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ABSTRACT 
The on-demand evaluation strategy (abbr. the on-demand 
E-strategy) is an extension of the evaluation strategy (abbr. 
the E-strategy) init iated by OBJ2. The strategy removes 
the restriction that  the E-strategy imposes on constructing 
rewrite rules: if non-variable terms are put on lazy positions 
in the left sides, some terms cannot be rewritten as intended. 
We have written the operational semantics of rewriting with 
the on-demand E-strategy in CafeOBJ so that  we can deeply 
understand rewriting with the on-demand E-strategy. The 
operational semantics can be used to observe the dynamic 
behavior of rewriting with the on-demand E-strategy thanks 
to the executability of CafeOBJ. A hint about the use of the 
on-demand E-strategy is given as well. 

1. INTRODUCTION 
A reduction strategy is a function that takes a set of rewrite 
rules and a ground term as arguments, and prescribes which 
redex in the term has to be rewritten next. Although lazy 
evaluation is fascinating because it has a better  termination 
behavior than eager evaluation, pure lazy evaluation is not 
efficiently implementable. Therefore some efficiently imple- 
mentable compromises between lazy and eager evaluation 
have been proposed. The on-demand evaluation strategy 
(abbr. the on-demand E-strategy) is one of them, which is 
used in CafeOBJ [2]. The on-demand E-strategy is an ex- 
tension of the evaluation strategy (abbr. the E-strategy) 
initiated by OBJ2 [4]. The E-strategy not only simulates 
a variant of lazy evaluation such as the functional strat- 
egy [10], but also is flexible because it can control the order 
in which terms are rewritten by giving a local strategy to 
each operator (or function symbol). However, it imposes 
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a restriction on constructing rewrite rules: if non-variable 
terms are put on lazy positions in the left sides, some terms 
cannot be rewritten as intended. The on-demand E-strategy 
can remove this restriction of the E-strategy. 
We have written the operational semantics of rewriting with 
the on-demand E-strategy so that we can deeply under- 
stand it. The operational semantics has been written in 
CafeOSJ [2], an executable algebraic specification language. 
The reason why we used CafeOBJ to write the operational 
semantics is that  we can confirm the partial correctness of 
t h e  specification with the CafeOBJ system and can also ob- 
serve the dynamic behavior of rewriting with the on-demand 
E-strategy using the operational semantics as an interpreter. 
We believe that the formal operational semantics of rewrit- 
ing with the strategy should be useful not only for making 
sure of what rewriting with the strategy performs, but also 
as a formal specification that can be used when implement- 
ing rewriting with the strategy. 
The rest of the paper is organized as follows: Section 2 gives 
a brief introduction to CafeOBJ. Section 3 describes the E- 
strategy and the operational semantics of the E-strategy 
in CafeOBJ. In Sect. 4, the restriction imposed by t h e  E- 
strategy and the on-demand E-strategy that  removes the 
restriction are first mentioned, and then an example that 
needs the on-demand E-strategy is given. After that the 
operational semantics of rewriting with the on-demand E- 
strategy in CafeOBJ is described and the dynamic behavior 
of rewriting with the strategy is observed. Section 5 presents 
a hint about specifying local strategies. Section 6 discusses 
the related work. Finally, Section 7 gives a conclusion. 
We suppose the reader familiar with the basic concepts of 
term rewriting systems [1] (abbr. Tl:tSs). 

2. ALGEBRAIC SPECIFICATION 
LANGUAGE CAFEOBJ 

CafeOBJ [2] is descended from OBJ [4; 6], probably the most 
famous algebraic specification language. Although CafeOBJ 
provides many fascinating features and functionalities, we 
here take up only a few of them that  are needed for writ- 
ing the operational semantics of rewriting. One of them is 
the powerful module system inherited from OBJ. Modules 
can have parameters and import other modules. We give a 
parameterized module LIST as an example. 

Example 1 (A parameterized module LIST). 

rood! LIST (DAT :: TR/V) { 
pr(NAT) 

756 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F338407.338558&domain=pdf&date_stamp=2000-03-01


[List] 
op nil : - >  List 
op __ : E I t . D A T  List - >  Lis t  {r-assoc} 
op  _++_ : List List  -> List  
op take : List Nat  - >  E I t . D A T  
op replace : List Na t  E I t . D A T  - >  List 
v a r s  E E1  : E l t . D A T  
v a r s  L L1 : List 
e q n i l + + L l = L 1 .  
eq(EL) ++LI =E(LW+LI). 
eq take(E L,O) = E .  
eq take( E L,X : NzNat ) = take( L,sd( X , l ) ) . 
eq replace(E L,0,EI) = E1 L . 
eq replace( E L,X:NzNat,Ei ) 

= E replace(L,sd(X,1) ,E1)  . 
} 

A module (declaration) begins with the keyword mod!  or 
m o d *  (which corresponds to tight or loose denotation), and 
has its name ( L I S T  in this example) and a list of parameters 
if exist ( ( D A T  :: TR/V) in this example) after the keyword. 
A parameter consists of a parameter name ( D A T  in this ex- 
ample) and a module name (TPdV* in this example). The 
module name describes requirements that the actual param- 
eters must  meet. The module body is enclosed by braces. 
The module body consists of some declarations such as im- 
port, sort, operator, variable and/or  equation declarations. 
The module L I S T  imports the built-in module N A T  with 
p r o t e c t i n g  (abbr. pr) mode that  requires all the intended 
models of imported modules ( N A T  in this example) be pre- 
served as they are (i.e. no junk  and no confusion). There are 
two more importation modes: e x t e n d i n g  (abbr. ex) and 
u s ing  (abbr. us) modes. The ex  mode allows the models of 
imported modules to be inflated, but  does not allow them to 
be collapsed (i.e. no junk). The us  mode imposes nothing 
on the models of imported modules. The built-in module 
B O O L ,  in which true, £a/se and some logical operators are 
declared, is implicitly imported into any module by default. 
L I S T  declares a new sort List. Sorts in algebraic specifi- 
cation languages may correspond to types in programming 
languages. 
Operator declarations begin with op or ops and have the 
name, the sorts of the arguments and the sort of the result. 
They may have some attr ibutes such as r-assec meaning 
that the operator is right associative. Some operators such 
as nil have no arguments and are called constants. CafeOBJ 
makes it possible to declare not only standard operators 
such as £and  g in rig(I),2), but  also mixfix operators such 
as _++_ (i.e. infix ones) and __ (i.e. juxtaposition ones). 
Underbars reserve the places where arguments are inserted. 
Variable declarations begin with v a t  or vats,  and have the 
name and its sort. Sorts may be quantified by modules such 
as EI t .DAT.  Variables may be declared in equation declara- 
tions such as X:NzNat  2. 
Equation declarations begin with eq  or ceq and end with a 
full stop. Conditional equations are declared with ceq. 
An instance of parameterised modules is created by binding 
actual parameters to formals. The process of binding is 
called instantiation. The result of instantiation is a new 
module. For example, when L I S T  is instantiated by binding 

, T R I V  is a built-in module in which only one sort Elt  is 
declared. 
2The sort N z N a t  is declared in the module N A T - V A L U E  
imported into N A T  and stands for non-zero natural num- 
bers. 

N A T  to TRIV ,  we write L I S T ( N A T ) .  When instantiat ing 
the module LIST,  it is also possible to rename the sort List  
another such as NatLis t  by writing L I S T ( N A T ) * { s o r t  Lis t  
- >  NatList}.  
Cafe0BJ specifications may be executed by regarding equa- 
tions as left-to-right rewrite rules by a rewrite engine. 
Thanks to the executability, we can observe the dynamic 
behavior of rewriting with the on-demand E-strategy using 
the formal operational semantics in CafeOBJ. 

3. THE E-STRATEGY 
The E-strategy is a reduction strategy initiated by OBJ2 [4]. 
It not only simulates a variant of lazy evaluation such as 
the functional strategy [10], but also is flexible because it 
can control the order in which terms are rewritten by giv- 
ing a local strategy to each operator (or function symbol). 
A local strategy given to a function symbol f indicates the 
order in which terms such as f ( t l , . . .  , t , )  that each have 
the function symbol f at the head of them are evaluated. 
The order is prescribed with a list of integers ranging from 
zero through the arity (the number of the arguments) of the 
function symbol. A term f ( t l , . . .  , t , )  is evaluated accord- 
ing to the local strategy of its top function symbol f .  If 
the top of the local strategy is a positive integer k, the kth 
argument tk is first evaluated, the result t~ next replaces 
the argument, and then the altered term f ( . . .  , t ~ , . . . )  is 
evaluated according to the remainder of the local strategy. 
If the top of the local strategy is zero, the term is tried to be 
matched with the left sides of rewrite rules: if there exists a 
rewrite rule whose left side matches with the term (i.e. the 
term is a redex), the term is replaced by the corresponding 
instance of the right side (i.e. the contractum of the term), 
and then the new term is evaluated according to the local 
strategy of its top function symbol; otherwise the term is 
continuously evaluated according to the remainder of the 
local strategy. Such rewriting is going on until a local strat- 
egy becomes empty. We here show an example that  needs 
lazy evaluation. 

Ezample ~ (A funct ion nth to take the nth element f rom an 
infinite list). 

rood! TEST1  { 
pr(NAT) 
[4 
op cons : Nat S - >  S { s t ra t :  (1 O) } 
op inf  : Nat  --> S 
op nth : Nat  S - >  Nat  
eq in~X:Nat) = cons (X , inRX + 1)) . 
eq nth(O,cons( X :Nat,L:S) ) = X . 
eq nth( X : N z N a t , c o n s ( Y  :Nat,L:S) ) = nth(  sd( X , 1 ) , L  ) . 

} 

The operator cons has the local strategy (1 0), which means 
that a term with cons as its top function symbol would be 
replaced by another term, which is then evaluated, after 
evaluating the first argument. The second argument is not 
evaluated unless some rewrite frees it from domination of 
the operator cons. Although the other operators are given 
no explicit local strategies, a default strategy such as (1 2 
--. 0) is implicitly given to each of them. 
Let us evaluate the term nth(1,inf(1)) w.r.t. T E S T 1 .  It is 
rewritten as follows: 

nth(1,inf(1)) --r nth(1,cons(1,inf(1 + 1))) 
---r nth(sd(1,1),inf(1 + 1)) 
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-+ nth(o , i~Q_y_D)  
-+ nth(0,in~(2)) 
--I. n t h ( 0 , c o ~ 2 , i n ~ 2  + 1))) 
- + 2 .  

Subterms to be rewritten are underlined. 
We present an excerpt from the operational semantics of 
rewriting with the E-strategy in CafeOSJ. 

S e m a n t i c s  1 (Excerpt  from the  operat iona l  seman-  
t ics of  rewri t ing  w i th  the  E-s trategy) .  

ceq evaI(T, TRS)  = T i f  eval?(T) . 
ceq eval( T , T RS)  = reduce( T ,strat( T , sig( TRS)  ), T RS) 

if  not eval?(T) . 
eq reduce( T ,nil, TRS)  = setEFlag( T )  . 
eq reduce(T,(O LS),  TRS) 

= reduce2(match(rules( TRS) ,T ,  TRS) ,LS,  TRS) . 
eq reduce( T , (  P I  LS), TRS) 

= reduce(evalArg(T,PI,  TRS) ,LS ,  TRS)  . 
eq reduce2(( true T ),LS, TRS)  = evaI(T, TRS)  . 
eq reduce2(( false T ),LS, TRS)  = reduce(T,LS,  TRS) . 

The operator eva/ is  a reducer that  takes a term T to be 
reduced and a TRS T R S  (i.e. a pair of a signature and a 
set of rewrite rules), and returns the result 3 of evaluating 
the term. eva/re turns  T immediately if T has been already 
evaluated, or otherwise it evaluates T according to the local 
strategy of the top function symbol of T by calling reduce. 
The operators sig and strat return the signature (i.e. a pair 
of sets of function symbols and variables) of T R S  and the 
local strategy of the top function symbol of T. The operator 
reduce takes a term T, the strategy list of the top function 
symbol of T and a TRS TRS, and evaluates T according 
to the local strategy w.r.t. TRS. If the local strategy is or 
becomes empty (i.e. nil), reduce returns T after marking T 
with a flag (called an evaluated flag) meaning that T has 
been evaluated. If the top of the local strategy is zero, the 
pattern marcher match tries to match T with the left sides 
of the rewrite rules of TRS: if there exists a rewrite rule 
whose left side matches with T,  match returns the pair of 
true and the corresponding instance of the right side (i.e. the 
contractum of T) and eva/evaluates the new term (i.e. the 
instance); otherwise match returns the pair of false and the 
term passed to match as the second argument, and reduce 
continues to evaluate the term according to the remainder 
LS  of the local strategy. If the top of the local strategy is a 
positive integer PI, the P i t h  argument is first evaluated and 
then the altered term is continuously evaluated according to 
the remainder L S  of the local strategy. 

4. THE ON-DEMAND E-STRATEGY 

4.1 Restriction Imposed by the E-strategy 
Although the E-strategy makes it possible to simulate a 
variant of lazy evaluation, it imposes a restriction on con- 
structing rewrite rules. If non-variable terms are put on lazy 
positions in the left sides, some terms cannot be rewritten 
as intended. Suppose that cons is a list constructor and 
has (1 0) as its local strategy, and tl and 2nd are usual 
functions, whose rewrite rules are t l (cons(X,L))  -+ L and 
2nd(cons(X ,cons (Y ,L) ) )  -+ Y, to re turn the tail and the 
second element of a list respectively, the term 2nd(cons(a, 

ZThe result is a reduct of the term, but  it might not be in 
normal form. For example, the result of evaluating in/El) is 
cons(1, int[ l+l))  that  is not in normal form w.r.t. TEST1.  

tl(cons(b,cons(c,nil))))) is not rewritten to c. The term is 
rewritten as follows. The argument is first evaluated because 
of the local strategy of 2nd. But no rewrite occurs owing to 
the local strategy of cons. Although a pattern matcher tries 
to match the term with the left sides of rewrite rules sue- 
ceedingly, there is no rewrite rule whose left side can match 
with the term because the second one of the term's argu- 
ment is tl(cons(b,cons(c,nil))). Therefore c is not got as a 
result. 
CafeOSJ adopts the on-demand E-strategy that is an ex- 
tended version of the E-strategy in order to remove the re- 
striction of the E-strategy. The on-demand E-strategy al- 
lows us to declare local strategies with negative integers as 
well as zero and positive integers. A negative integer - k  in 
a local strategy given to a function symbol .f means that  
each subterm in the kth argument tk of a term f ( t t , .  • • , t , )  
is marked with an on-demand flag. While a term is tried to 
be matched with the left sides of rewrite rules, some of the 
subterms marked with on-demand flags may be rewritten. 

4.2 Example Using the On-demand E-strategy 
We show an example that  needs the on-demand E-strategy. 

Ezample 3 (Lazy lists and related functions). 

m o d !  TEST2  { 
[4 
op cons : S S --> S { strat: (1 --2 0) } 
o p t p :  S - >  S 
op tl : S - >  S 
o p 2 n d :  S - >  S 
o p J r d :  S - > S  
o p s a b c n i l :  - >  S 
eq  tp(cons(X:S,L:S)) = X . 
eq  tl(cons(X:S,L:S)) = L .  
eq  2nd(cons(X:S, cons(Y:S, L:S))) = Y . 
eq  3rd( cons( X :S, cons(Y :S, cons( Z :S,L:S) ) ) ) = Z . 

} 
Let us think of evaluating the term 2nd(cons(a, tl(cons(b, 
cons(c,nil))))) with respect to TEST2.  The argument 
cous(a, tl(cons(b,cons(c, nil)))) is first evaluated because of 
the local strategy of 2nd. Although no rewrite occurs while 
the argument is evaluated, all the subterms in the second 
argument are marked with on-demand flags owing to the lo- 
cal strategy (1 - 2  0) of cons. After that the input term is 
tried to be matched with the left sides of the rewrite rules. 
While a pattern matcher tries to match the term with the 
left side of the third rewrite rule, it finds that the second one 
of the term's argument (i.e. tl(cons(b,cons(c, ni1)))) cannot 
be matched with the corresponding sub-pattern but  it has 
been marked with an on-demand flag. Hence the pat tern 
matcher has a reducer evaluate the subterm marked with 
the on-demand flag and retries to match the evaluated sub- 
term with the corresponding sub-pattern. In this case the 
pat tern match succeeds because the result of evaluating the 
subterm tl( cons( b,cons( c, nil) ) ) is cons( c, nil). Consequently 
the input term is replaced by c that  is the final result of 
rewriting the original term. 

4.3 Operational Semantics of the On-demand 
E-strategy 

The following is an excerpt from the operational semantics 
of rewriting with the on-demand E-strategy in CafeOBJ. 

S e m a n t i c s  2 (Excerp t  f rom t h e  ope ra t iona l  s e m a n -  
t ics  o f  r ewr i t ing  w i t h  t h e  o n - d e m a n d  E - s t r a t e g y ) .  
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c e q  eval(T, TRS) = T if  eval?(T) . 
ce q  evaI( T , TRS) = reduce( T ,strat( T , sig( T RS) ), TRS) 

if  not eval?(T) . 
eq  reduce(T,nil, TRS) = setEFlag(T) . 
eq  reduce(T,(0 LS), TRS) 

= reduce2(match(rules(TRS),T, TRS),LS, TRS) . 
eq  reduce(T ,( PI  LS), TRS) 

= reduce(evalArg(T,PI, TRS),LS, TRS) . 
eeq reduce(T,( NI  LS), TRS) 

= reduce(upODF(T,(-  N1)),LS, TRS) if NI < 0 .  
eq  reduce2(( true T ),LS, TRS) = evaI(T,TRS) . 
eq  reduce2(( false T ),LS, TRS) = reduce(T,LS, TRS) . 

Clearly the only difference between Semantics 1 and Seman- 
tics 2 is the fourth equation for reduce of Semantics 2. If 
the top of the local strategy given to a term T is a negative 
integer NI, the operator upODF marks an on-demand flag 
on each subterm in the - N I t h  argument of T. In Seman- 
tics 1, if there is no rewrite rule whose left side matches with 
a term, the second element of the pair returned by match 
is exactly the same as the term passed to match as its sec- 
ond argument. In Semantics 2, however, the second element 
of the pair returned by match might be different from the 
term passed to match as its second argument because some 
subterms in the term might be rewritten while match tries 
to match the term with the left sides of rewrite rules. 
Since terms might be rewritten while match tries to match 
them with the left sides of rewrite rules, we should write 
the operational semantics of pat tern matching (i.e. match) 
in more detail in order to specify the operational semantics 
of rewriting with the on-demand E-strategy more precisely. 
Therefore we present the operational semantics of match. 

S e m a n t i c s  3 ( O p e r a t i o n a l  s e m a n t i c s  of match). 

eq  match(nil, T,  TRS) = ( false T ) . 
eq  match((RR RRs),T, TRS) 

= match2(pm(T,lhs(RR), TRS) , (RR RRs), TRS) . 
eq  match2(( true S T ) , (RR RRs), TRS) 

= ( true instantiate(rhs(RR),S) ) . 
eq.match2(( false S T ),( RR  RRs),  TRS) 

= match(RRs, T, TRS) . 

The operator match takes a list of rewrite rules, a term that 
is tried to be matched with the left sides, and a TRS. It 
returns the pair of true and a contractum if there exists a 
rewrite rule whose left side can match with the term, or 
otherwise it returns the pair of false and the term passed 
to match as its second argument that  might be rewritten. 
The operator pm actually tries to match a term with the 
left side of a rewrite rule. It takes a term, the left side of a 
rewrite rule and a TRS, and returns the triple of true, the 
substi tution obtained through the pattern match and the 
term that  might be rewritten if the term can match with 
the left side, or otherwise it returns the triple of false, a 
dummy substitution and the term that might be rewritten. 
The auxiliary operator match2 returns the pair of true and 
the corresponding instance of the right side (i.e. the contrac- 
turn) if the term can match with the left side of the rewrite 
rule, or otherwise it calls match in order to try to match the 
term with the remainder of the rewrite rules. 
We present the operational semantics of pm that tries to 
match a term with the left side of a rewrite rule. 

S e m a n t i c s  4 (Operat iona l  s e m a n t i c s  of  pro). 

eq pm(T,(var V),TRS) = ( true (((war V) T ) nil) T ) . 
ce q  pm(T,Sym{  Ps},TRS) = pml(nil, l , r ,  Sym{ Ps},TRS) 

i f  top(T) =---- Sym . 
ceq pm (T, Sym{ Ps}, TRS) 

= pm(eval(downODF(T), TRS),Sym{Ps}, TRS) 
if  top(T) = / =  Sym and upODF?(T) . 

ceq pm(T,Sym{ Ps} , TRS) 
= ( fa/se nil T ) 
if  top(T) =1= Sym and (not upODF?(T)) . 

eeq pmI( S,N,T,P,  TRS) 
= pml2(pm(arg(T,N),arg(P,N), TRS),S,N,T,P,  TRS) 
if  N < =  arity(T,si~TRS)) . 

ceq pmI(S,N,T,P, TRS) = ( true S T ) 
if  g > arity(T,sig(TRS)) . 

eq pml2(( true S1 T1 ) ,S ,N ,T ,P ,  TRS) 
= pml(S1 ++ S , N  + 1,replace(T,N,T1),P, TRS) . 

eq pml2(( false S1 T1 ) ,S ,N ,T ,P ,  T R ~  
= ( fa/se nil replace(T,N,T1) ) . 

There are two types of constructors vat_ and _{_} for pat- 
terns (i.e. the left and right sides of rewrite rules). The first 
constructor war_ is one for variables. It takes a string as its 
argument that denotes a variable name, e.g. vat"X" denotes 
a variable X. The second constructor _{_} is one for non- 
variable patterns such as tp(cons(X,L)).  It takes a string 
and a list of patterns as its first and second arguments. The 
string and the list denote the top function symbol name and 
the arguments of a pattern, e.g. "tp"{("cons'{(var "X ' )  
(war "L ' )  nil}) nil} denotes the pattern tp(cons(X,L)). 
If the pattern is a variable wax V, pm returns the triple of 
true, the pair of the variable and the term T (more pre- 
cisely the singleton list of the pair denoting a substitution), 
and the term. If the pattern is a non-variable one Sym{Ps}, 
the situation divides into three cases. If the top function 
symbol of the term T is equal to Sym the top function sym- 
bol of the pattern, pml tries to match the arguments of the 
term with those of the pattern. The next case is the most 
interesting in rewriting with the on-demand E-strategy. If 
the top function symbol of the term is not seemingly equal 
to Sym but the term has been marked with an on-demand 
flag, eva/evaluates the term after removing the on-demand 
flag from it, and then pm retries to match the term that 
might have been rewritten with the pattern. No removing 
the on-demand flag may lead to an infinite loop. If the top 
function symbol of the term is not equal to Sym and the 
term has not been marked with an on-demand flag, pm re- 
turns the triple of false, the empty substitution nil and the 
term, which means failure in the pattern match. 
The operator pml tries to match the arguments of a term 
with those of a pattern and returns the triple of true, the 
substitution obtained through the pattern match and the 
term that might be rewritten, which means success in the 
pattern matching, if each of the arguments of the term can 
match with each of them of the pattern. The reason why the 
Nth argument of the term T is replaced by T1 at the right 
sides of the two rewrite rules for pro12 is that the argument 
might have been rewritten through the pattern match. 

4.4 Operational Semantics as Interpreter 
Since we can make use of the operational semantics as an in- 
terpreter thanks to the executability of CafeOBJ, we can ob- 
serve the dynamic behavior of rewriting with the on-demand 
E-strategy using the operational semantics. 
We describe the data structure for terms to be rewritten 
prior to observing the dynamic behavior of rewriting with 
the on-demand E-strategy. _{_} is a constructor for terms to 
be rewritten. The first and second arguments are a node and 
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SIMULATOR> r e d  e v a l ( t l , L c o n s )  . 
- -  r e d u c e  i n  SIMULATOR : e v a l ( t l , L c o n s )  
("c" [ false t r u e  ]) { nil } : Subject 
(0.000 sec for parse, 1821 rewrites(0.445 sec), 2378 matches) 

SIMULATOR> r e d  e v a l ( t 2 , L c o n s )  . 
- -  r e d u c e  i n  SIMULATOR : e v a l ( t 2 , L c o n s )  
("d" [ false t r u e  ]) { n i l  } : Subject 
(0.008 sec for parse, 12338 rewrites(2.516 sec), 16363 matches) 

SIWJLATOI~ r ed  e v a l ( t 3 , L c o n s )  . 
- -  reduce  i n  SIMULATOR : e v a l ( t 3 , L c o n s )  
("d" [ false true ]) { nil } : Subject 
(0.000 sec for parse, 12523 rewrites(2.570 sec), 16583 matches) 

Figure h Snapshot of the  s imulator  

a list of a rguments .  The  node consists of a function symbol 
name and  two flags (i.e. an  on-demand flag and  an evaluated 
flag), and  its cons t ruc tor  is _[__]. For example,  "cons'[false 
false]{( 'a ' [false false]{nil}) ( 'n i l ' [ fa l se  false]{nil}) nil} de- 
notes the t e rm  cons(a,ni O. We write a TRS  corresponding 
to T E S T 2  in the  operat ional  semantics.  

Example ~ (The T R S  Lcons corresponding to TEST2).  

rood!  L C O N S  { 
pr(WRS) 
opsxyzl: --> Vat 
o p  V :  - >  VarList 
op  F : - > FSLis t  
o p s  cons tp  tl  2nd 3rd a b c d nl : - >  F S y m  
op Sig : - >  Signature 
o p s  r l  r2 r3 r4 : - -> Rule 
op  R : - - >  RuleLis t  
op  Lcons : - >  Trs 
eq x = war "X" . 
eqy= v a r " Y  ~' • 
eq z = war "Z" . 
eq I = vat "L" . 
eq V=xyzlnH. 
e q  cons = op "cons" 2 (I --2 0 nil) . 
e q  tp  = op " tp"  1 (1 0 nil) . 
e q  tl = op "tl" 1 (1 0 nil) . 
e q  2nd = op "2nd" I (1 0 nil) . 
e q  3rd = op "3rd" 1 (1 0 nil) . 
e q  a = o p  "a"  0 (0 nil) . 
e q b = o p " b "  O ( O n i l ) .  

op "c" e q c =  0 (Oni/). 
e q d = o p  "d" 0 ( O n i l ) .  
eq  nl = op "nl" 0 (0 nil) . 
e q  F = cons tp  tl  2nd 3rd a b c d nl n i l .  
e q S i g =  ( V F ) .  
eq  r l  = ( ( ' t p ' { ( ' c o n s " { x  1 nil}) nil}) x ) .  
eq  r2 ( ( " t l "{ ( "cons" Ix  1 nil}) nil}) 1 ) . 
e q  r3 = ( ( "2nd"{("cons"{x  

("cons" {y I nit}) nil}) nit}) y > 
e q  r4 ( ("3rd"{("cons"{x ("cons"{y 

("cons"{z t nil}) nil}) nit}) nil}) z ) 
eq  R = r l  r2 r3 r4 nH . 

eq/ . , cons  = ( Sig R ) . 
} 

The const ructor  for function symbols is op___ that  takes 
the funct ion symbol  name  (i.e. a string),  the  arity and the 
local s t rategy given to it  as its arguments .  For example, 
op "cons" 2 (1 - 2  0 ni  0 corresponds to the  function sym- 
bol cons in TEST2 .  The  TRS Lcons has four rewrite rules 
r l ,  r2, r3 a nd  r4 t ha t  conrresponds to tp(cons(X,L))  
X ,  t t (cons(X,L))  ~ X ,  2nd(cons(X,cons(Y ,L)) )  ~ Y ,  and 

3rd(cons(X,cons(Y,cons(Z,L))))  --+ Z ,  respectively. The  
module  TRS imported into L C O N S  provides the da ta  struc- 
ture  for constructing TRSs such as variables, function sym- 
bols, pa t te rns  and rewrite rules. 
We give some terms to be reduced. 

Example 5 (Terms to be reduced w . r . t  Lcons). 

rood!  L C O N S T E R M S  { 
p r (  SUBJECT)  
o p s  consN tpN tiN 2ndN 

3rdN aN bN cN dN n lN : - >  Node 
o p s  tO t l  t2 t3 : - >  Subject  
eq consN = "cons" [false fa/se] . 
eq tpN = "tp" [false false] . 
e q  tin = "tl" [false false] . 
e q  2ndN = "2nd" [false false] . 
e q  3rdN = "3rd" [false false] . 
e q  aN = "a" [false false 1 . 
e q  bN = "b"[false false] 
e q  cN = "c" [false false] . 
e q  d N  = "d"[/alse false] . 
eq nlN = "nl" [false false] . 
e q  tO = consN{(cN{nil}) 

(consN{(dN{nil}) (nlN{nil})  nil}) nil} . 
e q  t l  = tpN{tO nil} . 
e q  t2 2ndN{(consN{(bN{nil})  

(tlN{tO nil}) nil}) nil}. 
e q  t3 3rdN{(consN{(aN{nil}) 

(consN{(bN{nil}) (tiN{tO nin}) nil}) nil}) nil}. 
} 

t l ,  t2 and  t3 denote the following terms:  
t l  - tp(cons(c, cons(d,nil))) 
t2 - 2nd( cons( b,tl( cons( c,cons( d,nil) ) ) ) ) 
t3 - 3rd( cons( a, cons( b, tl( cons( c, cons( d, nil) ) ) ) ) ) . 

The module  SUBJECT impor ted  into L C O N S T E R M S  pro- 
r ides  the  da ta  structure for terms to be rewritten. 
One  more module is necessary in order to simulate rewrit- 
ing wi th  the on-demand E-stra tegy using the operat ional  
semantics.  

Example 6 (Simulator for rewriting with the on-demand E- 
strategy). 

rood!  S I M U L A T O R  
{ p r ( R E W R I T I N G  + L C O N S  + L C O N S T E R M S )  } 

The  module  S IMULATOR imports  three  modules together 
wi th  module  sum. The impor ta t ion  can  be separated into 
three t imes of importation. The  module  S I M U L A T O R  is 
equivalent  to the following one: 

rood!  S I M U L A T O R  
{ p r ( R E W R I T I N G )  pr (LCONS)  p r ( L C O N S T E R M S )  } .  
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The module R E W R I T I N G  provides the operational seman- 
tics of rewriting with the  on-demand E-strategy. 
We show the snapshot of simulating the rewrites of the three 
terms tI,  t2 and t3 with the  on-demand E-strategy in Fig. 1. 

5. HINT ABOUT SPECIFYING LOCAL 
STRATEGIES 

In this section a hint about  giving local strategies to oper- 
ators (or function symbols) is presented. The on-demand 
E-strategy gives us two ways of postponing evaluating some 
terms. If we want to pos tpone  evaluating the kth argument 
of a term f ( t l , . . .  , t , ) ,  the  operator  f is given a local s t rat-  
egy excluding k or a local s t ra tegy including - k .  There are 
at  least two things tha t  can be carried out by postponing 
evaluating terms: avoiding wasteful evaluation and dealing 
with infinite data s t ructures  such as infinite lists. 
I t  is possible to avoid wasteful evaluation by giving local 
strategies excluding some positive integers to operators (i.e. 
functions). A typical example  of avoiding wasteful evalua- 
tion is the conditional opera tor  iLthen_else.ft. 

Example 7 (Conditional operator fir_then_else..ti). 

op  ifthen_else..6 : Bool S S - >  S { s t r a t :  (1 0) } 
eq  fir true then X : S  else Y : S  fi = X .  
eq  i f  false then X : S  else Y : S  fi = Y .  

A term with fir_then_else..~ as its top operation such as ,fir 
cond then compl else comp2  if' is replaced by the second 
argument compl or the  th i rd  argument comp2 depending on 
the result (i.e. true or £a/se) of evaluating the first argument 
cond. If the result of evaluat ing the first argument is true 
(or false), the second (or third)  axgument replaces the whole 
term, and the third (or second) argument is just  discarded 
and does not cause wasteful evaluation. 
I t  is possible to deal with infinite data structures by giv- 
ing local strategies including negative integers to operators 
(data  constructors). For example,  infinite lists can be dealt 
with by giving the local s t ra tegy (1 - 2  0) to the list con- 
structor __ as follows: o p  __ : Nat  ooList - >  ooList { s t r a t :  
(1 - 2  0) } (ooList s tands for infinite lists and lists of natural  
numbers are considered for brevity).  The result of evaluat- 
ing some term denoting an infinite list is in head normal 
form, but the evaluation does not lead to infinite rewrit- 
ing. Suppose that i n f i s  declared as op  inf:  Nat  - >  ooList 
and eq  inf(X:Nat) = X i n ~ X  + 1), the result of evaluating 
in/(0) is "0 inf(1)." But  the  result of evaluating even some 
term denoting a finite list might  be in head normal form. 
For example, the result  of evaluating "tp(1 2 nil) tl(1 2 3 
nil)" is "1 t/(1 2 3 n/l)" t ha t  is in head normal form, but 
not in normal form. The  result  of evaluating some term de- 
noting a finite list should be in normal form. Since CafeOBJ 
supports order-sorted rewriting, infinite lists are allowed to 
coexist with finite lists well by having the sort ooList have a 
subsort List for finite lists and declaring the constructor for 
finite lists. The constructor  for finite lists is given the eager 
local strategy (1 2 0). 

Example 8 (Coexistence of  infinite lists with finite lists). 

[ List < ooList ] 
op  nil : - >  List 
op __ : Nat List --> Lis t  { s t r a t :  (1 2 0) } 
op  __ : Nat ooList - -> ooList  { s t r a t :  (1 - 2  0) } 
op  tp : ooList - >  Na t  
op tl : List - >  List  
op tl : ooList --> ooList  

The result of evaluating "tp(1 2 ni/) tl(/nt~0))" is "1 
tl(inf(0))," while the result of evaluating ~tp(1 2 nil) tl(1 
2 3 ni/)" is "1 2 3 nil." Since the top operator __ of the 
former term is the constructor for infinite lists because the 
second term tl(int~0)) denotes an infinite list, the second ar- 
gument is not evaluated because of the local strategy (1 - 2  
0) of the operator.  The top operator __ of the lat ter  term is 
the constructor for finite lists because the second argument 
tl(1 2 3 nil) is finite, and the both of the first and second 
arguments are evaluated. 

6. DISCUSSION 
Lazy evaluation is fascinating because it often has a better 
termination behavior than eager evaluation, while it is much 
more difficult to implement efficiently lazy evaluation than 
eager evaluation. Therefore some compromises have been 
proposed. The functional strategy [10] is one of them, which 
is often used in the field of the implementation of functional 
languages such as Miranda and Haskell. The operational se- 
mantics of a rewrite step and the annotated functional strat- 
egy in Miranda is also given [10]. They claim that  the formal 
specification in a functional language has two advantages 
besides the well-defined semantics. First ,  the partial  cor- 
rectness of the specification can be confirmed by an imple- 
mentation of the description language. Second, the dynamic 
behavior of the  specified algorithms can be observed. We 
can say tha t  the operational semantics of rewriting with the 
on-demand E-strategy in CafeOBJ has the same advantages. 
Kamperman and Waiters have proposed a transformation 
method for TRSs and terms to be rewritten so that  lazy eval- 
uation can be simulated on an implementation of eager eval- 
uation: lazy rewriting on eager machinery [9]. The method 
concisely expresses the intricate interaction between pattern 
matching and lazy evaluation. Our operational semantics 
concisely expresses the same thing by the third equation for 
pm in Semantics 4, viz if the top symbol of a term is not 
seemingly equal to that of a pat tern but  the term has been 
marked with an on-demand flag, pm retries to match the 
term with the pat tern after evaluating the term. 
We introduce two more examples of semantics written in 
formal languages. One is the operational semantics of an 
organic programming language GAEA [5] in Maude [3] a spec- 
ification language based on rewriting logic [11], and the other 
the algebraic semantics of imperative programs in OBJ3 [6]. 
Ishikawa et al. [8] have written the operational semantics of 
GAEA in Maude as an instance through a s tudy on declar- 
ative description of reflective concurrent systems. Goguen 
and Malcolm [7] give the algebraic semantics of imperative 
programs in OBJ3 so as to introduce Computing Science stu- 
dents to formal reasoning about imperative programs. They 
do not only write the algebraic semantics of an imperative 
programming language, but also prove assertions about the 
behavior of programs written in the imperative program- 
ming language. 

7. CONCLUSION 
We have described the operational semantics of rewriting 
with the on-demand E-strategy and have observed the dy- 
namic behavior of rewriting with the strategy using the op- 
erational semantics as an interpreter. A hint about giving 
local strategies to operators (or function symbols) has been 
presented as well. 
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APPENDIX 

A. OPERATIONAL SEMANTICS OF 
REWRITING W I T H  THE ON-DEMAND 
E-STRATEGY IN CAFEOBJ 

We present the full of the operational semantics of rewriting 
using the on-demand E-strategy in CafeOBJ. 

mod! LIST (BAT : :  TRIV) { 

pr(NAT) 
[List] 
op nil : -> List 
op __ : Eit.DAT List -> List {r-asso¢} 

op _++_ : List List -> List 
op take : List Nat -> Eit.DAT 
op replace : List Nat Eit.DAT -> List 
vats E E1 : Elt.DAT 

v a r s  L L1 : L i s t  
eq nil ++ LI : LI . 
eq (E L) ++ Lf = E (L ++ L1) . 

eq t a k e ( E  L,O) : E . 

eq t a k e ( E  L,X:NzNat)  = t a k e ( L , s d ( l , 1 ) )  . 
eq  r e p l a c e ( E  L , O , E 1 )  = E1  L . 
eq r e p l a c e  (E L , I : N z N a t , E 1 )  ffi E r e p l a c e ( L , s d ( X , 1 ) , E 1 )  . 

} 

rood! PAIR (FST : :  TRIV,SND : :  TRIV) 
[ P a i r ]  
op <__> : KIt.FST Eit.SND -> Pair 

op 1 s t  : P a i r  -> E l t . F S T  
op 2nd : P a i r  -> E l t .SND 
eq l s t ( <  I:EIt.FST ¥:Elt.SND >)  : X . 
eq 2rid(< X:EIt.FST Y:Eit.SND >) : Y . 

} 

rood! TRIPLE (FST : :  T R I V , S ~  : :  TRIV,TRD : :  TRIV) 
[ T r i p l e ]  
op <___> : EIt.FST Eit.SND Eit.TRD -> Triple 

op 1st : Triple -> Eit.FST 

op 2rid : Triple -> Eit.SND 

op 3rd : Triple -> EIt.TRD 

var X : Eit.FST 
var Y : Eit.SND 

vat Z : Eit.TRD 
eq let(< X Y Z >) : X . 
eq 2 n d ( <  X Y Z > )  : Y . 
eq 3rd(< X Y Z >) = Z . 

} 

nod! VARIABLE principal-sort Var { 

pr (STRING) 
[Vat] op v a r _  : S t r i n g  -> Vat 

} 

nod! LOCALSTRATEGY { pr(LIST(INT)*{sort List -> LStrat}) } 

mod! FSYMBOL principal-sort FSyN { 
pr(STRING + NAT + LOCALSTRATEGY) 

[FSym] 
op op___ : S t r i n g  Nat LStrat -> FSym 

op arity : FSym -> Nat 
op strat : FSym -> LStrat 

op t op  : FSyN -> String 

v a t  S : String 
v a t  N : Nat 
v a t  L : LStrat 

eq arity(op S N L) = N . 
eq strat(op S N L) ffi L . 

eq t o p ( o p  S N L) = S . 

N o d !  VARLIST p r i n c i p a l - s o r t  Va rL i s t  
{ pr(LIST(VARIABLE)e{sort  L i s t  -> V a r L i s t } )  } 

n o d !  FSYMLIST p r i n c i p a l - s o r t  F S L i s t  { 
pr(LIST(FSYMBOL)e{sor¢ L i s t  -> FSLi s t } )  
op st2Fs3m : F S L i s t  S t r i n g  -> FSym 
v a t  0 : FSym 
v a r  0s : F S L i s t  
v a t  Sym : String 

eq s t 2 F s y m ( ( 0 0 s )  ,Sym) 
: i f  t o p ( 0 )  ~ Sym t h e n  0 e l s e  s t2Fsy~(0s ,Sym)  f i  . 

} 

n o d !  SIGNATURE p r i n c i p a l - s o r t  S i g n a t u r e  { 
pr(PAIR(VARLIST,FSYNLIST)s{sort P a i r  -> Signature}) 

op st2Fsym : Signature String -> FSym 
eq st2Fsym(< Vs:VarList 0s:FSList >,Sym:String) 

: st2Fsym(Os,Sym) . 
} 

n o d *  QUASIPATTERN p r i n c i p a l - s o r t  P a t t e r n  { 

pr(VARIABLE + STRING) 
[Vex < P a t t e r n ]  

} 

mod!  PATTERN p r i n c i p a l - s o r t  P a t t e r n  { 
pr(LIST(QUASIPATI~RN)s{sort L i s t  -> PLier}) 
op _{_} : String PLier -> Pattern 

op a r  E : P a t t e r n  NzNat -> P a t t e r n  
eq arg(Sy:: String{Args: PList},X:NzNat ) 

: take(Args,sd(I,l)) . 
} 
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uod! RULE p r i n c i p a l - s o r t  Ru le  { 
pr(PAIR(PATTERN,PATTERN)*{sort P a i r  -> Mule}) 
ops lhs the : Rule -> Pattern 
eq 1he(an:Rule) - Ist(RR) . 

eq rhs(Pa:Mule) - 2nd(It~) . 
} 

mod! RULELIST principal-sort RuleList 
{ pr(LIST(RULE)e{sort List -> RuleList}) } 

mod! TRS { 

pr(PAIR(SIGNATURE,MULELIST)e{sort Pair -> Tre}) 
op sin : Trs -> Si6nature 
op r u l e s  : Trs -> RuleList 
eq s i g ( S y s t e m : T r s )  : l e t ( S y s t e m )  . 
eq r u l e s ( S y s t e u : T r s )  = 2rid(System) . 

} 

mod! MODE { 
pr(STRIMG) 

[Mode] 
op _[__] : S t r i n g  Bool  Bool  -> Node 
op top : Node -> String 
op upODF? : Mode -> Bool 
op eval? : Node -> Bool 

op upODF : Mode -> Mode 
op dolm0DF : Node -> Mode 
op e e t E F l a g  : Mode -> Mode 
v a t s  0D EF : Bool  
vex  Sym : S t r i n g  
eq top(Sym[0D EF]) = Sym . 
eq upODF?(Sym[OD EP]) =OD . 

eq eval?(Sym[OD EF]) = EF . 

oq upODF(Sym[OD EF]) = Sym[ t rne  EF] . 
eq downODF(Sym[OD EF]) = Sym[false EF] . 

eq setEFlag(Sym[0D EF]) = SyNCOD t r u e ]  . 
} 

rood* QUASISUBJECT { [ S u b j e c t ]  } 

mod! SUBJECT p r i n c i p a l - s o r e  S u b j e c t  { 
pr(SIGMATURE + MODE 

+ LIST(QUASISUBJECT)*{sort L i s t  -> S L i s t } )  
op _{_} : Node S L i s t  -> S u b j e c t  
op t o p  : S u b j e c t  -> S t r i n g  
OF a r i t y  : S u b j e c t  S i g n a t u r e  -> Nat 
op s t r a t  : S u b j e c t  S i g n a t u r e  -> L S t r a t  
op upODF? : S u b j e c t  -> Boo1 
op e v a l ?  : S u b j e c t  -> Bool  
op upODF : Subject  -> Sub jec t  
op upODF : S L i s t  -> S L i e r  
op downODF : S u b j e c t  -> S u b j e c t  
op s e t E F l a g  : S u b j e c t  -> S u b j e c t  
op a r g  : S u b j e c t  MzNat -> S u b j e c t  
op r e p l a c e  : S u b j e c t  MzMat S u b j e c t  -> Sub j e c t  
v a t  Md : Node v a r  T : S u b j e c t  v a t s  Args Ts : S L i e r  
v a t  SiN : Signature 
eq top(Nd{Args}) = top(Nd) . 

oq arity(Nd{Args},Sig) = arity(st2Fsym(Sig,top(Md))) . 
eq atrat(Md{Args},Sig) = strat(st2Fsym(Sig,top(Md))) . 
eq upODF?(Md{Args}) = upODF?(Nd) . 
eq eva l?(Md{Args})  = e v a l ? ( M d )  . 
aq  upODF(Nd{Ergs}) = upODF(Nd){upODF(Args)} . 
eq upOVF(nil)  = n i l  . 
eq upODF(T Ts) = upODF(T) upODF(Ts) . 
eq  downODP(Md{Args}) = downODF(Md){Args} . 
eq  se tEFlag(Md{Args})  = eetEFlag(Md){Args} . 
eq arg(Md{Erge},X:NzMat) : take(Args,sd(X,l)) . 
eq r e p l a c e  (Nd{Arge}, X : NzMat, T: S u b j e c t )  

= M d { r e p l a c e ( A r g s , s d ( X , l )  ,T)}  . 
} 

mod! ASSIGN p r i n c i p a l - s o r t  A s s i g n  
{ pr(PAIR(VARIABLE,SUBJECT)e{sort P a i r  -> Ass ign})  } 

mod! SUBSTITUTION p r i n c i p a l - s o r t  Subat  { 
pr (LIST(ASSIGM)*{sor t  L i s t  -> Subs t} )  
v a r s  V Vl : Vet 
v a r  T : S u b j e c t  
v a r  S : Subet  
op var2term : Vat Subs¢ -> Subjec t  
eq va r2 to rn (£ ,<  Vl  T • S) 

= if V == Vl then T else v a r 2 t e r n ( V , S )  fi . 

} 

rood! MATCH 
{ p r  (TRIPLE (B00L, SUBSTITUTION, SUBJECT) 

* { s o r t  T r i p l e  -> Match}) } 

mod! CONTR£CTUN 
{ pr(PAIR(BOOL,SUBJECT)e{sort P a i r  -> Cont rac tum})  } 

Nod* REWRITING { 
pr(TRS + SUBJECT + MATCH + C0NTRACTUM) 
op pm : S u b j e c t  P a t t e r n  Trs -> Match 
op pml : Subst MzNat Subject Pattern Trs -> Match 

op pml2 : Hatch Subst NzNat Subject Pattern Trs -> Match 
op match : RuleList Subject Trs -> Contractum 

op match2 : Match RuleList Tre -> Contractum 
op e v a l  : S u b j e c t  Trs -> Sub j ec t  
op reduce : Subject LStrat Trs -> Subject 

op reduce2 : Contractum LStrat Trs -> Subject 
op evalAr E : Subject MzNat Tre -> Subject 

op upODP : S u b j e c t  NzMat -> Sub j ec t  
op i n s t a n t i a t e  : P a t t e r n  Subs t  -> S u b j e c t  
op i n s t a n t i a t e  : PLie r  Subs t  -> S L i s t  
v a r s  T T1 : S u b j e c t  
v a t s  N PI  : NzMat 
v a r s  V Sym : S t r i n g  
v a t  TRS : Trs  
v a r  Ps : P L i s t  
v a t s  S S1 : Subs t  
v a t  P : P a t t e r n  
v a t  LS : L S t r a t  
v a r  P/t : Rule  
v a t  RRs : R u l e L i s t  
v a r  NI : NzInt  
ceq eva l (T ,TRS)  = T i f  eva l ? (T )  . 
ceq e v a l  (T,TRS) 

= reduce(T,strat(T,sig(TRS)),TRS) if n o t  eval?(T) . 
eq reduce(T,nil,TRS) = setEFlag(T) . 
eq reduce(T, (O iS) ,TRS) 

= reduce2(uatch(rules(TRS),T,TRS),LS,TRS) . 
eq reduce(T, (PI LS) ,TRS) 

= reduce(evalArg(T,PI,TRS) ,LS,TRS) . 
ceq r educe (T ,  (N ILS)  ,TRS) 

= reduce(upODF(T,(- NI)),LS,TRS) if MI < 0 . 

eq reduce2(< true T >,LS,TRS) = eval(T,TRS) . 
eq reduce2(< false T >,LS,TRS) = reduce(T,LS,TRS) . 
eq match(nil,T,TRS) = < false T > . 
eq match((RR RRs),T,TRS) 

= match2(pm(T, lhs(RE) .TRS), (RR RRs) ,TRS) . 
eq match2(< t rue  S T >,(RE I~s),TRS) 

= < true instantiate(rhs(KR),S) • . 

eq match2(< false S T >,(RR RRs),TRS) = match(RRa,T,TRS) . 
eq pm(T,(var  V),TRS) = < t rue  (<(vat V) T > n i l )  T • . 
ceq pro(T, Sym{Pe},TRS) 

= pml(nil,1,T,Sym{Ps},TRS) if top(T) == Sym . 
ceq pm(T,Sym{Pa},TgS) 

= pm(eval(down0DF(T) ,TRS) ,Sym{Ps},TgS) 
if top(T) =/= Sym and upODF?(T) . 

ceq pm(T,Szs{Ps},TRS) = < false nil T • 
if top(T) =/= Sym and (not upODF?(T)) . 

ceq pmI(S,M,T,P,TRS) 
ffi pml2(pm(a~g(T,M) ,arg(P,M) ,TRS) ,S ,N,T,P ,TRS)  
if M <= arity(T,sig(TRS)) . 

ceq pml(S,N,T,P,TRS) = < t r u e  S T • 
i f  M • arity(T,sig(TRS)) . 

eq pml2(< t r u e  S1 T1 >,S,M,T,P,TRS) 
= pml(Sl +÷ S,M + I,repiace(T,N,Ti),P,TRS) . 

eq pml2(< false $1 T1 >,S,N,T,P,TRS) 
= < false nil replace(T,N,T1) • . 

eq evalArg(T, M,TRS) 

= replace(T,M,eval(downDDF(arg(T,M)) ,TRS)) . 
eq upODF(T,M) = replace(T,M,upODF(arg(T,M))) . 
eq inaZanZiate(var V,S) = var2term(var V,S) . 
eq instant iate (Sym{Ps}, S ) 

= Sym[false false]{instantiate(Ps,S)} . 

eq instantiate(nil,S) = nil . 
eq instantiate(P Ps,S) 

= instantiate(P,S) instantiate(Ps,S) . 
} 
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