
Supporting Compositional Reuse in Component-Based
Web Engineering

Martin Gaedke J6rn Rehse

Telecooperation Office
University of Karlsruhe

Vincenz-PrieBnitz-Str. 1
76131 Karlsruhe

Germany
Tel.: ++49 721 690279

{gaedke, rehse} @teco.edu

A B S T R A C T

The World Wide Web's anticipated scope as an environment for
knowledge exchange has changed dramatically. Without major
modifications to its primary mechanisms the Web has turned into
a platform for distributed applications. The originally simple and
well-defined coarse-grained implementation model of the Web
now hinders Web application development. Fine-grained devel-
opment artifacts, design patterns, and other well-established Soft-
ware Engineering methods are hard to reuse in the Web after they
have found their way into implementation resources. The applica-
tion of Software Engineering practice to development for the
Web, which is also referred to as Web Engineering, and especially
the systematic reuse of components for Web-application develop-
ment at low-costs is a main goal to achieve. This paper presents a
systematic approach to code reuse with the WebComposition Re-
pository, which is an essential tool for retrieval and classification
of large component sets. The Repository's architecture is crafted
to support multiple representation and classification approaches. It
facilitates reuse in component-based Web Engineering.

Keywords
Repository, Reuse, Pattern, WebComposition, Component Re-
trieval.

1. INTRODUCTION
At the beginning of its existence the WWW was seen as a medium
for knowledge exchange and proliferation. Roughly nine years
have passed and the applications put to use in the Web now have
moved a long way from the plain hypermedia system envisioned
then. Today (1999) for many organizations the WWW has become
the platform of choice when deciding on a system independent
way for deploying and running distributed applications. WWW

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the fidi citation on
the first page. To copy otherwise, to republish, to pest on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(c) 2000 ACM 1-58113-239-5/00/003>...>$5.00

browsers and HTML have become the base technologies for thou-
sands of Intranets allowing members of an organization remote
access to workflow and other systems of increasing complexity.

Even though requirements have reached levels of complexity pre-
viously known only in "conventional" software development the
development process of numerous companies and organizations
working for the Web is still mostly ad-hoc and chaotic [8]. In
software development this problem has been approached by the
introduction of software engineering. Consequently, applying
software engineering practice to the Web is widely regarded to be
a solution [4, 10, 15]. To denote this approach the term Web En-
gineering is commonly used but still it remains undefined.

A large gap between the granularity of design models and the
granularity of the implementation model of the Web has been
recognized to be one of the main reasons for the low acceptance
of disciplined development in the community of Web developers
[8, 10]. Another argument that made the introduction of a new
implementation model desirable are the results of the research on
compositional reuse that also stem from the field of software en-
gineering and have resulted in a new sub-discipline: Component-
Based Software Engineering (CBSE). CBSE aims at assembling
large software systems from previously developed components
(which in turn can be constructed from other components). Once
again it is the nature of the implementation model of the WWW
that limits the systematic compositional reuse of previously devel-
oped artifacts (code fragments).

The object-oriented WebComposition model and the XML based
WebComposition Markup Language (WCML) that allows defin-
ing components at any granularity have been introduced [9, 10].
Using WCML it is possible to represent abstract design concepts
in an implementation. WCML facilitates Web application devel-
opment by means of composing Web applications from compo-
nents.

A number of components are required to have a reasonable chance
of finding a matching component for a given task. Finding that
component among all the others has been identified as a major
problem of compositional reuse. It has been found that a reposi-
tory for storing components and aiding their location and retrieval
is required to facilitate the reuse of components enough to make it
attractive [6, 16]. Such a repository should utilize representations
of the components that differ from the information extractable

927

http://crossmark.crossref.org/dialog/?doi=10.1145%2F338407.338691&domain=pdf&date_stamp=2000-03-01

from the components themselves to be able to offer advanced
methods for location and retrieval.

To fully exploit the advantages of code reuse when using the
WebComposition system a repository for WCML has been de-
signed and implemented. A Key feature of the Repository is its
openness towards adding new representation and classification
methods for enhanced retrieval capabilities.

In the following chapters a synopsis is given of how WebCompo-
sition and the related WCML technology address software engi-
neering issues specific to the Web. Furthermore, the architecture
for the WebComposition Repository will be presented. The paper
closes with a discussion on different aspects of the Repository's
implementation. Finally, conclusions and a perspective of the
future work are given.

2. APPLYING COMPONENT TECH-
NOLOGIES TO THE WEB
The idea behind Component Based Software Engineering (i.e. the
construction of software from existing components) has been
around for about three decades [17]. Definitions of software com-
ponents are manifold and we do not feel the calling to supply one
ourselves (yet). Instead we will subscribe to the definition given in
[20], which requires components to be self-contained, clearly
identifiable artifacts.
CBSE is said to allow the construction of more complex software
at lower costs. It is supposed to lead to easier maintenance and
evolution (i.e. a higher flexibility of a software product through-
out its entire life cycle), as well as an overall increase of quality if
performed systematically [2, 6, I 1].

2.1 Applying Component-Based Software En-
gineering to the Web
In analogy to CBSE the term Component-Based Web Engineering
is introduced to denote the construction of Web Applications
according to a disciplined process involving systematic composi-
tional reuse.

Definition "Component-Based Web Engineering" (CBWE):
The production of Web applications by composing existing com-
ponents using a defined process that includes systematic reuse of
components and of domain knowledge.

Additionally to the common problems of software engineering
every field of activity in the subject faces its own sort of specific
problems and Web Engineering is no exception. One of the well
known problems of software-engineering for the World Wide
Web lies in the fact that its resource-based (file) implementation
model was never truly intended for the kind of complicated appli-
cations that are put to use in the Web today [10]. During the de-
sign of Web applications the entities handled by the designers are
often defined at a much higher resolution than possible in the
actual code produced during the development process. Objects
seen as different system parts by the designers will have to be
integrated into a single resource while a single design entity may
very well appear in different documents of the implementation
[10]. Software engineering methods have been brought to the
Web through design models especially suited for Web and other
hypermedia applications, for example OOHDM[21], RMM[13],
and JESSICA[I]. Still, the implementation model remains far too
coarse-grained to reflect designs crafted with those powerful

methods. While the granularity of the design models used has
become finer and finer along with the complexity of the applica-
tions developed, the implementation model of the Web has re-
mained as it was in the beginning [4, 10]. By the end of the first
decade of the Web a wide gap has opened between the expres-
siveness of design methods and the semantically deprived Web
implementation model. It is always hard and in many cases impos-
sible to represent and maintain abstract design decisions based on
higher level concepts in code. Consequently, mapping changes in
the design to changes in the implementation becomes a tedious
and error-prone task. As the expressive power of the implementa-
tion model is not up to the variety of abstract concepts used dur-
ing design these decisions will get lost on their way to code. As a
result a reverse mapping from Web implementations to higher-
level (fine-grained) concepts is impossible. The impact of this is
that the artifacts used in design cannot be used during any later
part of the application's life cycle. Given the evolutionary ap-
proach towards development often encountered in the Web this is
a particularly undesirable phenomenon. This effect also hinders
reuse as the level of abstraction is reduced during the journey
from design to code. The actual code is typically more specialized
than the design (because of the implementation model).

Surnrnarily, the increasing complexity of requirements has made
the coarse-grained implementation model of the Web a burden to
developing and maintaining parties.

2.2 WebComposi t ion- a Component-Based
Approach to Web Application Development
The WebComposition approach introduced in [10] allows model-
ling (web) applications from components. It bridges the gap be-
tween design and implementation by allowing to capture whole
design artifacts in components of arbitrary granularity. The resolu-
tion of a component is not preset but can vary depending on the
level of detail required by the design concept in question. A com-
ponent may represent for example an atomic feature such as the
font size attribute, a complex navigation structure, implementa-
tions of hypermedia design-patterns [20], or simply compositions
of other components. In this way, WebComposition supports the
bridging of the gap between design and implementation model by
offering a high-resolution implementation model relying on code-
abstractions. Complete target language resources are constructed
by compiling compositions of these components.

The WebComposition model is object-oriented, and consequently
supports code-reuse by creating new components from existing
ones through inheritance. Inheritance in WebComposition works
according to a prototype-instance model as in SELF [22] and not
according to the class-based inheritance models well known from
languages such as C++ and Java. Prototyping and referencing
other components are techniques of code sharing and thus a form
of reuse.

The Web Composition Markup Language (WCML) was intro-
duced in [9] to offer a convenient way to define and represent
WebComposition components. The WebComposition Markup
Language (WCML) is an application of the eXtensible Markup
Language (XML) [23] and allows a (tag-based) definition of
components, properties, and relationships between components on
top of Web Composition's prototype-instance model. XML is the
basis for developing a markup language for components because
of its good qualities as described in [23]. WCML is platform in-

928

Metada ta Store

Metada ta S tore

Metada ta Store Metadata Store

NAVSAROI Exper~'tce Repofl:
We have used this t o . r epen t in
t h e f i rs l p r o t o t y p e of the
company'= infranet. Problems
encountered are documented in
aeot ionlV . There w e r e f ive
t~mleeder'8 ~ e on,..

Metadata Store

03938 Ikdlihldsuhlieue
lidrzgfgeuiuiewv,~i

78783 IkasjhllkttsdNdu~
73472 lnedjNlenuheuewr
28283 dliudhl 765765 oi

wf jkehjliewuzrewel

U

Componen t Store
Wrapper

J
Component Store

~ epos i to ry
Tool

COMPONENT
<WCML>
<prototype...>
<refprop...>
<property ...>

~'WCML>

Figure 1: A Repository Tool has created a Context containing two Metadata Stores, a Component Store Wrapper, and itself.
Using Metadata the tool gives an augmented perspective of the components

dependent, easy to parse, and it is rigorous in terms of well-
formed or valid documents.

3. THE WEBCOMPOSITION
REPOSITORY MODEL
It is hoped that growing numbers of components increase the
probability that a component fitting a certain purpose exists. On
the other hand the difficulty associated with finding such a com-
ponent also increases with larger numbers of components. As
soon as a lot of components are available finding appropriate
components becomes one of the main problems of code reuse and
of the CBSE approach especially [6]. Component repositories can
be an answer to problems posed by a situation in which a human
developer cannot be acquainted with all of those components (let
alone know all the details about them) [21].

3.1 Providing a flexible Platform
Repositories intended for reuse can employ different methods for
the classification and representation of components to improve the
chance of finding a component matching a given development
problem and to present an augmented perspective of the stored
components. The commonly used representation methods usually
belong to (at least) one of the following categories: controlled and
uncontrolled indexing (e.g. [18]) or methods" that contain seman-

tic information (e.g. [12]). Also Hypertext-based systems are men-
tioned sometimes [5].

In an empirical study [5] Wiliam Frakes and Thomas Pole com-
pared four representation methods belonging to the first category
discovering that none of them was inherently superior to the oth-
ers. The results given by all methods were useful and differed
slightly. None of them was perfect. From this Frakes and Pole
concluded that a set of reuse entities should be represented "in as
many ways" as you can afford. '"

Even without considering these results it seems desirable to de-
sign a repository in such a way that newly developed classification
and representation methods can be added at any time. Especially
in a research environment concerned with applying new represen-
tation methods (using for example conceptual modeling) to com-
positional reuse development advances at a fast pace in potentially
unforeseeable directions resulting in the need for an extensible,
flexible repository.

In the following sections an overview of the Repository Architec-
ture is given. After that the main system parts of this architecture
are explained informally.

929

3.2 The Repository Architecture
There is no single program, which constitutes the Repository as
illustrated in Figure 1. Instead the basic mode of operation of the
WebComposition Repository is the cooperation of at least three
system entities: a Component Store Wrapper (as described above),
at least one Metadata Store, and a search or browsing tool (Re-
pository Tool). The tool can utilize the information stored in the
Metadata Stores to provide advanced retrieval abilities or it can
display information from the Componen t Store wrapper aug-
mented with additional information provided by the Metadata
Stores. Tools will be shaped to work with the information of cer-
tain sets of Metadata Stores. A browsing tool for graphs for exam-
ple could not cooperate with the Metadata Store that contains
statistical data. A Component Store Wrapper, some Metadata
Stores, and a tool working together are referred to as a Repository
Context. To the user the Repository is the Repository Context she
or he is using.

A major design goal of the Repository Architecture is the possibil-
ity of adding Metadata Stores and Tools at any time. This design
goal is referred to as openess. A brokerage mechanism is provided
in the architecture to ensure the fulfi l lment of this goal.

3.3 Metadata Stores
The Metadata Stores are the key to the functionality of the Reposi-
tory. They can offer data on the components stored in the Compo-
nent Store. In this way Metadata Stores can be used to create
representations of the Components available that contain informa-
tion differing from the information contained in the components
themselves. The Component Store offers only a "fiat" representa-
tion of the WCML Components. It provides simple DBMS like
query functionality but for example doesn ' t classify Components
neither by functionality nor by any other criteria. Especially in a
large set of undocumented components it is hard to find the ap-
propriate component using text search only.

3.4 Repository Tool
The most prominent part of a Repository Context is the Reposi-
tory Tool. It supplies the user interface and is the part that is di-
rectly visible to the user. The user interface may be a GUI or
command line interface that is used by a human user but may as
well be an API that allows the use o f the tool from other pro-

grams.

Typically, the tool is a viewer, query tool, or browser for retriev-
ing components, analyzing components , or offering other services
using the Repository. Retrieving, sorting or displaying sets of
components in a way defined by structures with varying semantics
is possible using Metadata Stores. Additionally it is possible for
the Metadata Store to manipulate metadata as a reaction to query
tool user actions.

4. THE WEBCOMPOSITION
REPOSITORY SYSTEM
The WebComposition Repository Sys tem is designed to allow
access to the same set of W C M L components using different clas-
sification and retrieval methods. The sys tem allows adding differ-
ent representations for existing components at any time. In the
following chapter a more detailed presentation of how the system
parts cooperate is given.

4.1 Repository Architecture Implementation
The architecture requires that the Repository works in the domain
of an established component system (e.g. CORBA, COM). This is
called the implementation component system, because it is the
component system (a.k.a. component integration technology) used
to implement the Repository. The architecture is independent from
which concrete component system is used, if the component sys-
tem fulfills a certain set of basic requirements. Informally speak-
ing it is assumed that the component system provides unique
component handles, which are registered somewhere in the com-
ponent system. Those components can offer interfaces, which can
contain methods. It is also assumed that a component can be in-
stanciated and used from anywhere in the component systems
domain if its component handle is known. These requirements are
fulfilled by today's popular component systems. Components of
the component system that is used to implement the Repository
should not be confused with W C M L components.

The Component Store Wrapper and the Metadata Stores are com-
ponents of the implementation component system. The tool does
not need to be a component. It is the system part that instanciates
the Metadata Store, and the Component Store Wrapper. To enable
the tool to contact these components the tool must receive their
component handles. The Repository Broker will provide these
handles. The broker itself is implemented as a component in the
component system. A set of one or more interconnected imple-
mentation component system domains in which one and only one
component handle for a Repository Broker exists is called a Re-
pository Domain. Thus the broker is unique in a Repository Do-
main.

The tool communicates with Metadata Stores and a Component
Store Wrapper through their implementation component system
interfaces. The question whether or not a Metadata Store and a
tool can cooperate boils down to the question whether or not the
Metadata Store supports the interface the tool requires for its

work.

The interface of the Component Store Wrapper is standardized.
Metadata Stores m a y o f f e r different interfaces depending on the
kind of Metadata stored in them. A Metadata Store that contains
statistical data on prior uses of a WCML component will have a
different interface than a Metadata Store containing a graph struc-

ture.

The Repository Context is a tupel (Tls, C, { Ml.lol M.,lo, })R,
where i~ { l,.. ,n}and IOi ~ IS (for all values of i). R denotes the
Repository Domain in which the context is instantiated. Tis is the
tool that created the context. IS is the set of interfaces which are
used by T to exchange data with Metadata Stores in this context.
C is a Component Store Wrapper. Mi, loi is a Metadata Wrapper
that is used by T. IOi is the set of interfaces supported by M i that
are used in this context. Interfaces that are not used in this context
are not listed. The context is created and destroyed by T. It exists
only and completely in the Repository Domain R.

4.2 The Repository Broker
In our view the requirement "openness" is satisfied if there is a
procedure for adding Metadata Wrappers Mio and Tools to a Re-
pository Domain in such a way that any Tool Tis can always create
a Repository Context with this Metadata Wrapper if IOc_IS.

The system part responsible for guaranteeing openness is the Re-
pository Broker. It allows selecting Metadata Stores by interfaces.

930

On installation of a new component in a Repository Domain the
Repository Broker's register method is called to notify the broker
of the installation. The registration method offered in the broker 's
implementation component sys tem interface takes the new com-
ponents component handle as parameter. The broker provides
persistent storage o f the handles o f registered Metadata Stores. As
it is necessary that the broker knows about a Metadata Store's
interface it must either be able to query those interfaces or they
must be passed during registration. A tool can pass an interface
(or a unique identifier of an interface, this is a question o f imple-
mentation) to the broker to request a list of registered Metadata
Stores that support that interface. The broker can then supply the
component handles of Metadata Stores matching the query. As the
implementation component sys tem is required to enable the tool
to instantiate a component as soon as its handle is known the tool
can now create a Repository Context using the newly registered
Metadata Store.

It could be argued that if an implementation component system is
used that features its own brokerage mechanism (such as CORBA)
the system provided broker could fulfill the tasks o f the Reposi-
tory Broker.

4.3 Metadata Store and Repository Tool
Implementation
A Metadata Store is an implementation component system com-
ponent offering at least one interface. The qualifying criterion that
makes a component a Metadata Store is that (at least some of) its
interface methods have references to WCML Components as re-
turn values or parameters. The Metadata Stores interfaces offer
methods that depend on the type o f metadata stored. Tools able to
work with one of these interfaces can use that Store.

As stated before the primary purpose of these Metadata Stores is
to supply the information that is usually associated with a Reposi-
tory (as in the definition of a repository in [20]). This information
is (for example) information on component design, their history,
interactions with other components , classification, semantic in-
formation, and documentation. The Metadata Store can also be
used to store additional indexing-, browsing-, hierarchy-, or any
other Meta-information. The Metadata Store brokerage mecha-
nism supplied by the Repository allows adding Metadata for re-
trieval mechanisms of various (and possibly yet unknown) types.

A Repository Tool (tool) is defined as a program (e.g. a stand-
alone program or a component) that creates a Repository Context
(by instanciating a Metadata Store that has a matching interface
and a Component Store wrapper). It uses references to WCML
components that are returned through the interface of Metadata
Stores to retrieve the corresponding components from a Compo-
nent Store.

5. DIFFERENT REPRESENTATIONS OF
COMPONENT SETS
In this paragraph some examples o f the kind of information Meta-
data Stores can supply will be given, how a tool can utilize this
information, and how the information can be used to access the
Component Stores. Although the presented examples are com-
pletely different, they are all based on the open approach of the
WebComposition Repository.

5.1 Examples
5.1.1 Example I: Additional Textual Information
A very obvious example is a Metadata Store that contains textual
information on components. Usually it is hard to deduce the ef-
fects of a component from undocumented code. Third party com-
ponent suppliers could deliver such Metadata Stores together with
the actual components. Together with an appropriate tool these
can easily be used to implement an online documentation and help
system.

5.1.2 Example 2: Indexing Information
A Metadata Store can also contain representations of the first
category of representation methods. The Metadata Store could be
filled either by a librarian according to an enumerated or facetted
classification scheme or by free-text indexing.

Different user groups could maintain their own index to support
their own team vocabulary. In this Repository Architecture user
groups could achieve separate sets of indices by working in Re-
pository Contexts using the same tool but different Metadata
Stores (that have the same interface).

5.1.3 Example 3: Statistical Information
The interface of a Metadata Store may also offer methods that
allow modifying the contents of the Store. A W C M L development
tool that has the tool role in a Repository Context may report the
use of W C M L components to a Metadata Store that recording
component usage. In this way an organization can gather data on
the success of their reuse attempts. An evaluation tool can use
these data to produce statistics measuring values like reuse effi-
ciency.

5.2 An Example Tool
To give a more lucid presentation of the concept we want to give a
condensed overview of a simple tool that we have implemented,
refer to Figure 2. The tool works together with Metadata Stores
that contain directed graphs:

Metadata that can be used by the tool to display components de-
fines a directed graph on the set of components. Metadata Stores
cooperating with the tool have to offer a (standardized) interface
that supports iteration on this graph. Vertices are references to
WCML components. Semantics of the weighted edges are not
defined in the tool and may differ between different Metadata
Stores (offering the same interface). Consequently the same tool
can be used to view for example an inheritance hierarchy or a
graph based on the conceptual closeness of components. All that
is required o f the information is that it can be represented as a
directed graph.

After receiving a list of handles of Metadata Stores supporting the
interface in question from the broker the tool allows the (human)
user to select from the list. The selection is used to create a Re-
pository Context and the user can start browsing the graph a por-
tion of which is displayed on the screen. Several display modes
can be selected. Vertices (i.e. components) can be chosen and
their W C M L code can be displayed and exported. It is possible to
change the recursion depth that is used when retrieving a
neighborhood of the current iterator position. To allow changing
the position in the graph more rapidly it is possible to issue que-
ries that are dispatched directly to the Component Store. These
queries are made up from Boolean operations and predicates on

931

WCML component properties. Resulting components, represented
with their unique identifier (UUID) - a concept used in WCML,
can be jumped to from the current iterator position. The tool can
also extract the entire contents of the Metadata Store and create a
hypertext structure from it. Obviously, this enables the distribu-
tion of metadata along with components over the Web, while the
component distribution mechanism is reused from the WCML
system.

One way to fill a Metadata Store offering the interface described
(and since being able to work with that tool) is by evolution. Evo-
lution of Repositories has been described in [12,14]. At TecO a
Metadata Store is being constructed that uses adaptive clustering
techniques to create new indices into the set of components. The
Metadata Store records the paths the Repository user takes when
browsing through components (this requires another Metadata
Store). According to the paths taken a genetic algorithm tries to
put like components into clusters (and similar clusters into higher-
level clusters). This way a tree hierarchy is constructed
automatically.

6. CONCLUSIONS AND FURTHER WORK
We have pointed out that the coarse-grained implementation
model of the World Wide Web hinders the representation of ab-
stract design concepts in actual code. The resulting gap between
implementation and design model is a burden to the use of mod-
em software engineering practices in Web projects. The Web-
Composition approach with its implementation technology

WCML bridges this gap and allows designing for reuse. In
component-based software engineering the problem of storing,
retrieving, and managing components becomes a center-point of
considerations. The WebComposition Repository for storing
WCML components has been presented as an approach to address
this problem. Because of its flexible nature the Repository Archi-
tecture is also suited as a framework for further research on devel-
oping and comparing representation and classification methods
and their capabilities when applied to retrieval of components for
r e u s e .

Two criteria for the adequacy of a repository were used in [16]. At
first a sufficient number of components must be provided, sec-
ondly the appropriate code should be easy to locate and retrieve.
The existing WebComposition Repository addresses the second
issue.

Our current research focuses on more complex search tools and
Metadata Stores. One of the main goals is to create Metadata
Stores that can store domain knowledge about WCML and the
Web environment. Consequently, we also work on a tool that can
use this knowledge for retrieving data from the Component Store.

In parallel tools are developed that will acquire bulks of HTML
data from the WWW for statistical evaluation and semi-automatic
component extraction. As massive amounts of code exist in the
Web this seems to be a promising approach to meeting the second
criterion of adequacy formulated by Maarek, Berry, and Kaiser.
Tools for the extraction of recurring patterns from high level lan-

. j

[~ """Ju~'~'aY ,<IDI ,xl

I f,~t

,, d @.~<,,/~,~@~:, , ,/,F,, ~ . . .~. .

M ert~G eedk.eR e sponsd~ities . ~ ~ :
Wel~ltem :,~ :
M~rtk~3aedke~tLeft ~ "
14 erring aedkeAboutR ight ~ i: - ' '

R espon,s'b~ie~H ea~n,e , ?-' i

Abe~Con~ent

Figure 2 A Repository Tool has created a Context containing two Metadata Stores, a Component Store Wrapper, and itself.
Using Metadata the tool gives an augmented perspective of the components

932

guages exist (such as PEEL for LISP [12]). As the structures of a
layout language like HTML are far simpler than those of LISP (for
example) we believe that level of human aid required for such an
extraction program to work will be lower than in similar tools for
"real" programming languages.

7, R E F E R E N C E S
1. A. Barta, M.W. Schranz (1998). JESSICA: an object-

oriented hypermedia publishing processor. In Com-
puter Networks and ISDN Systems 30(1998), Special
Issue on the 7 d' Intl. World-Wide Web Conference,
Brisbane, Australia, April 1998, 239-249

2. K. Berg (1997). Component-Based Software Devel-
opment: No Silver Bullet, Object Magazine, 3-97

3. T.J. Biggerstaff, A.J. Perlis (1989), Sofitware Reusab-
lity, Volume I, ACM Press

4. F. Coda, C. Ghezzi, G. Vigna, F. Garzotto (1998).
Towards a SoJ~ware Engineering Approach to Web
Site Development. In Proceedings of 9 th International
Workshop on Software Specification and Design
(IWSSD), Ise-shima, Japan

5. W.B. Frakes, T. P. Pole (1994), An Empirical Study
of Representation Methods for Reusable Software
Components, IEEE Transactions on Software Engi-
neering, Vol. 20, No. 8, pp. 617

6. W.B. Frakes, B.A. Nejmeh (1987). Software Reuse
through Information Retrieval, In: Proceedings of the
20 th Annual Hawaii International Conference On Sys-
tem Sciences, 1987

7. M. Gaedke, M. Beigl, H. W. Gellersen, C. Segor
(1998): Mobile Information Access: Catering for Het-
erogeneous Browser Platforms. In: Proceeding of the
International Workshop on Mobile Data Access in
conjunction with 17 ~ International Conference on
Conceptual Modeling (ER98), Singapore, p. 201-212

8. M. Gaedke, H.-W. Gellersen, A. Schmidt, U. Stege-
muller, W. Kurr (1999). Object-oriented Web Engi-
neering for Large-scale Web Service Management. In:
R. H. Sprague (FEd.) Proceedings of the 32 "d Annual
Hawaii International Conference On System Sciences,
Maui, Hawaii, (CD-ROM)

9. M. Gaedke, D. Schempf, H.-W. Gellersen (1999):
WCML: An enabling technology for the reuse in ob-
ject-oriented Web Engineering. Poster-Session at the
8th International World-Wide Web Conference
(WWW8), Toronto, Ontario, Canada

10. H.-W. Gellersen, R. Wicke, M. Gaedke (1997). Web-
Compostion: an object-oriented support system for the
Web Engineering Lifecycle. In: Computer Networks
and ISDN Systems 29, Special Issue on the 6 th Intl.

World-Wide Web Conference, Santa Clara, CA, USA,
p. 1429-1437

11. Capt. G. Haines, D. Carney, John Foreman (1997).
Component-Based Software Engineering / COTS In-
tegration. Software Technology Review, Software
Engineering Institute, Carnegie Mellon University.
http://www.sei.cmu.edu/str/descriptions/cbsd.html
01/02/1999

12. S. Henninger (1997). An Evolutionary Approach to
Constructing Effective Software Reuse Repositories,
ACM Transactions on Software Engineering
Methodology, 1997

13. T. Isakowitz, E.A. Stohr, P. Balasubramaninan (1998).
RMM: A Methodology for Structured Hypermedia De-
sign, Communications of the ACM, Vol. 38, No. 8,
August 1995, pp. 34-44

14. A. Johnson, F. Fotouhi (1996), Adaptive Clustering of
Hypermedia Documents, Information Systems, Vol.
21, No. 6, pp. 459

15. A. Kristensen (1998). Template resolution in
XML/HTML. In Computer Networks and ISDN Sys-
tems 30, Special Issue on the 7 ~' Intl. World-Wide
Web Conference, Brisbane, Australia, April 1998,
239-249

16. Y.S. Maarek, D.M. Berry, G.E. Kaiser (1991), An In-
formation Retrieval Approach for Automatically Con-
structing Software Libraries, IEEE Transactions on
Software Engineering, Vol. 17, No. 8, pp. 800

17. M. D. Mcllroy (1968), Mass Produced Software
Components, Scientific Affairs Division, NATO Soft-
ware Engineering Conference

18. R. Prieto-Diaz (1987), Classification of Reusable
Modules, in [3]

19. G. Rossi, A. Garrido, S. Carvalho (1996). Design Pat-
terns for Object-Oriented Hypermedia Applications.
In: Pattern Languages of Programs 2, Vlissides,
Coplien and Kerth (eds.), Addison-Wesley

20. J. Sametinger (1997), Software Engineering with Re-
usable Components, Springer Verlag

21. D. Schwabe, G. Rossi, S. Barbosa (1996). Systematic
Hypermedia Design with OOHDM. In Proceedings of
the ACM International Conference on Hypertext, Hy-
pertext '96, Washington, March 1996

22. D. Ungar, R. B. Smith (1987). Self: The power of
Simplicity, In: OOPSLA'87 Proceedings, p. 227-242

23. World-Wide Web Consortium (1998). XML: eXtensi-
ble Markup Language. http://www.w3c.org/XML/

933

