
Espresso: A Slicer Generator

Sebastian Danicic
School of Informatics

University of North London
London, N7 8DB

England
Tel: +44 (0)171 973 4833
Fax: +44 (0)171 753 7009

s.danicic@unl.ac.uk

Mark Harman
Dept. of Mathematical & Computing Sciences

Goldsmiths College, University of London
London, SE14 6NW

England
Tel: +44 (0)171 919 7860
Fax: +44 (0)171 919 7853

m.harman@gold.ac.uk

Keywords
Slicing, Software Surgery, Java Threads

ABSTRACT
This paper introduces Espresso, a slicer generator.
Espresso compiles the program, p, to be sliced and out-
puts a slicer. This slicer is a multi-threaded Java pro-
gram tailored to produce static slices for the program p,
(and no other) but with respect to arbitrary slicing cri-
teria. The concurrent nature of the slicers produced by
Espresso renders them amenable to parallel execution:
Using Java's Remote Invocation Package, the programs
output by Espresso can be distributed amongst many
computing agents thereby speeding up the slicing pro-
tess. This slicer generator approach has a number of
advantages. It facilitates portability and provides effi-
ciency improvement opportunities (via code optimisa-
tion and speciaiisation and via automatic paxaileliza-
tion). The slicers generated by Espresso also produce
simultaneous slices and software surgery support infor-
mation at no additional cost.

1. INTRODUCTION
Program slicing [46] is an automatic program extraction
technique, which identifies statements and predicates in
a subject program which potentially affect the values of
certain variables at some point in the subject program.
Informally, a program p is sliced with respect to a slicing
criterion which is a pair (V, i), where V is a set of vari-
ables and i is a 'point ' in the program. As is standard
practice, the statements of the program's CFG (Control
Flow Graph) will be labelled by 'line numbers' to allow

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(c) 2000 ACM 1-58113-239-5/00/003>...>$5.00

831

x=y;
i f (x==3)

{
c=y;
x=25;
}
i=i+1;

x=y;
i f (x==3)

{

z=25;
}

Figure 1: Program pl and its slice, pJ

this point to be identified. The slice s of p is obtained
from p by deleting statements and has the property that
p and s behave identically with respect to the slicing cri-
terion. Tip [44] and Binkley and Gallagher [10] provide
detailed surveys of the paradigms, applications and al-
gorithms for program slicing.
To illustrate, consider program pl in
Figure 1. Slicing I pl with respect to the set of variables
{x} at the end of the program would yield the program
P'I.
Slicing has many applications to software engineering
problems. The program simplification arising from slic-
ing has been used to assist program comprehension ac-
tivity [18; 25; 27; 24]. The identification of system ele-
ments affected by a system modification has been used
to support software surgery [23; 22], and to reduce re-
gression testing effort after such surgery [8; 41]. The
ability to extract sub-components of a system accord-
ing to arbitrarily defined criteria has been used in re-
engineering [12; 43; 6]. Slicing has also been applied
to

• cohesion measurement [7; 39; 37],

• algorithmic debugging [42; 34],

• component re-use [6; 14],

IThroughout this paper, the slices produced are 'static
backward slices' [45]. There are, however, many other
forms of slices, for example, dynamic [35; 3], conditioned
or constrained [11; 21] and forward [32].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F338407.338574&domain=pdf&date_stamp=2000-03-01

• program integrat ion [31],

• dynamic memory analysis [27],

• a r r a y access safety analysis [9]

and

• software certification [36].

The central problem in slicing is to efficiently compute
the dependence relat ion D, which is the transit ive clo-
sure of the union of d a t a and control dependence [46;
40; 20]. Data and control dependence are both binary
relations defined between the nodes of the CFG of the
program being sliced. The slice of p with respect to a
slicing criterion (V, i) is simply the set of all nodes of
the CFG of p which are related to node i with respect
to D.
The most commonly used program slicing algori thms
are based on the P D G (Program Dependence Graph)
[40], which is merely a representation of the dependence
relation D (and its interprocedural counterpart the Sys-
tem Dependence Graph) [33]). This approach consists
of a compilation phase where the PDG is constructed.
PDG construction from a program's CFG is compara-
tively expensive (approximately cubic in program size)
[44]. Before the P D G is constructed it is not known
which actual slicing cri ter ia the user will wish to apply
and therefore using the P D G approach some dependen-
cies between nodes may be computed unnecessarily.
In Weiser's original slicing algorithm [47], the inputs
a r e :

1. A representation of the CFG of the program p be-
ing sliced and

2. The slicing cri terion (V, i).

Since the slicing criterion is known, only the dependen-
cies relevant to this par t icular criterion need to be com-
puted. This is approximate ly quadratic in the size of
the program to be sliced [44]. The disadvantage of the
approach is tha t the dependencies are recalculated for
each new slicing criterion.
Logically, there is no significant difference between, the
PDG approach and Weiser 's algorithm. Clearly, the
more slices of the same program need to be performed,
the more at t ract ive becomes the PDG approach.
In this paper a slicer-generator, Espresso, is introduced.
Again, 'logically' there is no difference between the ap-
proach introduced in this paper and the other approaches
described above. The main difference is that given a
program p to be sliced, Espresso produces a mul t i - th readed
Java program [28; 38], S(p), which when compiled and
run, will produce slices for program p (and p only).
Espresso can thus be thought of as a slicer-generator.
Since the output of Espresso is a concurrent program 2
it is amenable to parallel execution and to distr ibution
among many hardware agents. In all but pathological
cases this parallelisation will lead to significant improve-
ments in efficiency. Also, since the output of Espresso
is a program, opt imizat ions can be applied in the pro-
duction of each slicer.

2Espresso is b a ~ d on the parallel algorithm introduced
in [17] which has been proved equivalent to Weiser 's
algorithm in [15].

8 3 2

program to be sliced

~ f~tphase

• PDG of p

slicing criterion ~ slice of p

General Slicer

Figure 2: The Current Approach

program to be sliced

~ compile

slicing cnNon ~ N slice ofp

Specialized C0ncurmt Slicer for p

Figure 3: Espresso

1 a=0;
2 while (s<t)
3 {if (t-~-4)
4 c=t;
5 s=2;
6 c=t+7;
7 t=a+4;

)

Figure 4: The program p to be Sliced

S(p), as a by-product , yields additional useful informa-
tion about p, not available through the PDG approach.
In addition to the slice, it yields a set of 'relevant vari-
ables' at each node in p 's CFG. These relevant variables
can be used to assess the impact of softwaxe modifica-
tions.
The rest of the paper is organized as follows:
Section 2 describes the compilation process and Sec-
tion 3 presents a worked example, showing the slicer,
S(p), tha t is produced as a result of the compilation
process applied to a particular program p and Section 4
illustrates the execution of this slicer with respect to a
particular slicing criterion. Section 5 briefly enumerates
some of the advantages of the approach. Sections 6 and
7 present conclusions and future work.

2. THE COMPILATION PROCESS
Espresso compiles a subject program p into a Java pro-
gram S(p). S(p) is a specialized slicer for p which waits
for inputs of slicing criteria for p and outputs the result-
ing slice of p.
S(p) consists of a number of communicating threads,
each corresponding to a node of p's CFG together with
a special manager thread, which initiates and terminates
the computation of a slice.
Communication between the threads of S(p) is constructed
so that the resulting network topology mimics exactly
the topology of the CFG, G(p), of p. Communication
between the threads in S ~) is, however, in the reverse
direction of the edges in G(p). The thread correspond-
ing to node n in G(p) outputs messages to all threads
that correspond to nodes m with an out-edge from m
to n.
Consider, for example, the program given in Figure 4.
The topology of the resulting network produced by the
compiler is given in Figure 5.
All messages sent and received in this system are of
sets containing variable names(strings) and node iden-
tifiers(integers). The network structure is realized by
the compiler by creating an instance of the generic class
Node (described in section 2.1), for each node i in G(p).
A representation of G(p) is produced. For each node
of G(p), the set of defined and referenced variables and
the set of nodes it controls are calculated. The cur-
rent implementation of Espresso assumes tha t all ex-
pressions are side-effect free, so def(i) = 0 for all pred-
icate nodes. Espresso also assumes that programs are
goto-free, so calculating controlled nodes is relatively
straight-forward. For a predicate B the set of controlled
nodes is simply the set of all nodes corresponding to

oQ O
eCJ >
Q

Figure 5: Network Topology of S(p)

i
ref
de/
C

Outs

Unique Node ID
The set of variables referenced this node
The set of variables defined by this node
The set of nodes controlled by this node
The set of all IDs of nodes with
out-edges in the CFG to this node

Figure 6: Node Information

atomic statements in the body of B together with the
predicate nodes which guard of all non-atomic state-
ments in the body of B. For unstructured languages,
the calculation of controlled nodes can be achieved us-
ing the algorithm of Ferrante, Ottenstein and Warren
[20]. However, slicing unstructured programs[26; 5; 13;
2] is not so straightforward.
For each node i of G(p), an instance of the generic class
Node, called Node(i) is created by Espresso. Given dif-
ferent programs p and q to be sliced, the only differences
in the Java code produced by compiling p and q using
Espresso are:

• the number of instances of Node (a Java Constant)
and

• the values of Node(i) (created by an appropriate
call to Node's constructor)

The generic class Node is a subclass of the Java Thread
class, which defines the behaviour of a general node in
terms of parameters given in Figure 6. A single instance
of a generic subclass Manager, also extending Thread,
is included in the slicer generated by Espresso. It is
the Manager tha t is responsible for checking that the
system has stabilized [17] as well as acting as a simple
user interface for the slicer.

833

Fi:

F,(s) =

set(name) ~ set(name);

ifSn(def UC)¢¢
then (S - def) U re/tA {i}
else S

Figure 7: The Node Function

2.1 The Generic Node T h r e a d
Apart from the components given in Figure 6, the class
Node has the following components:

• A local variable, input , of type Set used to store
inputs from neighbouring nodes.

• A method, void input(Set S), which is invoked
by threads which output to this node. The result
of calling input(S) is to update the current value
of input with the union of the sets: input and S.

• A method, output : input(Set S, Set outids)
which calls n . i n p u t (S) for all nodes in the set
out ids . The has the effect of outputting the value
S to all nodes, n, in the network whose ID is in
out ids .

Wait for user to input slicing criterion

1
S~ up node rheas with appmp'iate initial inl~Is

I
Monitor inter-ncx~ communication for mbilizati~

l
Stop nodes when stabilization has occcuN

l
ce ~ user

Figure 9: The Manager Cycle

The run method of Node repeatedly calls
output (F(input) ,Suts) to output the value F(input)
on all its out neighbours (Outs), where F is the Node
Function given in Figure 7. The run method then re-
ports its output to the Manager.
The value of a node's inpu t is continually updated asyn-
chronously as a result of its in neighbours invoking its
inpu t method.
The Node function F of a node n is at the heart of the
computation of a slice. Its behaviour is defined as a
function on sets of names in Figure 7. more informally,
if the current input, S, to the node n, intersects n 's its
defined variables or its controlled nodes then F yields
the set consisting of :-

1. All its input variables (elements of S) that it n not
define,

2. All variables that n references,

3. The node ID, i of the node n.

Otherwise (if S has elements in common neither with
n's defined variables nor its controlled nodes) then F
mcrely yields the input set S unchanged.
The result of executing the concurrent network produces
the functional composition of instances of Fi, for each
node i, which result in slices identical to those pro-
duced by Weiser's algorithm [46]. This result is formally
proved correct in [15].
The F~ are implemented in Java with a method,
Set nodeFunction(Set s) (Figure 8) in class Node. Us-
ing functional design patterns[19] to implement poly-
morphic sets allows nodeFunct ion to he written in a
way that closely resembles the mathematical definition
given in Figure 7 .

834

2.2 T h e M a n a g e r T h r e a d
Initially, the manager waits for the user to input a si-
multaneous slicing criterion, {(Vi, n~)}. Having received
user input , it then causes each node ni to output the set

by invoking ni ' s output method as described in Sec-
t ion 2.1. It then starts each node thread. The Manager
is informed each time a node outputs a message. If there
has been no change on the values of each node's inpu t
after every node has output a new message, then fur-
ther activity cannot produce new values [17]. That is,
the network has stabilized. The manager stops all the
threads, outputs a representation of the slice and awaits
another slicing criterion. If, on the other hand, there has
been some change to the network state, then the man-
ager records the new state and allows communication to
continue.

3. EXAMPLE C O M P I L A T I O N
Let p, the program to be sliced be the one shown in
Figure 4.
Espresso outputs, S(p), a Java program consisting of a
network of threads whose initial state is shown in Fig-
ure 10. in this figure each node depicts three items of
state information. The controlled nodes (at the top) and
the defined and references variables sets (on the bottom
left and right respectively).
In this case, Espresso generated eight instances of the
class Node, one for each node of G(p) (apart from the
exit node).
Each node is generated by a call to the Node constructor
function. For example, to generate the instance corre-
sponding to Node 2 in Figure 10, the code containing
a call to the Node constructor shown in Figure 11 was
generated.

Set nodeFunct ion(Set s){
i f (! s . i n t e r s e c t (d e f . u n i o n (C)) . i s E m p t y ())
return s.minus(def).union(ref).union(new ConsSet(new Integer(id),new Empty()));
else return s ;}

Figure 8: The Node

Figure 10: Initial State of S(p)

processes[2] =
new Node(2, / * i d * /

new ConsSet(new I n t e g e r (7) ,
new ConsSet(new I n t e g e r (I) ,

new Empty())), /*outs={1 ,7}*/

new ConsSet(new I n t e g e r (3) ,
new ConsSet(new I n t e g e r (4) ,

new ConsSet(new I n t e g e r (5) ,
new ConsSet(new I n t e g e r (6) ,

new ConsSet (new I n t e g e r (7) ,
new E m p t y ()))))) , / * C = { 3 , 4 , 5 , 6 , 7 } * /

new ConsSet ("s",
new ConsSet("t",
new Empty())), /*ref={"s", "t"}*/

new Empty(), /*def=emptyset*/

new Em~tyO / * i n p u t f e m p t y s e t * /
);

Figure 11: The Code Generated for Node 2

835

Function in Java

4. EXAMPLE EXECUTION
Suppose a slice of p is to be constructed with respect to
the criterion ({c},7) using the Espresso-generated slicer.
The manager causes node 7 to output the message {c}
to node 6 and then starts the network.
A trace of the execution sequence that occurred is shown
below. Espresso-generated slicers are non-deterministic
in the sense that different executions may produce dif-
ferent interleavings of events [30]. However, the final
output is deterministic, and so Espresso-slicers will al-
ways generate the same slices, but the computations
involved may differ depending upon the scheduling of
execution of node functions. For brevity, only commu-
nication which contributes to changes in the value on an
edge are shown (whenever the manager thread executes
a line is also included in the trace to show this.)

Manager .
Input to process 6: {c}
Input to process 5: {t ,6}
Input to process 4: {t ,6}
Input to process 3: {t ,6}
Input to process 2: {t ,6}
Input to process 7: {6 , s , t , 2}
Input to process 1: {6 , s , t , 2}
Input to process 6: {c ,6 , s ,2 , a ,7}
Manager .
Input to process O: {6 , s , t , 2}
Input to process 5: { s , 2 , a , 7 , t , 6 }
Manager .
Input to process 4: { 2 , a , 7 , t , 6 , 5}
Input to process 3: {2 , a ,7 , t , 6 ,5}
Manager

Input to process 2: {2,a,7,t,6,5}
Manager
Input to process 7: {a,7,6,5,s,t,2}
Input to process I: {a,7,6,5,s,t,2}
Input to process 6: {c,6,5,s,2,a,7}
Manager
Input to process 5: {5,s,2,a,7,t,6}
Input to process 0: {7,6,5,s,t,2,1}
Manager
Manager

The manager has noticed that system has stabilized i.e.
it has reached a fixed-pointS16]. Further communication
cannot add any new information to the edges. The final
state of the network is shown in Figure 12.
From the final state of the network, the slice of the orig-
inal program is constructed by including those state-
ments and predicates whose node identifiers, {1, 2, 5, 6, 7},
have reached the ENTRY node (node 0).

5. ADVANTAGES OF ESPRESSO

ats

®QQ

Figure 12: Final State

I a=O;
2 while (s<t)

{

5 s=2;
6 c=t+7;
7 tfa+4

}

Figure 13: The Slice

836

The Espresso slicer-generator approach has several ad-
vantages, some of which derive from the parallel al-
gorithm [17] which its slicers implement, and some of
which result from the slicer-generator approach itself.
This section briefly describes some of these advantages
to motivate the use of Espresso and a slicer generator
approach.

5.1 Software Surgery Assistance
A useful by-produc t of slicing using Espresso is the set
of final labeUings of each arc. This by -p roduc t does not
exist in any other approach to program slicing.
During software development and particularly mainte-
nance, it is important to affect a source code change
without introducing undesired r ipple effects. This has
been called software surgery [22; 23]. Typically, regres-
sion testing is required after software surgery to test
for the presence of ripple effects. Slicing can be used
to reduce the regression testing effort required by iden-
tifying the subset of tests which could be affected by
surgery [8; 41]. However, it would be bet ter to remove
the requirement for regression test ing altogether. This
is the goal of the Surgeon's Assistant [22] project, in
which changes are made to the decomposition slice [23],
and changes which could affect the complement of this
decomposition slice are disallowed.
Using the final edge labelling produced by Espresso,
these illegal changes can be identified in a straightfor-
ward manner. Suppose S is the slice of p with respect
to the slicing criterion C. On each edge e there will be a
slicing criterion ec , which is equivalent to C in the sense
that the slice of P with respect to e c will be a subset
of S [17]. This means that changes to e c will impact
C. Using this information, it is possible to assess the
ripple effects of changes during software surgery [22]. A
modification of any node upon which edge e is incident,
must preserve ec if it is to preserve C.
To illustrate, consider the example in Figure 14. Sup--
pose a change is to be made to the computation of
the product , p, which is computed incorrectly. Such
a change is software surgery. The surgery should af-
fect the final value of p, but leave the final value of s
unaffected. To affect the final value of s, would be to
introduce a harmful ripple effect.
The left hand section of Figure 14 shows a node from
the program's CFG, while the right hand section shows
the slicing criterion which is computed to apply to that
node, when the Espresso-generated slicer computes a
slice for the final value of s. The sets of variables in these
criteria must remain unaffected in order to preserve the
final value of s. For example, suppose the maintainer
wants to change to node 2, replacing it with p=l; to cor-
rect the fault in the computation of the product. This
is allowable, because p is not in the set of variables to
preserve at node 2. However, replacing this node with
one which affects s is not allowed.

5.2 Simultaneous Slicing
Although the algorithm underlying Espresso was orig-
inally designed as a parallel version of Weiser's, it has
since been noticed that it produces s imul taneous slices.
A simultaneous slice is a generalised version of a slice in
the sense tha t rather than giving a single slicing crite-
rion, a whole set 6' = {(ni,]/~)]i = 1 - . . k } of k slicing

Variables
Original Program to

Preserve
1 s=O;
2 p=O;
3 sca nf ("~d", kn) ;
4 vhile (n>=O)
5 { s=s+n;
6 p=p*n; }
7 printf ("7.d" ,s) ;
8 prlnt f ("7.d" ,p) ;

S

S

B i n

s , n

s , n

s , n

S

s

Figure 14: Software Surgery: To Preserve s

criteria is given. A simultaneous slice p' of p with re-
spect to C must be such that for all i p ' is a slice of p'
with respect to (hi, Vi).
Simultaneous slices can also be computed using the PDG-
based approach [33] and using the iterative solution of
data flow equations [47], because the slice with respect
to criteria {C1, . . . , Ck} is simply the distr ibuted union
of the slices constructed for the individual slicing criteria
C1, . . . , Ck. However, using Espresso-produced slicers,
the simultaneous slice can be produced at no ext ra com-
putational cost.

5.3 Portability
The Java virtual machine is supported on many plat-
forms, with the result tha t Espresso produces highly
portable slicers. For example, a Espresso-produced slicer
can be executed in any Java-enabled web browser. In
addition, changing the 'back end' code generator is far
more easy tha t changing the 'front end' compiler for
the source language. The authors therefore believe that
the slicer-generator approach could be used in a man-
ner somewhat similar to a cross-compiler, in which the
Espresso's code generator is replaced with different code
generators to produce slicers for different platforms.

5.4 Efficiency through Optimization
Since Espresso produces a slicing program ra ther than
a slice of a program, compiler optimisation may be ap-
plied to improve the efficiency of a particular slicer con-
structed. For example, the code for computing the out-
put of a node which does not define a variable can be
optimized, because the rule involves calculating the dif-
ference of the defined variables with the slicing criterion
at that node (see Figure 7). In the case where such a
node defines no variables the computation of the output
slicing criterion F~(S) will be

S - @ U ref U { i }

which the compiler optimisation can reduce using con-
stant folding [4] to give

s u ,'ey u {i}

This optimisation can be applied to all side-effect free
predicate nodes (which will, by definition, have empty

defined variable sets). Similarly, for constant assign-
ments, which have no referenced variables, constant fold-
ing will optimise the code which computes the output
slicing criterion to:

s - def u {i}

5.5 Efficiency thrrough Parallelism
Java's Remote Method Invocation (RMI) package pro-
vides the abili ty to make remote procedure calls[28; 38].
This means tha t a thread on one physical machine can
invoke a method running on a different physical ma-
chine.
The Espresso-produced slicer is highly concurrent since
it has a different logical thread for each node in the pro-
gram's CFG. Using Java's RMI there is the possibility,
therefore, to distr ibute [1] the work performed by these
individual nodes among different pieces of hardware.
To improve speed, our mult i - threaded approach allows
the system to be designed in such a way tha t the number
of processors used to perform slicing can vary with the
size and topology of the program being sliced. Large
programs will require many processors and small pro-
grams few.
Since the granularity is so fine, this distribution can be
achieved in a variety of ways, from one extreme where
all threads axe running on the same machine, to the
opposite extreme where each node has its own processor.
In most situations the latter approach would be wasteful
in communication overhead; it will be more effective to
have clusters of nodes that communicate often, running
on the same piece of hardware.
The nodes of sub CFGs which form hammock graphs
[29] (single entry single exit graphs) tend to communi-
cate more with other nodes of the sub CFG than with
those in the surrounding graph. Such sub-CFG may,
therefore, form the basis for a suitable decomposition of
the overall task of slicing for distributed computation.
However, the current implementation of Espresso does
not exploit RMI. The authors are currently working on
the implementation of this feature, which remains the
subject of future work.

6. C O N C L U S I O N
Espresso is a slicer generator, whose input is a program
to be sliced and whose output is a specialized multi-
threaded slicer for that particular program.
The approach is essentially a slicer-generator approach,
in which slices are constructed by a tailor-made slicer.
Thus, instead of slicing using a single generic slicer,
which takes a program p and a criterion c to produce a
slice s, Espresso takes a program p and produces a slicer
S(p). S(p) takes a criterion c and produces a slice s.
The slicer generated implements the parallel algorithm
for stat ic program slicing, which allows it to exploit the
inherent parallelism in the subject program's CFG. This
is achieved by Espresso using Java threads.

7. F U T U R E W O R K
Among the advantages of the approach listed in Sec-
tion 5, was the possibility of exploiting Java's KMI to

837

distr ibute the task of slicing a large program across sev-
eral machines. This facility is not present in the current
implementation of Espresso. More work is required in
order to implement analysis of the CFG of the program
being sliced in conjunction with the physical configura-
tion of hardware. This analysis will be used by the next
version of Espresso to enable it to find a suitable dis-
t r ibut ion of nodes and subgraphs across processors and
machines.
Espresso is essentially a compiler which given a program
p to be sliced, produces a Java program of that imple-
ments a parallelisation of Weiser 's Algorithm. We are
also currently working on a similar parallelisation which
uses the PDG approach to program slicing.
Espresso has currently been implemented to perform
intra-procedural slicing. Some theoretical work on han-
dling program's with procedures has been undertaken [16].
I t is currently envisaged tha t each procedure body will
be compiled separately and tha t and new instances of
each procedure thread will be dynamically created as
the result of procedure calls, more work is required to
implement this and to experiment with the results.
Espresso is a system where a parallel solution to a graph-
analytical problem (program slicing) has been produced
by a compilation process which creates a network of con-
current processes whose topology is identical to that of
the graph being analysed. The authors believe that it is
unlikely that program slicing is the only problem where
this method will be useful. Further work is required
to investigate whether such an approach is suitable for
other problems in program dependence in particular and
to graph analysis in general.

8. BIOGRAPHIES
Sebastian Danicic has a BSc in Pure Mathematic from
Queen Mary College, London University, an MSc in
Computation from Oxford University and a PhD in Com-
puter Science from the University of North London. He
is currently a senior secturer in computing at the Uni-
versity of North London.
Mark Harman has an MEng. in Computing from Impe-
rial College, London University and a PhD in Computer
Science from the University of North London. He is cur-
rently a lecturer in computing at Goldsmiths' College,
London University.

9. ACKNOWLEDGEMENTS
The work reported here is supported, in part, by En-
gineering and Physical Science Research Council grants
GR/M58719 and GR/M78083

10. REFERENCES
[1] ABRAMSKV, S. Reasoning about concurrent systems. In

Distributed Computing (London, 1984), pp. 307-319.

[2] AGRAWAL, H. On slicing programs with jump state-
ments. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Orlando,
Florida, June 20-24 1994), pp. 302-312. Proceedings in
SIGPLAN Notices, 29(6), June 1994.

[3] AGRAWAL, H., AND HORGAN, J. R. Dynamic program
slicing. In A CM SIGPL A N Conference on Programming
Language Design and Implementation (New York, June
1990), pp. 246-256.

838

[4] AHO, A. V., S~'rHI, R., AND ULLMAN, J. D. Compilers:
Principles, techniques and tools. Addison Wesley, 1986.

[6] BALL, T., AND HORWITZ, S. Slicing programs with ar-
bitrary control-flow. In 1 ~ Conference on Automated
Algorithmic Debugging (Link6ping, Sweden, 1993),
P. Fritzson, Ed., Springer, pp. 206-222. Also available
as Uniersity of Wisconsin-Madison, technical report (in
extended form), TR-1128, December, 1992.

[6] BECK, J., AND EICHMANN, D. Program and interface
slicing for reverse engineering. In IEEE/ACM 15 th
Conference on Software Engineering (ICSE'93) (1993),
IEEE Computer Society Press, Los Alamitos, Califor-
nia, USA, pp. 509-518.

[7] BIEMAN, J. M., AND OTT, L. M. Measuring functional
cohesion. IEEE Transactions on Software Engineering
,~0, 8 (Aug. 1994), 644-657.

[8] BINKLEY, D. W. The application of program slicing
to regression testing. In Journal of Information and
Software Technology Special Issue on Program Slicing,
M. Harman and K. Gallagher, Eds., vol. 40. Elsevier,
1998, pp. 583-594.

[9] BINKLEY, D. W. Computing amorphous program slices
using dependence graphs and a data-flow model. In
ACM Symposium on Applied Computing (The Menger,
San Antonio, Texas, U.S.A., 1999), ACM Press, New
York, NY, USA, pp. 519-525.

[10] BINKLEY, D. W., AND GALLAGHER, K. B. Pro-
gram slicing. In Advances off Computing, Volume 43,
M. Zelkowitz, FEd. Academic Press, 1996, pp. 1-50.

[11] CANFORA, G., CIMITILE, A., AND DE LUCIA, A. Condi-
tioned program slicing. In Journal off Information and
Software Technology Special Issue on Program Slicing,
M. Harman and K. Gallagher, Eds., vol. 40. Elsevier
Science B. V., 1998. to appear.

[12] CANFORA, G., CIMITILE, A., DE LUCIA, A., AND
LUCCA, G. A. D. Software salvaging based on condi-
tions. In International Conference on Software Mainte-
nance (ICSM'g6) (Victoria, Canada, Sept. 1994), IEEE
Computer Society Press, Los Alamitos, California, USA,
pp. 424-433.

[13] CHOI, J., AND FERRANTE, J. Static slicing in the pres-
ence of goto statements. ACM Transactions on Pro-
gramming Languages and Systems 16, 4 (July 1994),
1097-1113.

[14] CIMITILE, A., DE LUCIA, A., AND MUNRO, M. A spec-
ification driven slicing process for identifying reusable
functions. Software maintenance: Research and Prac-
tice 8 (1996), 145-178.

[15] DANICIC, S. Dataflow Minimal Slicing. PhD thesis, Uni-
versity of North London, School of Informatics, Apr.
1999.

[16] DANICIC, S., AND HARMAN, M. A simultaneous slicing
theory and derived program slicer. In 4 th RIMS Work-
shop in Computing (Kyoto University, Kyoto, Japan,
July 1996).

[17] DANICIC, S., HARMAN, M., AND SIVAGURUNATHAN, Y.
A parallel algorithm for static program slicing. [nffor-
marion Processing Letters 56, 6 (Dec. 1995), 307-313.

[18] DE LUCIA, A., FASOLINO, A. R., AND MUNRO, M. Un-
derstanding function behaviours through program slic-
ing. In 4 th IEEE Workshop on Program Comprehension
(Berlin, Germany, Mar. 1996), IEEE Computer Society
Press, Los Alamitos, California, USA, pp. 9-18.

[19] FELLEISEN, M., AND FRIEDMAN, D. P. A Little Java, A
Few Patterns. The MIT Press, 1998.

[20] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D.
The program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages
and Systems 9, 3 (July 1987), 319-349.

[21] FIELD, J., 'R,AMALINOAM, G., AND TIP, F. Parametric
program slicing. In 22 nd A CM Symposium on Principles
of Programming Languages (San Francisco, CA, 1995),
pp. 379--392.

[22] GALLAGHER, K. B. Evaluating the surgeon's assistant:
Results of a pilot study. In Proceedings of the Interna-
tional Conference on Software Maintenance 199~ (Nov.
1992), IEEE Computer Society Press, Los Alamitos,
California, USA, pp. 236-244.

[23] GALLAGHER, K. B., AND LYLE, J. R. Using program
slicing in software maintenance. IEEE Transactions on
Software Engineering 17, 8 (Aug. 1991), 751-761.

[24] HARMAN, M., AND DAN[CIC, S. Using program slicing to
simplify testing. Journal of Software Testing, Verifica-
tion and Reliability 5, 3 (Sept. 1995), 143-162.

[25] HARMAN, M., AND DANtCIC, S. Amorphous program
slicing. In 5 th [ELSE Internation Workshop on Program
Comprehesion (IWPC'97) (Dearborn, Michigan, USA,
May 1997), IEEE Computer Society Press, Los Alami-
tos, California, USA, pp. 70-79.

[26] HARMAN, M., AND DANItCIC, S. A new algorithm for slic-
ing unstructured programs. Journal of Software Main-
tenance 10, 6 (1998), 415-.-441.

[27] HARMAN, M., StVACURtrNATHAN, Y., AND DAmCIC, S.
Analysis of dynamic memory access using amorphous
slicing. In IEEE International Conference on Software
Maintenance (ICSM'98) (Bethesda, Maryland, USA,
Nov. 1998), IEEE Computer Society Press, Los Alami-
tos, California, USA, pp. 336-345.

[28] HARTLEY, S. J. Concurrent Programming - The Java
Programming Language. Oxford University Press, 1998.

[29] HECHT, M. S. Flow Analysis of Computer Programs.
Elsevier, 1977.

[30] HOARE, C. A. It. Communicating Sequential Processes.
Prentice-Hall, 1985.

[31] HORWtTZ, S., PmNS, J., AND REPS, T. Integrating non-
interfering versions of programs. ACM Transactions on
Programming Languages and Systems 11, 3 (July 1989),
345-387.

[32] HORWITZ, S., I:tEPS, T., AND BINKLEY, D. Interprocedu-
ral slicing using dependence graphs. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (Atlanta, Georgia, June 1988), pp. 2.5-
46. Proceedings in SIGPLAN Notices, 23(7), pp.35-46,
1988.

[33] HORWITZ, S., REPS, T., AND B/NKLEY, D. Interprocedu-
ral slicing using dependence graphs. ACM 7~ransactions
on Programming Languages and Systems 1~, 1 (1990),
26--61.

[34] KAMKAR, M. Interprocedural dynamic slicing with ap-
plications to debugging and testing. PhD Thesis, De-
partment of Computer Science and Information Sci-
ence, Link~ping University, Sweden, 1993. Available as
Link~Sping Studies in Science and Technology, Disserta-
tions, Number 297.

[35] KOREL, B., AND LASKI, J. Dynamic program slicing.
Information Processing Letters ,~9, 3 (Oct. 1988), 155--
163.

[36] KRINKE, J., AND SNELTING, G. Validation of measure-
ment software as an application of slicing and constraint
solving. In Journal of Information and Software Tech-
nology Special Issue on Program Slicing, M. Harman
and K. Gallagher, Eds., vol. 40. Elsevier, 1998. to ap-
pear.

[37] LAKHOTIA, A. Rule-based approach to computing mod-
ule cohesion. In Proceedings of the 15 th Conference on
Software Engineering (ICSE-15) (1993), pp. 34-44.

[38] LEA, D. Concurrent Programming in Java: Design
Principles and Patterns. Addison Wesley' Longman Inc.,
1997.

[39] OTT, L. M., AND THUSS, J. J. Slice based metrics for
estimating cohesion. In Proceedings of the IEEE-CS In-
ternational Metrics Symposium (Baltimore, Maryland,
USA, May 1993), IEEE Computer Society Press, Los
Alamitos, California, USA, pp. 71-81.

[40] OTTENSTEIN, K. 3., AND OTTENSTEIN, L. M. The pro-
gram dependence graph in software development envi-
ronments. SIGPLAN Notices 19, 5 (1984), 177-184.

[41] ROTHERMEL, G., AND IIARROLD, M. J. Selecting tests
and identifying test coverage requirements for modified
software. In ACM International Symposium on Soft-
ware Testing and Analysis (Aug. 1994), pp. 169-184.

[42] SHAHMEHRI, N. Generalized algorithmic debugging. PhD
Thesis, Department of Computer Science and Informa-
tion Science, LinkSping University~ Sweden, 1991. Avail-
able as Link6ping Studies in Science and Technology,
Dissertations, Number 260.

[43] SIMPSON, D., VALENTINE, S. H., MITCHELL, R., LIU,
L., AND ELLIS, R. Recoup - Maintaining Fortran. ACM
Fortran forum I~, 3 (Sept. 1993), 26-32.

[44] TIP, F. A survey of program slicing techniques. Journal
of Programming Languages 3, 3 (Sept. 1995), 121-189.

[45] VENKATESH, G. A. The semantic approach to program
slicing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Toronto,
Canada, June 1991), pp. 26-28. Proceedings in SIG-
PLAN Notices, 26(6), pp.107-119, 1991.

[46] WEISSR, M. Program slices: Formal, psychological, and
practical investigations of an automatic program ab-
straction method. PhD thesis, University" of Michigan,
Ann Arbor, MI, 1979.

[47] WEISER, M. Program slicing. IEEE Transactions on
Software Engineering 10, 4 (1984), 352-357.

839

