
UWHear: Through-wall Extraction and Separation of Audio
Vibrations Using Wireless Signals

Ziqi Wang
University of California, Los Angeles

wangzq312@g.ucla.edu

Zhe Chen
Nanyang Technological University

chen.zhe@ntu.edu.sg

Akash Deep Singh
University of California, Los Angeles

akashdeepsingh@g.ucla.edu

Luis Garcia
USC Information Sciences Institute

lgarcia@isi.edu

Jun Luo
Nanyang Technological University

junluo@ntu.edu.sg

Mani B. Srivastava
University of California, Los Angeles

mbs@ucla.edu

ABSTRACT

An ability to detect, classify, and locate complex acoustic events can
be a powerful tool to help smart systems build context-awareness,
e.g., to make rich inferences about human behaviors in physical
spaces. Conventional methods to measure acoustic signals employ
microphones as sensors. As signals from multiple acoustic sources
are blended during propagation to a sensor, such methods impose
a dual challenge of separating the signal for an acoustic event from
background noise and from other acoustic events of interest. Recent
research has proposed using radio-frequency (RF) signals, e.g., Wi-
Fi and millimeter-wave (mmWave), to sense sound directly from
source vibrations. Whereas these works allow separating an acous-
tic event from background noise, they cannot monitor multiple
sound sources simultaneously. In this paper, we present UWHear,
a system that simultaneously recovers and separates sounds from
multiple sources. Unlike previous works using continuous-wave
RF, UWHear employs Impulse Radio Ultra-Wideband (IR-UWB)
technology, in order to construct an enhanced audio sensing system
tackling the above challenges. Further, IR-UWB radios can pene-
trate light building materials, which enables UWHear to operate in
some non-line-of-sight (NLOS) conditions. In addition to providing
a theoretical guarantee for audio recovery using RF pulses, we also
implement an audio sensing prototype exploiting a commercial-
off-the-shelf IR-UWB radar. Our experiments show that UWHear
can effectively separate the content of two speakers that are placed
only 25cm apart. UWHear can also capture and separate multiple
sounds and vibrations of household appliances while being immune
to non-target noise coming from other directions.
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1 INTRODUCTION

Computational analysis of sound events and scenes has emerged as
an important element of many sensing applications. Robust sound
event detection and classification (SEDC) requires an accurate recog-
nition and estimation of the onset and the endpoints of individual
sound events in an audio signal [35]. SEDC is critical to exploit-
ing acoustic modality for providing enhanced context-awareness
in physical spaces [1], e.g., monitoring acoustic events in smart
home and buildings [24, 38, 76], urban city acoustic surveillance
and noise source identification [70], as well as audio-based activity
recognition to provide care for elderly or disabled [13, 58, 61]. While
effective analysis of acoustic scenes and events depend on a conflu-
ence of many different technologies, a particularly important role
is played by the transducer hardware used to capture the acoustic
energy and transform it into an electronic signal. Conventionally
the transducer of choice is a microphone that converts mechan-
ical sound pressure waves into electrical signals making use of
electromagnetic, electromechanical, or capacitive phenomena [45].

As these microphones capture the overall sound pressure wave
at their location, their output is a blend of the sounds arriving
simultaneously from spatially separated sources in the environ-
ment, making it hard for the SEDC system to isolate any individual
sound event. For example, if a vacuum cleaner and a blender are
running simultaneously at different locations in a room, a micro-
phone will output a signal that corresponds to a mixture of the
two sounds in both time and frequency domains. More generally,
besides the sound from the source of interest, a microphone cap-
tures all sorts of sounds present in the environment, including
both background noises (e.g., traffic, airplane engine) and sounds
from other independent sources of interest. This mixing of various
sounds presents a dual challenge for the downstream sensor infor-
mation processing tasks: in addition to filtering the background
noises, separating the concurrently occurring acoustic events at
multiple sources remains an issue, as depicted in the top portion of
Figure 1. Previous microphone-based works have proposed using
complicated infrastructure to solve the sound separation problem,
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such as a large-scale or scattered microphone array [23, 43, 62]. Yet
the background noise cannot be entirely eliminated [54]. There-
fore, directly sensing sound from its source could provide a new
perspective to tackle the challenges.

Following the line of sensing sound directly from its source,
recent proposals have sought to augment audio sensing using wire-
less vibrometry [15, 65, 68, 76]. A wireless vibrometer sends out
radio-frequency (RF) probe signals that will be reflected by the
vibrating surface of a sound source. It subsequently analyzes these
reflections to recover the source vibrations and to reconstruct the
sound. To ensure satisfying performance in noisy environments,
these RF audio sensing systems employ highly directional beams
and attempt to isolate a source of vibration in the angular domain
using laser beams [76] or antenna arrays for beamforming [65, 68].
However, this isolation directs the “attention” of a sensor to a sin-
gle target, constraining the sensor data to a one-dimensional

time series. While highly directional beams minimize the impact of
background noises, they do not scale to monitoring multiple sources
within reasonable system complexity. Moreover, some RF modali-
ties (e.g., Wi-Fi and RFID) employed fail to achieve a fine-grained
ranging-resolution due to their limited bandwidth. So they cannot
differentiate acoustic events spatially close to each other [65, 69].
Increasing ranging-resolution requires an ultra-wide bandwidth
that is often realized at a high-frequency range with very short
wavelength [47]. However, signals at such a high-frequency suffer
from a sharp propagation loss and poor penetration ability, result-
ing in a “visibility” issue: the mmWave and laser-based systems can
only be operated in line-of-sight (LOS) conditions [49, 68, 76].

We propose UWHear, a fine-grained audio sensing system that is
capable of identifying multiple sources simultaneously, resilient to
background noise, and robust in non-line-of-sight (NLOS) scenarios.
UWHear exploits the Impulse Radio Ultra-Wideband (IR-UWB)
radar to enhance the process of sound recovery in challenging
environments. Unlike other RF sensing systems that transmit con-
tinuous waves, IR-UWB radars send very short pulses in the time
domain while occupying a wide frequency bandwidth; this wide
bandwidth guarantees a fine ranging resolution. Essentially, for
every transmitted probe pulse, the IR-UWB receiver may collect
a number of reflected pulses. Consequently, sound sources can be
well separated by accurately estimating the Time-of-Flight (ToF)
of the reflected pulses. This procedure is repeated rapidly with
constant intervals to produce two-dimensional data, i.e., multiple
time series retrieved from different distance ranges, as depicted
in the bottom portion of Figure 1. Working in a sub-10GHz band,
IR-UWB radars additionally possess the capability of penetrating
light building materials. In other words, they strike a good balance
between signal penetration ability and ranging resolution, which
is particularly critical for identifying NLOS sound sources. Finally,
UWB’s transmission power is limited, which ensures co-existence
with other communication schemes in the same frequency band,
such as WiFi and Bluetooth. IR-UWB is well known for its low peak
pulse output power, typically less than 6dBm [7].

We implement UWHear using a commercial-off-the-shelf (COTS)
IR-UWB radar, and test its capabilities both qualitatively and quan-
titatively. We evaluate UWHear with respect to the challenges
faced by the current technologies that we highlighted earlier. UW-
Hear is capable of (i) through-wall sensing of audio vibrations , (ii)

recovering and separating the sounds from two sources placed as
close as 25cm in distance without any cross-interference, and (iii)
retrieving the sound from a number of real-world household tools
such as a vacuum cleaner and a hand drill. Our major contributions
in this work are as follows:

• To the best of our knowledge, UWHear is the first work
to investigate the possibility and the benefits of extracting
audio from IR-UWB radar responses.

• We provide a theoretical analysis on performing audio sens-
ing using non-continuous, impulse-based wireless signals.

• We implement UWHear using a COTS IR-UWB radar sensor
with optimal driver settings, as well as a pure statistical signal
processing pipeline.

• We demonstrate UWHear’s capability to deal with multiple
target sounds simultaneously in both qualitative and quan-
titative manners. We also test the limits of this system and
show it can successfully perform through-wall audio sensing.

The rest of this paper is organized as follows. We discuss related
literature in Section 2. In Section 3, we describe the theory behind
using IR-UWB radar for audio sensing mathematically. In Section 4,
we provide the detailed system design for UWHear. We evaluate
UWHear’s performance on audio sensing as well as sound source
separation in Sections 5 and 6, respectively. Finally, we conduct
some discussions in Section 7 along with a conclusion in Section 8.

2 RELATEDWORK

In this section, we summarize a representative set of related works
that focus on sound separation and denoising, wireless vibrometry,
and applications of UWB devices.

2.1 Sound Separation and Denoising

In prior works researchers have devoted considerable efforts to-
wards addressing the challenge of separating multiple target sounds
and non-target noises that are fused in the same signal. Microphone
arrays are frequently used to perform sound separation and local-
ization. These systems typically apply time-difference-of-arrival
(TDoA) beamforming and triangulation to identify the sound of
interest and locate its source. Some of these works employ spa-
tially dispersed microphone arrays. For example, [62] and [23] use
a distributed wireless sensor network. These systems require the
construction of infrastructures. Some other works use carefully de-
signed geometric microphone array shapes, including circular [40],
cubical [59] and three-ring [54]. The ARL PXI Tetrahedral acoustic
microphone array [43] also has a complicated rigid skeleton. Some
small microphone array implementations are now available, such
as the Matrix Creator [30] and Amazon Echo [4]. However, they
primarily address the scenario of a single dominant source. The
authors of [53] propose using perpendicular cross-spectra fusion
(PCSF) to reconcile the direction-of-arrival (DOA) estimation de-
rived from different algorithms. Large array skeletons may also
suffer from the inconvenience of the infrastructure. Meanwhile,
smaller arrays assume the sound wave as a far-field signal and can
only give an angular estimation of the sound sources. Therefore,
they may experience problems dealing with multiple sounds from
one direction.
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Figure 1: Overview of UWHear. Whereas even the up-to-date blind separation algorithms [66] fail to separate the one-

dimensional acoustic audio recording, the two-dimensional IR-UWB sensing data enable UWHear to separate and recover

sound events, leveraging its fine ranging resolution offered by the wide bandwidth of IR-UWB radars.

Another subset of prior research focuses on pure software-based
solutions for audio denoising and separation [39, 50]. In particu-
lar, universal sound separation and denoising using deep learning
has drawn significant attention in recent years. Exemplary works
include [22, 27, 57] using convolutional neural networks (CNN),
[44] using a WaveNet, and [20] employing a generative adversarial
network (GAN). [36] uses recurrent neural network blocks to map
the mixed sound into a latent space and can then separate five
simultaneous speakers. However, machine learning models depend
heavily on the completeness of training data, and it is virtually
impossible to train a model with all the potential sound activities
and noise in domestic environments.

2.2 Wireless Vibrometry

Wireless vibrometry refers to the technique of sensing vibration-
related information usingwireless signals. For example, Tagbeat [69]
uses RFID tags to identify mechanical vibrations periods of spinning
targets. It can troubleshoot automobile engines and can even moni-
tor the shaking of blood samples in a high-speed centrifuge. [75]
employs commercial WiFi signals to detect human breath status.
[37] leverages frequency modulated continuous wave in ultrasound
frequency to detect chest movements for sleep apnea assessments.

Mechanical vibrations whose frequencies lie in the auditory
range create audible sounds. Several works have emerged in re-
cent years, showing the ability to actively discover sound activities
from the vibrations at the sound source using wireless vibrometry.
[15] employs visible light to recover audio from vibrating objects
(such as an empty potato chip bag) using a high-speed camera.
Wi-Fi signals are also used for audio sensing. The channel state
information in Wi-Fi carries hints of all kinds of movements, in-
cluding fine-grained vibrations due to the micro-Doppler effect and
the multi-path effect. [65] presents a through-wall eavesdropping
system, where Wi-Fi signals generated by software-defined radio
(SDR) are exploited to recover sound produced by loudspeakers.

Although some of the systems may raise privacy concerns, wire-
less vibrometry can also benefit our daily life. For example, Vi-
broSight [76] employs lasers to detect the vibrations of household
appliances. They attach retro-reflective tags on top of those appli-
ances and shine a laser beam on those tags to retrieve target sound.
The system may function as a central hub to document the usage
of smart home appliances and help understand human behavior or

save energy. In WaveEar [68], the authors create a Voice-User Inter-
face (VUI) using mmWave radar. They use beamforming technology
to focus on the throat of the target user and then use a U-shaped
deep neural network to recover the voice from the signal. These
methods, while capable of recovering sound activities in noisy envi-
ronments, are not designed to deal with multiple activities or work
in NLOS conditions.

2.3 UWB Devices and Their Applications

An UWB radio, by definition, is a radio whose operating frequency
occupies a bandwidth more than 500MHz. Today, UWB devices are
widely used in lower-power communication systems [18, 29, 34].

In addition, UWB radars such as the Decawave DW1000 [21, 25]
have increasingly been used for other tasks such as imaging [28],
localization and tracking [3, 46, 74], material identification [17], and
health monitoring [33, 60]. “Human presence sensor” created by
Novelda [6] uses an IR-UWB radar to detect human presence and
can be used to save energy in smart buildings. [42] deploys UWB
beacons in augmented reality (AR) settings, and uses Time-of-Flight
(ToF) ranging to provide localization for multi-user AR systems.
V2iFi [77] employs an IR-UWB radar to simultaneously monitor
the vital signs of car drivers, including breath and heart rate.

3 AUDIO SENSING VIA IR-UWB

3.1 Intuitions for UWB Acoustic Sensing

IR-UWB radar operates by sending pulses and collecting responses.
The super-short pulse duration of IR-UWB enables the use of time-
of-flight for ranging tasks, which leads to the sound source sepa-
ration capability. Previous modalities collect a 1D audio sample

from their target, and the only dimension here is time. IR-UWB
radar, however, generates a 2D matrix. For better understanding,
we introduce the data structure of UWHear as follows.

The data collected from the departure of the probe pulse to the
arrival of the last response is called a frame. All the frames are
ordered chronologically, and Figure 2 shows an example of this
data structure. The frames are placed along the Y-axis (the slow
time). On the X-axis (fast time), we have reflective pulse responses
with different time delays. Since the fast time denotes the round
trip ToF of a pulse, we can convert the fast time into distance bins.

Suppose multiple targets are lying at different distances. We can
separate them by fixating the fast time to a few particular values
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Figure 2: Illustration of the fast time and slow time.

representing the round-trip ToFs from the sensor to the sound
sources. In other words, we find the distance bin corresponds to
each sound source and take a slice from the 2D matrix to get a 1D
time series as an estimation of that sound source. For example, in
the lower half of Figure 1, we can see that two sound sources leave
separate series of traces on the 2D matrix, and can be separated in
the distance (fast time) domain.

However, it takes further processing to translate the time-domain
slice into an audible sound. Even though IR-UWB provides a higher
ranging resolution than other wireless modalities (e.g., Wi-Fi), it is
still not possible to detect millimeter-level displacement caused by
sound vibration directly with ToF estimation. Nonetheless, while
non-trivial, it is possible to show that using the complex baseband
equivalent processing in IR-UWB radar one can perform the sensing
of sound-related vibrations. In the next section, our theory proves
that the sound waveform values are proportional to the amplitude
of the in-phase or quadrature part of the filtered sliced data.

3.2 IR-UWB Audio Sensing Theory.

The baseband equivalent representation of our IR-UWB radar sys-
tem is shown in Figure 3. The notion of time 𝑡 within one frame
corresponds to the ToF of the signal pulse, which is also known as
fast time. Meanwhile, IR-UWB sequentially transmits probe pulses
with interval 𝑇𝑠 , which can be treated as the sampling rate on the
slow time (𝑡slow) axis. Usually, fast time is fine-grained in tens of
picoseconds, while slow time has the scale of hundreds of microsec-
onds.

Figure 3: An IR-UWB radar system in equivalent baseband

representation.

The IR-UWB radar transmits Gaussian pulses 𝑔(𝑡 ) modulated on
a carrier frequency 𝑓𝑐 , mathematically represented as

𝑥 (𝑡 ) = 𝑔(𝑡 − 𝑘𝑇𝑠 ) cos (2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 )) , (1)

where 𝑇𝑠 is the pulse repetition rate, and the baseband Gaussian
pulses 𝑔(𝑡 ) are given in [5] as

𝑔(𝑡 ) = 𝑉tx exp
(
−2𝜋2 𝑓 2

𝐵 𝑙𝑜𝑔10 (𝑒) 𝑡2
)
, (2)

where 𝑓𝐵 denotes the -10dB bandwidth and 𝑉tx is the maximum
amplitude of the Gaussian pulse. The pulse sequence is sent out to
interact with the objects in the environment and received by the
receiving antenna. Note that in reality, the transmitting antenna
and the receiving antenna are co-located. The channel frequency
response in an indoor environment can be characterized as a sum-
mation of 𝑃 paths with different time delays and attenuations:

ℎ(𝑡 ) =
𝑃∑
𝑝=1

𝛼𝑝𝛿

(
𝑡 −𝑇𝑝 −𝑇𝐷

𝑝 (𝑡 )
)
, (3)

where 𝑇𝑝 is the round-trip ToF determined by the sound source
distance. 𝑇𝐷

𝑝 (𝑡 ) is the time-varying delay caused by minute target
movement, such as the cone being pushed back and forth by the coil
in any speaker, but for static objects,𝑇𝐷

𝑝 (𝑡 ) = 0. Our goal in wireless
audio sensing is to recover the 𝑇𝐷

𝑝 (𝑡 ), which can be translated into
the sound. Themovements of sound sources, if any, aremuch slower
compared to its vibrations, and can be safely ignored in a short
time window.

The received signal 𝑦(𝑡 ) can be modeled as a convolution of the
transmitted signal and the channel impulse response, plus additive
noise, i.e.,

𝑦(𝑡 ) = 𝑥 (𝑡 ) ∗ ℎ(𝑡 ) + 𝑛(𝑡 ) =
𝑃∑
𝑝=1

𝛼𝑝𝑔

(
𝑡 − 𝑘𝑇𝑠 −𝑇𝑝 −𝑇𝐷

𝑝 (𝑡 )
)
×

cos
(
2𝜋 𝑓𝑐

(
𝑡 − 𝑘𝑇𝑠 −𝑇𝑝 −𝑇𝐷

𝑝 (𝑡 )
))

+ 𝑛(𝑡 ).

On the receiver side, the received signal 𝑦(𝑡 ) is downconverted.
Then, 𝑦(𝑡 ) is multiplied with the carrier frequency in a mixer, and
passed through a low-pass filter. Here, we take the in-phase branch
as an example. Looking at the cosine part only, we have:

𝑚(𝑡 ) = cos
(
2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 −𝑇𝑝 −𝑇𝐷

𝑝 (𝑡 ))
)
× cos (2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 ))

=
1
2

[
cos

(
2𝜋2𝑓𝑐

(
𝑡 − 𝑘𝑇𝑠 −

𝑇𝑝

2
−
𝑇𝐷
𝑝 (𝑡 )
2

))
+ cos

(
2𝜋 𝑓𝑐

(
𝑇𝑝 +𝑇𝐷

𝑝 (𝑡 )
))]

.

The 2𝑓𝑐 frequency term is filtered out, leaving the low-frequency
1
2 cos

(
2𝜋

(
𝑇𝑝 +𝑇𝐷

𝑝 (𝑡 )
))

term only. Based on this, we can rewrite
the in-phase baseband signal after down-conversion and filtering
as:

𝑦in−phase(𝑡 ) = LPF [𝑦(𝑡 ) · cos (2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 ))]

=
1
2

𝑃∑
𝑝=1

𝛼𝑝𝑔

(
𝑡 − 𝑘𝑇𝑠 −𝑇𝑝 −𝑇𝐷

𝑝 (𝑡 )
)
×

cos
(
2𝜋 𝑓𝑐

(
𝑇𝑝 +𝑇𝐷

𝑝 (𝑡 )
))

+ 𝑛̃(𝑡 ).

(4)

Similarly, we can have the quadrature component obtained via
down-conversion and filtering as:

𝑦quad(𝑡 ) = LPF [𝑦(𝑡 ) · sin (2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 ))]

=
1
2

𝑃∑
𝑝=1

𝛼𝑝𝑔

(
𝑡 − 𝑘𝑇𝑠 −𝑇𝑝 −𝑇𝐷

𝑝 (𝑡 )
)
×

sin
(
2𝜋 𝑓𝑐

(
𝑇𝑝 +𝑇𝐷

𝑝 (𝑡 )
))

+ 𝑛̃(𝑡 ).

(5)
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The target ToF 𝑇𝑝 can be translated into target distances when
multiplied with the speed of light. As different targets have different
𝑇𝑝 ’s, we can select out any sound source 𝑘 by setting 𝑡 = 𝑘𝑇𝑠 +𝑇𝑝𝑘 to
perform sound source separation. For those paths without audio-
related movement whose 𝑇𝐷

𝑝 (𝑡 ) = 0, the response 𝑦(𝑡 = 𝑘𝑇𝑠 +𝑇𝑝 )
ideally will not change over slow time. We can filter those static
responses out by applying a static clutter suppression algorithm
that will be introduced in Section 4.

Supposing the sound-related vibration is captured in path 𝑝0,
we can isolate the received signal from such a path by setting
𝑡 = 𝑡𝑝 = 𝑘𝑇𝑠 +𝑇𝑝0 , which can be written as

𝑦in−phase(𝑡𝑝 ) =
1
2
𝛼𝑝0𝑔

(
𝑇𝐷
𝑝0 (𝑡𝑝 )

)
cos

(
2𝜋 𝑓𝑐𝑇𝑝0 + 2𝜋 𝑓𝑐𝑇𝐷

𝑝0 (𝑡𝑝 )
)

+ 𝑛̃(𝑡𝑝 ),

𝑦quad(𝑡𝑝 ) =
1
2
𝛼𝑝0𝑔

(
𝑇𝐷
𝑝0 (𝑡𝑝 )

)
sin

(
2𝜋 𝑓𝑐𝑇𝑝0 + 2𝜋 𝑓𝑐𝑇𝐷

𝑝0 (𝑡𝑝 )
)

+ 𝑛̃(𝑡𝑝 ).

We can estimate the scale of 𝑇𝐷
𝑝0 (𝑡 ). Suppose the sound-related

displacement is 2mm, and the UWB carrier frequency is 7.3GHz

max
(
𝑇𝐷
𝑝0

)
=
𝑑

𝑐
=

2 × 10−3

3 × 10−8
= 6.67 × 10−12, (6)

max
(
2𝜋 𝑓𝑐𝑇𝐷

𝑝0

)
= 6.67 × 10−12 × 2 × 𝜋 × 7.3 × 109 = 0.305. (7)

Because both values are minimal, we can use Maclaurin series to
expand 𝑔(𝑡 ) around 𝑔(0) and ignore the 2𝑛𝑑 and higher-order terms:

𝑔(𝑡 ) = 𝑔(0) + 𝑔′(0)𝑡 + 𝑜(𝑡2) = 𝑉tx + 0 · 𝑡 + 𝑜(𝑡2) = 𝑉tx + 𝑜(𝑡2). (8)

Plugging Equation (8) into 𝑦in−phase and 𝑦quad, and ignoring high
order infinitesimals as well as noise, we get the form of

𝑦in−phase(𝑡𝑝 ) =
1
2
𝛼𝑝0𝑉tx cos

(
2𝜋 𝑓𝑐𝑇𝑝0 + 2𝜋 𝑓𝑐𝑇𝐷

𝑝0 (𝑡𝑝 )
)
, (9)

𝑦quad(𝑡𝑝 ) =
1
2
𝛼𝑝0𝑉tx sin

(
2𝜋 𝑓𝑐𝑇𝑝0 + 2𝜋 𝑓𝑐𝑇𝐷

𝑝0 (𝑡𝑝 )
)
. (10)

By Taylor expansion, 𝑓 (𝑡 ) = ∑∞
𝑛=0

𝑓 (𝑛)(𝑡0)
𝑛! (𝑡 − 𝑡0)𝑛 , where 𝑓 (𝑛)(𝑡0) is

the 𝑛-th derivatives of 𝑓 (𝑡 ) at 𝑡0, we know that

sin(𝑡 ) = sin(0) + cos(0)𝑡 + 𝑜(𝑡2) ≈ 𝑡, |𝑡 |< 𝜖

cos(𝑡 ) = cos(
𝜋

2
) − sin(

𝜋

2
)𝑡 + 𝑜(𝑡2) ≈ −𝑡, |𝑡 − 𝜋

2
|< 𝜖

sin(𝑡 ) = sin(𝜋 ) + cos(𝜋 )𝑡 + 𝑜(𝑡2) ≈ −𝑡, |𝑡 − 𝜋 |< 𝜖

cos(𝑡 ) = cos(
3𝜋
2

) − sin(
3𝜋
2

)𝑡 + 𝑜(𝑡2) ≈ 𝑡, |𝑡 − 3𝜋
2
|< 𝜖

Here 𝜖 is a small value marking the vicinities around 0, 𝜋2 , 𝜋 , and
3𝜋
2 .

In Equation (6), we already show that 2𝜋 𝑓𝑐𝑇𝐷
𝑝0 (𝑡𝑝 ) is a very small

number.While the constant 2𝜋 𝑓𝑐𝑇𝑝0 is very large, mod (2𝜋 𝑓𝑐𝑇𝑝0 , 2𝜋 )
is going to put the component inside the sine or cosine of Equa-
tion (9) and (10) near one of the four vicinities above. Without the
loss of generality, we assume mod (2𝜋 𝑓𝑐𝑇𝑝0 , 2𝜋 ) ≈ 0, then

𝑦quad(𝑡𝑝 ) =
1
2
𝛼𝑝0𝑉tx2𝜋 𝑓𝑐𝑇𝐷

𝑝0 (𝑡𝑝 ) =
1
2
𝛼𝑝0𝑉tx

2
𝑐
𝑑𝐷𝑝0 (𝑡𝑝 )2𝜋 𝑓𝑐

= 𝛼𝑝0𝑉tx
2
𝑐
𝜋 𝑓𝑐𝑑

𝐷
𝑝0 (𝑡𝑝 ),

where 𝑑𝐷𝑝0 (𝑡 ) is the sound source (e.g. speaker diaphragm) displace-
ment, and 𝑐 is the speed of light. It is clear that the amount of target
micro displacement is linearly proportional to the amplitude of
the quadratic part of the receiving signal. In other cases, it will be
linearly proportional to the amplitude of the in-phase part. Note

that 𝑡𝑝 = 𝑘𝑇𝑠 + 𝑇𝑝0 is a function of the frame number 𝑘 , and 𝑑𝐷𝑝0
changes over slow time. For example, if a sine wave single tone
(𝑓music) sound is played, then the 𝑑𝐷𝑝0 should be modeled as,

𝑑𝐷𝑝0 (𝑡slow) = max
(
𝑑𝐷𝑝0

)
× sin (2𝜋 𝑓music𝑡slow) .

We can treat 𝑑𝐷𝑝0 (𝑡𝑝 ) = 𝑑𝐷𝑝0 (𝑘𝑇𝑠 + 𝑇𝑝 ) as the speaker movement
𝑑𝐷𝑝0 being sampled at interval 𝑇𝑠 , i.e., sampled at the UWB frame
rate. As this causes 𝑦quad(𝑡𝑝 ) or 𝑦in−phase(𝑡𝑝 ) to be proportional to
𝑑𝐷𝑝0 (𝑡𝑝 ), we now conclude that we can recover the sound-related

movement from the amplitude of UWB in-phase or quadrature
data, whichever gives a higher signal quality.

Figure 4: 3D visualisation of the baseband data amplitude

collected with a speaker.

Figure 4 shows an example of real-world data collected using IR-
UWB radar and a speaker, after all the processing to be introduced
in Section 4. It is clear that most of the sound-related fluctuations
appear in the amplitude of the in-phase data. Previous works in
IR-UWB radar sensing like [77] often use the amplitude or phase of
the I/Q data for further processing. However, in the audio sensing
scenario, the old practice may incur some problems. In the most
extreme case, where the sound-related variance only appears on
the amplitude of the in-phase (or quadrature) data, calculating√
𝑦2

in−phase + 𝑦2
quad will introduce undesired 2𝑓music components

and defeat the purpose of reliable audio sensing.
To summarize, we have shown that one can extract the sound-

related vibration information by analyzing the amplitude of the
in-phase or quadrature of UWB receiving signal, whichever gives
a higher signal-to-noise-ratio. Since our work aims to extract the
vibration related information from the IR-UWB radar sensor read-
ings, the analysis in this section provides theoretical support to
achieve this goal.

4 UWHEAR: DESIGN AND IMPLEMENTATION

4.1 System Overview

Having formulated a theoretical basis for using IR-UWB radar to re-
cover sound, we now build a real-world system from a commercial-
off-the-shelf IR-UWB radar board, and implement a data processing
pipeline to put the theory into practice. Figure 5 gives an overview
of UWHear, our UWB audio sensing system.

UWHear uses an IR-UWB radar that sends out pulses at a con-
stant rate, collects the reflected impulses, and downconverts the
radio frequency data to the baseband I/Q data. The I/Q data is then
analyzed with our processing pipeline which consists of several
algorithmic modules. First, to battle the phase variations caused
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Figure 5: Design blocks of UWHear.

by sampling clock jitters, we employ the Phase Noise Correction
algorithm. Then Static Clutter Suppression removes the reflections
caused by static objects like walls and furniture. As we have ana-
lyzed in Section 3, the sound-related information will appear on the
amplitude of the real or imaginary part of the I/Q data. Therefore,
we juxtapose the in-phase part and the quadrature part. Since the
reflected pulses have various ToFs corresponding to a wide distance
range, it is crucial to locate the distance bins where vibrations hap-
pen using the Vibrating Target Localization module. Finally, we
can obtain the recovered sound with further denoising, such as
a spectral subtraction algorithm. Then we can have a recovered
sound for further processing, e.g., sound classification or speech
recognition.

4.2 Hardware and Drivers

Our system is implemented with Novelda Xethru X4M05 IR-UWB
radar board combined with a Raspberry Pi 3B+. Figure 6(a) shows
the system hardware stack. The blue board is the IR-UWB radar
transceiver, and it is connected with the Raspberry Pi using a self-
made connector board. The connection between the Pi and the
radar is realized via an SPI interface.

Figure 6: Hardware components of UWHear: (a) Hardware

appearance (b) Proof-of-concept experiment setup.

4.2.1 UWB Data Collection. The X4M05 radar board consists of an
X4A02 Antenna board and a Novelda X4 impulse radar transceiver
System on Chip (SoC). According to its datasheet [7], the IR-UWB
radar operates at a center frequency of 7.29GHz with a bandwidth
of 1.4GHz.

In our IR-UWB radar transmitter hardware, the Gaussian pulses
are modulated on a sub-10 GHz carrier frequency. At the receiver
side, a digital down-conversion is performed on the received Radar
Frame (RF) data inside the X4 SoC to retrieve the baseband pulses,

making each data point a complex double representing in-phase
and quadrature (I/Q) baseband data. This down-conversion stage
will decimate the RF data by a factor of 8. We can then calculate the
distance between adjacent distance bins in the baseband data as

𝑏𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝐿𝑖𝑔ℎ𝑡𝑆𝑝𝑒𝑒𝑑

2 × 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒

=
2.998 × 108𝑚/𝑠 × 8
2 × 23.328 × 109𝐻𝑧

= 0.0514m,

where 23.328 Giga-Samples/s is the rate with which the RF data are
sampled. Since the maximum length of the received Radar Frame
(RF) data before the downconversion has 1536 bins, the maximum
range of such a radar system becomes

𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 = 1536 ÷ 8 × 0.0514 = 9.874m.

As a summary, the collected data is going to be a complex matrix
with dimension fast_time × slow_time. The fast time dimension in-
dicates the target distance while the slow time dimension indicates
the elapsed time.

4.2.2 Driver Settings. The Xethru radar driver is implemented
based on [8], with modifications to enable faster data transfer
and to strike a balance between sampling rate and signal-to-noise-
ratio(SNR). In this section, we describe the major changes in the
driver settings to enable audio sensing.

SPI clock. The X4 radar SoC receives configuration and sends
data to Raspberry Pi using Serial Peripheral Interface Bus (SPI).
Once the X4 radar SoC finishes a data frame, it raised an SPI in-
terrupt so that the controller (in our case, Raspberry Pi) can read
the data. Owing to the fact that the radar SoC only caches the last
frame it received, the clock of SPI should be set higher to ensure
that the data can be transported in time. We set the clock to 32MHz,
which is the highest sampling rate that the GPIO Interface library
for the Raspberry Pi would allow.

Transmission Power. The radar transceiver can operate at
three different transmitting power settings, which are low(0.48
pJ/pulse), medium(1.47 pJ/pulse), high(2.65 pJ/pulse). In our exper-
iment, we test on both the medium level and the high level, and
they are both capable of audio sensing. A higher power level can
increase the sensitivity and effective range of the system. However,
these settings should be performed carefully to comply with FCC
regulations.

Effective Range. As analyzed in Section 4.2.1, the maximum
range of the IR-UWB radar can be as far as 9.87m. The minimum
and maximum detection distance is subject to change in the driver
settings to focus on a specific range. For example, in our experi-
ments, we set the starting point to 0.3m so that the first few bins are
discarded, since they are usually overfilled by crosstalks between
the transmitting and receiving antennas.

DAC Settings and Sampling Rate. According to [5], X4 uses
a swept-threshold sampling method. Because the pulse duration is
so short that a standard DAC will never be fast enough, the Swept-
Threshold Sampling method is adopted to address this problem. The
received signal frame is compared against a threshold to generate
one-bit values for all data points in this frame. The threshold will
increase by one step before the response of the next repeated pulse
comes. Due to the extremely high pulse repetition rate, the vibrating
target can be approximated as static in such a short period, which
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means that the repeated frames can be treated the same as the
previous ones. Then after a certain number of frames, we can have
a multiple-bit digital representation of the original analog frame.
The procedure is denoted as one iteration. It is also possible to
average multiple iterations, or to average multiple pulses during
one step (increase pulse-per-step) to improve SNR. However, if these
two knobs are set too high, the sampling rate will be limited. This
relationship can be mathematically described as

𝐹𝑃𝑆 =
𝑃𝑢𝑙𝑠𝑒𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑃𝑢𝑙𝑠𝑒𝑃𝑒𝑟𝑆𝑡𝑒𝑝 × (𝐷𝐴𝐶𝑚𝑎𝑥 − 𝐷𝐴𝐶𝑚𝑖𝑛 + 1)
.

By default, the Pulse Repetition Frequency is set to be 15.1875
MHz, 𝐷𝐴𝐶𝑚𝑎𝑥 = 1100, and 𝐷𝐴𝐶𝑚𝑎𝑥 = 949. Heuristically, we pick
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 20, 𝑃𝑢𝑙𝑠𝑒𝑃𝑒𝑟𝑆𝑡𝑒𝑝 = 2, and 𝐹𝑃𝑆 = 1.5kHz. Currently,
due to the limitations of SPI transfer speed, the sampling rate can-
not exceed 1.6kHz; otherwise a packet loss will be inevitable. The
sampling rate is also adjustable and future works allowing a higher
data transfer rate are desired to allow higher 𝐹𝑃𝑆 .

The data are cached locally in the Raspberry Pi and then trans-
ferred to a desktop computer with AMD Ryzen 7 2700X processor
for processing. Figure 6(b) demonstrates a typical setting of our
proof-of-concept experiment. The IR-UWB radar system ismounted
on a tripod and placed at a distance from the speaker. The speaker
is connected with a cell phone to play the test tones.

4.3 Signal Processing Pipeline

The collected data are analyzed with our processing algorithms
shown in Figure 5 that consist of a few modules: Phase Noise Cor-
rection that removes sampling clock jitters, Static Clutter Suppres-
sion that suppresses the reflections caused by static objects, and
Vibration Activity Localization that determines the distances of
the vibrating targets. Finally, we can acquire recovered audio af-
ter denoising and normalizing. We will introduce these modules
separately in the following parts of this section.

4.3.1 Phase Noise Correction. The basic idea behind our work is to
measure the amplitude change over time of the in-phase or quadra-
ture data caused by source vibrations. However, many factors will
block us from retrieving the information related to sound vibration,
and one of those factors is the phase noise. Phase noise is intro-
duced due to the imperfection of the signal sampling clock. These
imperfections may include crystal defects and phase lock loop (PLL)
error. Ideally, if we select out the data from one distance bin and
analyze the phase over time, the phase should remain virtually the
same supposing there are no vibrations at the current bin. However,
with phase noise, one may still observe a rapid change of phase back
and forth, which will then lead to the system mistakenly believe in
the existence of a vibration in this bin or will cause distortion in
the recovered sound. Figure 7 shows an example of the phase noise
between adjacent UWB frames.

We perform phase noise correction following the method pro-
posed in [9]. The insight here is that the signal amplitude in the first
few distance bins is always high, which is due to the “crosstalks”
between the transmitting antenna (tx) and the receiving antenna
(rx), i.e., direct signal leakage from the tx to the rx. Our idea is that
this crosstalk can be leveraged as a baseline for phase calibration.
We first calculate the mean phase of bin 1 and use it as a standard

Figure 7: Example of phase noises between adjacent frames.

reference phase. For each frame 𝑖 , we calculate the difference ∆𝜙𝑖
between the phase of its first element (i.e., bin 1 data) and the refer-
ence phase. Then we multiply all samples from the current frame
with 𝑒 𝑗∆𝜙𝑖 to offset the phase error.

4.3.2 Static Clutter Suppression. While vibrations can create a
unique pattern on the receiving data, static objects like walls and
furniture will also reflect UWB pulses and create strong responses.
As shown in Figure 8(a), the high peaks around bin 20 and bin 50
are the evidence of static clutters. The static responses are so strong
that the useful signal is buried underneath. Luckily, the static clutter
is usually time-invariant in a select bin. We apply a Butterworth
finite impulse response filter (FIR) on each distance bin, with the
stopping frequency at 20Hz and the passing frequency at 70Hz. To
ensure zeros phase distortion at the beginning of the sequences,
the FIR filtering is applied to input frame data in both the forward
and reverse directions. The stop-band attenuation is set at -80dB.

Figure 8: Results of static clutter removal. Left: (a) Raw data

after phase noise correction. Right: (b) After static clutter

removal.

Figure 8(b) shows the result after static clutter removal. The static
peaks in Figure 8(a) are filtered out. Also, in the experiment shown
in Figure 8, the sound lasts for about 12500 frames (8.3s), which is
reflected in the peaks colored with green. From the filtered data,
we can also see that the speaker is placed about 92.5cm from the
sensor (the ground truth is 100cm) as we see time-varying patterns
around bin 18. Our static clutter suppression filter is able to filter-
out the low-frequency responses caused by human activities or
chest motion related to breathing. In addition, due to the low-pass
nature of UWB audio sensing (to be discussed in future sections),
we also provide an option of doing pre-emphasis at this stage:

𝑦(𝑡 ) = 𝑥 (𝑡 ) − 𝛼𝑥 (𝑡 − 1),

where 𝛼 ∈ (0.95, 1). This difference equation works as a high-pass
filter to compensate for the signal loss in high-frequency ranges.
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4.3.3 Vibrating Target Localization. UWB data contain multiple
time series (columns) that correspond to different distance bins. As
shown in previous cases, we may visually locate the vibrations in
some cases. However, it is vital to select candidate bins with a high
signal-to-noise-ratio (SNR). Since the signal is still pretty noisy in
some channels, only doing thresholding or calculating variance in
the time domain will not give satisfactory results.

We choose to solve this problem in the frequency domain. Our
insight here is that, compared with noise, a channel (frames within
a certain distance bin) with sound vibration information has a more
concentrated spectrum than a noisy channel. For example, music
will have basic notes and their higher-order harmonics. While hu-
man voice power is more widely distributed in the spectrum, we
can still observe basic frequencies 𝐹0 and their harmonics. There-
fore, we firstly perform a Discrete Fourier Transform (DFT) over all
channels to get their spectrums. Then the Herfindahl-Hirschman
index (HHI) is used to calculate the concentration level of those
spectrums. The Herfindahl-Hirschman index was introduced in eco-
nomic fields as a measure of market concentration. It is calculated
by squaring the “market share” of each frequency and then sum-
ming the resulting numbers. Here the “market share” is defined as
the power of the current frequency divided by the overall power of
the signal time series. The distance bins with the highest HHIs are
selected as the candidates of bins containing vibration information.
For slow moving objects like vacuum robots, the target is slowly
moving between distance bins. We can perform vibrating target
localization in short slow-time windows of 1s, and then stitch those
time series of interest as the final output.

4.3.4 Denoising and Normalization. After locating the vibrating
target, we can acquire an audio signal estimation by slicing that dis-
tance bin from the data. However, the recovered sound, while clearly
audible, still contains non-negligible background noisewhich sounds
like an air flow in traditional microphone recordings. This noise is
the 𝑛(𝑡 ) ignored in Section 3. Our visual observation is that 𝑛(𝑡 ) is
very close to an Additive White Gaussian Noise (AWGN).

For additive noise, a simple but powerful denoising solution is
the spectral subtraction (SS). The underlying idea of SS is straight-
forward, and its typical flow chart is illustrated in Figure 9. Suppose
the signal 𝑥(𝑡 ) = 𝑠(𝑡 ) + 𝑑(𝑡 ), where 𝑠(𝑡 ) is the signal part and 𝑑(𝑡 ) is
the noise part. 𝑥(𝑡 ) is divided into overlapping frames. Then after
fast Fourier transform, the spectrum of noise 𝐷̂(𝑤 ) can be estimated
and updated continuously using pure noise frames. What remains
to do is to subtract the noise spectrum amplitude from the noisy
signal, i.e.,

|𝑋 (𝑤 )|=
√
|𝑋 (𝑤 )|2−|𝐷̂(𝑤 )|2 .

The spectrogram amplitude is then multiplied with the original
phase to get an estimation of the clean signal 𝑠(𝑡 ), i.e., 𝑥 (𝑡 ).

Famous variants of the SS methods are linear SS [11], non-linear
SS [10], and multi-band SS [26], whose implementations can be
found in [71–73]. The spectral subtraction algorithm has some in-
herent problems, for example, music noise introduced by noise
residuals. However, linear SS is sufficient for our case. The out-
put of such a SS module is then normalized and output as a .wav
file to generate the recovered sound. Also, we perform a Short
Time Fourier Transform (STFT) to visualize the recovered sound.

Figure 9: Flow chart of a typical spectral subtraction

pipeline.

In the output of STFT, the X-axis stands for time while the Y-axis
represents frequency.

Figure 10: Results of the proof-of-concept experiments.

The results of the proof-of-concept experiments are shown in
Figure 10, where we play a single tone song Mary has a little lamb.
From the visualization, we can see that all the notes are recovered
clearly. We also notice that in rare cases there is an interference
of 60Hz and its multiples. This is probably due to the complicated
power frequency electromagnetic field emitted by the circuit regu-
lator or other devices. When this happens, an IIR comb filter can be
applied to filter out the power frequency components. In the next
section, we will explore and evaluate the capabilities of UWHear to
perform audio sensing. Factors including distance, target frequency,
sound source placement, and the through-wall propagation loss
will be studied by field experiments.

5 UWHEAR SOUND SENSING PERFORMANCE

In this section, we aim to test the performance boundaries of UW-
Hear as a sound sensor. The propagation of wireless signals is af-
fected by a number of factors, including but not limited to distance,
angle, and blockage. We evaluate the influence of four different
factors using controlled experiments: i) distance between the sound
source and the sensor, ii) through-wall penetration loss, iii) sound
source placement angle, and iv) sound source frequency.
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Experimental Setup. In order to better control the experimental
variables and quantify the evaluation results, we use studio speakers
as a sound source in this section, while in Section 6.4 we will test
UWHearwith amore natural setting using household appliances as
sound sources. We play a single “C4” music tone whose frequency
is 261.63Hz. In terms of the evaluation metric, we use signal-to-
noise-ratio (SNR) to measure the quality of the recovered sound,
which is defined as

SNR = 10𝑙𝑜𝑔10(
𝐸𝑠

𝐸𝑛
),

where 𝐸𝑠 and 𝐸𝑛 are the energy of the signal and the noise, sepa-
rately. In our experiments, we noticed that the recovered sound may
have a slight frequency drift (0.5-3Hz) from the test tone probably
due to the sampling clock error. Thus, we estimate the power of the
signal in the frequency domain by firstly localizing the peak in the
spectrum near the target frequency (261.63Hz) and then summing
the energy in nearby frequency bins (within 5Hz) as an estimation
of signal energy, while using the remaining energy as an estimation
of noise. Due to the fact that the noise may be time-varying, we
employ a 1.5 second window with a 500ms overlap to calculate the
short-time SNR. Also, as we are using a single frequency probe sig-
nal for quantitative testing, using a filter-based denoising method
may not be fair. In order to reflect the genuine noise characteristics
of the hardware, the SNR data reported in the remaining part of this
paper are acquired without the denoising stage of the the signal
processing pipeline.

5.1 Distance Between Sound Source and Sensor

As we have analyzed in Section 4, the system suffers from additive
noise close to Gaussian white noise. Meanwhile, it is a common
knowledge that wireless signal strength will decay in space. The
speaker volume is tuned to 79.3dB/SPL at one meter distance mea-
sured by a microphone meter. The UWHear hardware is placed
in front of the speaker at a distance starting from 50 cm and is
evaluated at increments of 50cm. At each distance we collect the
data for 10 s, and analyse with a 1500ms sliding window with a
500ms overlap. Figure 11(a) shows a typical setting.

Figure 11: SNR vs speaker placement distance: (a) Experi-

ment Setup, and (b) SNR plot across different distances.

Figure 11 shows the results. We notice that the SNR is decreasing
almost linearly over distance following a typical wireless channel
fading pattern. Medical research [31, 51] suggests that an audio
with -5~0dB SNR is still perceivable and understandable for the
human ears. So we can see that the maximum detection range of
UWHear is about 8m. While it is slightly shorter than the range
of Wi-Fi based work [65], the transmission power of UWHear (≤

6dBm [7]) is much lower than that of the software defined radio (≥
20dBm [14]) used in the previous work.

5.2 Through-wall Penetration Loss

We have previously hypothesized that the UWHear system can
operate in non-line-of-sight (NLOS) scenarios, i.e., the hardware
can recover the sound behind building materials. In this experiment,
the speaker and the sensor are separated by a hollow wall (a wall
made of wood and plaster between the bedroom and the living
room) with a overall thickness of 11.5 cm. Similar to the previous
experiment, we vary the distance of the speaker. The setting is
shown in Figure 12(a), where the speaker is put inside the bedroom
and the sensor is placed in the living room.

Figure 12: SNR vs through-wall speaker placement distance:

(a) Experiment Setup, and (b) SNR plot across different dis-

tances.

Figure 12(b) displays the results of through-wall sound retriev-
ing experiments. Generally, the SNR still follows a linear trend as
distance is varied. Compared to that of free space, the through-wall
results suffered a one-time loss of around 5dB. Also, the slope of
SNR dropping is slightly steeper than that of free space. For machine
processing, the effective range may reduce since current models
for audio perception are usually not very robust to noise [32]. Gen-
erally speaking, the system can operate through a wall within a
range of 2.5 meters with reasonable performance degradation.

5.3 Sound Source Placement Angle

In reality, it is not practical to require the speaker or other sound
sources to always be aligned with the sensor. Thus, it is necessary to
understand the influence of the relative angle between the speaker
diaphragm surface and the sensor Tx-Rx surface.We decompose this
problem into two sub-problems. First, if the sound source is facing
the sensor, but the sensor is pointing in another direction, then
the recovered sound quality will be negatively affected. Currently,
our sensor is equipped with a directional antenna whose 5dB main
lobe is 50◦ both in elevation and azimuth. Thus, for this problem,
we argue that this problem can be solved by aggregating multiple
instances of UWHear, each covering a field of view.

Secondly, if the sensor beam is in the right direction, but the
sound source is placed at a different angle, then the performance
may vary. Intuitively, the incoming signal beam will experience
diffuse reflection on the speaker cone, where a certain proportion
of the signal will still be reflected back. Thus, we measure the effect
of speaker placement angle, whose setting is shown in Figure 13(a).
The distance is fixed at one meter and the speaker is rotated to a
few certain angles. The speaker volume measured to be 74.5dB/SPL
at 1m distance.
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Figure 13: SNR vs speaker placement angle: (a) Experiment

Setup, and (b) SNR plot across different angles.

From Figure 13(b), we can see that the SNR drops quickly after
the speaker cone deviates over 10 degrees. The SNR fluctuates up
and down and hovers at around 2.5dB. This observation coincides
with our intuition: the fluctuation is a consequence of the speaker
cone geometry. At some certain angle, the direct reflection will
be stronger than other angles. The diffused reflection signal can
still provide clues about the cone vibration. Also, it is worth noting
that household appliances and tools typically have a more com-
plicated and less directional geometric shape, which increases the
percentage of power being reflected back to the radar receiver.

5.4 Sound Source Frequency

The final characteristic of the system that we want to test is the
frequency response. Placing the speaker at 1m distance, we play test
tones from 100Hz to 600Hz with increments of 100Hz. Our results
in Figure 14 generally show a loss-pass trend, which provides a
hint that we should use pre-emphasis in the signal processing to
compensate for this low-pass nature.

Figure 14: UWB audio sensing system frequency response.

6 UWHEAR SOUND SEPARATION

PERFORMANCE

In the previous section, we explore the performance boundaries
of UWHear. One of the greatest advantages of using IR-UWB
lies in the fine ranging resolution brought by its ultra-wide signal
bandwidth. With precise ToF estimation, it is capable of dealing
with multiple targets at the same time. In this section, we will
evaluate the system’s sound separation performance in domestic
environments.

6.1 Sound Source Distance Measurement

We have made hypothesis that, with fine ToF estimation, UWHear
is capable to measure the distance from the sensor to the speaker
precisely, and this capability will in turn support the sound sepa-
ration functionality. To evaluate this capability, we aggregate the
data from the first two experiments described in Sections 5.1 & 5.2

and estimate the speaker distance from the data. The empirical
cumulative distribution function (CDF) plot of estimation error is
shown in Figure 15.

Figure 15: UWHear sound source distance estimation error:

the empirical CDF curve.

The mean error is 11.19cm, the median error is 11.37cm, and
the standard deviation is 4.88 cm. Thus, we can see that the our
system can give an accurate distance estimation, and we can lock
the sound sources within its two adjacent distance bins. These
results demonstrate that UWB audio sensing is distance-aware in
terms of estimating how far the sound sources are from the sensors.

6.2 Qualitative Sound Separation Test

Sound separation is an active research field. Once target sounds
and noises are mixed in the microphone recordings, it is difficult
to separate them apart as they are entangled both in time and
frequency domain. Deep learning-based blind separation algorithms
have been used to solve this problem [27, 66]. Our system proposes
a new potential solution to this problem: separating the sound in the
IR-UWB fast time domain. Our system is able to deal with multiple
simultaneous sounds occurring at different distances, and separate
them apart based on ToF ranging in fast time domain.

Figure 16: Sound separation using UWHear: (a) Experimen-

tal settings (b) Spectrogram of the microphone audio (c-d)

Spectrogram of the recovered sound from the two speakers

Figure 16 demonstrates our qualitative experiments on sound
separation. As shown in part (a), the two speakers are placed at
different distances, one at 58cm playing Mary has a little lamb and
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another at 122cm playing Twinkle twinkle little star. The spectro-
gram of the sound recorded by a microphone is shown in part(b),
where the two songs are entangled and cannot be easily separated.
We use the open-source Free Universal Sound Separation (FUSS)
baseline separation model [66] trying to separate the microphone
audio, but the model failed to give satisfying results. This is prob-
ably due to the discrepancy between our real-world testing case
and its training data. Part (c) and (d) show the output of our system.
By selecting different distance bins, we can separate the two songs
without any residual. These results demonstrate that UWHear is
capable of directly capturing multi-track audio for applications
such as acoustic scene classification and sound event detection.

6.3 Quantitative Sound Separation Test

We also quantitatively measure the sound separation ability of
UWHear. Figure 17(a) shows the experimental setting. We put two
speakers in the UWB sensor’s field of view in roughly the same
direction. Speaker 1 is playing a C4 note (261.63Hz), while Speaker
2 plays a A3 note (220.00Hz). Speaker 1 is placed 1 meter from the
sensor. Speaker 2 starts from the distance of 1.5m, and is moved
towards the sensor in increments of 5cm up until a distance of
0.5m1. We use 𝑑 to denote the distance between the two speakers,
𝑑 ∈ [−50, 50]cm, as shown in the figure. For the sound recovered
from Speaker 1, we define the sound purity as the ratio of the C4
note energy to the A3 note energy in decibels, which is, in essence,
the SNR ignoring background noise. The purity for Speaker 2 sound
is defined similarly.

Figure 17: Quantitative analysis of sound separation using

UWHear: (a) Experiment setup, and (b) Recovered sound

purity against the distance between the two speakers.

Figure 17(b) demonstrates the results of our qualitative experi-
ments on sound separation. Perceptually, if the sound purity is over
20dB, i.e., the target sound has 100x more energy than its coun-
terpart, the effect of a non-target sound is not audible and can be
ignored. The experiments show that the target sound may be spread
across a few adjacent distance bins, probably due to the fact that
the speaker case is also vibrating, as well as the fact that multipath
reflections may also “leak” some information. Figure 17(b) demon-
strates the feasibility of collecting two sound sources separately
without cross-interference if the sound sources are placed 25cm

apart. The two purity curves are slightly asymmetric due to manual
placement errors in the speaker distances and angles.
1Through theoretical calculations, we know that the spatial resolution of IR-UWB
radar is roughly 10cm, which means, in theory, two sound sources can be separated
apart if they are 10cm apart in distance.

6.4 UWHear in Household Settings

Thus far, we have only tested UWHear on speakers as the contents
played in a speaker are easier to control and quantify. For a real-
world audio sensing system, the system need to deal with the sound
from heterogeneous sources. In this experiment, we test UWHear
on some commonly seen sound sources in domestic environments.

Figure 18: Sound source separation inHousehold Settings:(a)

Experimental settings (b) Visualization of the quadrature

part of the IR-UWB data after processing (c) Spectrogram

of the recovered vacuum cleaner sound (d) Spectrogram of

the recovered washing machine sound.

Figure 18(a) shows the experimental settings: A washing ma-
chine and a vacuum cleaner are placed a few meters in front of
the sensor at a random angle, and are operating simultaneously.
In the background, a wall AC unit is also operating to produce
non-negligible noise. Figure 18(b) visualize the quadrature part of
the IR-UWB data after processing. We notice two ridges at distance
bin 18 and 53, standing for the washing machine and the vacuum
cleaner separately. The spectrograms in Figure 18(c)(d) expose the
different frequency characteristics of those sound sources and elu-
cidate the starting and stopping phase of the motors. There are
neither cross-interference between the two target sound, nor traces
of the noise from the wall AC unit. Through this experiment, we
hope to shed some light on UWHear’s potential to collect multi-
track audio in domestic environments, which can then benefit the
sound event detection and classification systems.

7 DISCUSSION AND FUTUREWORK

Improving sampling rate. A major limitation of current UW-
Hear prototype is the relatively low sampling rate. While IR-UWB
radars have a fast sampling system on the fast time (collecting re-
sponses), the vibrations can only be recovered by analysing a series
of frames. Thus, what matters is the granularity of the slow time, i.e.,
the frame rate. Currently, the frame rate cannot go beyond 1.6kHz
owing to the fact that the X4 IR-UWB radar chip only caches the last
frame it receives, and that the data transmission speed is limited by
the SPI interface. In order to perform recovery of human voice, we
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need a sampling rate of at least 3kHz (the sampling rate of a landline
telephone) to ensure a sufficient understanding of human speech,
as the voiceless consonants that are critical in human speech usu-
ally have only high-frequency components. Currently, it is possible
to understand the digits read by a human speaker with UWHear
recovered audio. However, it may be difficult to understand a much
larger corpus due to the sampling rate limitations. Future efforts
should leverage superior hardware such as Quad Serial Peripheral
Interface (QSPI), or substitute the Raspberry Pi with an FPGA to
increase the data transmission rate.
Improving SNR. Even though Section 5 shows that UWHear is
capable of operating in complicated environments, it still suffers
from a drop in SNR under unfavorable conditions. In the worst
cases, the recovered sound may degrade below the quality thresh-
old for machine processing or the human auditory system. The
performance of our system is limited by the COTS radar board and
the antennas. We expect that an innovative design of the hardware
components that increases the transmission power may help. In X4
driver settings, if the IR-UWB radar power setting is increased from
“mid” to “high”, the effective range of our system increases. Further
adding a controllable low-noise amplifier and a power amplifier
between the X4 SoC and the antenna might help to increase the
system performance.
Increasing field of view.UWHear is currently using a directional
antenna whose field of view (FOV) is about 50 degrees in azimuth
and elevation, which implies that the sensor can only work if the
sound source lies in the sensor’s FOV. In the future, we hope that
this directional problem can be solved by integrating multiple IR-
UWB radar instances into a single board and stitch their data to
cover all directions. Another potential solution is to use multiple
instances of IR-UWB radars with omnidirectional antennas to per-
form trilateration [55].
Potential Applications of UWHear.UWHear provides a robust
audio sensing interface for Sound Event Detection and Classifica-
tion (SEDC), which can benefit a number of downstream appli-
cations. In domestic environments, collecting multi-track source-
separated audio can help us detect appliance use and human phys-
ical activities in home environments with the accurate onset and
offset time estimation [16, 56], helping save energy or making the
environment more responsive. Additionally, in industrial settings,
SEDC with UWHear provides the ability to monitor several ma-
chines and devices’ functionality. UWHear, in this case, will have
the ability to detect abnormal vibrations or early failures robustly.
At an urban scale, we expect that UWHear can help urban sound
tagging with spatiotemporal context. Currently, LiDARs are widely
used to build 3D models around us [2, 41, 63]. For example, a fusion
of LiDAR and UWHear can tag the object with vibration signatures
that may be important, for example, in classifying vehicles and hu-
man activities. Finally, the spatial audio generated from UWHear
may cooperate with RF activity sensing systems [19, 52, 64] and be
used to understand complex events and human behaviors [48, 67].
We also envision that IR-UWB radar technologies can be incorpo-
rated on mobile platforms like smartphones to make rich inferences
using audio-related vibrations like [12] did. We are glad to notice
that Ultra-Wideband technology is now available on iPhone 11.
Other Limitations and Generalization. Different materials of
the target interact with the IR-UWB radar wave differently. It could

reflect, absorb, or be penetrated by the signal, or show a combination
of the three inmost cases. For example, our systemmaywork fine on
metal and polyester speaker diaphragms, but its sensitivity might
drop for paper cones. Moreover, our tests reveal that the UWB-
based system cannot recover voice directly from a human throat.
Generally speaking, UWHear works better on objects with good
reflections and noticeable vibrations. For example, it may generalize
well on sensing machine vibrations but may encounter difficulties
recovering plastic bags’ sound.

Above are the intrinsic disadvantages of using a single wire-
less signal for vibrometry. To overcome them, one of the future
directions can be constructing a comprehensive wireless vibrome-
try system that combines modalities such as mmWave, IR-UWB,
and lasers. Operating at different frequency ranges, these technolo-
gies can compensate for each other and make a more robust audio
sensing system. It might also be possible to merge the IR-UWB
audio sensor with traditional microphones to provide additional
spatial information. Currently, UWHear focuses mainly on indoor
near-field environments. However, we believe the idea of using
short-duration pulses and ToF to collect vibrations with spatial
information is universal and can be expanded to other sensing
technologies.

8 CONCLUSION

In this paper, we propose UWHear, an audio sensing system using
impulse radio Ultra-wideband (IR-UWB) radar. We mathematically
formulated the theory of recovering audio using non-continuous
impulse-based wireless vibrometry. We also implement UWHear
using a commercial-off-the-shelf (COTS) IR-UWB radar and a learning-
free signal processing pipeline. Our results show that this system is
able to retrieve the sound directly from multiple sound sources and
also estimate the distances from each source to the sensor. Such
characteristics allow us to acquire and separate multiple sounds of
interest simultaneously in the presence of background noise. We
also show that UWHear is capable of through-wall sensing of audio
vibrations. We believe that this a promising step towards robust
audio sensing in complicated environments and it will benefit a
broad set of applications that involve computational analysis of
sound events and scenes.
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