Embarrassingly Shallow

Auto-Encoders (reversed: easer) have been shown to yield highly competitive results with the state-of-the-art, in many

cases outperforming complex neural network architectures whilst being much easier to implement, and much more

efficient to compute [33]. The closed-form solution that is available for ridge regression models is at the heart of these

major advantages; as easer effectively optimises a regularised least-squares problem.

Several hurdles for recommender systems remain, such as the łlong tailž (very few items account for the large

majority of interactions) and łcold startž (new items do not have any interactions) issues [22, 27, 30]. It has become

common practice to exploit item side-information or metadata to try and alleviate these problems, and several recent

works show that they indeed succeed at this [3, 9]. In this work, we study the applicability of easer-like models in the

presence of such metadata. We present additive and collective easer (add-easer and cease
r), and show how these

novel methods retain a closed-form solution whilst leveraging signals embedded in side-information to generate more

effective recommendations. We show how these straightforward and complementary extensions of the easer paradigm

consistently outperform state-of-the-art approaches such as cvae [3] and vlm [9]. Additionally, we empirically validate
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2 Olivier Jeunen, Jan Van Balen, and Bart Goethals

that add-easer and cease
r are indeed able to soften the effect of the long tail, and are more likely to recommend

different and less popular items than plain ease
r. To summarise, the main contributions presented in this work are:

(1) We propose two natural extensions to the easer paradigm: add-easer and cease
r; and show how they retain

closed-form solutions, without affecting easer’s computational complexity.

(2) Empirical results show that our proposed methods can improve upon easer in terms of recommendation accuracy,

most notably when the amount of training interactions is limited; additionally outperforming competing state-

of-the-art approaches. An extensive empirical analysis shows that add-easer and cease
r are more likely to

recommend łlong tailž items, and provide more catalogue coverage than ease
r without side-information.1

2 BACKGROUND & RELATEDWORK

Our use-case focuses on implicit-feedback data consisting of preference indications from users inU over items in I,
assumed from a set of interaction data P ⊆ U × I. These preferences can be represented in a binary user-item matrix

𝑿 ∈ {0, 1} |U |×|I | , where 𝑿𝑢,𝑖 = 1 if we have a click, view, purchase,. . . for user 𝑢 and item 𝑖 in P, and 0 otherwise.

Moreover, we are interested in the case where additional discrete side-information about items is available, such as

release years, genres et cetera. We will refer to the set of all such tags as the vocabulary V . In a similar fashion to the

user-item matrix 𝑿 , a tag-item matrix 𝑻 ∈ R |V |×|I | is constructed.
Item-based collaborative filtering models aim to reconstruct the user-item matrix by approximating columns as

a weighted sum of other columns: 𝑿 ≈ 𝑿𝑺 [7, 26]. Ning and Karypis proposed to learn a sparse aggregation matrix

𝑺 , leading to the Sparse LInear Method (slim) [19]. slim optimises a least-squares regression model with elastic-net

regularisation, constrained to positive weights. Many extensions of slim have been proposed in recent years, and it

has become a widely used method for the collaborative filtering task [5, 6, 15, 20, 28, 33ś35]. The efficiency of the

original slim approach is a known impediment for its adoption in certain use-cases; related work has reported that

hyper-parameter tuning took several weeks on large-scale datasets [17].2

Steck studied whether the restrictions of slim to only allow positive item-item weights and their 𝑙1-regularisation-

induced sparsity were necessary for the resulting model to remain competitive, and concluded that this was not always

the case [33]. The resulting Tikhonov-regularised least-squares problem can then be formalised as

𝑺
∗
= argmin

𝑺

∥𝑿 − 𝑿𝑺∥2
𝐹
+ 𝜆 ∥𝑺∥2

𝐹
, subject to diag(𝑺) = 0. (1)

The restriction of the diagonal to zero, originally proposed in slim [19], avoids the trivial solution where 𝑺 = 𝑰 . The

main advantage of simplifying the optimisation problem at hand, is that the well-known closed form solutions for

Ordinary Least Squares (OLS) and ridge regression can now be adopted. Including the zero-diagonal constraint via

Lagrange multipliers yields the Embarrassingly Shallow Auto-Encoder (easer) model:

𝑺 = 𝑰 − 𝑷 · diagMat(®1 ⊘ diag(𝑷 )), where 𝑷 ≡ (𝑿⊺
𝑿 + 𝜆𝑰 )−1 . (2)

As this model consists of a single regression problem to be solved and thus a single matrix inversion to be computed, its

complexity is orders of magnitude smaller than that of the original slim variants. We refer the interested reader to [32, 33]

for a full derivation of the model and additional information. Although inverting the regularised Gramian matrix still

remains a bottleneck for large item catalogues, advantages of this closed-form expression over the traditional coordinate-

descent optimisation procedure have been reported in terms of efficiency as well as recommendation accuracy [33, 35].

1To aid in the reproducibility of our work, we provide our source code at https://github.com/olivierjeunen/ease-side-info-recsys-2020/.
2It should be noted that the authors have since released a more performant coordinate-descent-based implementation of their method [21].
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Collective slim (cslim) was proposed an extension of slim that exploits side-information [20]. cslim regularises the

original slim objective with the side-information, solving the following optimisation problem:

𝑆∗ = argmin
𝑆

1

2
∥𝑿 − 𝑿𝑺∥2

𝐹
+ 𝛼

2
∥𝑻 − 𝑻𝑺∥2

𝐹
+ 𝜆 ∥𝑺∥2

𝐹
+ 𝛽 ∥𝑺∥1 , subject to 𝑺 ≥ 0, and diag(𝑺) = 0. (3)

In this formulation, 𝛼 is a hyper-parameter used to trade off the importance of the side-information in 𝑻 with respect

to the preference expressions in𝑿 . 𝛼 , 𝛽 and 𝜆 are typically optimised through a grid-search on a validation set, which will

grow cubically with the number of possible values. Chen et al. further extended this framework to applications with high-

dimensional side-information by incorporating dimensionality reduction techniques into the optimisation procedure [4].

Modern approaches often adopt Bayesian methods to model item metadata and exploit it for recommendation tasks,

such as meta-lda [36], ctpf [10], cbvae [16], cvae [3] and vlm [9]. These latter two methods jointly model the user-

item matrix and side-information through variational approximations, an approach that has been shown to be highly

competitive for regular collaborative filtering tasks as well [17, 29]. As such, cvae and vlm are the main competitors for

our method, and the ones we will compare with in our experimental evaluation, together with slim and cslim. Note that

while cvae and vlm require libraries with automatic differentiation functionality such as Tensorflow or PyTorch [1, 23],

ease
r can be implemented in just a few lines of Python code.

3 CONTRIBUTION & METHODOLOGY

The aim of our work is to extend the easer objective as presented in Equation 1 in order to incorporate side-information

encoded in the tag-item matrix 𝑻 . easer’s biggest advantage over competing methods is the fact that it is analytically

computable and consists of solving a single regression problem, often leading to an efficiency advantage over competing

methods. Naturally, we wish to retain this property in our extensions as well.

Collective easer (ceaser). A first natural extension is to regularise the ease
r objective to collectively solve the

regression problem on 𝑿 as well as 𝑻 , analogous to cmf [31] and cslim [20]. This yields the objective shown in

Equation 4, where 𝛼 handles the trade-off between preference data and meta-data comparable to Equation 3. We will

refer to this algorithm variant as Collective easer (ceaser).

𝑺
∗
= argmin

𝑺

∥𝑿 − 𝑿𝑺∥2
𝐹
+ 𝛼 ∥𝑻 − 𝑻𝑺∥2

𝐹
+ 𝜆 ∥𝑺∥2

𝐹
, subject to diag(𝑺) = 0 (4)

From this formulation, it might seem non-trivial to obtain a closed-form solution for 𝑺 . However, decomposing the

𝑙2-norm clarifies its equivalence to solving a simpler objective that does indeed maintain it.

∥𝑿 − 𝑿𝑺∥2
𝐹
+ 𝛼 ∥𝑻 − 𝑻𝑺∥2

𝐹
= ∥𝑿 − 𝑿𝑺∥2

𝐹
+




√
𝛼𝑻 −

√
𝛼𝑻𝑺





2
𝐹
=



𝑿
′ − 𝑿

′
𝑺





2
𝐹
, where 𝑿 ′

=

[

𝑿
√
𝛼𝑻

]

(5)

So, we only need to define 𝑿 ′ by stacking the weighted user-item and tag-item matrices, and we can plug 𝑿 ′ into
ease

r’s Equation 2 to obtain its closed-form solution. Note that the regularisation strength 𝛼 does not have to be a

single scalar parameter that is equal for all tags, but that a different weight can be assigned to every tag or user, yielding

a Weighted Linear Regression (WLS) problem as also remarked in [32]. The final ceaser objective and its closed-form

solution are presented in Equations 6 and 7. The weight-matrix𝑾 ∈ R( |U |+|V |)×( |U |+|V |) is a diagonal matrix, where

every weight𝑾𝑢,𝑢 corresponds to the relative importance a user or tag is given when solving the regression problem.

𝑺
∗
= argmin

𝑺







√
𝑾 ⊙ (𝑿 ′ − 𝑿

′
𝑺)






2

𝐹
+ 𝜆 ∥𝑺∥2

𝐹
, subject to diag(𝑺) = 0, where 𝑿 ′

=

[

𝑿

𝑻

]

(6)
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𝑺 = 𝑰 − 𝑷 · diagMat(®1 ⊘ diag(𝑷 )), where 𝑷 ≡ (𝑿 ′⊺
𝑾𝑿

′ + 𝜆𝑰 )−1 (7)

In practice, the (weighted) Gram matrix 𝑿 ′⊺
𝑿

′ will often be computed in a preprocessing step. Recent work has

proposed efficient solutions to tackle this, most notably when 𝑿
′ is binary [14]. The bulk of the computational cost of

the method then comes from the inversion of this matrix, which is dependent on |I |, but neither on |U| nor |V|. As
such, the addition of side-information into the model comes without almost any added computational complexity when

learning the actual model. It does not introduce any additional parameters, but rather updates the learning objective

to reflect the information embedded in the meta-data. Intuitively, we can expect ceaser to be most effective in cases

where the linear modelling capacity of easer is sufficient to capture the underlying relation in the data. When the

model capacity is constrained, introducing additional parameters might be more effective.

Additive easer (add-easer). Another option is to view the regression problem on the user-item matrix 𝑿 and the

one on the tag-item matrix 𝑻 as two fully independent problems to solve in parallel, and combine the two resulting

item-item weight matrices 𝑺𝑿 and 𝑺𝑻 in an additive fashion later down the line. We will refer to this model variant as

Additive easer (add-easer). The resulting objective is presented in Equation 8.

𝑺
∗
= 𝛼 argmin

𝑺𝑿

(







√

𝑾𝑿 ⊙ (𝑿 − 𝑿𝑺𝑿 )






2

𝐹
+ 𝜆𝑿 ∥𝑺𝑿 ∥2

𝐹

)

+ (1 − 𝛼) argmin
𝑺𝑻

(







√

𝑾𝑻 ⊙ (𝑻 − 𝑻 )𝑺𝑻






2

𝐹
+ 𝜆𝑻 ∥𝑺𝑻 ∥2𝐹

)

Subject to diag(𝑺𝑿 ) = diag(𝑺𝑻 ) = 0.

(8)

add-ease
r doubles the amount of parameters used by ease

r and cease
r, increasing its degrees of freedom at

learning time at the cost of having to solve two regression problems instead of one. Note, however, that these are fully

independent and can be computed in parallel. Equation 9 shows the analytical formulas to obtain the two independent

models, and combine it with a blending parameter 0 ≤ 𝛼 ≤ 1.

𝑺𝑿 = 𝑰 − 𝑷𝑿 · diagMat(®1 ⊘ diag(𝑷𝑿 )), where 𝑷𝑿 ≡ (𝑿⊺
𝑾𝑿𝑿 + 𝜆𝑿 𝑰 )−1

𝑺𝑻 = 𝑰 − 𝑷𝑻 · diagMat(®1 ⊘ diag(𝑷𝑻 )), where 𝑷𝑻 ≡ (𝑻⊺𝑾𝑻𝑻 + 𝜆𝑻 𝑰 )−1 (9)

𝑺 = 𝛼𝑺𝑿+(1 − 𝛼)𝑺𝑻

This blending parameter 𝛼 is computationally much more efficient to tune than with the ceaser variant, as there is

no need for model retraining when evaluating different values. Intuitively, we can expect add-easer to be most effective

in cases where the modelling capacity of easer is insufficient to capture the underlying relation in the data - in contrast

to cease
r. Indeed, introducing additional parameters to a model will be most effective when the original model’s

modelling capacity is already saturated . As such, the two approaches we introduce in this work are complementary

and we expect them to excel in different settings, which is confirmed by our empirical observations.

4 EXPERIMENTAL EVALUATION

The research questions we wish to answer in this work are the following:

RQ1 Are ceaser and add-ease
r competitive with the state-of-the art in collaborative filtering with side-information?

RQ2 How do cease
r and add-ease

r behave when training data becomes scarce, compared to other methods?

RQ3 Are ceaser and add-ease
r more likely to recommend łlong tailž items from the training set than vanilla easer?

RQ4 Are ceaser and add-ease
r more likely to diversify recommendations over all items than vanilla easer?

Manuscript submitted to ACM
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Table 1. Training datasets used for our experimental evaluation, after a train-validation-test split has occurred.

Name nnz(X) |U| |I| |U𝑖 | |I𝑢 | nnz(T) |V| |V𝑖 | Metadata

MovieLens-20M 9M 117k 21k 411 73 111k 11k 5 Genre, year, director, writers

Netflix 47M 383k 18k 2.6k 123 78k 6k 4 Genre, year, director, writers

Million Song Dataset 28M 471k 41k 675 59 1.5M 51k 37 Genre, artist, tags

Yahoo! Movies 150k 7k 10k 20 15 72k 11k 7 Genre, year, director, writers

Amazon Video Games 118k 16k 11k 11 7 898k 21k 85 Title, brand, description

Amazon Sports & Outdoors 170k 27k 18k 9 6 1.1M 25k 62 Title, brand, description

We adopt the same evaluation procedure as Liang et al. [17] and subsequent works [9, 29, 33], focusing on the strong

generalisation setting where users are split into disjoint training/validation/test sets. Because of space limitations, we

refer to these works for further details. As the advantages of incorporating item side-information into the collaborative

filtering process are most tangible when training user-item interactions are limited, we additionally include three

smaller datasets in our experiments. Models on these smaller datasets are evaluated through the widely-used leave-

one-out protocol: for every user, we randomly sample two items to be held-out and used for the validation and test

sets respectively. It has been correctly noted that this random splitting procedure violates the sequential ordering of

user-item interactions in the data, which can prohibit effective offline evaluation [12, 13, 25]; the performance of these

methods in sequential settings warrants further investigation that falls outside of the scope of this work [24]

Table 1 provides an overview of the datasets we use throughout this work, along with basic statistics about sparsity

and the metadata used. All datasets are binarised and interpreted as implicit feedback. For the MovieLens-20M [11],

Netflix [2], Yahoo! Movies, Amazon Video Games and Amazon Sports & Outdoors datasets [18], we removed all ratings

lower than 4 and retained only users who had at least 5 rated items left. Additional publicly available metadata for the

movie datasets was obtained through IMDB and matched using fuzzy techniques.

We compare with the state-of-the-art cvae [3],vlm [9], slim and cslim [21] approaches, and further report results

for an item-kNN method using cosine similarity (cos) [26] and the original easer formulation [33]. All methods’

hyperparameters were tuned through a grid-search on the validation set, best performers were trained until convergence.

The advantages of easer over vanilla slim in terms of recommendation accuracy as well as efficiency on large datasets

have been studied in recent work [33, 35]; these effects will be exacerbated by cslim, as the efficiency of its optimisation

procedure directly depends on the dimensionality of the tag-item matrix, and cslim’s three hyper-parameters are costly

to tune properly. As our computational resources are limited, we only include the slim and cslim baselines on the

smaller datasets. Metadata can be seen as an alternative source of information to learn similarity between items when

their mutual information in the user-item matrix 𝑿 is scarce. Two movies might never co-occur in the set of training

interactions, but if we know that they are both sci-fi movies from the same year, we can still infer some valuable signal.

From this perspective, it comes naturally that side-information can be exploited most effectively when the training

set of user-item interactions is limited. This effect also emerges in the empirical results reported by Elahi et al. [9],

where the introduction of side-information for MovieLens-20M only affects a single metric for 0.002. Because of this,

we report results for models trained on subsets of the training data by subsampling users and their interactions, as also

done in [35], in addition to models trained on the full datasets.

Key observations from the results presented in Table 2 include: (1) easer, despite its simplicity, outperforms the

Bayesian approaches on every setting, most notably when the amount of available training data is scarce. (2) The cvae and

vlm approaches are greatly impacted in terms of performancewhen training data is subsampled, even being outperformed
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Table 2. Experimental results for the collaborative filtering task on real-world datasets, with subsampled training users. The best

performing result for every setting is shown bold. The dashed line divides methods that learn from metadata with those that do not.

MovieLens-20M Netflix Million Song Dataset

|Utrain | Model Recall Recall NDCG Recall Recall NDCG Recall Recall NDCG

@20 @50 @100 @20 @50 @100 @20 @50 @100

1%

cos 0.266 0.370 0.306 0.202 0.267 0.240 0.169 0.236 0.215

vlm 0.268 0.371 0.294 0.270 0.351 0.306 0.115 0.165 0.146

ease
r 0.321 0.434 0.357 0.314 0.389 0.350 0.212 0.282 0.258

cvae 0.170 0.270 0.214 0.163 0.236 0.208 0.044 0.072 0.062

vlmside 0.278 0.385 0.304 0.270 0.352 0.306 0.117 0.169 0.149

cease
r 0.328 0.443 0.368 0.317 0.393 0.353 0.246 0.330 0.294

add-ease
r 0.332 0.449 0.371 0.315 0.392 0.352 0.242 0.326 0.292

100%

cos 0.280 0.382 0.321 0.202 0.268 0.241 0.236 0.319 0.294

vlm 0.378 0.514 0.419 0.329 0.420 0.371 ś did not finish after 24h ś

ease
r 0.387 0.516 0.429 0.362 0.444 0.399 0.331 0.425 0.390

cvae 0.314 0.450 0.362 0.289 0.370 0.332 0.201 0.264 0.223

vlmside 0.377 0.514 0.419 0.329 0.420 0.372 ś did not finish after 24h ś

cease
r 0.387 0.516 0.429 0.362 0.444 0.399 0.331 0.425 0.391

add-ease
r 0.387 0.517 0.430 0.362 0.444 0.399 0.331 0.425 0.391

Yahoo! Movies Amazon Video Games Amazon Sports

100%

cos 0.445 0.559 0.266 0.116 0.185 0.074 0.042 0.070 0.030

vlm 0.502 0.635 0.297 0.156 0.241 0.099 0.062 0.099 0.042

slim 0.515 0.637 0.309 0.185 0.272 0.117 0.090 0.130 0.058

ease
r 0.522 0.646 0.310 0.184 0.270 0.116 0.091 0.131 0.058

cvae 0.362 0.525 0.205 0.064 0.119 0.047 0.029 0.056 0.022

vlmside 0.500 0.637 0.297 0.155 0.238 0.098 0.062 0.101 0.042

cslim 0.529 0.656 0.317 0.185 0.272 0.117 0.092 0.135 0.061

cease
r 0.542 0.670 0.321 0.187 0.277 0.118 0.100 0.149 0.065

add-ease
r 0.530 0.660 0.317 0.186 0.276 0.118 0.105 0.160 0.068

by the cos baseline in some settings. (3) add-easer and ceaser are effective in exploiting side-information for enhanced

recommendation accuracy. The effects are most palpable when training data is limited, but consistent nevertheless.

Furthermore, they retain ease
r’s biggest advantage: a closed-form solution that is many times more efficient than the

deep learning alternatives. Whereas vlm needs hours of training on a GPU for the large datasets, a ceaser model needs

less than 20 minutes for the Million Song Dataset, and less than 3 for Netflix and MovieLens. The key observations from

the experiments on the large datasets also hold for the smaller datasets, but the effects of introducing metadata to easer

are more explicit. Naturally, these results are all highly dependent on the quality of the side-information that is used.

Lifting the Long Tail. Aside from purely looking at recommendation accuracy in terms of being able to correctly

identify held-out items, investigating the actual recommendations that are generated has its merits as well. We visualise

the results of our analysis on the two most extreme datasets in terms of catalogue size: Yahoo! Movies and the Million

Song Dataset (trained on 1% of the users, corresponding to the top rows of Table 2).

Figures 1(a,b) show the cumulative distribution function for the probability that an item appears in the top-100

recommendations that were generated for test users, with the catalogue size on the x-axis sorted based on the popularity

of an item in the training set. We can observe that, for easer and MSD, roughly 90% of the recommendations consist of
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Fig. 1. When analysing the recommended items for easer and its variants that exploit side-information, we see that (a,b) side-

information helps to allocate more recommendations to items that were less popular in the training data and (c,d) side-information

helps to diversify over the entire item catalogue and recommend long-tail items more often.

just the 25% most popular training items. By using side-information, ceaser and add-ease
r bring this down to roughly

80%, effectively doubling the exposure for 75% of the item catalogue. With the Yahoo! Movies dataset, the absolute

effects are smaller but the relative effects are larger. Here, the proportion of exposure for the 75% long tail items can be

increased by a factor of 2.6 and 5.4 with cease
r and add-ease

r respectively.

An algorithm that consistently recommends the 100 least popular items from the training set would look even better

on such a visualisation, whilst of course not being desirable. Another interesting thing to look at is the frequency

with which items occur in the top-100 recommendations generated for test users. The logarithm of these counts is

shown in Figures 1(c,d); a similar analysis was done in [33]. These figures show that 17% of the MSD item catalogue is

never recommended in the top-100 by ease
r. add-easer and cease

r effectively bring this number down to 7%. The

results are even more dramatic for Yahoo! Movies: from 52% to 30%. Furthermore, we can observe a general trend that

the distribution of recommendations over the item catalogue is less heavy-tailed when using side-information. More

formally, the entropy of the distribution of recommendations over the item catalogue increases, along with coverage.

5 CONCLUSION

We introduced two extensions to the easer algorithm for collaborative filtering, in order to naturally handle item

side-information or metadata. We have shown how our proposed cease
r and add-ease

r models retain a closed-form

solution, which is arguably ease
r’s biggest advantage over competing methods. In an extensive empirical evaluation on

six publicly available real-world datasets, we have validated that they can effectively improve upon ease
r’s ranking

accuracy, most notably in those cases where the amount of training data is limited. Furthermore, we have demonstrated

that side-information helps the model to be (1) less prone to popularity bias in the training data, and (2) more likely

to recommend items spanning the entire item catalogue, improving on coverage. We have released the source code

needed to reproduce our experiments in full. For simplicity and brevity, we set the weight matrix𝑾 for ceaser and add-

ease
r to the identity matrix 𝑰 , while tuning a single scalar hyper-parameter 𝛼 . Preliminary results show that the choice

of weights can have a high impact on the recommendation accuracy of the resulting model. Heuristics or principled

approaches to learn a heterogeneous𝑾 can undoubtedly boost the performance of the methods we propose in this work.
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