
Operational Semantics of Rewriting with the On-demand
Evaluation Strategy

Kazuhiro Ogata and Kokichi Futatsugi
Graduate School of Information Science

JAIST
Tatsunokuchi, Ishikawa 923-1292, JAPAN

{ogata, kokichi}~jalst.ac.jp

Keywords
operational semantics, reduction strategy, the E-strategy,
CafeOBJ

ABSTRACT
The on-demand evaluation strategy (abbr. the on-demand
E-strategy) is an extension of the evaluation strategy (abbr.
the E-strategy) init iated by OBJ2. The strategy removes
the restriction that the E-strategy imposes on constructing
rewrite rules: if non-variable terms are put on lazy positions
in the left sides, some terms cannot be rewritten as intended.
We have written the operational semantics of rewriting with
the on-demand E-strategy in CafeOBJ so that we can deeply
understand rewriting with the on-demand E-strategy. The
operational semantics can be used to observe the dynamic
behavior of rewriting with the on-demand E-strategy thanks
to the executability of CafeOBJ. A hint about the use of the
on-demand E-strategy is given as well.

1. INTRODUCTION
A reduction strategy is a function that takes a set of rewrite
rules and a ground term as arguments, and prescribes which
redex in the term has to be rewritten next. Although lazy
evaluation is fascinating because it has a better termination
behavior than eager evaluation, pure lazy evaluation is not
efficiently implementable. Therefore some efficiently imple-
mentable compromises between lazy and eager evaluation
have been proposed. The on-demand evaluation strategy
(abbr. the on-demand E-strategy) is one of them, which is
used in CafeOBJ [2]. The on-demand E-strategy is an ex-
tension of the evaluation strategy (abbr. the E-strategy)
initiated by OBJ2 [4]. The E-strategy not only simulates
a variant of lazy evaluation such as the functional strat-
egy [10], but also is flexible because it can control the order
in which terms are rewritten by giving a local strategy to
each operator (or function symbol). However, it imposes

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(c) 2000 ACM 1-58113-239o5/00/003>...>$5.00

a restriction on constructing rewrite rules: if non-variable
terms are put on lazy positions in the left sides, some terms
cannot be rewritten as intended. The on-demand E-strategy
can remove this restriction of the E-strategy.
We have written the operational semantics of rewriting with
the on-demand E-strategy so that we can deeply under-
stand it. The operational semantics has been written in
CafeOSJ [2], an executable algebraic specification language.
The reason why we used CafeOBJ to write the operational
semantics is that we can confirm the partial correctness of
t h e specification with the CafeOBJ system and can also ob-
serve the dynamic behavior of rewriting with the on-demand
E-strategy using the operational semantics as an interpreter.
We believe that the formal operational semantics of rewrit-
ing with the strategy should be useful not only for making
sure of what rewriting with the strategy performs, but also
as a formal specification that can be used when implement-
ing rewriting with the strategy.
The rest of the paper is organized as follows: Section 2 gives
a brief introduction to CafeOBJ. Section 3 describes the E-
strategy and the operational semantics of the E-strategy
in CafeOBJ. In Sect. 4, the restriction imposed by t h e E-
strategy and the on-demand E-strategy that removes the
restriction are first mentioned, and then an example that
needs the on-demand E-strategy is given. After that the
operational semantics of rewriting with the on-demand E-
strategy in CafeOBJ is described and the dynamic behavior
of rewriting with the strategy is observed. Section 5 presents
a hint about specifying local strategies. Section 6 discusses
the related work. Finally, Section 7 gives a conclusion.
We suppose the reader familiar with the basic concepts of
term rewriting systems [1] (abbr. Tl:tSs).

2. ALGEBRAIC SPECIFICATION
LANGUAGE CAFEOBJ

CafeOBJ [2] is descended from OBJ [4; 6], probably the most
famous algebraic specification language. Although CafeOBJ
provides many fascinating features and functionalities, we
here take up only a few of them that are needed for writ-
ing the operational semantics of rewriting. One of them is
the powerful module system inherited from OBJ. Modules
can have parameters and import other modules. We give a
parameterized module LIST as an example.

Example 1 (A parameterized module LIST).

rood! LIST (DAT :: TR/V) {
pr(NAT)

756

http://crossmark.crossref.org/dialog/?doi=10.1145%2F338407.338558&domain=pdf&date_stamp=2000-03-01

[List]
op nil : - > List
op __ : E I t . D A T List - > Lis t {r-assoc}
op _++_ : List List -> List
op take : List Nat - > E I t . D A T
op replace : List Na t E I t . D A T - > List
v a r s E E1 : E l t . D A T
v a r s L L1 : List
e q n i l + + L l = L 1 .
eq(EL) ++LI =E(LW+LI).
eq take(E L,O) = E .
eq take(E L,X : NzNat) = take(L,sd(X , l)) .
eq replace(E L,0,EI) = E1 L .
eq replace(E L,X:NzNat,Ei)

= E replace(L,sd(X,1) ,E1) .
}

A module (declaration) begins with the keyword mod! or
m o d * (which corresponds to tight or loose denotation), and
has its name (L I S T in this example) and a list of parameters
if exist ((D A T :: TR/V) in this example) after the keyword.
A parameter consists of a parameter name (D A T in this ex-
ample) and a module name (TPdV* in this example). The
module name describes requirements that the actual param-
eters must meet. The module body is enclosed by braces.
The module body consists of some declarations such as im-
port, sort, operator, variable and/or equation declarations.
The module L I S T imports the built-in module N A T with
p r o t e c t i n g (abbr. pr) mode that requires all the intended
models of imported modules (N A T in this example) be pre-
served as they are (i.e. no junk and no confusion). There are
two more importation modes: e x t e n d i n g (abbr. ex) and
u s ing (abbr. us) modes. The ex mode allows the models of
imported modules to be inflated, but does not allow them to
be collapsed (i.e. no junk). The us mode imposes nothing
on the models of imported modules. The built-in module
B O O L , in which true, £a/se and some logical operators are
declared, is implicitly imported into any module by default.
L I S T declares a new sort List. Sorts in algebraic specifi-
cation languages may correspond to types in programming
languages.
Operator declarations begin with op or ops and have the
name, the sorts of the arguments and the sort of the result.
They may have some attr ibutes such as r-assec meaning
that the operator is right associative. Some operators such
as nil have no arguments and are called constants. CafeOBJ
makes it possible to declare not only standard operators
such as £and g in rig(I),2), but also mixfix operators such
as _++_ (i.e. infix ones) and __ (i.e. juxtaposition ones).
Underbars reserve the places where arguments are inserted.
Variable declarations begin with v a t or vats, and have the
name and its sort. Sorts may be quantified by modules such
as EI t .DAT. Variables may be declared in equation declara-
tions such as X:NzNat 2.
Equation declarations begin with eq or ceq and end with a
full stop. Conditional equations are declared with ceq.
An instance of parameterised modules is created by binding
actual parameters to formals. The process of binding is
called instantiation. The result of instantiation is a new
module. For example, when L I S T is instantiated by binding

, T R I V is a built-in module in which only one sort Elt is
declared.
2The sort N z N a t is declared in the module N A T - V A L U E
imported into N A T and stands for non-zero natural num-
bers.

N A T to TRIV , we write L I S T (N A T) . When instantiat ing
the module LIST, it is also possible to rename the sort List
another such as NatLis t by writing L I S T (N A T) * { s o r t Lis t
- > NatList}.
Cafe0BJ specifications may be executed by regarding equa-
tions as left-to-right rewrite rules by a rewrite engine.
Thanks to the executability, we can observe the dynamic
behavior of rewriting with the on-demand E-strategy using
the formal operational semantics in CafeOBJ.

3. THE E-STRATEGY
The E-strategy is a reduction strategy initiated by OBJ2 [4].
It not only simulates a variant of lazy evaluation such as
the functional strategy [10], but also is flexible because it
can control the order in which terms are rewritten by giv-
ing a local strategy to each operator (or function symbol).
A local strategy given to a function symbol f indicates the
order in which terms such as f (t l , . . . , t ,) that each have
the function symbol f at the head of them are evaluated.
The order is prescribed with a list of integers ranging from
zero through the arity (the number of the arguments) of the
function symbol. A term f (t l , . . . , t ,) is evaluated accord-
ing to the local strategy of its top function symbol f . If
the top of the local strategy is a positive integer k, the kth
argument tk is first evaluated, the result t~ next replaces
the argument, and then the altered term f (. . . , t ~ , . . .) is
evaluated according to the remainder of the local strategy.
If the top of the local strategy is zero, the term is tried to be
matched with the left sides of rewrite rules: if there exists a
rewrite rule whose left side matches with the term (i.e. the
term is a redex), the term is replaced by the corresponding
instance of the right side (i.e. the contractum of the term),
and then the new term is evaluated according to the local
strategy of its top function symbol; otherwise the term is
continuously evaluated according to the remainder of the
local strategy. Such rewriting is going on until a local strat-
egy becomes empty. We here show an example that needs
lazy evaluation.

Ezample ~ (A funct ion nth to take the nth element f rom an
infinite list).

rood! TEST1 {
pr(NAT)
[4
op cons : Nat S - > S { s t ra t : (1 O) }
op inf : Nat --> S
op nth : Nat S - > Nat
eq in~X:Nat) = cons (X , inRX + 1)) .
eq nth(O,cons(X :Nat,L:S)) = X .
eq nth(X : N z N a t , c o n s (Y :Nat,L:S)) = nth(sd(X , 1) , L) .

}

The operator cons has the local strategy (1 0), which means
that a term with cons as its top function symbol would be
replaced by another term, which is then evaluated, after
evaluating the first argument. The second argument is not
evaluated unless some rewrite frees it from domination of
the operator cons. Although the other operators are given
no explicit local strategies, a default strategy such as (1 2
--. 0) is implicitly given to each of them.
Let us evaluate the term nth(1,inf(1)) w.r.t. T E S T 1 . It is
rewritten as follows:

nth(1,inf(1)) --r nth(1,cons(1,inf(1 + 1)))
---r nth(sd(1,1),inf(1 + 1))

757

-+ nth(o , i~Q_y_D)
-+ nth(0,in~(2))
--I. n t h (0 , c o ~ 2 , i n ~ 2 + 1)))
- + 2 .

Subterms to be rewritten are underlined.
We present an excerpt from the operational semantics of
rewriting with the E-strategy in CafeOSJ.

S e m a n t i c s 1 (Excerpt from the operat iona l seman-
t ics of rewri t ing w i th the E-s trategy) .

ceq evaI(T, TRS) = T i f eval?(T) .
ceq eval(T , T RS) = reduce(T ,strat(T , sig(TRS)), T RS)

if not eval?(T) .
eq reduce(T ,nil, TRS) = setEFlag(T) .
eq reduce(T,(O LS), TRS)

= reduce2(match(rules(TRS) ,T , TRS) ,LS, TRS) .
eq reduce(T , (P I LS), TRS)

= reduce(evalArg(T,PI, TRS) ,LS , TRS) .
eq reduce2((true T),LS, TRS) = evaI(T, TRS) .
eq reduce2((false T),LS, TRS) = reduce(T,LS, TRS) .

The operator eva/ is a reducer that takes a term T to be
reduced and a TRS T R S (i.e. a pair of a signature and a
set of rewrite rules), and returns the result 3 of evaluating
the term. eva/re turns T immediately if T has been already
evaluated, or otherwise it evaluates T according to the local
strategy of the top function symbol of T by calling reduce.
The operators sig and strat return the signature (i.e. a pair
of sets of function symbols and variables) of T R S and the
local strategy of the top function symbol of T. The operator
reduce takes a term T, the strategy list of the top function
symbol of T and a TRS TRS, and evaluates T according
to the local strategy w.r.t. TRS. If the local strategy is or
becomes empty (i.e. nil), reduce returns T after marking T
with a flag (called an evaluated flag) meaning that T has
been evaluated. If the top of the local strategy is zero, the
pattern marcher match tries to match T with the left sides
of the rewrite rules of TRS: if there exists a rewrite rule
whose left side matches with T, match returns the pair of
true and the corresponding instance of the right side (i.e. the
contractum of T) and eva/evaluates the new term (i.e. the
instance); otherwise match returns the pair of false and the
term passed to match as the second argument, and reduce
continues to evaluate the term according to the remainder
LS of the local strategy. If the top of the local strategy is a
positive integer PI, the P i t h argument is first evaluated and
then the altered term is continuously evaluated according to
the remainder L S of the local strategy.

4. THE ON-DEMAND E-STRATEGY

4.1 Restriction Imposed by the E-strategy
Although the E-strategy makes it possible to simulate a
variant of lazy evaluation, it imposes a restriction on con-
structing rewrite rules. If non-variable terms are put on lazy
positions in the left sides, some terms cannot be rewritten
as intended. Suppose that cons is a list constructor and
has (1 0) as its local strategy, and tl and 2nd are usual
functions, whose rewrite rules are t l (cons(X,L)) -+ L and
2nd(cons(X ,cons (Y ,L))) -+ Y, to re turn the tail and the
second element of a list respectively, the term 2nd(cons(a,

ZThe result is a reduct of the term, but it might not be in
normal form. For example, the result of evaluating in/El) is
cons(1, int[l+l)) that is not in normal form w.r.t. TEST1.

tl(cons(b,cons(c,nil))))) is not rewritten to c. The term is
rewritten as follows. The argument is first evaluated because
of the local strategy of 2nd. But no rewrite occurs owing to
the local strategy of cons. Although a pattern matcher tries
to match the term with the left sides of rewrite rules sue-
ceedingly, there is no rewrite rule whose left side can match
with the term because the second one of the term's argu-
ment is tl(cons(b,cons(c,nil))). Therefore c is not got as a
result.
CafeOSJ adopts the on-demand E-strategy that is an ex-
tended version of the E-strategy in order to remove the re-
striction of the E-strategy. The on-demand E-strategy al-
lows us to declare local strategies with negative integers as
well as zero and positive integers. A negative integer - k in
a local strategy given to a function symbol .f means that
each subterm in the kth argument tk of a term f (t t , . • • , t ,)
is marked with an on-demand flag. While a term is tried to
be matched with the left sides of rewrite rules, some of the
subterms marked with on-demand flags may be rewritten.

4.2 Example Using the On-demand E-strategy
We show an example that needs the on-demand E-strategy.

Ezample 3 (Lazy lists and related functions).

m o d ! TEST2 {
[4
op cons : S S --> S { strat: (1 --2 0) }
o p t p : S - > S
op tl : S - > S
o p 2 n d : S - > S
o p J r d : S - > S
o p s a b c n i l : - > S
eq tp(cons(X:S,L:S)) = X .
eq tl(cons(X:S,L:S)) = L .
eq 2nd(cons(X:S, cons(Y:S, L:S))) = Y .
eq 3rd(cons(X :S, cons(Y :S, cons(Z :S,L:S)))) = Z .

}
Let us think of evaluating the term 2nd(cons(a, tl(cons(b,
cons(c,nil))))) with respect to TEST2. The argument
cous(a, tl(cons(b,cons(c, nil)))) is first evaluated because of
the local strategy of 2nd. Although no rewrite occurs while
the argument is evaluated, all the subterms in the second
argument are marked with on-demand flags owing to the lo-
cal strategy (1 - 2 0) of cons. After that the input term is
tried to be matched with the left sides of the rewrite rules.
While a pattern matcher tries to match the term with the
left side of the third rewrite rule, it finds that the second one
of the term's argument (i.e. tl(cons(b,cons(c, ni1)))) cannot
be matched with the corresponding sub-pattern but it has
been marked with an on-demand flag. Hence the pat tern
matcher has a reducer evaluate the subterm marked with
the on-demand flag and retries to match the evaluated sub-
term with the corresponding sub-pattern. In this case the
pat tern match succeeds because the result of evaluating the
subterm tl(cons(b,cons(c, nil))) is cons(c, nil). Consequently
the input term is replaced by c that is the final result of
rewriting the original term.

4.3 Operational Semantics of the On-demand
E-strategy

The following is an excerpt from the operational semantics
of rewriting with the on-demand E-strategy in CafeOBJ.

S e m a n t i c s 2 (Excerp t f rom t h e ope ra t iona l s e m a n -
t ics o f r ewr i t ing w i t h t h e o n - d e m a n d E - s t r a t e g y) .

758

c e q eval(T, TRS) = T if eval?(T) .
ce q evaI(T , TRS) = reduce(T ,strat(T , sig(T RS)), TRS)

if not eval?(T) .
eq reduce(T,nil, TRS) = setEFlag(T) .
eq reduce(T,(0 LS), TRS)

= reduce2(match(rules(TRS),T, TRS),LS, TRS) .
eq reduce(T ,(PI LS), TRS)

= reduce(evalArg(T,PI, TRS),LS, TRS) .
eeq reduce(T,(NI LS), TRS)

= reduce(upODF(T,(- N1)),LS, TRS) if NI < 0 .
eq reduce2((true T),LS, TRS) = evaI(T,TRS) .
eq reduce2((false T),LS, TRS) = reduce(T,LS, TRS) .

Clearly the only difference between Semantics 1 and Seman-
tics 2 is the fourth equation for reduce of Semantics 2. If
the top of the local strategy given to a term T is a negative
integer NI, the operator upODF marks an on-demand flag
on each subterm in the - N I t h argument of T. In Seman-
tics 1, if there is no rewrite rule whose left side matches with
a term, the second element of the pair returned by match
is exactly the same as the term passed to match as its sec-
ond argument. In Semantics 2, however, the second element
of the pair returned by match might be different from the
term passed to match as its second argument because some
subterms in the term might be rewritten while match tries
to match the term with the left sides of rewrite rules.
Since terms might be rewritten while match tries to match
them with the left sides of rewrite rules, we should write
the operational semantics of pat tern matching (i.e. match)
in more detail in order to specify the operational semantics
of rewriting with the on-demand E-strategy more precisely.
Therefore we present the operational semantics of match.

S e m a n t i c s 3 (O p e r a t i o n a l s e m a n t i c s of match).

eq match(nil, T, TRS) = (false T) .
eq match((RR RRs),T, TRS)

= match2(pm(T,lhs(RR), TRS) , (RR RRs), TRS) .
eq match2((true S T) , (RR RRs), TRS)

= (true instantiate(rhs(RR),S)) .
eq.match2((false S T),(RR RRs), TRS)

= match(RRs, T, TRS) .

The operator match takes a list of rewrite rules, a term that
is tried to be matched with the left sides, and a TRS. It
returns the pair of true and a contractum if there exists a
rewrite rule whose left side can match with the term, or
otherwise it returns the pair of false and the term passed
to match as its second argument that might be rewritten.
The operator pm actually tries to match a term with the
left side of a rewrite rule. It takes a term, the left side of a
rewrite rule and a TRS, and returns the triple of true, the
substi tution obtained through the pattern match and the
term that might be rewritten if the term can match with
the left side, or otherwise it returns the triple of false, a
dummy substitution and the term that might be rewritten.
The auxiliary operator match2 returns the pair of true and
the corresponding instance of the right side (i.e. the contrac-
turn) if the term can match with the left side of the rewrite
rule, or otherwise it calls match in order to try to match the
term with the remainder of the rewrite rules.
We present the operational semantics of pm that tries to
match a term with the left side of a rewrite rule.

S e m a n t i c s 4 (Operat iona l s e m a n t i c s of pro).

eq pm(T,(var V),TRS) = (true (((war V) T) nil) T) .
ce q pm(T,Sym{ Ps},TRS) = pml(nil, l , r , Sym{ Ps},TRS)

i f top(T) =---- Sym .
ceq pm (T, Sym{ Ps}, TRS)

= pm(eval(downODF(T), TRS),Sym{Ps}, TRS)
if top(T) = / = Sym and upODF?(T) .

ceq pm(T,Sym{ Ps} , TRS)
= (fa/se nil T)
if top(T) =1= Sym and (not upODF?(T)) .

eeq pmI(S,N,T,P, TRS)
= pml2(pm(arg(T,N),arg(P,N), TRS),S,N,T,P, TRS)
if N < = arity(T,si~TRS)) .

ceq pmI(S,N,T,P, TRS) = (true S T)
if g > arity(T,sig(TRS)) .

eq pml2((true S1 T1) ,S ,N ,T ,P , TRS)
= pml(S1 ++ S , N + 1,replace(T,N,T1),P, TRS) .

eq pml2((false S1 T1) ,S ,N ,T ,P , T R ~
= (fa/se nil replace(T,N,T1)) .

There are two types of constructors vat_ and _{_} for pat-
terns (i.e. the left and right sides of rewrite rules). The first
constructor war_ is one for variables. It takes a string as its
argument that denotes a variable name, e.g. vat"X" denotes
a variable X. The second constructor _{_} is one for non-
variable patterns such as tp(cons(X,L)). It takes a string
and a list of patterns as its first and second arguments. The
string and the list denote the top function symbol name and
the arguments of a pattern, e.g. "tp"{("cons'{(var "X ')
(war "L ') nil}) nil} denotes the pattern tp(cons(X,L)).
If the pattern is a variable wax V, pm returns the triple of
true, the pair of the variable and the term T (more pre-
cisely the singleton list of the pair denoting a substitution),
and the term. If the pattern is a non-variable one Sym{Ps},
the situation divides into three cases. If the top function
symbol of the term T is equal to Sym the top function sym-
bol of the pattern, pml tries to match the arguments of the
term with those of the pattern. The next case is the most
interesting in rewriting with the on-demand E-strategy. If
the top function symbol of the term is not seemingly equal
to Sym but the term has been marked with an on-demand
flag, eva/evaluates the term after removing the on-demand
flag from it, and then pm retries to match the term that
might have been rewritten with the pattern. No removing
the on-demand flag may lead to an infinite loop. If the top
function symbol of the term is not equal to Sym and the
term has not been marked with an on-demand flag, pm re-
turns the triple of false, the empty substitution nil and the
term, which means failure in the pattern match.
The operator pml tries to match the arguments of a term
with those of a pattern and returns the triple of true, the
substitution obtained through the pattern match and the
term that might be rewritten, which means success in the
pattern matching, if each of the arguments of the term can
match with each of them of the pattern. The reason why the
Nth argument of the term T is replaced by T1 at the right
sides of the two rewrite rules for pro12 is that the argument
might have been rewritten through the pattern match.

4.4 Operational Semantics as Interpreter
Since we can make use of the operational semantics as an in-
terpreter thanks to the executability of CafeOBJ, we can ob-
serve the dynamic behavior of rewriting with the on-demand
E-strategy using the operational semantics.
We describe the data structure for terms to be rewritten
prior to observing the dynamic behavior of rewriting with
the on-demand E-strategy. _{_} is a constructor for terms to
be rewritten. The first and second arguments are a node and

759

SIMULATOR> r e d e v a l (t l , L c o n s) .
- - r e d u c e i n SIMULATOR : e v a l (t l , L c o n s)
("c" [false t r u e]) { nil } : Subject
(0.000 sec for parse, 1821 rewrites(0.445 sec), 2378 matches)

SIMULATOR> r e d e v a l (t 2 , L c o n s) .
- - r e d u c e i n SIMULATOR : e v a l (t 2 , L c o n s)
("d" [false t r u e]) { n i l } : Subject
(0.008 sec for parse, 12338 rewrites(2.516 sec), 16363 matches)

SIWJLATOI~ r ed e v a l (t 3 , L c o n s) .
- - reduce i n SIMULATOR : e v a l (t 3 , L c o n s)
("d" [false true]) { nil } : Subject
(0.000 sec for parse, 12523 rewrites(2.570 sec), 16583 matches)

Figure h Snapshot of the s imulator

a list of a rguments . The node consists of a function symbol
name and two flags (i.e. an on-demand flag and an evaluated
flag), and its cons t ruc tor is _[__]. For example, "cons'[false
false]{('a ' [false false]{nil}) ('n i l ' [fa l se false]{nil}) nil} de-
notes the t e rm cons(a,ni O. We write a TRS corresponding
to T E S T 2 in the operat ional semantics.

Example ~ (The T R S Lcons corresponding to TEST2).

rood! L C O N S {
pr(WRS)
opsxyzl: --> Vat
o p V : - > VarList
op F : - > FSLis t
o p s cons tp tl 2nd 3rd a b c d nl : - > F S y m
op Sig : - > Signature
o p s r l r2 r3 r4 : - -> Rule
op R : - - > RuleLis t
op Lcons : - > Trs
eq x = war "X" .
eqy= v a r " Y ~' •
eq z = war "Z" .
eq I = vat "L" .
eq V=xyzlnH.
e q cons = op "cons" 2 (I --2 0 nil) .
e q tp = op " tp" 1 (1 0 nil) .
e q tl = op "tl" 1 (1 0 nil) .
e q 2nd = op "2nd" I (1 0 nil) .
e q 3rd = op "3rd" 1 (1 0 nil) .
e q a = o p "a" 0 (0 nil) .
e q b = o p " b " O (O n i l) .

op "c" e q c = 0 (Oni/).
e q d = o p "d" 0 (O n i l) .
eq nl = op "nl" 0 (0 nil) .
e q F = cons tp tl 2nd 3rd a b c d nl n i l .
e q S i g = (V F) .
eq r l = ((' t p ' { (' c o n s " { x 1 nil}) nil}) x) .
eq r2 ((" t l "{ ("cons" Ix 1 nil}) nil}) 1) .
e q r3 = (("2nd"{("cons"{x

("cons" {y I nit}) nil}) nit}) y >
e q r4 (("3rd"{("cons"{x ("cons"{y

("cons"{z t nil}) nil}) nit}) nil}) z)
eq R = r l r2 r3 r4 nH .

eq/ . , cons = (Sig R) .
}

The const ructor for function symbols is op___ that takes
the funct ion symbol name (i.e. a string), the arity and the
local s t rategy given to it as its arguments . For example,
op "cons" 2 (1 - 2 0 ni 0 corresponds to the function sym-
bol cons in TEST2 . The TRS Lcons has four rewrite rules
r l , r2, r3 a nd r4 t ha t conrresponds to tp(cons(X,L))
X , t t (cons(X,L)) ~ X , 2nd(cons(X,cons(Y ,L))) ~ Y , and

3rd(cons(X,cons(Y,cons(Z,L)))) --+ Z , respectively. The
module TRS imported into L C O N S provides the da ta struc-
ture for constructing TRSs such as variables, function sym-
bols, pa t te rns and rewrite rules.
We give some terms to be reduced.

Example 5 (Terms to be reduced w . r . t Lcons).

rood! L C O N S T E R M S {
p r (SUBJECT)
o p s consN tpN tiN 2ndN

3rdN aN bN cN dN n lN : - > Node
o p s tO t l t2 t3 : - > Subject
eq consN = "cons" [false fa/se] .
eq tpN = "tp" [false false] .
e q tin = "tl" [false false] .
e q 2ndN = "2nd" [false false] .
e q 3rdN = "3rd" [false false] .
e q aN = "a" [false false 1 .
e q bN = "b"[false false]
e q cN = "c" [false false] .
e q d N = "d"[/alse false] .
eq nlN = "nl" [false false] .
e q tO = consN{(cN{nil})

(consN{(dN{nil}) (nlN{nil}) nil}) nil} .
e q t l = tpN{tO nil} .
e q t2 2ndN{(consN{(bN{nil})

(tlN{tO nil}) nil}) nil}.
e q t3 3rdN{(consN{(aN{nil})

(consN{(bN{nil}) (tiN{tO nin}) nil}) nil}) nil}.
}

t l , t2 and t3 denote the following terms:
t l - tp(cons(c, cons(d,nil)))
t2 - 2nd(cons(b,tl(cons(c,cons(d,nil)))))
t3 - 3rd(cons(a, cons(b, tl(cons(c, cons(d, nil)))))) .

The module SUBJECT impor ted into L C O N S T E R M S pro-
r ides the da ta structure for terms to be rewritten.
One more module is necessary in order to simulate rewrit-
ing wi th the on-demand E-stra tegy using the operat ional
semantics.

Example 6 (Simulator for rewriting with the on-demand E-
strategy).

rood! S I M U L A T O R
{ p r (R E W R I T I N G + L C O N S + L C O N S T E R M S) }

The module S IMULATOR imports three modules together
wi th module sum. The impor ta t ion can be separated into
three t imes of importation. The module S I M U L A T O R is
equivalent to the following one:

rood! S I M U L A T O R
{ p r (R E W R I T I N G) pr (LCONS) p r (L C O N S T E R M S) } .

760

The module R E W R I T I N G provides the operational seman-
tics of rewriting with the on-demand E-strategy.
We show the snapshot of simulating the rewrites of the three
terms tI, t2 and t3 with the on-demand E-strategy in Fig. 1.

5. HINT ABOUT SPECIFYING LOCAL
STRATEGIES

In this section a hint about giving local strategies to oper-
ators (or function symbols) is presented. The on-demand
E-strategy gives us two ways of postponing evaluating some
terms. If we want to pos tpone evaluating the kth argument
of a term f (t l , . . . , t ,) , the operator f is given a local s t rat-
egy excluding k or a local s t ra tegy including - k . There are
at least two things tha t can be carried out by postponing
evaluating terms: avoiding wasteful evaluation and dealing
with infinite data s t ructures such as infinite lists.
I t is possible to avoid wasteful evaluation by giving local
strategies excluding some positive integers to operators (i.e.
functions). A typical example of avoiding wasteful evalua-
tion is the conditional opera tor iLthen_else.ft.

Example 7 (Conditional operator fir_then_else..ti).

op ifthen_else..6 : Bool S S - > S { s t r a t : (1 0) }
eq fir true then X : S else Y : S fi = X .
eq i f false then X : S else Y : S fi = Y .

A term with fir_then_else..~ as its top operation such as ,fir
cond then compl else comp2 if' is replaced by the second
argument compl or the th i rd argument comp2 depending on
the result (i.e. true or £a/se) of evaluating the first argument
cond. If the result of evaluat ing the first argument is true
(or false), the second (or third) axgument replaces the whole
term, and the third (or second) argument is just discarded
and does not cause wasteful evaluation.
I t is possible to deal with infinite data structures by giv-
ing local strategies including negative integers to operators
(data constructors). For example, infinite lists can be dealt
with by giving the local s t ra tegy (1 - 2 0) to the list con-
structor __ as follows: o p __ : Nat ooList - > ooList { s t r a t :
(1 - 2 0) } (ooList s tands for infinite lists and lists of natural
numbers are considered for brevity). The result of evaluat-
ing some term denoting an infinite list is in head normal
form, but the evaluation does not lead to infinite rewrit-
ing. Suppose that i n f i s declared as op inf: Nat - > ooList
and eq inf(X:Nat) = X i n ~ X + 1), the result of evaluating
in/(0) is "0 inf(1)." But the result of evaluating even some
term denoting a finite list might be in head normal form.
For example, the result of evaluating "tp(1 2 nil) tl(1 2 3
nil)" is "1 t/(1 2 3 n/l)" t ha t is in head normal form, but
not in normal form. The result of evaluating some term de-
noting a finite list should be in normal form. Since CafeOBJ
supports order-sorted rewriting, infinite lists are allowed to
coexist with finite lists well by having the sort ooList have a
subsort List for finite lists and declaring the constructor for
finite lists. The constructor for finite lists is given the eager
local strategy (1 2 0).

Example 8 (Coexistence of infinite lists with finite lists).

[List < ooList]
op nil : - > List
op __ : Nat List --> Lis t { s t r a t : (1 2 0) }
op __ : Nat ooList - -> ooList { s t r a t : (1 - 2 0) }
op tp : ooList - > Na t
op tl : List - > List
op tl : ooList --> ooList

The result of evaluating "tp(1 2 ni/) tl(/nt~0))" is "1
tl(inf(0))," while the result of evaluating ~tp(1 2 nil) tl(1
2 3 ni/)" is "1 2 3 nil." Since the top operator __ of the
former term is the constructor for infinite lists because the
second term tl(int~0)) denotes an infinite list, the second ar-
gument is not evaluated because of the local strategy (1 - 2
0) of the operator. The top operator __ of the lat ter term is
the constructor for finite lists because the second argument
tl(1 2 3 nil) is finite, and the both of the first and second
arguments are evaluated.

6. DISCUSSION
Lazy evaluation is fascinating because it often has a better
termination behavior than eager evaluation, while it is much
more difficult to implement efficiently lazy evaluation than
eager evaluation. Therefore some compromises have been
proposed. The functional strategy [10] is one of them, which
is often used in the field of the implementation of functional
languages such as Miranda and Haskell. The operational se-
mantics of a rewrite step and the annotated functional strat-
egy in Miranda is also given [10]. They claim that the formal
specification in a functional language has two advantages
besides the well-defined semantics. First , the partial cor-
rectness of the specification can be confirmed by an imple-
mentation of the description language. Second, the dynamic
behavior of the specified algorithms can be observed. We
can say tha t the operational semantics of rewriting with the
on-demand E-strategy in CafeOBJ has the same advantages.
Kamperman and Waiters have proposed a transformation
method for TRSs and terms to be rewritten so that lazy eval-
uation can be simulated on an implementation of eager eval-
uation: lazy rewriting on eager machinery [9]. The method
concisely expresses the intricate interaction between pattern
matching and lazy evaluation. Our operational semantics
concisely expresses the same thing by the third equation for
pm in Semantics 4, viz if the top symbol of a term is not
seemingly equal to that of a pat tern but the term has been
marked with an on-demand flag, pm retries to match the
term with the pat tern after evaluating the term.
We introduce two more examples of semantics written in
formal languages. One is the operational semantics of an
organic programming language GAEA [5] in Maude [3] a spec-
ification language based on rewriting logic [11], and the other
the algebraic semantics of imperative programs in OBJ3 [6].
Ishikawa et al. [8] have written the operational semantics of
GAEA in Maude as an instance through a s tudy on declar-
ative description of reflective concurrent systems. Goguen
and Malcolm [7] give the algebraic semantics of imperative
programs in OBJ3 so as to introduce Computing Science stu-
dents to formal reasoning about imperative programs. They
do not only write the algebraic semantics of an imperative
programming language, but also prove assertions about the
behavior of programs written in the imperative program-
ming language.

7. CONCLUSION
We have described the operational semantics of rewriting
with the on-demand E-strategy and have observed the dy-
namic behavior of rewriting with the strategy using the op-
erational semantics as an interpreter. A hint about giving
local strategies to operators (or function symbols) has been
presented as well.

761

8. REFERENCES

[1] Baader, F. and Nipkow, T.: Term Rewriting and All
That. Cambridge University Press. 1998

[2] CafeOBJ home page: http://caraway.jaist.ac.jp/cafeobj

[3] Clavel, M., Eker, S., Lincoln, P. and Meseguer, J.: Prin-
ciples of Maude. Proc. of the First Int'l. Workshop on
Rewriting Logic and its Applications. ENTCS 4 Else-
vier. (1996) 65-89

[4] Futatsugi, K., Goguen, J .A. , Jouannaud, J.P. and
Meseguer, J.: Principles of OBJ2. Conf. Record of the
Twelfth Annual ACM Sympo. on Princ. of Prog. Lang.
(1985) 52-66

[5] GAEA home page: http://cape.etl.go.jp/gaea

[6] Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K.
and Jouannand, J.P. : Introducing OBJ. Technical Re-
port SRLCSL-92-03. SRI International. 1992

[7] Goguen, J.A. and Malcolm, G.: Algebraic Semantics o/
Imperative Programs. Foundations of Computer Series.
(Eds. M. Gaxey and A. Meyer) The MIT Press. 1996

[8] Ishikawa, H., Meseguer, J., Watanabe, T., Futatsugi, K.
and Nalca-qhima, H.: On the semantics of GAEA. Proc.
of JSSST 3rd Fuji Int'l Sympo. on Functional and Logic
Programming. (1998) 123-141

[9] Kamperman, J. F. Th. and Waiters, H.R.: Lazy Rewrit-
ing and Eager Machinery. Proc. of the Int'l. Conf.
on Rewriting Techniques and Applications. LNCS 914
Springer-Verlag. (1995) 147-162

[10] Koopman, P.W.M., Smetsers, J .E.W., van Eekelen,
M. C. J.D. and Plasmeijer, M.J.: Graph Rewriting Us-
ing the Annotated Functional Strategy. In Term Graph
ReuJriting: Theory and Practice (Eds. R. Sleep, R. Plas-
meijer and M. van Eekelen). John Wiley & Sons Ltd.
(1993) 317-332

[11] Meseguer, J.: Conditional Rewriting Logic as a Unified
Model of Concurrency. Theor. Comp. Sci. 96 (1) Else-
vier. (1992) 73-155

APPENDIX

A. OPERATIONAL SEMANTICS OF
REWRITING W I T H THE ON-DEMAND
E-STRATEGY IN CAFEOBJ

We present the full of the operational semantics of rewriting
using the on-demand E-strategy in CafeOBJ.

mod! LIST (BAT : : TRIV) {

pr(NAT)
[List]
op nil : -> List
op __ : Eit.DAT List -> List {r-asso¢}

op _++_ : List List -> List
op take : List Nat -> Eit.DAT
op replace : List Nat Eit.DAT -> List
vats E E1 : Elt.DAT

v a r s L L1 : L i s t
eq nil ++ LI : LI .
eq (E L) ++ Lf = E (L ++ L1) .

eq t a k e (E L,O) : E .

eq t a k e (E L,X:NzNat) = t a k e (L , s d (l , 1)) .
eq r e p l a c e (E L , O , E 1) = E1 L .
eq r e p l a c e (E L , I : N z N a t , E 1) ffi E r e p l a c e (L , s d (X , 1) , E 1) .

}

rood! PAIR (FST : : TRIV,SND : : TRIV)
[P a i r]
op <__> : KIt.FST Eit.SND -> Pair

op 1 s t : P a i r -> E l t . F S T
op 2nd : P a i r -> E l t .SND
eq l s t (< I:EIt.FST ¥:Elt.SND >) : X .
eq 2rid(< X:EIt.FST Y:Eit.SND >) : Y .

}

rood! TRIPLE (FST : : T R I V , S ~ : : TRIV,TRD : : TRIV)
[T r i p l e]
op <___> : EIt.FST Eit.SND Eit.TRD -> Triple

op 1st : Triple -> Eit.FST

op 2rid : Triple -> Eit.SND

op 3rd : Triple -> EIt.TRD

var X : Eit.FST
var Y : Eit.SND

vat Z : Eit.TRD
eq let(< X Y Z >) : X .
eq 2 n d (< X Y Z >) : Y .
eq 3rd(< X Y Z >) = Z .

}

nod! VARIABLE principal-sort Var {

pr (STRING)
[Vat] op v a r _ : S t r i n g -> Vat

}

nod! LOCALSTRATEGY { pr(LIST(INT)*{sort List -> LStrat}) }

mod! FSYMBOL principal-sort FSyN {
pr(STRING + NAT + LOCALSTRATEGY)

[FSym]
op op___ : S t r i n g Nat LStrat -> FSym

op arity : FSym -> Nat
op strat : FSym -> LStrat

op t op : FSyN -> String

v a t S : String
v a t N : Nat
v a t L : LStrat

eq arity(op S N L) = N .
eq strat(op S N L) ffi L .

eq t o p (o p S N L) = S .

N o d ! VARLIST p r i n c i p a l - s o r t Va rL i s t
{ pr(LIST(VARIABLE)e{sort L i s t -> V a r L i s t }) }

n o d ! FSYMLIST p r i n c i p a l - s o r t F S L i s t {
pr(LIST(FSYMBOL)e{sor¢ L i s t -> FSLi s t })
op st2Fs3m : F S L i s t S t r i n g -> FSym
v a t 0 : FSym
v a r 0s : F S L i s t
v a t Sym : String

eq s t 2 F s y m ((0 0 s) ,Sym)
: i f t o p (0) ~ Sym t h e n 0 e l s e s t2Fsy~(0s ,Sym) f i .

}

n o d ! SIGNATURE p r i n c i p a l - s o r t S i g n a t u r e {
pr(PAIR(VARLIST,FSYNLIST)s{sort P a i r -> Signature})

op st2Fsym : Signature String -> FSym
eq st2Fsym(< Vs:VarList 0s:FSList >,Sym:String)

: st2Fsym(Os,Sym) .
}

n o d * QUASIPATTERN p r i n c i p a l - s o r t P a t t e r n {

pr(VARIABLE + STRING)
[Vex < P a t t e r n]

}

mod! PATTERN p r i n c i p a l - s o r t P a t t e r n {
pr(LIST(QUASIPATI~RN)s{sort L i s t -> PLier})
op _{_} : String PLier -> Pattern

op a r E : P a t t e r n NzNat -> P a t t e r n
eq arg(Sy:: String{Args: PList},X:NzNat)

: take(Args,sd(I,l)) .
}

762

uod! RULE p r i n c i p a l - s o r t Ru le {
pr(PAIR(PATTERN,PATTERN)*{sort P a i r -> Mule})
ops lhs the : Rule -> Pattern
eq 1he(an:Rule) - Ist(RR) .

eq rhs(Pa:Mule) - 2nd(It~) .
}

mod! RULELIST principal-sort RuleList
{ pr(LIST(RULE)e{sort List -> RuleList}) }

mod! TRS {

pr(PAIR(SIGNATURE,MULELIST)e{sort Pair -> Tre})
op sin : Trs -> Si6nature
op r u l e s : Trs -> RuleList
eq s i g (S y s t e m : T r s) : l e t (S y s t e m) .
eq r u l e s (S y s t e u : T r s) = 2rid(System) .

}

mod! MODE {
pr(STRIMG)

[Mode]
op _[__] : S t r i n g Bool Bool -> Node
op top : Node -> String
op upODF? : Mode -> Bool
op eval? : Node -> Bool

op upODF : Mode -> Mode
op dolm0DF : Node -> Mode
op e e t E F l a g : Mode -> Mode
v a t s 0D EF : Bool
vex Sym : S t r i n g
eq top(Sym[0D EF]) = Sym .
eq upODF?(Sym[OD EP]) =OD .

eq eval?(Sym[OD EF]) = EF .

oq upODF(Sym[OD EF]) = Sym[t rne EF] .
eq downODF(Sym[OD EF]) = Sym[false EF] .

eq setEFlag(Sym[0D EF]) = SyNCOD t r u e] .
}

rood* QUASISUBJECT { [S u b j e c t] }

mod! SUBJECT p r i n c i p a l - s o r e S u b j e c t {
pr(SIGMATURE + MODE

+ LIST(QUASISUBJECT)*{sort L i s t -> S L i s t })
op _{_} : Node S L i s t -> S u b j e c t
op t o p : S u b j e c t -> S t r i n g
OF a r i t y : S u b j e c t S i g n a t u r e -> Nat
op s t r a t : S u b j e c t S i g n a t u r e -> L S t r a t
op upODF? : S u b j e c t -> Boo1
op e v a l ? : S u b j e c t -> Bool
op upODF : Subject -> Sub jec t
op upODF : S L i s t -> S L i e r
op downODF : S u b j e c t -> S u b j e c t
op s e t E F l a g : S u b j e c t -> S u b j e c t
op a r g : S u b j e c t MzNat -> S u b j e c t
op r e p l a c e : S u b j e c t MzMat S u b j e c t -> Sub j e c t
v a t Md : Node v a r T : S u b j e c t v a t s Args Ts : S L i e r
v a t SiN : Signature
eq top(Nd{Args}) = top(Nd) .

oq arity(Nd{Args},Sig) = arity(st2Fsym(Sig,top(Md))) .
eq atrat(Md{Args},Sig) = strat(st2Fsym(Sig,top(Md))) .
eq upODF?(Md{Args}) = upODF?(Nd) .
eq eva l?(Md{Args}) = e v a l ? (M d) .
aq upODF(Nd{Ergs}) = upODF(Nd){upODF(Args)} .
eq upOVF(nil) = n i l .
eq upODF(T Ts) = upODF(T) upODF(Ts) .
eq downODP(Md{Args}) = downODF(Md){Args} .
eq se tEFlag(Md{Args}) = eetEFlag(Md){Args} .
eq arg(Md{Erge},X:NzMat) : take(Args,sd(X,l)) .
eq r e p l a c e (Nd{Arge}, X : NzMat, T: S u b j e c t)

= M d { r e p l a c e (A r g s , s d (X , l) ,T)} .
}

mod! ASSIGN p r i n c i p a l - s o r t A s s i g n
{ pr(PAIR(VARIABLE,SUBJECT)e{sort P a i r -> Ass ign}) }

mod! SUBSTITUTION p r i n c i p a l - s o r t Subat {
pr (LIST(ASSIGM)*{sor t L i s t -> Subs t})
v a r s V Vl : Vet
v a r T : S u b j e c t
v a r S : Subet
op var2term : Vat Subs¢ -> Subjec t
eq va r2 to rn (£ ,< Vl T • S)

= if V == Vl then T else v a r 2 t e r n (V , S) fi .

}

rood! MATCH
{ p r (TRIPLE (B00L, SUBSTITUTION, SUBJECT)

* { s o r t T r i p l e -> Match}) }

mod! CONTR£CTUN
{ pr(PAIR(BOOL,SUBJECT)e{sort P a i r -> Cont rac tum}) }

Nod* REWRITING {
pr(TRS + SUBJECT + MATCH + C0NTRACTUM)
op pm : S u b j e c t P a t t e r n Trs -> Match
op pml : Subst MzNat Subject Pattern Trs -> Match

op pml2 : Hatch Subst NzNat Subject Pattern Trs -> Match
op match : RuleList Subject Trs -> Contractum

op match2 : Match RuleList Tre -> Contractum
op e v a l : S u b j e c t Trs -> Sub j ec t
op reduce : Subject LStrat Trs -> Subject

op reduce2 : Contractum LStrat Trs -> Subject
op evalAr E : Subject MzNat Tre -> Subject

op upODP : S u b j e c t NzMat -> Sub j ec t
op i n s t a n t i a t e : P a t t e r n Subs t -> S u b j e c t
op i n s t a n t i a t e : PLie r Subs t -> S L i s t
v a r s T T1 : S u b j e c t
v a t s N PI : NzMat
v a r s V Sym : S t r i n g
v a t TRS : Trs
v a r Ps : P L i s t
v a t s S S1 : Subs t
v a t P : P a t t e r n
v a t LS : L S t r a t
v a r P/t : Rule
v a t RRs : R u l e L i s t
v a r NI : NzInt
ceq eva l (T ,TRS) = T i f eva l ? (T) .
ceq e v a l (T,TRS)

= reduce(T,strat(T,sig(TRS)),TRS) if n o t eval?(T) .
eq reduce(T,nil,TRS) = setEFlag(T) .
eq reduce(T, (O iS) ,TRS)

= reduce2(uatch(rules(TRS),T,TRS),LS,TRS) .
eq reduce(T, (PI LS) ,TRS)

= reduce(evalArg(T,PI,TRS) ,LS,TRS) .
ceq r educe (T , (N ILS) ,TRS)

= reduce(upODF(T,(- NI)),LS,TRS) if MI < 0 .

eq reduce2(< true T >,LS,TRS) = eval(T,TRS) .
eq reduce2(< false T >,LS,TRS) = reduce(T,LS,TRS) .
eq match(nil,T,TRS) = < false T > .
eq match((RR RRs),T,TRS)

= match2(pm(T, lhs(RE) .TRS), (RR RRs) ,TRS) .
eq match2(< t rue S T >,(RE I~s),TRS)

= < true instantiate(rhs(KR),S) • .

eq match2(< false S T >,(RR RRs),TRS) = match(RRa,T,TRS) .
eq pm(T,(var V),TRS) = < t rue (<(vat V) T > n i l) T • .
ceq pro(T, Sym{Pe},TRS)

= pml(nil,1,T,Sym{Ps},TRS) if top(T) == Sym .
ceq pm(T,Sym{Pa},TgS)

= pm(eval(down0DF(T) ,TRS) ,Sym{Ps},TgS)
if top(T) =/= Sym and upODF?(T) .

ceq pm(T,Szs{Ps},TRS) = < false nil T •
if top(T) =/= Sym and (not upODF?(T)) .

ceq pmI(S,M,T,P,TRS)
ffi pml2(pm(a~g(T,M) ,arg(P,M) ,TRS) ,S ,N,T,P ,TRS)
if M <= arity(T,sig(TRS)) .

ceq pml(S,N,T,P,TRS) = < t r u e S T •
i f M • arity(T,sig(TRS)) .

eq pml2(< t r u e S1 T1 >,S,M,T,P,TRS)
= pml(Sl +÷ S,M + I,repiace(T,N,Ti),P,TRS) .

eq pml2(< false $1 T1 >,S,N,T,P,TRS)
= < false nil replace(T,N,T1) • .

eq evalArg(T, M,TRS)

= replace(T,M,eval(downDDF(arg(T,M)) ,TRS)) .
eq upODF(T,M) = replace(T,M,upODF(arg(T,M))) .
eq inaZanZiate(var V,S) = var2term(var V,S) .
eq instant iate (Sym{Ps}, S)

= Sym[false false]{instantiate(Ps,S)} .

eq instantiate(nil,S) = nil .
eq instantiate(P Ps,S)

= instantiate(P,S) instantiate(Ps,S) .
}

763

