Check for
Updates

Automatic GPU Data Compression and Address Swizzling
for CPUs via Modified Virtual Address Translation

Larry Seiler Dagqi Lin Cem Yuksel
Facebook Reality Labs University of Utah University of Utah
ABSTRACT Recent GPUs also support shared virtual memory [Intel 2016].

We describe how to modify hardware page translation to enable
CPU software access to compressed and swizzled GPU data arrays
as if they were decompressed and stored in row-major order. In
a shared memory system, this allows CPU to directly access the
GPU data without copying the data or losing the performance and
bandwidth benefits of using compression and swizzling on the GPU.

Our method is flexible enough to support a wide variety of ex-
isting and future swizzling and compression schemes, including
block-based lossless compression that requires per-block meta-data.

Providing automatic compression can improve performance,
even without considering the cost of copying data. In our experi-
ments, we observed up to 33% reduction in CPU/memory energy
use and up to 35% reduction in CPU computation time.

CCS CONCEPTS

« Computing methodologies — Image compression; Graph-
ics processors; - Computer systems organization — Proces-
sors and memory architectures.

KEYWORDS

Shared virtual memory, lossless compression, address swizzling,
page tables, tiled resources, sparse textures

ACM Reference Format:

Larry Seiler, Daqi Lin, and Cem Yuksel. 2020. Automatic GPU Data Com-
pression and Address Swizzling for CPUs via Modified Virtual Address
Translation. In Symposium on Interactive 3D Graphics and Games (13D °20),
May 5-7, 2020, San Francisco, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3384382.3384533

1 INTRODUCTION

Data compression and address swizzling are important techniques
to reduce GPU memory bandwidth and, therefore, increase perfor-
mance per unit of power. GPUs have long used address swizzling
(also called interleaving or tiling) to allow reading or writing a 2D
footprint of pixels in a single access [McCormack et al. 1998]. Lossy
compression has been used for textures since early GPU designs
to reduce memory bandwidth and, therefore, power [Iourcha et al.
1999], while lossless compression is increasingly being used to ex-
tend the benefits of compression from textures to other kinds of
data. This can reduce access bandwidth by up to 50% [ARM 2017].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

I3D °20, May 5-7, 2020, San Francisco, CA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7589-4/20/05.

https://doi.org/10.1145/3384382.3384533

This allows the CPU and GPU to use the same virtual address
pointers so that memory resources may be shared between the
CPU and GPU. Reducing the cost of coherency between CPU and
GPU caches is an ongoing research topic [Power et al. 2013].

Since shared virtual memory allows application software to di-
rectly access GPU data in memory, graphics drivers cannot hide the
use of swizzling or compression. Current APIs expose the swizzle
format to application software [Grajewski 2012; Microsoft 2018].
Deswizzling in software makes the code more complex and makes
it hardware dependent unless the swizzle pattern is widely adopted.
Decompressing in software is even more complex. This problem
also applies inside the GPU, since some GPU blocks need to access
compressed data directly to reduce bandwidth on internal buses.
Typically, this requires that all blocks in the GPU support accessing
compressed data for compression to be used [Brennan 2016].

We propose modifications to the virtual address translation com-
ponents of modern CPUs, defining a new page translation system
that enables decompression/deswizzling on data access. Our system

(1) Allows CPU software to access block-compressed & swizzled
GPU data as if it is stored uncompressed & unswizzled,

(2) Fully supports cache coherent shared virtual memory be-
tween multiple integrated CPUs and GPUs,

(3) Allows resource-dependent compression/swizzling to be se-
lected for an unbounded number of memory resources,

(4) Increases CPU software rendering efficiency compared to
accessing uncompressed/unswizzled data,

(5) Allows compressed resource management to be performed
in app/driver code instead of kernel code, and

(6) Adds no memory latency for accessing regular (i.e. uncom-
pressed/unswizzled) data.

2 BACKGROUND

Before we discuss the details of our approach, in this section we pro-
vide an overview of current practices on compression and swizzling
in existing GPUs and methods for providing CPU access to GPU
resources when CPUs and GPUs share the same memory. We also
provide an overview of the virtual address translation process in
current CPUs, as this paper proposes modifications to this process.

2.1 Integrating CPUs and GPUs

Typically CPU/GPU shared virtual memory is implemented by
integrating CPUs and GPUs onto the same die and allowing them to
access a common memory. CPUs and GPUs can be integrated onto
the same die in several ways. Figure 1 illustrates several alternatives.
On the left we have a CPU and a GPU sharing access to on-chip
SRAM. Each of them includes an L1 cache and multi-level page
translation logic, referred to as a page walker. On the right we have
multiple CPU cores and independent GPU blocks that share access

https://doi.org/10.1145/3384382.3384533
https://doi.org/10.1145/3384382.3384533
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3384382.3384533&domain=pdf&date_stamp=2020-05-05

13D 20, May 5-7, 2020, San Francisco, CA, USA

CPU GPU
Core Block

|
|
|
Cache Cache | |
& Page & Page| |
Walker]| |
|

|

|

|

e

=
ol
=~
)
=

Walker Walker Walker
i i r i }
[T
Shared SRAM| | ————————— e ————

Off-Chip Shared Memory |

Figure 1: Two examples of how to integrate CPUs and GPUs onto
a single die for shared virtual memory. The shared memory may
be on-chip or off-chip, optionally with a last-level cache for higher
performance configurations. Each CPU core or independent GPU block
typically has its own independent caches and page translation logic
(page walker), but page translation must be centrally managed.

to off-chip memory. Each CPU core typically has both L1 and L2
caches as well as its own page walker logic. Similarly, the GPUs
may be organized into multiple blocks with independent L1/L2
caches and their own page walker logic.

Although these configurations contain multiple page walkers,
the paging system in a shared virtual memory system must be cen-
trally managed, typically by the operating system. This allows the
CPUs and GPUs to use the same virtual address to access the same
memory location. This is different from integrated configurations
that divide up the memory into a portion owned by the CPUs and a
portion owned by the GPUs. In such systems data typically must be
copied to be converted between CPU and GPU access. Shared vir-
tual memory avoids the copy, but data must still be decompressed
for CPU access and CPUs must be able to access the data in swiz-
zled order. Attempts to define standard swizzle patterns have met
limited success [Microsoft 2018]. Compression standards also exist,
but GPU vendors do not restrict themselves to these standards,
especially for lossless compression.

This paper solves these problems by allowing CPUs to access
GPU data that is stored in compressed and swizzled forms. No
standardization is required since the CPUs only need to support
the compression and swizzling methods used by the GPUs that are
integrated into the same die.

2.2 Types of Compression in GPUs

Modern GPUs support a variety of both lossy and lossless com-
pression methods. Lossy compression typically reduces the data
footprint by a fixed amount, at the cost of approximating the data.
For that reason, lossy compression is usually specified in the graph-
ics API so that users are in control of the degree of approximation
and the kinds of visual artifacts that may be introduced.

Lossless compression, on the other hand, exactly reproduces the
original data. As a result, GPUs can use lossless compression with-
out exposing compression in the graphics APL In general, modern
GPUs use lossless compression whenever the bandwidth reduction
is of great enough benefit and where the added latency of compres-
sion and decompression can be hidden. Since GPUs are designed to
hide latency, lossless compression can be used for almost all data.

Larry Seiler, Dagi Lin, and Cem Yuksel

Another important criteria for compression is whether the data
must be decompressed sequentially or whether random access
is supported. Video compression methods, for example, are de-
signed to be decompressed sequentially. As a result, the compres-
sion method can use data from earlier in the frame or from previous
frames. But data structures such as textures, frame buffers, and in-
dex buffers are generally not accessed sequentially, but must be
able to be accessed at arbitrary locations. To permit this, the data to
be compressed is divided into blocks, each of which is compressed
independently of the others, so that only the block containing the
desired data needs to be compressed or decompressed on access.

GPU shader instruction sets provide many ways to indirectly
access memory by using a memory resource descriptor with an
array index. The descriptor specifies the array size, pixel format,
type of swizzling, compression type, and base addresses for data
and meta-data, if any. Dedicated logic uses the descriptor to convert
array indices into memory addresses for both the compression data
and the meta-data and performs the necessary compression and
decompression. This allows compression to be used with 1D buffers,
as well as 2D and 3D pixel arrays.

2.3 Block Compression in GPUs

GPUs use both lossless and lossy block compression for reducing
memory bandwidth. Each data block is compressed independently
to allow random access. A typical example is AMD’s Delta Color
Compression (DCC) [Brennan 2016].

When using lossless block compression, not all data blocks can
be compressed the same amount. Some data blocks cannot be com-
pressed at all, so they must be stored in uncompressed form. As
a consequence, information about how a block is compressed (or
not) cannot fit into the original data footprint.

The typical solution to this problem is to add a separate array of
per-block meta-data bits that specify the type of compression used
in each compression block. Then compressed data is stored in an
array the size of the uncompressed data. An example lossless block
compression scheme is shown in Figure 2. In 4:4 mode, only the
memory units that are accessed need to be read or written. In 4:2
and 4:1 modes, all of the compressed data in a block must be read or
written to access any part of the block. 4:0 mode selects a constant
value for the entire block. This can be a fixed clear color. In DCC the
clear color can be specified in the descriptor, though compression
is not supported for all memory access agents [Brennan 2016].

Compressed Data Uncompressed Data
D3ata | D3ta | D3ata | Data Data | Data | Data | Data
Block | Block | Block | Black Block | Block | Block | Block
Meta- Data Decompress using a clear color and

| o(40) | 1(4:1) | 2(4:2) | 3(4:4) | a 2-bit meta-data code per block

Figure 2: An example of lossless block compression. Each block is
256B and consists of four 64B memory accesses, storing 8 X 8 32-bit
pixels. The level of compression is specified by two meta-data bits per
block, indicating possible compression ratios 4:0, 4:1, 4:2, and 4:4. Note
that 4:0 uses a default clear color for the entire block (e.g. black).

For lossy block compression, each block is typically compressed
by the same amount to simplify random access. Common GPU lossy

Automatic GPU Data Compression and Address Swizzling for CPUs via Modified VAT

Fixed Block Size
Lossy Compression
Data | Data | Data | Data
Block | Block | Block | Block

Uncompressed Data Footprint

Data D3ta Data D3ta
Black Block Block Blaock

Figure 3: An example of lossy block compression. Each compressed
block is 64B and decompresses to 256B that represents 8 X 8 32-bit
pixels. Accessing the uncompressed data using memory addresses
requires a second address space the size of the uncompressed data.

compression methods use a 4:1 compression factor, as illustrated
in Figure 3. Two address spaces are required: one for the lossy
compressed data and a second the size of the uncompressed data.

Typically, lossy compression is used for read-only data and only
when the application chooses to use lossy compression. This is due
to the visual artifacts that can result on compression. The most
common usage is for pre-compressed texture data. For this reason,
we did not evaluate performance for accessing lossy compressed
data from CPU software.

Finally, the multiple pixel formats supported by GPUs may
be considered to be a form of lossy compression. For example,
R4G4B4A4 is a 2:1 lossy compression of R8G8B8AS. Supporting
multiple pixel formats in software is not as big a problem as
supporting other compression formats for three reasons: (1) they
are standardized, (2) the software system usually controls which
pixel format is used, and (3) only a few are used regularly. Still,
it is simple to define lossy compression formats that convert
smaller formats to 8-bit/16-bit integer or 16-bit/32-bit floating
point components on CPU reads and convert back to smaller
formats on CPU writes, possibly in addition to other forms of lossy
compression.

2.4 Address Swizzling in GPUs

GPUs have long used address swizzling [Giesen 2011] to allow
reading or writing a 2D footprint of pixels in one memory access.
Address swizzling converts an (x,y) or (x,y,z) array index into a
memory address by interleaving low order index bits into low order
bits of the array address. The result is that each memory access
covers a 2D or 3D footprint of the array.

For example, Microsoft Direct3D 12 [Microsoft 2018] defines a
set of standard swizzle patterns that pack 4x4 32-bit pixels into
64B, 8x8 32-bit pixels into 256B, etc. Figure 4 illustrates this swizzle
pattern in terms of arrays of pixels (left) and sequences of bytes

00|01|02|03|32|33|34|35
04|05|06|07|36|37|38]|39
08|09 |10| 11|40 |41 42|43
12 13|14 | 15]|44 | 45|46 | 47
16 (17|18 (1948 |49 |50 51
20|21|22|23|52|53|54]|55

Bytes 64:48 Bytes 47:32 Bytes 31:16 Bytes 15:0
[Pixel (0.3, 3) | Pixel (0.3, 2) [Pixel 0.3, 1) [Pixels (0.3, 0)]

Bytes 127:112 Bytes 111:96 Bytes 95:80 Bytes 79:65
[Pixet 0.3, 7) | Pixel (0.3, 6) [Pixel (0.3, 5) [Pixels (0.3, 4)]

Bytes 191:176 Bytes 175:160 Bytes 159:144 Bytes 143:128
[Pixel 4.7, 3) | Pixel (4.7, 2) [Pixel (4.7, 1) [Pixels (4.7, 0)]

24|25|26|27|56|57|58 |59 Bytes 255:240 Bytes 239:224 Bytes 223:208 Bytes 207:192
28|29 30|31 |60 62| 62| 63 Pixel (4.7, 7) | Pixel (4.7, 6) | Pixel (4.7, 5) [Pixels (4.7, 4)

Figure 4: The Direct3D 12 swizzle pattern for an 8x8 array of 32-bit
pixels. The left side shows an 8x8 array of pixels with the word offset
for each pixel in the 8x8 array. Dark boxes outline 64B memory access
units. The right side shows the mapping of pixels to 256B of memory.
Each row is a sequential 64B memory access unit.

13D 20, May 5-7, 2020, San Francisco, CA, USA

(right). Note that it does not matter for bandwidth how pixels are
packed within a single memory access.

Each address swizzling pattern defines a maximum swizzle tile
size within which index bit interleaving occurs. For Direct3D 12,
the size is 64KB, which interleaves 128x128 32-bit pixels. Above
that level, data is stored as a linear array of swizzle tiles. Arrays
must be padded so that the array dimensions are multiples of the
width and height of a single swizzle tile, which is usually also the
memory allocation unit size.

2.5 CPU access to GPU resources

At present there is no good way to provide CPU access to com-
pressed and/or swizzled GPU resources. A common technique is to
decompress and deswizzle while copying GPU data to CPU memory,
and vice versa when copying the data back. Copying forces exclu-
sive access by either the CPU or GPU, in addition to the latency
and power cost of copying the data.

Another common technique is to define a limited number of
special memory apertures on the CPU that each have an associ-
ated resource descriptor. Memory accesses within the aperture’s
address range use the descriptor to convert addresses to (x,y) array
indices, which are converted to addresses in swizzled memory. This
technique has high latency and does not permit cache coherency.

Universal compression has been proposed [Verrilli et al. 2016],
which stores extra meta-data bits for each block of physical memory.
Compression and decompression are then handled in the CPU
memory controller. This requires using a common compression
method for all of memory, instead of allowing different methods for
different memory resources. It also stores compression meta-data
for all of physical memory, which increases the memory cost in
regions of memory where compression is not used.

Another proposal is to use the existing page table entries to
directly store meta-data bits, e.g. by stealing unused high order
physical address bits [Malyugin et al. 2019] or by expanding the
page table to include all of the per-block meta-data [Ekman and
Stenstrom 2005]. The limited number of bits available per page
restrict the former to a small number of choices for compressing
an entire page. The latter dramatically increases the complexity
of page translation, especially for multiple CPU systems that need
to synchronize independent page walks. It also does not support
GPU access to an array of meta-data. Both methods require the
kernel-mode paging system to manage compression.

2.6 Virtual Address Translation

Our solution for allowing CPU access to GPU resources involves
modifying the virtual address translation operations of CPUs. The
page translation systems used on modern CPUs generally imple-
ment a 48-bit virtual address that is mapped to 4KB pages of physical
memory. As a result, 4KB is the largest unit of memory that can be
sequentially physically accessed. The translation uses a sequence
of page table look-ups, where each page table is necessarily limited
to 4KB. This sequence of look-ups is referred to as a page walk.
Figure 5 shows the essential features of each page table entry.
The high order Page Frame bits specify a 4KB aligned physical
address. The total number of Page Frame bits supported depends
on how large a physical address space the CPU supports. The low

13D 20, May 5-7, 2020, San Francisco, CA, USA

83 12 11 0
I Page Frame (4KB aligned) | Control |

Figure 5: Abstracted form of a typical 64-bit page table entry in
current CPUs. Control bits specify page protections and how to perform
the page walk. Page Frame bits specify a 4KB-aligned page address.

order Control bits determine how the page translation is performed
and specify various kinds of protections and state. Typical Control
bits include write-enable, execute-enable and user mode, which
specifies whether the page can be accessed by user code or only
kernel code. Bits are also present to record whether data referenced
by the page has been read or written.

Figure 6 illustrates using four levels of tree-structured page table
lookups to map a 48-bit virtual address into a physical address. Each
level uses 9-bits of the virtual address to select a table entry from a
specified 4KB page. The PML4, PDPTE and PDE levels (the names
are those used in the IA-64 paging system) each read a table entry
that specifies the Page Frame for another page table. The PTE level
reads a table entry that specifies the Page Frame of the mapped
physical address.

47 39 38 30 29 21 20 12 11 0
[PML4 Index | PDPTE Index | PDEIndex | PTE Index | 4KB Page Offset |
I [
i v
Tadle [PMLA T = —| >
Base —l PDE M
4KBTable 4KBTable 4KBTable 4KBTable 4KB Page

Figure 6: Four-level page walk used in current Intel/AMD CPUs to
map a 48-bit virtual address into a physical address. Physical memory
is allocated in units of aligned 4KB pages.

Addressing virtual data, therefore, requires four page table look-
ups to determine the physical address. CPUs minimize this cost
by caching the individual page table lookups. More significantly,
CPUs use a translation lookaside buffer (TLB) to allow matching the
upper 36-bits of a 48-bit virtual address to a physical address. Any
page in the TLB can be accessed without doing any table lookups.

3 COMPRESSION WITH PAGE TRANSLATION

Using memory resource descriptors is not an option on CPUs. Appli-
cation code running on CPUs directly computes memory addresses
from internal array indices, without any way to reference to a
memory resource descriptor.

As an alternative to a memory resource descriptor, we propose
to take advantage of the CPU’s virtual to physical page translation
system. Figure 7 shows a page translation that maps each page
address in an uncompressed address space to a full page (using a
blue arrow) and a partial page (using a green arrow).

For lossless compression (on the left), the blue arrows point to
pages of compression blocks and the green arrows point to the
subset of a page of meta-data needed to interpret each compressed
page. Each 256B compression block requires 2 meta-data bits, so a
4KB page of compressed data requires 32-bits of meta-data. A 64KB
page would require 512 meta-data bits.

For lossy compression (on the right), the green arrows each point
a quarter of a page of compressed data. The blue arrows point to

Larry Seiler, Dagi Lin, and Cem Yuksel

1mome
Data /‘;§ | False!
L '
Page 4’. — | 1=-===5 | Page,
Meth=i— L False| o

Data 1 1

oas =</ (| Amyire
age 1-----5
Data Pa‘g(e | False !
Page &_/’E Page |

Lossless Compression Uncompressed Virtual Pages Lossy Compression

Figure 7: (Center) virtual pages of uncompressed data are (left)
mapped to both a page of lossless block compressed data and a subset
of a page of meta-data and are (right) mapped to a subset of a page
of lossy compressed data and a false page that provides an address
range for the uncompressed data that is not mapped to memory.

false pages that are not mapped to memory - these pages provide
an address range to reference the uncompressed data.

Thus, we propose using a scheme that allows two page pointers
per page table entry. This allows CPU software to compute a mem-
ory address that the page translation system can use to access both
arrays, so that dedicated hardware can automatically perform the
compression and decompression, as happens in GPUs.

3.1 New 64-bit Page Translation System

A page translation system that supports automatic compression and
decompression on a CPU must be at least as good as current page
translation systems when accessing ordinary data. More specifically,
it must meet the following requirements:

(1) The new system must not increase the latency to access

uncompressed data

(2) The new system must not increase the bandwidth required

to support page translation

(3) The new system must not increase the delay through logic

in the paging system

(4) The new system must be fully backwards compatible with

existing application software

(5) The new system must be fully cache coherent for all existing

CPU configurations

(6) The new system must provide specific benefits that justify

changing CPU paging

We propose a new page translation system that uses 64KB pages
to map a full 64-bit virtual address space. 64KB pages have signifi-
cant benefits compared to 4KB pages. They dramatically increase
the efficiency of the TLB, since each entry covers 16 times as much
data. They also greatly reduce the overhead of page management.
Virtual address space has long been allocated in 64KB chunks in
Windows and can be in Linux, so the larger page size does not
waste address space. The only issue is compatibility with 4KB page
management, which is covered in Section 5.3.

In this new system, each 64KB page stores 4096 128-bit page table
entries instead of using a 4KB page to store 512 64-bit entries. These
larger tables make page translation significantly more efficient
despite the 128-bit table entries, since 12-bits can be translated per
table lookup, instead of 9-bits. Figure 8 illustrates using four levels
of tree-structured page table lookups to map a 64-bit virtual address
into a physical address. This supports enterprise level applications
that require more than the current 48-bit address range. Normal
CPUs can use the new system with just three lookup levels for

Automatic GPU Data Compression and Address Swizzling for CPUs via Modified VAT

63 52 51 40 39 28 27 16 15 0
PL4index | PL3index | PL2index | PL1index | 64KB page offset |
I [
3
v N =
B —| PL2 entry |-
64KBtable 64KBtable 64KBtable 64KBtable 64KB Page

Figure 8: Four-level page walk used to map a 64-bit virtual address
into a physical address. Physical memory is allocated in units of
aligned 64KB pages. Fewer levels may be used when 52-bit, 40-bit, or
28-bit virtual address ranges are sufficient.

52-bit virtual addresses, or with even fewer levels for SOCs and
embedded processors.

Figure 9 shows the essential features of each 128-bit page ta-
ble entry. The Page Frame now specifies a 64KB aligned address
instead of 4KB aligned. This allows four additional Control bits,
which can be used to define the kind of address swizzling used, as
described in Section 5. The Subpage Frame specifies a 16B aligned
address. At level PL1, this can be used to reference the meta-data
associated with a 64KB compressed data page. Finally, the Select
(Sel) field specifies what type of compression the data uses, where
zero means that there is no compression and other values select up
to 15 different compression methods. This should be sufficient to
specify the range of compression modes provided by the GPUs that
are embedded with the CPU and therefore share access to the same
physical memory.

127 68 67 64
I Subpage Frame (16B aligned) l Sel |
63 16 15 0

I Page Frame (64KB aligned) | Control |

Figure 9: Example 128-bit table entry format for 64KB pages, includ-
ing a reference to a 64KB page and to a 16B aligned subset of a second
64KB page. These may be used to reference a page of lossless com-
pressed data blocks and a sub-page of the corresponding meta-data.

3.2 Multi-Stage Address Translation

Modern paging systems on both CPUs and GPUs sometimes support
multi-stage address translation. An example is when the paging
hardware directly supports a hypervisor. First a guest address space
is converted to a host address using a normal multi-level lookup.
This serves as a virtual to physical translation for the hypervisor.
But then a second multi-level lookup is performed to convert the
host address into a physical address. This serves as the virtual to
physical translation for the host operating system. The result is
that a hypervisor operating system runs on top of a host operating
system, with full protection of physical memory from disallowed
accesses by the hypervisor.

Many GPUs now support a multi-stage address translation fea-
ture called tiled resources [Microsoft 2013] or sparse textures [Sellers
2012], which was previously implemented in software under the
name Mega-Textures [Connery 2007]. Briefly, this divides a graph-
ics resource into 64KB tiles so that the application can select which
tiles it needs for a given frame. The application uses a tile trans-
lation table to convert address ranges for those tiles into virtual

13D 20, May 5-7, 2020, San Francisco, CA, USA

addresses, which the operating system converts to physical mem-
ory addresses using its own page tables. This allows the graphics
driver and applications to perform their own page translation, while
leaving physical address translation and physical page protection
to the operating system.

Multi-stage address translation can be used with this new system
in the same way that it is used to separate hypervisor address trans-
lation from host operating system translation in existing CPUs. This
method can also be used to implement tiled resources/sparse tex-
tures on CPUs. Similarly, the stage that maps an uncompressed ad-
dress range to compressed data and meta-data can be separate from
the stage that maps virtual addresses to physical addresses. This
allows block compressed data management to occur in user-mode
graphics drivers and applications, while permitting the operating
system to retain full control of the physical address space.

4 IMPLEMENTING BLOCK COMPRESSION

This section describes a basic structure for implementing block
compression algorithms in the CPU by means of information stored
in the page table.

4.1 Compression/Decompression Logic

Supporting automatic block compression requires only localized
changes to the processor’s memory datapath. Solid boxes in Fig-
ure 10 show the basic data flow for a processor (CPU or GPU) that
communicates with shared memory through local L1 and L2 caches.
The dotted box shows where the new logic interacts with that data
flow. Actual GPUs and CPUs are more complex [Junkins 2015].

CPUor|, | L1 | Data [T 2 3
GPU [pata| Cache [1 "| Cache 3
Data - C ¥ E
5 5 Y Addr 5 2
T secccccee- ——- . c
< < Compress i &l E
< Page » D Logic | @
Walker » Decompress Logic i £
______ and_Codec-TLB :

Figure 10: Lossless compression and decompression occur between
the L1 and L2 caches, when page translation (performed by the page
walker block) determines that the data is stored compressed in mem-
ory. Dotted lines mark the block that is added to the hardware. The
datapath and latency for uncompressed data is unchanged.

Figure 11 shows a more detailed view of how the caches and
compression logic interact with each other. First, consider a read
of compressed data that misses in the L1 cache. In that case, the
following sequence of steps occur:

(1) The page walk identifies the page as storing compressed data
and loads the the Codec TLB with the necessary compression
information into the Codec TLB, if it is not already there.

(2) Next, the compression block’s meta-data is read from the
Meta L1 Cache, loading it from the L2 cache if necessary. The
location of the meta-data is specified in the Codec TLB entry.

(3) The meta-data determines which compression data to read
from the L2 cache, loading it from memory if necessary.

(4) The Compressor/Decompressor block decompresses the data
and stores the block into the L1 cache, along with tags that
specify the Codec TLB entry for each L1 cacheline.

13D 20, May 5-7, 2020, San Francisco, CA, USA

data | Uncompressed data| Compressed | data
L1 Data Cache I L2 Data Cache
codec-TLB tags Meta exclusive tags
L1
page Codec TLB Cache Compressor /
entry Decompressor

Figure 11: Details of compression/decompression logic and how it
interacts with the L1 and L2 caches. The Codec-TLB stores compression
information for active blocks. The Meta L1 cache stores meta-data.
The exclusive tags on the L2 cache are used for cache coherency.

Writes to the L1 cache do not cause any action other than loading
an entry into the Code TLB, if necessary, so that the L1 cacheline
can be tagged with its compression data. Our method assumes that
the L1 is a write-back cache, which is common in modern CPUs. As
a result, recompression does not occur until cachelines are evicted
from the L1 cache. At that point the following sequence of events
occur:

(1) Any L1 cachelines in the compression block are evicted and
are sent to the Compressor/Decompressor.

(2) If any part of the block is not in the L1 cache (e.g., that
cacheline was not written), the block is decompressed from
the L2 cache to fill in the missing data.

(3) The Compressor/Decompressor compresses the block and
writes out compression data and meta-data to their caches.

Optimizations and simplifications are possible for the read and
write paths. For example, if the meta-data is not available in the
Meta L1 or L2 caches on a read, both the meta-data and the com-
plete compression block can be read from memory in parallel. This
results in reading unnecessary compression block data if the block
is compressed below 4:4, but it avoids doubling the memory latency
by reading the meta-data before reading the compression data.

Finally, when a Codec TLB entry is evicted, all L1 data that
references that entry must be evicted, along with the corresponding
main TLB entry. This forces any future access to that page to do a
page walk that reloads compression data into the Codec TLB.

4.2 Cache Coherency for Compression

Hardware support for cache coherency is important, since the al-
ternative is for software to enforce coherency. Some kind of syn-
chronization is required when multiple processors access the same
data words, but software cache coherency requires cache flushes to
ensure that dirty data does not remain in one of the caches.

Cache coherency is complicated by several factors. CPU/GPU
systems may contain multiple L1 caches. They may even contain
multiple L2 caches, e.g. Intel® multi-core CPUs that provide a sepa-
rate L2 cache per processor on a ring bus. However, existing shared
cache exclusive access protocols suffice for enforcing cache co-
herency for data that is not compressed.

When data is stored compressed, writing any part of a com-
pression block requires exclusive access to the entire block and its
meta-data. Our method expands the unit of exclusive access from
a single memory access unit (e.g. 64B) to an entire compression
block. The size is known from the Codec TLB entry for that block.
As a result, writing to any byte within a compression block uses

Larry Seiler, Dagi Lin, and Cem Yuksel

the exclusive access protocol to flush the entire compression block
from any other processor that has that block in its caches.

It is also necessary to gain exclusive access to the meta-data bits
associated with the block. This is complicated by the fact that a
single cacheline of meta-data bits can cover a lot of compression
blocks, e.g. 256 compression blocks for 2-bit meta-data and a 64B
cacheline. Rather than requiring exclusive access to such a large
region of memory, we propose marking cachelines of meta-data
bits in the L2 cache. An exclusive access request to a meta-data
cacheline would refer to the L1 Meta Cache, which can store exclu-
sive access bits for individual compression blocks or for small sets
of compression blocks. Note that invalidating meta-data bits due to
exclusive access requires flushing any compression data associated
with those bits.

5 AUTOMATIC ADDRESS SWIZZLING

Automatically compressing and decompressing data is not sufficient,
since GPUs typically swizzle x and y index bits to store 2D data.
Figure 4 illustrates a swizzle pattern for an 8x8 block of 32-bit pixels.

We describe two ways to automatically swizzle and deswizzle
data on access by the CPU. The first requires changing application
software to be aware of the 64KB page size and the second does
not. We then describe an extension to our page translation scheme
that supports the second method.

5.1 Within-Page Deswizzling

Accessing a swizzled array from a CPU is problematic. Application
code can deswizzle the data, but that can require extra inner-loop
instructions. Worse, it may make the code hardware-dependent
because swizzle patterns are not well standardized across GPU
vendors and may change from generation to generation.

A simple change to the Compression/Decompression logic in
Figure 11 allows accessing data in row-major order within each
64KB page. The swizzle pattern is selected in the Control bits of
the PL1 page table entry. Then the page offset bits are reordered to
map the swizzled data in the page into a row-major order array. For
32-bit pixels, this produces a 128128 pixel array per page. Software
then uses high order X and Y address bits to select a page and uses
the lower seven of the x and y address bits to perform ordinary
row-major order pixel accesses within the page.

Figure 12a illustrates 32-bit pixels in 64KB pages in deswizzled
order. For within-page deswizzling, the application software does
not need to know anything about the actual swizzle pattern. How-
ever, it needs to know how large an array of pixels maps to a page
and needs to organize its loops around that per-page array size.
The following section describes how to convert the entire array to
row-major order, rather than just deswizzling within 64KB pages.

Pixels (128...255, 0) [Pixels (0...127,0) [Pixels (128...255,0)]
Pixels (128...255, 1) [Pixels (0..127,1)][Pixels (128...255,1)]

Pixels (0...127, 0)
Pixels (0...127, 1)

Pixels (0...127, 127) Pixels (128...255, 127) [Pixels (0...127,127)][Pixels (128...255,127)]

(a) Two deswizzled 64KB pages (b) 256 separate 512B pages

Figure 12: Pixels in pages: (a) two 64KB pages of 32-bit pixels that
have been within-page deswizzled to 128x128 row-major order arrays,
and (b) dividing those two 64KB pages into 256 512B pages, each of
which stores 128 32-bit pixels from a single row.

Automatic GPU Data Compression and Address Swizzling for CPUs via Modified VAT

5.2 Across-Page Deswizzling

Within-page deswizzling requires writing software applications
with explicit knowledge of the 64KB page size. While this may not
be very difficult, it does not provide any particular advantage to do
so, except the advantage of not needing to write the code to support
all possible swizzle patterns that it might be used with. There are
two other ways to write CPU software to access 2D arrays of data:

(1) Row-major order: for scanline-based algorithms, it is simple
and efficient to access arrays without any swizzling. All
programming languages support row-major order by default.

(2) 2D-block order: for rendering algorithms, memory band-
width can be reduced by swizzling data within small blocks,
e.g. one to four cachelines. All GPUs support swizzling be-
cause it is more efficient for rendering.

First, consider row-major order (1). Figure 12b illustrates access-
ing 32-bit pixels from the within-page deswizzled data illustrated
in Figure 12a. After every 512B (128 pixels), stepping through the
pixels in row order requires changing pages, because pixel (127,0)
and pixel (128,0) are in different 64KB pages. Therefore, we can
create row-major pixel order in a virtual address space if we use
512B pages. Note that we do not need to allocate memory on 512B
boundaries to achieve this: the data is still stored in 64KB pages. We
just need to be able to perform page translation at 512B boundaries.

Now consider 2D-block order (2). With 32-bit pixels, 4x4 pixels fit
into a 64B cacheline and 8x8 pixels fit into four cachelines. Storing a
4x4 block per 64B cacheline has numerous advantages for rendering
algorithms, as compared to storing 16x1 pixels in a 64B cacheline.
For example, suppose we are rendering a 7x7 pixel region. That
touches exactly four aligned 4x4 pixel blocks. It touches seven to
fourteen 16x1 pixel blocks. On average, storing the data as 16x1
pixels per cacheline instead of 4x4 pixels per cacheline requires
accessing 2.4 times as many cachelines.

Both of these usages require a way to support page translation
at a finer granularity than 64KB. The following section describes a
way to achieve this without requiring memory allocation at a finer
granularity than 64KB.

5.3 Variable Size PLO Page Walk

Section 3.1 refers to needing to support 4KB page translations for
backward compatibility with existing paging systems. The solution
in the previous section also requires support for pages smaller than
64KB in order to support across-page deswizzling, e.g. 512B page
translations. But it would be very costly to require the operating
system to support allocating memory in multiple page sizes.

The solution to these problems is to allow dividing 64KB pages
into smaller subpages, each of which can specify its own aligned
addresses and page protections. A subpage is not an allocation unit:
memory is allocated only in 64KB chunks. Instead, subpages are a
way to map subsets of a 64KB page to different ranges of the virtual
address space.

Figure 13 illustrates two examples of how to modify the PL1 page
walk shown in Figure 8 to allow an extra PLO subpage lookup after
the PL1 lookup. Control bits determine whether the PL1 lookup
produces a data page or accesses a table for a PL0O page walk and
how many bits to map. The PL0 index can contain from 1-bit to

13D 20, May 5-7, 2020, San Francisco, CA, USA

27 16 15-12 11 0 27 16 15 9 8 0
[PLiindex [PLO| 4KBoffset | | PLiindex | PLO [512B offset

I I
v v

PL1 entry Data PL1 entry
—|

64KB table 256B table 4KB page
() 4-bit PLO index (4KB subpage)

Data

—|

64KB table 2KB table 512B page
(b) 7-bit PLO index (512B subpage)

Figure 13: A level zero lookup allows the tile translation table to
map subpages that are subsets of 64KB memory allocation units. The
number of PLO index bits used determines the subpage size: (a) 4-bit
PLO index that divides a 64KB page into 16 4KB subpages, and (b) 7-bit
PLO index that divides a 64KB page into 128 512B subpages.

16-bits. This produces subpage sizes from 32KB down to 16B, using
table sizes from 32B to 64KB (2 to 4K table entries).

Figure 13a shows a PLO access that allows full compatibility with
hardware or application software that uses 4KB pages. Each table
entry allows a 4KB-aligned sub-page reference with a complete
set of page protection bits. This can be used to map page control
bits and an arbitrary 4KB-aligned address per page, so long as
the operating system allocates virtual memory in 64KB chunks, as
Windows does [Chen 2003] and as Linux can do.

Figure 13b shows a PLO access that allows row-major deswizzling
for 32-bit pixels, as shown in Figure 12(b). Other pixel sizes or
swizzle patterns may require other subpage sizes, as does 2D-block
order partial deswizzling. For example, 4x4 2D-block order requires
a 2KB subpage size, which would use a 5-bit PL0 index. 8x8 2D-block
order requires a 4KB subpage size, as illustrated in Figure 13(a).

6 EVALUATION

A key goal of this work is to enable applications to perform a mix
of processing on GPUs and CPUs, depending on which processor is
more power efficient for each task. For that to be practical it must be
possible for each processor to access the data without performance
loss or power gain due to decompressing data before CPU use or
due to refraining from using compression on the GPU.

Therefore, for our evaluation we wanted to mock up an applica-
tion that renders a pixel array on a GPU and then transfers the data
to the CPU for further rendering. In that way the data arrives at the
CPU already compressed and swizzled. We chose text rendering
for the CPU task, since at one time text rendering was often done
on the CPU. We compare the following cases:

(1) Baseline: CPU accesses row-major uncompressed data that
is assumed to have been copied after rendering on a GPU.

(2) Our method: CPU accesses row-major order decompressed
data that is assumed to have been rendered on a GPU.

(3) Our method: CPU accesses 2D-block order decompressed
data that is assumed to have been rendered on a GPU.

We also measured the cost of copying the GPU data in order to
unswizzle and uncompress it for the baseline case. The results show
that our method (2) uses about 5/6 the power and computation time
of baseline (1) for row-major pixel order and about 2/3 the power
and computation time of baseline (1) when the code is modified to
use 2D-block order (3), so that each cacheline access returns a 2D
array of texels instead of a linear array of texels. These numbers

13D 20, May 5-7, 2020, San Francisco, CA, USA

are without even considering the cost of copying the data to decom-
press and partially or fully deswizzle it. The following subsections
introduce the test case, test dataset, hardware configuration, and
test procedure before the results are discussed.

6.1 Text Rendering Test Case

To evaluate the performance of our approach, we use a test appli-
cation where the CPU rasterizes random text on a set of textures
(Figure 14). CPU rasterization of text is a useful application, since
it parallelizes poorly on the GPU. The textures are stored in the
GPU memory in a shared virtual memory system. During text ras-
terization the shared memory containing the underlying textures
is read and written on the CPU side. Read is required since the
text contains an alpha channel for anti-aliasing, which requires
blending with the target texture.

Figure 14: Our test rasterizes anti-aliased random alphanumeric text
on a set of 668 textures, including albedo maps, albedo maps, specular
maps, normal maps, and opacity maps. At each iteration an image
file is randomly selected and a text box of random size between 64X 16
and 256X 64 is generated at a random position in the image.

The dataset used in our tests consists of 668 textures coming from
4 different 3D scenes (Amazon Lumberyard Bistro, Crytek Sponza,
San Miguel [McGuire 2017], and Zero Day [Beeple 2015]) that
contains albedo maps, specular maps, normal maps, and opacity
maps, with decompressed sizes summing to over 5GB. All pixels
are stored as 32-bit RGBA values.

Since the textures contain a variety of compression character-
istics, rendering text on them simulates the case of web page co-
rendering, an important application of our method. In web page
font rendering where CPU rasterization can provide more flexibil-
ity, our method allows the CPU to directly rasterize fonts on the
compressed and swizzled images in shared virtual memory, thus
avoiding expensive data copying.

We compare the performance of our method to a baseline that
runs CPU code for text rasterization, using row-major order to read
and write the texture data. The difference between our method
and the baseline is the way that the texture data is stored. For our
method, we assume that the textures are stored in our swizzled and
lossless block compressed format during CPU text rasterization.

For the baseline, we assume that textures are uncompressed and
stored linearly in the shared memory, so it does not include our
modifications to virtual address translation, as they are not needed.
Thus, our baseline imitates current CPU systems that cannot handle
compressed and swizzled GPU resources and, therefore, they would
either involve copying data to the CPU memory (during which
the data is decompressed and deswizzled) or require the GPU to

Larry Seiler, Dagi Lin, and Cem Yuksel

Table 1: Detailed configuration of different hardware components.

Associ-| Access Read Write
Component Capacity | ativity | Latency | Energy| Energy
L1 Cache 32,768 B| 8-way | 4 cycles| 0.0813 nJ | 0.0816 nJ
Meta L1 Cache| 32,768 B| 8-way| 4 cycles | 0.0813 nJ| 0.0816 nJ
L2 Cache 262,144 B| 8-way | 10 cycles | 0.1802 n] | 0.1998 nJ

TLB (Level 1)
TLB (Level 2)

64 entries | 4-way | 1cycle | 0.0308 nJ | 0.0289 nJ
512 entries | 4-way | 6 cycles | 0.0449 nJ | 0.0513 nJ

work with uncompressed and deswizzled data (with negative GPU
performance implications).

6.2 Hardware Configuration

The simulated CPU is a simplified version of the standard 2010 Intel
core i7 configuration, which includes a pipelined L1 cache and an
L2 cache, but no L3 cache. The detailed configuration can be found
in Table 1. The simulated CPU has a clock speed of 3.2 GHz and
DRAM is a single channel DDR3-1600 with 16GB capacity. The CPU
pipeline is simplified such that it stalls for every load instruction
until the result comes back from lower caches or the main memory
(simulated using USIMM [Chatterjee et al. 2012]).

The simulated CPU has a two-level TLB which caches the results
of page translations. For the baseline (1), the page size is 4KB (1K
pixels). For our method, the page size is 64KB, with a subpage size
of 512B (128 pixels) for row-major (2) and a subpage size of 4KB (16
blocks of 8x8 pixels) for 2D-block order (3). Additionally, we add
the proposed Meta L1 cache and hardware codec to the chip. We do
not model the Codec TLB, instead assuming that the corresponding
metadata location of an L1 cache entry is always available. This
should have a minor effect since the overhead of reading the codec-
TLB is small compared to compression and decompression.

Commercial GPUs use proprietary lossless compression schemes,
so we needed to create our own. We use Huffman coding with a fixed
Huffman tree for the fixed function lossless compression logic in our
simulated hardware. We chose Huffman coding due to its simplicity,
which minimizes the codec overhead while achieving a roughly 2:1
average compression ratio on a block size of 8 X 8 32-bit pixels or
256B. This compression method, block size, and compression ratio
are similar to many GPU lossless block compression algorithms.

We estimate the latency of the codec in our hardware to be 50
cycles to decompress a block. This is based on an implementation
of static Huffman encoding hardware using barrel shifters [Lee and
Park 2004] and a hardwired Paeth codec [Hakkennes and Vassiliadis
1999]. Codec energy consumption is estimated as 1.9947 nJ by using
Cacti 7 [Balasubramonian et al. 2017] and summing the energy of
all hardware components. Multiple codecs could be used to increase
bandwidth between the L1 and L2 caches, if needed.

6.3 Test Procedure and Results

Before text rasterization, the dataset has an average block compres-
sion ratio of 2.39. Some textures (e.g. albedo maps) often contain
high frequency details that result in a low lossless compression
rate, while other textures (e.g. normal maps) usually contain large
regions with constant data, leading to a high compression rate.
Our test application randomly selects an image file and generates
a text box at a random position in the image with a random size

Automatic GPU Data Compression and Address Swizzling for CPUs via Modified VAT

13D 20, May 5-7, 2020, San Francisco, CA, USA

Table 2: Energy Breakdown of hardware components in millijoules, with ratios of our methods to the baseline.

(1) Baseline (2) Our Method (3) Our Method
4KB pages 64KB pages, 512B subpages | 64KB pages, 4KB subpages
energy % energy % ratio energy % ratio
TLB 0.01 0.00% 0.03 0.01% 2.15 0.00 0.00% 0.31
L2-TLB 0.02 0.01% 0.04 0.02% 2.05 0.01 0.00% 0.30
Data L1 10.67 3.69% 10.78 4.49% 1.01 10.59 5.44% 0.99
Meta L1 0.00 0.00% 0.25 0.10% 00 0.20 0.10% 00
L2 1.72 0.59% 1.51 0.63% 0.88 1.16 0.60% 0.68
Codec 0.00 0.00% 6.08 2.53% 00 4.95 2.54% 00
Memory 276.29 95.70% 221.27 92.21% 0.80 177.84 91.31% 0.64
[Total (rendering) [288.71 100.00% | 239.96 100.00% 0.83] 194.76 100.00% 0.67 |
[Initialization [1384.79 (extra) | 0.00 - 0] 0.00 --- 0]
Table 3: Time Breakdown in CPU cycles, with ratios of our methods to the baseline.
(1) Baseline (2) Our Method (3) Our Method
4KB pages 64KB pages, 512B subpages | 64KB pages, 4KB subpages
of cycles % | #of cycles % ratio| # of cycles % ratio
VA Translation 38,232K 3.59% 97,718K 10.68% 2.56 30,413K 4.38% 0.80
— TLB Read 438K 0.04% 906K 0.10% 2.07 133K 0.02% 0.30
— L2-TLB Read 2,628K 0.25% 5,432K 0.59% 2.07 797K 0.11% 0.30
— Data L1 Read 3,177K 0.30% 7,061K 0.77% 2.22 1,114K 0.16% 0.35
— L2 Read 1,845K 0.17% 5,526K 0.60% 3.00 1,152K 0.17% 0.62
— Memory Read 24,799K 2.33% 59,104K 6.46% 2.38 16,764K 2.41% 0.68
- Queueing Delay 5,344K 0.50% 19,689K 2.15% 3.68 10,453K 151% 1.96
Load 949,099K 89.08% 747,481K 81.69% 0.79 595,528K 85.75% 0.63
— Data L1 Read 78,140K 7.33% 71,609K 7.83% 0.92 68,557K 9.87% 0.88
— Meta L1 Read 0 0.00% 7,452K 0.81% 00 4,965K 0.71% 0o
— L2 Read 44,326K 4.16% 45,099K 493% 1.02 29,147K 420% 0.66
~ Memory Read 721,178K 67.69% 385,532K 42.13% 0.53 320,540K 46.15% 0.44
- Queueing Delay 105,454K 9.90% 144,082K 15.75% 1.37 110,256K 15.88% 1.05
- Codec Delay 0 0.00% 93,152K 10.18% 00 62,063K 8.94% 00
[Store | 78,140K 7.33%] 70,423K 7.70% 0.90] 68,557K 9.87% 0.83]
[Total (rendering) | 1,065,470K 100.00% | 915,066K 100.00% 0.86] 694,499K 100.00% 0.65 |
[Initialization [2,249,921K (extra) | 0 . 0] 0 . 0]

chosen between 64x16 and 256x64. A random string consisting
of alphanumeric letters is rasterized with a scale that fills the en-
tire text box using the Arial Black font face, using the FreeType
library [FreeType 2018]. The modified image blocks are recom-
pressed when data is flushed from L1, which can cause changes
in their compression ratio and meta-data. We repeat this process
10,000 times to collect the statistics as shown in Tables 2 and 3.
When using row-major order (2), our method reduces energy
use by 17% and computation time by 14%. This compares running
exactly the same row-major text rendering code for baseline and
for our method. Virtual address translation is more costly due to
the 512B subpage size. This cost could be reduced by coding for
within-page deswizzling, which eliminates the 512B subpages.
When using 2D-block order (3), our method reduces energy use
by 33% and computation time by 35%, which is a 1.53% speedup.
This improvement is due to rewriting the code to access data in
2D-block order, that is, in swizzled 8x8 blocks of data in linear
order in memory. This allows using 4KB subpages, so that the page

translation cost is now lower than baseline. More significantly, this
reduces the CPU cycles for load operations, which dominate the
computation time, from 79% of baseline to 63% of baseline. As a
result, the total rendering time is reduced by 35% and the total
energy use is reduced by 33%, as compared to baseline.

These numbers do not include the overhead of the GPU either
using uncompressed/unswizzled data, or else the cost of copying
the GPU data in order to convert it to uncompressed and fully or
partially unswizzled form before CPU access. The latter cost is
shown on the initialization lines at the bottom of the two tables.
For the baseline, this initialization copy operation requires 2.1X the
total cycles for rendering and 4.8 the total dynamic energy for
rendering. This is because the memory footprint of copying the
whole dataset is much larger than the memory footprint of the font
rasterization task. In the 10000 iterations of font rasterization on
crops of random images, at most 625 MB of data are read from the
memory. In comparison, the initialization process needs to copy
the whole dataset, which has 5.7 GB uncompressed size. So our

13D 20, May 5-7, 2020, San Francisco, CA, USA

method of using the page table to decompress and deswizzle data
on demand allows most of the data to remain in compressed and
swizzled form.

7 DISCUSSION AND FUTURE WORK

Our method opens up new possibilities for interactive rendering
with CPU and GPU cooperation. At present opportunities to split
work between CPU and GPU are limited by the tremendous cost of
restricting CPU data to be uncompressed and unswizzled. Therefore,
many tasks have been transferred to the GPU. Our work allows
choosing which processor is most efficient for each task, without
concern for data transfer or decompression/deswizzling.

Web page font rendering is an example application that can
benefit from our proposed hardware modifications. The Chromium
browser uses either software rasterization with zero-copy texture
transfer or GPU rasterization with precomputed texture atlases for
text, which limits the flexibility of font rasterization [Hartmeier
2016]. Our method solves this problem by allowing the CPU and
the GPU to rasterize to the same memory resource without copying
data and without abandoning compression and swizzling.

There are a number of ways that this work can be extended to
increase the variety of compression options and data re-ordering
options that can be supported:

o Global as well as per-block meta-data could be encoded, e.g.
to specify background colors or Huffman tables.

o Entire pages could be stored compressed and then decom-
pression software could be called on first access.

e Data could be reordered to support both array-of-struct and
struct-of-array access.

o The subpage mechanism could be used to support variable
rate compression and fine grain access control.

There are also a number of ways the work can be extended to
explore additional applications of this method:

o Further analysis of using this method with web page render-
ing and other rendering algorithms.

o Analysis of supporting sparse textures/tiled resources on
CPUs and other multi-stage page mappings.

o Using compression for vertex buffers or other data structures
that are consumed by a GPU but generated by a CPU.

e Testing CPU-only algorithms that may benefit from storing
data compressed in main memory.

o Transferring data between non-shared memory using com-
pression and leaving it compressed in CPU memory.

8 CONCLUSION

We have described a way to modify the CPU page translation sys-
tem to support automatic data compression and address swizzling
for CPU/GPU shared memory resources. Our proposed method re-
quires a new logic block that processes compressed or swizzled data
passing between the L1 and L2 caches, but otherwise has minimal
impact on the CPU memory access path.

Our method allows efficient CPU access to swizzled and com-
pressed GPU resources using software that assumes that data is
uncompressed and stored either in standard row-major order or
is stored in 2D-block order, which is a linear sequence of small
swizzled blocks. In our evaluation of CPU text rendering, both CPU

Larry Seiler, Dagi Lin, and Cem Yuksel

cycles and power were reduced to about 5/6 for row-major order
and 2/3 for 2D-block order, compared to that required using data
that is stored uncompressed and unswizzled. This suggests that
many applications can benefit from our method.

ACKNOWLEDGMENTS

This project was supported in part by a grant from Facebook Reality
Labs.

REFERENCES

ARM. 2017. Arm Frame Buffer Compression. https://developer.arm.com/architectures/
media-architectures/afbc

Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee, and
Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration in inno-
vative off-chip memories. ACM Transactions on Architecture and Code Optimization
(TACO) 14, 2 (2017), 14.

Beeple. 2015. Cinema 4D Project Files. https://www.beeple-crap.com/resources

Chris Brennan. 2016. Delta Color Compression Overview. https://gpuopen.com/dcc-
overview/

Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth Pugsley,
Aniruddha Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan Chishti.
2012. USIMM: the utah simulated memory module. Technical Report. Univ. of Utah.

Raymond Chen. 2003. Why is address space allocation granularity 64K? https://
devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223

Richard Connery. 2007. MegaTexture in Quake Wars. https://www.beyond3d.com/
content/articles/95/1/

Magnus Ekman and Per Stenstrom. 2005. A robust main-memory compression scheme.
In ACM SIGARCH Computer Architecture News, Vol. 33. 74-85.

FreeType. 2018. FreeType Overview. https://www.freetype.org/freetype2/docs/

Fabian Giesen. 2011. Texture tiling and swizzling. https://fgiesen.wordpress.com/2011/
01/17/texture-tiling- and- swizzling/

Slawomir Grajewski. 2012. INTEL_map_texture. https://www.khronos.org/registry/
OpenGL/extensions/INTEL/INTEL_map_texture.txt

Edwin A Hakkennes and Stamatis Vassiliadis. 1999. Hardwired Paeth codec for portable
network graphics (PNG). In Proceedings 25th EUROMICRO Conference. Informatics:
Theory and Practice for the New Millennium, Vol. 2. IEEE, 318-325.

Martina K. Hartmeier. 2016. Software vs. GPU Rasterization in Chromium. https:
//software.intel.com/en-us/articles/software-vs- gpu-rasterization-in-chromium

Intel. 2016. OpenCL™ 2.0 Shared Virtual Memory Overview. https://software.intel.com/
en-us/articles/opencl-20-shared-virtual-memory-overview

Konstantine I Iourcha, Krishna S Nayak, and Zhou Hong. 1999. System and method for
fixed-rate block-based image compression with inferred pixel values. US Patent
5,956,431.

Stephen Junkins. 2015. The Compute Architecture of Intel® Processor Graphics
Gen9. https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-
Architecture-of-Intel-Processor- Graphics-Gen9-v1d0.pdf

Taeyeon Lee and Jaehong Park. 2004. Design and implementation of static Huffman
encoding hardware using a parallel shifting algorithm. IEEE Transactions on Nuclear
Science 51, 5 (2004), 2073-2080.

Vyacheslav Malyugin, Luigi Semenzato, Choon Ping Chng, Santhosh Rao, and Shinye
Shiu. 2019. Transparent hardware-assisted memory decompression. US Patent
10,203,901.

Joel McCormack, Robert McNamara, Christopher Gianos, Larry Seiler, Norman P
Jouppi, and Ken Correll. 1998. Neon: a single-chip 3d workstation graphics acceler-
ator. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware. ACM, 123-132.

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data

Microsoft. 2013. Tiled Resources. https://docs.microsoft.com/en-us/windows/win32/
direct3d11/tiled-resources

Microsoft. 2018. UMA Optimizations: CPU Accessible Textures and Standard Swiz-
zle. https://docs.microsoft.com/en-us/windows/win32/direct3d12/default- texture-
mapping

Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M Beckmann, Mark D
Hill, Steven K Reinhardt, and David A Wood. 2013. Heterogeneous system coherence
for integrated CPU-GPU systems. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 457-467.

Graham Sellers. 2012. AMD_sparse_texture. https://www.khronos.org/registry/
OpenGL/extensions/ AMD/AMD_sparse_texture.txt

Colin Beaton Verrilli, Mattheus Cornelis Antonius Adrianus Heddes, Brian Joel Schuh,
Michael Raymond Trombley, and Natarajan Vaidhyanathan. 2016. Providing Mem-
ory Bandwidth Compression Using Back-to-Back Read Operation By Compressed
Memory Controllers (CMCs) in a Central Processing Unit (CPU)-Based System. US
Patent App. 14/844,516.

https://developer.arm.com/architectures/media-architectures/afbc
https://developer.arm.com/architectures/media-architectures/afbc
https://www.beeple-crap.com/resources
https://gpuopen.com/dcc-overview/
https://gpuopen.com/dcc-overview/
https://devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223
https://devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223
https://www.beyond3d.com/content/articles/95/1/
https://www.beyond3d.com/content/articles/95/1/
https://www.freetype.org/freetype2/docs/
https://fgiesen.wordpress.com/2011/01/17/texture-tiling-and-swizzling/
https://fgiesen.wordpress.com/2011/01/17/texture-tiling-and-swizzling/
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_map_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_map_texture.txt
https://software.intel.com/en-us/articles/software-vs-gpu-rasterization-in-chromium
https://software.intel.com/en-us/articles/software-vs-gpu-rasterization-in-chromium
https://software.intel.com/en-us/articles/opencl-20-shared-virtual-memory-overview
https://software.intel.com/en-us/articles/opencl-20-shared-virtual-memory-overview
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://casual-effects.com/data
https://docs.microsoft.com/en-us/windows/win32/direct3d11/tiled-resources
https://docs.microsoft.com/en-us/windows/win32/direct3d11/tiled-resources
https://docs.microsoft.com/en-us/windows/win32/direct3d12/default-texture-mapping
https://docs.microsoft.com/en-us/windows/win32/direct3d12/default-texture-mapping
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_sparse_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_sparse_texture.txt

	Abstract
	1 Introduction
	2 Background
	2.1 Integrating CPUs and GPUs
	2.2 Types of Compression in GPUs
	2.3 Block Compression in GPUs
	2.4 Address Swizzling in GPUs
	2.5 CPU access to GPU resources
	2.6 Virtual Address Translation

	3 Compression with Page Translation
	3.1 New 64-bit Page Translation System
	3.2 Multi-Stage Address Translation

	4 Implementing Block Compression
	4.1 Compression/Decompression Logic
	4.2 Cache Coherency for Compression

	5 Automatic Address Swizzling
	5.1 Within-Page Deswizzling
	5.2 Across-Page Deswizzling
	5.3 Variable Size PL0 Page Walk

	6 Evaluation
	6.1 Text Rendering Test Case
	6.2 Hardware Configuration
	6.3 Test Procedure and Results

	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References

