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ABSTRACT 
This paper introduces Espresso, a slicer generator. 
Espresso compiles the program, p, to be sliced and out- 
puts a slicer. This slicer is a multi-threaded Java pro- 
gram tailored to produce static slices for the program p, 
(and no other) but with respect to arbitrary slicing cri- 
teria. The concurrent nature of the slicers produced by 
Espresso renders them amenable to parallel execution: 
Using Java's Remote Invocation Package, the programs 
output  by Espresso can be distributed amongst many 
computing agents thereby speeding up the slicing pro- 
tess. This slicer generator approach has a number of 
advantages. It facilitates portability and provides effi- 
ciency improvement opportunities (via code optimisa- 
tion and speciaiisation and via automatic paxaileliza- 
tion). The slicers generated by Espresso also produce 
simultaneous slices and software surgery support infor- 
mation at no additional cost. 

1. INTRODUCTION 
Program slicing [46] is an automatic program extraction 
technique, which identifies statements and predicates in 
a subject program which potentially affect the values of 
certain variables at some point in the subject program. 
Informally, a program p is sliced with respect to a slicing 
criterion which is a pair (V, i), where V is a set of vari- 
ables and i is a 'point '  in the program. As is standard 
practice, the statements of the program's CFG (Control 
Flow Graph) will be labelled by 'line numbers' to allow 
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x=y; 
i f  (x==3) 

{ 
c=y; 
x=25; 
} 
i=i+1; 

x=y; 
i f  (x==3) 

{ 

z=25; 
} 

Figure 1: Program pl and its slice, pJ 

this point to be identified. The slice s of p is obtained 
from p by deleting statements and has the property that  
p and s behave identically with respect to the slicing cri- 
terion. Tip [44] and Binkley and Gallagher [10] provide 
detailed surveys of the paradigms, applications and al- 
gorithms for program slicing. 
To illustrate, consider program pl in 
Figure 1. Slicing I pl with respect to the set of variables 
{x} at the end of the program would yield the program 
P'I. 
Slicing has many applications to software engineering 
problems. The program simplification arising from slic- 
ing has been used to assist program comprehension ac- 
tivity [18; 25; 27; 24]. The identification of system ele- 
ments affected by a system modification has been used 
to support software surgery [23; 22], and to reduce re- 
gression testing effort after such surgery [8; 41]. The 
ability to extract sub-components of a system accord- 
ing to arbitrarily defined criteria has been used in re- 
engineering [12; 43; 6]. Slicing has also been applied 
to 

• cohesion measurement [7; 39; 37], 

• algorithmic debugging [42; 34], 

• component re-use [6; 14], 

IThroughout this paper, the slices produced are 'static 
backward slices' [45]. There are, however, many other 
forms of slices, for example, dynamic [35; 3], conditioned 
or constrained [11; 21] and forward [32]. 
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• program integrat ion [31], 

• dynamic memory analysis [27], 

• a r r a y  access safety analysis [9] 

and 

• software certification [36]. 

The central problem in slicing is to efficiently compute  
the dependence relat ion D,  which is the transit ive clo- 
sure of the union of d a t a  and control dependence [46; 
40; 20]. Data  and control  dependence are both binary 
relations defined between the nodes of the CFG of the  
program being sliced. The  slice of p with respect to a 
slicing criterion (V, i) is simply the set of all nodes of 
the CFG of p which are related to node i with respect 
to D. 
The most commonly used program slicing algori thms 
are based on the P D G  (Program Dependence Graph)  
[40], which is merely a representation of the dependence 
relation D (and its interprocedural counterpart  the  Sys- 
tem Dependence Graph)  [33]). This approach consists 
of a compilation phase where the PDG is constructed. 
PDG construction from a program's CFG is compara-  
tively expensive (approximately cubic in program size) 
[44]. Before the  P D G  is constructed it is not known 
which actual slicing cri ter ia  the user will wish to  apply 
and therefore using the  P D G  approach some dependen- 
cies between nodes may be computed unnecessarily. 
In Weiser's original slicing algorithm [47], the inputs  
a r e :  

1. A representation of the  CFG of the program p be- 
ing sliced and  

2. The slicing cri terion (V, i). 

Since the slicing criterion is known, only the  dependen- 
cies relevant to this  par t icular  criterion need to  be com- 
puted. This is approximate ly  quadratic in the  size of 
the program to be sliced [44]. The disadvantage of the  
approach is tha t  the  dependencies are recalculated for 
each new slicing criterion. 
Logically, there is no significant difference between, the 
PDG approach and Weiser 's  algorithm. Clearly, the  
more slices of the same program need to be performed, 
the more at t ract ive becomes the PDG approach. 
In this paper a slicer-generator, Espresso, is introduced. 
Again, 'logically' there  is no difference between the ap- 
proach introduced in this  paper  and the other approaches 
described above. The  main difference is that  given a 
program p to be sliced, Espresso produces a mul t i - th readed  
Java program [28; 38], S(p),  which when compiled and 
run, will produce slices for program p (and p only). 
Espresso can thus be thought  of as a slicer-generator. 
Since the output  of Espresso is a concurrent program 2 
it is amenable to parallel  execution and to distr ibution 
among many hardware agents. In all but pathological 
cases this parallelisation will lead to significant improve- 
ments in efficiency. Also, since the output of Espresso 
is a program, opt imizat ions can be applied in the  pro- 
duction of each slicer. 

2Espresso is b a ~ d  on the  parallel algorithm introduced 
in [17] which has been proved equivalent to Weiser 's 
algorithm in [15]. 
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program to be sliced 

~ f~tphase 

• PDG of p 

slicing criterion ~ slice of p 

General Slicer 

Figure 2: The Current Approach 

program to be sliced 

~ compile 

slicing cnNon ~ N slice ofp 

Specialized C0ncurmt Slicer for p 

Figure 3: Espresso 



1 a=0; 
2 while (s<t)  
3 {if (t-~-4) 
4 c=t; 
5 s=2; 
6 c=t+7; 
7 t=a+4; 

) 

Figure 4: The program p to be Sliced 

S(p), as a by-product ,  yields additional useful informa- 
tion about p, not available through the PDG approach. 
In addition to the slice, it yields a set of 'relevant vari- 
ables' at  each node in p 's  CFG. These relevant variables 
can be used to assess the impact of softwaxe modifica- 
tions. 
The rest of the paper  is organized as follows: 
Section 2 describes the  compilation process and Sec- 
tion 3 presents a worked example, showing the slicer, 
S(p), tha t  is produced as a result of the compilation 
process applied to a particular program p and Section 4 
illustrates the execution of this slicer with respect to a 
particular slicing criterion. Section 5 briefly enumerates 
some of the advantages of the approach. Sections 6 and 
7 present conclusions and future work. 

2. THE COMPILATION PROCESS 
Espresso compiles a subject program p into a Java pro- 
gram S(p). S(p) is a specialized slicer for p which waits 
for inputs of slicing criteria for p and outputs the result- 
ing slice of p. 
S(p) consists of a number of communicating threads, 
each corresponding to a node of p's CFG together with 
a special manager thread,  which initiates and terminates  
the computation of a slice. 
Communication between the threads of S(p) is constructed 
so that the resulting network topology mimics exactly 
the topology of the CFG, G(p), of p. Communication 
between the threads in S ~ )  is, however, in the reverse 
direction of the edges in G(p). The thread correspond- 
ing to node n in G(p) outputs messages to all threads 
that correspond to nodes m with an out-edge from m 
to n. 
Consider, for example, the program given in Figure 4. 
The topology of the resulting network produced by the 
compiler is given in Figure 5. 
All messages sent and received in this system are of 
sets containing variable names(strings) and node iden- 
tifiers(integers). The network structure is realized by 
the compiler by creating an instance of the generic class 
Node (described in section 2.1), for each node i in G(p). 
A representation of G(p) is produced. For each node 
of G(p), the set of defined and referenced variables and 
the set of nodes it controls are calculated. The cur- 
rent implementation of Espresso assumes tha t  all ex- 
pressions are side-effect free, so def(i) = 0 for all pred- 
icate nodes. Espresso also assumes that  programs are 
goto-free, so calculating controlled nodes is relatively 
straight-forward. For a predicate B the set of controlled 
nodes is simply the set of all nodes corresponding to 

oQ O 
eCJ > 
Q 

Figure 5: Network Topology of S(p) 

i 
ref 
de/ 
C 

Outs 

Unique Node ID 
The set of variables referenced this node 
The set of variables defined by this node 
The set of nodes controlled by this node 
The set of all IDs of nodes with 
out-edges in the CFG to this node 

Figure 6: Node Information 

atomic statements in the body of B together with the 
predicate nodes which guard of all non-atomic state- 
ments in the body of B. For unstructured languages, 
the calculation of controlled nodes can be achieved us- 
ing the algorithm of Ferrante, Ottenstein and Warren 
[20]. However, slicing unstructured programs[26; 5; 13; 
2] is not so straightforward. 
For each node i of G(p), an instance of the generic class 
Node, called Node(i) is created by Espresso. Given dif- 
ferent programs p and q to be sliced, the only differences 
in the Java code produced by compiling p and q using 
Espresso are: 

• the number of instances of Node (a Java Constant) 
and 

• the values of Node(i) (created by an appropriate 
call to Node's constructor) 

The generic class Node is a subclass of the Java Thread 
class, which defines the behaviour of a general node in 
terms of parameters  given in Figure 6. A single instance 
of a generic subclass Manager, also extending Thread, 
is included in the slicer generated by Espresso. It is 
the Manager tha t  is responsible for checking that  the 
system has stabilized [17] as well as acting as a simple 
user interface for the slicer. 
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Fi: 

F,(s) = 

set(name) ~ set(name); 

ifSn(def UC)¢¢ 
then (S - def) U re/tA {i} 
else S 

Figure 7: The Node Function 

2.1 The  Generic  Node  T h r e a d  
Apart from the components given in Figure 6, the class 
Node has the following components: 

• A local variable, input ,  of type Set used to store 
inputs from neighbouring nodes. 

• A method, void input(Set S), which is invoked 
by threads which output to this node. The result 
of calling input(S) is to update the current value 
of input with the union of the sets: input and S. 

• A method, output : input(Set  S, Set outids)  
which calls n . i n p u t ( S )  for all nodes in the set 
out ids .  The has the effect of outputting the value 
S to all nodes, n, in the network whose ID is in 
out ids .  

Wait for user to input slicing criterion 

1 
S~ up node rheas with appmp'iate initial inl~Is 

I 
Monitor inter-ncx~ communication for mbilizati~ 

l 
Stop nodes when stabilization has occcuN 

l 
ce ~ user 

Figure 9: The Manager Cycle 

The run method of Node repeatedly calls 
output (F( input ) ,Suts )  to output  the value F( input )  
on all its out neighbours (Outs), where F is the Node 
Function given in Figure 7. The run method then re- 
ports its output to the Manager. 
The value of a node's inpu t  is continually updated asyn- 
chronously as a result of its in neighbours invoking its 
inpu t  method. 
The Node function F of a node n is at the heart of the 
computation of a slice. Its behaviour is defined as a 
function on sets of names in Figure 7. more informally, 
if the current input, S, to the node n, intersects n 's  its 
defined variables or its controlled nodes then F yields 
the set consisting of :- 

1. All its input variables (elements of S) that it n not 
define, 

2. All variables that n references, 

3. The node ID, i of the node n. 

Otherwise (if S has elements in common neither with 
n's defined variables nor its controlled nodes) then F 
mcrely yields the input set S unchanged. 
The result of executing the concurrent network produces 
the functional composition of instances of Fi, for each 
node i, which result in slices identical to those pro- 
duced by Weiser's algorithm [46]. This result is formally 
proved correct in [15]. 
The F~ are implemented in Java with a method, 
Set nodeFunction(Set s) (Figure 8) in class Node. Us- 
ing functional design patterns[19] to implement poly- 
morphic sets allows nodeFunct ion to he written in a 
way that  closely resembles the mathematical definition 
given in Figure 7 .  
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2.2 T h e  M a n a g e r  T h r e a d  
Initially, the manager waits for the user to input a si- 
multaneous slicing criterion, {(Vi, n~)}. Having received 
user input ,  it then causes each node ni to output the set 

by invoking ni ' s  output  method as described in Sec- 
t ion 2.1. It then starts each node thread. The Manager 
is informed each time a node outputs  a message. If there 
has been no change on the values of each node's inpu t  
after every node has output  a new message, then fur- 
ther activity cannot produce new values [17]. That  is, 
the network has stabilized. The manager stops all the 
threads, outputs a representation of the slice and awaits 
another slicing criterion. If, on the other hand, there has 
been some change to the network state, then the man- 
ager records the new state and allows communication to 
continue. 

3. EXAMPLE C O M P I L A T I O N  
Let p, the program to be sliced be the one shown in 
Figure 4. 
Espresso outputs, S(p), a Java program consisting of a 
network of threads whose initial state is shown in Fig- 
ure 10. in this figure each node depicts three items of 
state information. The controlled nodes (at the top) and 
the defined and references variables sets (on the bottom 
left and  right respectively). 
In this case, Espresso generated eight instances of the 
class Node, one for each node of G(p) (apart from the 
exit node). 
Each node is generated by a call to the Node constructor 
function. For example, to generate the instance corre- 
sponding to Node 2 in Figure 10, the code containing 
a call to the Node constructor shown in Figure 11 was 
generated. 



Set  nodeFunct ion(Set  s){ 
i f  ( ! s . i n t e r s e c t ( d e f . u n i o n ( C ) ) . i s E m p t y ( ) )  
return s.minus(def).union(ref).union(new ConsSet(new Integer(id),new Empty())); 
else return s ;} 

Figure 8: The Node 

Figure 10: Initial  State of S(p) 

processes[2] = 
new Node(2, / * i d * /  

new ConsSet(new I n t e g e r ( 7 ) ,  
new ConsSet(new I n t e g e r ( I ) ,  

new Empty())),  /*outs={1 ,7}*/  

new ConsSet(new I n t e g e r ( 3 ) ,  
new ConsSet(new I n t e g e r ( 4 ) ,  

new ConsSet(new I n t e g e r ( 5 ) ,  
new ConsSet(new I n t e g e r ( 6 ) ,  

new ConsSet (new I n t e g e r ( 7 ) ,  
new E m p t y ( ) ) ) ) ) ) ,  / * C = { 3 , 4 , 5 , 6 , 7 } * /  

new ConsSet ("s", 
new ConsSet("t", 
new Empty())), /*ref={"s", "t"}*/ 

new Empty(), /*def=emptyset*/  

new Em~tyO / * i n p u t f e m p t y s e t * /  
);  

Figure 11: The Code Generated for Node 2 
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4. EXAMPLE EXECUTION 
Suppose a slice of p is to be constructed with respect to 
the criterion ({c},7) using the Espresso-generated slicer. 
The manager causes node 7 to output the message {c} 
to node 6 and then starts the network. 
A trace of the execution sequence that occurred is shown 
below. Espresso-generated slicers are non-deterministic 
in the sense that  different executions may produce dif- 
ferent interleavings of events [30]. However, the final 
output is deterministic, and so Espresso-slicers will al- 
ways generate the same slices, but the computations 
involved may differ depending upon the scheduling of 
execution of node functions. For brevity, only commu- 
nication which contributes to changes in the value on an 
edge are shown (whenever the manager thread executes 
a line is also included in the trace to show this.) 

Manager . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input  to process 6: {c} 
Input  to process  5: {t ,6} 
Input  to process 4: {t ,6} 
Input  to process 3: {t ,6} 
Input  to process 2: {t ,6} 
Input  to process 7: {6 , s , t , 2}  
Input  to process  1: {6 , s , t , 2}  
Input  to process  6: {c ,6 , s ,2 , a ,7}  
Manager . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input  to process O: {6 , s , t , 2}  
Input  to process 5: { s , 2 , a , 7 , t , 6 }  
Manager . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input  to process 4: { 2 , a , 7 , t , 6 , 5}  
Input  to process 3: {2 , a ,7 , t , 6 ,5}  
Manager .......................... 

Input to process 2: {2,a,7,t,6,5} 
Manager .......................... 
Input to process 7: {a,7,6,5,s,t,2} 
Input to process I: {a,7,6,5,s,t,2} 
Input to process 6: {c,6,5,s,2,a,7} 
Manager .......................... 
Input to process 5: {5,s,2,a,7,t,6} 
Input to process 0: {7,6,5,s,t,2,1} 
Manager .......................... 
Manager .......................... 

The manager has noticed that system has stabilized i.e. 
it has reached a fixed-pointS16]. Further communication 
cannot add any new information to the edges. The final 
state of the network is shown in Figure 12. 
From the final state of the network, the slice of the orig- 
inal program is constructed by including those state- 
ments and predicates whose node identifiers, {1, 2, 5, 6, 7}, 
have reached the ENTRY node (node 0). 

5. ADVANTAGES OF ESPRESSO 



ats 

®QQ  

Figure 12: Final State 

I a=O; 
2 while (s<t) 

{ 

5 s=2; 
6 c=t+7; 
7 tfa+4 

} 

Figure 13: The Slice 
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The Espresso slicer-generator approach has several ad- 
vantages, some of which derive from the  parallel al- 
gorithm [17] which its slicers implement,  and some of 
which result  from the slicer-generator approach itself. 
This section briefly describes some of these advantages 
to motivate the  use of Espresso and  a slicer generator 
approach. 

5.1 Software Surgery Assistance 
A useful by-produc t  of slicing using Espresso is the set 
of final labeUings of each arc. This by -p roduc t  does not 
exist in any other approach to program slicing. 
During software development and particularly mainte- 
nance, it  is important  to affect a source code change 
without introducing undesired r ipple effects. This has 
been called software surgery [22; 23]. Typically, regres- 
sion testing is required after software surgery to test 
for the presence of ripple effects. Slicing can be used 
to reduce the  regression testing effort required by iden- 
tifying the  subset of tests which could be affected by 
surgery [8; 41]. However, it would be bet ter  to remove 
the requirement for regression test ing altogether. This 
is the  goal of the  Surgeon's Assistant  [22] project, in 
which changes are made to the decomposition slice [23], 
and changes which could affect the  complement of this 
decomposition slice are disallowed. 
Using the final edge labelling produced by Espresso, 
these illegal changes can be identified in a straightfor- 
ward manner. Suppose S is the  slice of p with respect 
to the slicing criterion C. On each edge e there will be a 
slicing criterion ec ,  which is equivalent to C in the sense 
that  the  slice of P with respect to  e c  will be a subset 
of S [17]. This means that  changes to e c  will impact 
C. Using this information, it  is possible to assess the 
ripple effects of changes during software surgery [22]. A 
modification of any node upon which edge e is incident, 
must preserve ec  if it is to preserve C. 
To illustrate, consider the example in Figure 14. Sup-- 
pose a change is to be made to the  computation of 
the  product ,  p, which is computed incorrectly. Such 
a change is software surgery. The  surgery should af- 
fect the final value of p, but leave the final value of s 
unaffected. To affect the final value of s, would be to 
introduce a harmful ripple effect. 
The left hand section of Figure 14 shows a node from 
the program's CFG, while the right hand section shows 
the slicing criterion which is computed  to apply to that  
node, when the Espresso-generated slicer computes a 
slice for the  final value of s. The sets of variables in these 
criteria must  remain unaffected in order to preserve the 
final value of s. For example, suppose the  maintainer 
wants to change to node 2, replacing it with p=l;  to cor- 
rect the  fault in the computation of the  product. This 
is allowable, because p is not in the  set of variables to 
preserve at  node 2. However, replacing this node with 
one which affects s is not allowed. 

5.2 Simultaneous Slicing 
Although the  algorithm underlying Espresso was orig- 
inally designed as a parallel version of Weiser's, it has 
since been noticed that  it produces s imul taneous  slices. 
A simultaneous slice is a generalised version of a slice in 
the  sense tha t  rather  than giving a single slicing crite- 
rion, a whole set 6' = {(ni,]/~)]i = 1 - . . k }  of k slicing 



Variables 
Original Program to 

Preserve 
1 s=O; 
2 p=O; 
3 sca nf  ("~d",  kn) ; 
4 vhile (n>=O) 
5 { s=s+n; 
6 p=p*n; } 
7 printf ("7.d" ,s) ; 
8 prlnt f ("7.d" ,p) ; 

S 

S 

B i n  

s , n  

s , n  

s , n  

S 

s 

Figure 14: Software Surgery: To Preserve s 

criteria is given. A simultaneous slice p' of p with re- 
spect to C must be such that  for all i p '  is a slice of p' 
with respect to (hi, Vi). 
Simultaneous slices can also be computed using the PDG- 
based approach [33] and using the iterative solution of 
data flow equations [47], because the slice with respect 
to criteria {C1, . . .  , Ck} is simply the distr ibuted union 
of the slices constructed for the individual slicing criteria 
C1, . . .  , Ck. However, using Espresso-produced slicers, 
the simultaneous slice can be produced at no ext ra  com- 
putational cost. 

5.3 Portability 
The Java virtual machine is supported on many plat- 
forms, with the result tha t  Espresso produces highly 
portable slicers. For example, a Espresso-produced slicer 
can be executed in any Java-enabled web browser. In 
addition, changing the 'back end' code generator is far 
more easy tha t  changing the 'front end'  compiler for 
the source language. The authors therefore believe that  
the slicer-generator approach could be used in a man- 
ner somewhat similar to a cross-compiler, in which the 
Espresso's code generator is replaced with different code 
generators to produce slicers for different platforms. 

5.4 Efficiency through Optimization 
Since Espresso produces a slicing program ra ther  than 
a slice of a program, compiler optimisation may  be ap- 
plied to improve the efficiency of a particular slicer con- 
structed. For example, the code for computing the out- 
put of a node which does not define a variable can be 
optimized, because the rule involves calculating the  dif- 
ference of the defined variables with the slicing criterion 
at that  node (see Figure 7). In the case where such a 
node defines no variables the computation of the  output  
slicing criterion F~(S) will be 

S -  @ U ref U { i }  

which the compiler optimisation can reduce using con- 
stant folding [4] to give 

s u ,'ey u {i} 

This optimisation can be applied to all side-effect free 
predicate nodes (which will, by definition, have empty 

defined variable sets). Similarly, for constant assign- 
ments, which have no referenced variables, constant fold- 
ing will optimise the  code which computes the output 
slicing criterion to: 

s - def u {i} 

5.5 Efficiency thrrough Parallelism 
Java's Remote Method Invocation (RMI) package pro- 
vides the  abili ty to make remote procedure calls[28; 38]. 
This means tha t  a thread on one physical machine can 
invoke a method running on a different physical ma- 
chine. 
The Espresso-produced slicer is highly concurrent since 
it has a different logical thread for each node in the pro- 
gram's CFG. Using Java's RMI there is the possibility, 
therefore, to distr ibute [1] the work performed by these 
individual nodes among different pieces of hardware. 
To improve speed, our mult i - threaded approach allows 
the system to be designed in such a way tha t  the number 
of processors used to perform slicing can vary with the 
size and topology of the program being sliced. Large 
programs will require many processors and small pro- 
grams few. 
Since the  granularity is so fine, this distribution can be 
achieved in a variety of ways, from one extreme where 
all threads  axe running on the same machine, to the 
opposite extreme where each node has its own processor. 
In most situations the latter approach would be wasteful 
in communication overhead; it will be more effective to 
have clusters of nodes that  communicate often, running 
on the same piece of hardware. 
The nodes of sub CFGs which form hammock graphs 
[29] (single entry single exit graphs) tend to communi- 
cate more with other nodes of the sub CFG than with 
those in the  surrounding graph. Such sub-CFG may, 
therefore, form the basis for a suitable decomposition of 
the overall task of slicing for distributed computation. 
However, the  current implementation of Espresso does 
not exploit RMI. The authors are currently working on 
the implementation of this feature, which remains the 
subject of future work. 

6. C O N C L U S I O N  
Espresso is a slicer generator, whose input is a program 
to be sliced and whose output is a specialized multi- 
threaded slicer for that  particular program. 
The approach is essentially a slicer-generator approach, 
in which slices are constructed by a tailor-made slicer. 
Thus, instead of slicing using a single generic slicer, 
which takes a program p and a criterion c to produce a 
slice s, Espresso takes a program p and produces a slicer 
S(p). S(p) takes a criterion c and produces a slice s. 
The slicer generated implements the parallel algorithm 
for stat ic program slicing, which allows it to exploit the 
inherent parallelism in the subject program's CFG. This 
is achieved by Espresso using Java threads. 

7. F U T U R E  W O R K  
Among the  advantages of the approach listed in Sec- 
tion 5, was the  possibility of exploiting Java's KMI to 
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distr ibute the task of slicing a large program across sev- 
eral machines. This facility is not present in the current 
implementation of Espresso. More work is required in 
order to implement analysis of the CFG of the program 
being sliced in conjunction with the physical configura- 
tion of hardware. This analysis will be used by the next 
version of Espresso to enable it to find a suitable dis- 
t r ibut ion of nodes and subgraphs across processors and 
machines. 
Espresso is essentially a compiler which given a program 
p to be sliced, produces a Java program of that  imple- 
ments a parallelisation of Weiser 's Algorithm. We are 
also currently working on a similar parallelisation which 
uses the PDG approach to program slicing. 
Espresso has currently been implemented to perform 
intra-procedural slicing. Some theoretical work on han- 
dling program's with procedures has been undertaken [16]. 
I t  is currently envisaged tha t  each procedure body will 
be compiled separately and tha t  and new instances of 
each procedure thread will be dynamically created as 
the result of procedure calls, more work is required to 
implement this and to experiment with the results. 
Espresso is a system where a parallel solution to a graph-  
analytical problem (program slicing) has been produced 
by a compilation process which creates a network of con- 
current processes whose topology is identical to that  of 
the  graph being analysed. The  authors believe that  it is 
unlikely that program slicing is the only problem where 
this method will be useful. Further work is required 
to investigate whether such an approach is suitable for 
other problems in program dependence in particular and 
to graph analysis in general. 
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