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ABSTRACT
WristLens is a system for surface interaction from wrist-worn wear-
able devices such as smartwatches and fitness trackers. It enables
eyes-free, single-handed gestures on surfaces, using an optical mo-
tion sensor embedded in a wrist-strap. This allows the user to
leverage any proximate surface, including their own body, for input
and interaction. An experimental study was conducted to measure
the performance of gesture interaction on three different body parts.
Our results show that directional gestures are accurately recognized
but less so for shape gestures. Finally, we explore the interaction de-
sign space enabled by WristLens, and demonstrate novel use cases
and applications, such as on-body interaction, bimanual interaction,
cursor control and 3D measurement.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Pointing devices; Pointing.
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1 INTRODUCTION
WristLens aims to enhance and augment human capabilities for
input and interaction with arbitrary surfaces, including our own
body. Instead of instrumenting the environments with sensors, here
we leverage natural uses of existing wearable devices to amplify
the human body and proximate surfaces for interaction.

Wrist-worn devices such as smartwatches and fitness trackers
are now commonplace. They provide useful features such as notifi-
cations, health monitoring and map navigation, which sees them in
regular use. A prior evaluation, in-the-wild, measured an average
usage of 5.4 times per hour [32] for such devices, demonstrating
the potential of smartwatches as companion devices.

However, interacting with such wearables typically necessitates
both hands, as one arm is wearing the device while the other hand
is required to operate the touch screen or physical buttons. This
can be difficult or not possible, especially if the other hand is not
available, such as when holding or operating something (coffee,
umbrella, remote controller) or if the user has diminished physical
capabilities. While alternative interaction methods based on voice
input (e.g., “Ok Google”) or midair gestures (e.g., WearOS’s [6] tilt
to wake or scroll) are certainly possible, these techniques are often
error prone and can be socially awkward [39] to perform in public.

This work takes advantage of the fact that the wrist, and hence
the device strap, is often close to one’s body or other surfaces one
is interacting with. We introduce WristLens, a system to enable
surface gesture recognition for wrist-worn devices, based on optical
motion sensing. It allows the user to leverage arbitrary nearby
surfaces for input and interaction, including the user’s own body,
thus allowing single-handed and eyes-free interaction. With an
optical sensor embedded in the device-strap, the user can glide on
any surface as if using a computer mouse.

In addition, unlike midair gestures, leveraging nearby surfaces
for interaction provides passive tactile feedback and can help avoid
unintended gestures (e.g., Midas touch). The surface also acts as a
support for the hand, thus reducing hand fatigue caused by gorilla
arm effects [17]. Finally,WristLens also enables novel use cases such
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as eyes-free interaction, on-body interaction, bimanual interaction,
cursor control and object measurement — scenarios that we will
describe in the applications section.

2 RELATEDWORK
Our related work spans multiple research areas within HCI. Here
we focus on on-body, on-surface and single-handed interaction
which are most relevant for this form of device-strap to surface
input. We also discuss social acceptability of such interfaces.

2.1 On-body Interaction
Body-based interaction naturally offers a suitable surface for ges-
tural interaction, providing passive tactile feedback [44]. It also
affords proprioception and supports eyes-free input techniques
for mobile and wearable scenarios. As an example, the work by
Wagner et al. [45] presents an overview of the usability and social
acceptance implications of using the body as a canvas for input for
body-centric interaction techniques.

To achieve on-body input, several technologies have been ex-
plored. A common approach is to augment the clothes worn by a
user with sensors such as RFID [9], capacitive array [36] or con-
ductive threads [19, 33]. However, the interactive capability is then
only available when the user is wearing that particular piece of
cloth. Alternative technologies such as a wearable electronic skin
[31, 46] are also possible, but are limited to the worn area only.

A different approach requires the user to wear a wearable device.
Skinput [14] detects the location of finger taps on the arm and hand
by analyzing mechanical vibrations that propagate through the
body using a novel array of sensors worn as an armband, whereas
OmniTouch [11] achieves similar detection using a depth camera
mounted on the shoulder. Gesture such as rubbing the face [25] or
touching the nose [22] can also be detected with wearable sensors.

A final approach relies on external (grounded) sensors. For exam-
ple, Run&Tap [10] investigates on-body tapping as a potential input
technique for runners. Belly gestures [44] supports unistroke ges-
ture patterns on the abdomen. However, these systems were studied
with bulky hardware or external sensors such as the Kinect and
Optitrack, which are incompatible with the wearable application
scenarios envisaged here.

2.2 On-surface Interaction
While the previous section focused on interaction techniques that
use the body as an input canvas, this section describes methods to
detect input on surfaces other than the body. A common approach
is to augment the surface [37], along with, for example, a projector-
camera (pro-cam) system [47, 48]. However, this approach requires
a bulky apparatus and is not portable for wearable applications.
Anywhere Surface Touch [29] consists of a camera system worn
below the wrist, pointing towards the finger area to detect finger
taps on any surface it is resting on. LightRing [20] consists of a
gyroscope and infrared sensor that detects finger flexion and palm
rotation when the wrist is resting on any surface.

By contrast, our approach employs a small and wearable optical
motion sensor. Indeed, this sensor has been used extensively to
enable novel input techniques [13, 27, 30, 49, 50] in the HCI commu-
nity. Much of the prior work leverages the optical motion sensing

combined with other sensors (such as macro camera, accelerometer
and proximity sensor) for augmenting input directly on the fingers.
The most similar work to ours is Magic Finger [49], which allows a
user to control a mouse using a finger and a rich set of interactions
based on the relative motion of a finger on any surface. However,
this technique requires a specialized micro camera and a relatively
large sensing box, hindering practical applications in the wild. Heo
et al. [16] embedded an optical motion sensor below the watch
strap, but it requires a second hand to perform swipe gestures from
below. Finally, Ni and Baudisch [28] demonstrated how it is possible
to repurpose an optical mouse to simulate a motion scanner device.

2.3 Single-Handed Interaction
To address the shortcoming of smartwatch interactions typically
requiring two hands for input, several researchers have proposed
methods that enable single-hand interaction based on mid-air ges-
ture [1, 24, 53] and static posture recognition [54]. Mid-air motion
gestures can cause arm fatigue [17], as well as being error-prone
[4] and socially awkward [38], whereas static posture lacks expres-
siveness (e.g., no support for touch and swipe gestures). In contrast,
our approach is based on gesture input on the surface itself, hence
providing a physical support for the arm and limiting excessive
fatigue [44].

2.4 Social Acceptability
A common issue with on-body interfaces is their social acceptabil-
ity, as these devices often require the user to touch their own body
parts or to perform awkward midair gesture in public in order to
operate them. Profita et al. [34] and Harrison et al. [12] studied the
societal perceptions of textile or projected interfaces at different
on-body locations. Whack Gestures [18] aims to allow inexact and
inattentive interaction with mobile devices, thus minimizing social
acceptability concerns. In determining social acceptance of such
interfaces, Montero et al. [26] show that the user’s perception of
others’ ability to notice them is an important factor. Rico et al. [38]
studied social acceptability with respect to location and audience,
and further provide design recommendations and evaluation guide-
lines. In reality, what is considered socially acceptable is evolving
as new devices and forms of interaction enter day to day life.

3 DESIGN AND PROTOTYPE
Given the ubiquity of surfaces on and around us, our overall goal
is to broaden the range of surfaces (including the user’s body) and
hence the nature of input available in single-handed interactions.
Hence, the motivation is to design and implement an input tech-
nique for wrist-worn devices that can support (i) eyes-free input
(ii) and can operate with only one hand. Furthermore, it can iii)
leverage a nearby surface as a canvas such as the user’s body or
surrounding flat objects (e.g., a table or wall), which implicitly
also provides (iv) passive haptic feedback. Put simply, the user can
control the spatial location of the input (relative x-y coordinates),
consequently enabling gestures (touch, swipe and draw shapes).

3.1 Hardware
Our system employs the optical motion sensor commonly found
in modern computer mice. This sensoor not only fulfills the above
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Figure 1:WristLens consists of a wrist band with optical sen-
sor attached below. The sensor is connected to an ESP32 mi-
cro controller that is able to process and senddatawirelessly.

requirements, but it is also very low-cost, readily available, robust
and a proven technology. This sensor measures changes in posi-
tion by obtaining sequential surface images and mathematically
determining the direction and magnitude of the movement. Typical
laser optical sensors work on most surfaces except highly reflective
ones such as glass, although specific high-end laser optical sensors
can also handle glass and other reflective materials (e.g., Logitech’s
Darkfield technology).

Our setup here includes an Avago ADNS-9800 [42] sensor fitted
with an ADNS-6190-002 [41] lens, which is attached to the bottom
part of a Velcro wrist band (Figure 1), while an Android smartwatch
can be attached on the top (not shown in the figure). The sensor
is connected to an ESP32 micro controller through SPI, along with
a small lithium battery. A force sensitive resistor (FSR) was fitted
to enable hard press for selections through clicking. The sensor
readings are polled and sent wirelessly to a PC or directly to the
smartwatch through WiFi using UDP to minimize latency.

3.2 Software
We created the experimental software (written in Java on a PC) and
several demo applications (written in the Unity game engine). We
used a modified $P Point-Cloud Recognizer [43] that can recognize
both directional gestures and shape gestures. In fact, the original
$P recognizer is direction invariant by design, and therefore cannot
recognize the direction of unistroke gestures. For the optical sensor,
we fixed the resolution at 400 CPI with a refresh rate of 50Hz. We
also used the smartwatch’s IMU data to account for wrist rotation,
and hence achieve 3D surface tracking.

4 EXPERIMENTAL STUDY
We conducted an experiment to evaluate the accuracy of the gesture
recognition software on three distinct body parts, following similar
studies in prior work [13, 34, 44, 45]: THIGH,ABDOMEN andOTHER
ARM. Specifically, we selected the upper THIGH around the hip area
because the arm is just beside this area when in a relaxed posture
[23]. Inattentive “whack gestures” [18] were also performed in this
area, which were also previously explored by Profita et al. [34].
For ABDOMEN, Vo et al. [44] suggested the abdomen is especially

Figure 2: Selected sample gestures drawn by participants.

appropriate for gesture interaction as it offers a fairly large surface
that can be easily reached with any hand in any circumstance.
Lastly, Profita et al. [34] also demonstrated that the OTHER ARM is
one of the preferred areas for interaction as it is unobtrusive, can
be easily accessed, and appears the least “awkward” or the most
“normal” to participants.

4.1 Participants
We recruited 12 participants (3 females, 1 left-handed) from Univer-
sity of St Andrews. Their ages ranged from 19 to 30 (M: 24.1, SD:
3.9). They were compensated with a £10 voucher. Four participants
had experience with wearable devices (fitness tracker or smart-
watch), and two of them wore the device daily. Participants were
asked to stand throughout the experiment while facing a monitor
approximately 1 meter away. They were asked to wear the device
on the same hand they would normally wear a watch. As a result,
ten participants chose to wear the device on the non-dominant
hand but two preferred to wear it on their dominant hand.

4.2 Procedure
Before the experiment started, participants were instructed to try
out all the gestures and conditions to gain familiarity with the
system. During this time, gesture results and trails were shown
on a display. Then, 2 blocks of data were collected and used as
a template for the $P recognizer for real-time recognition. Next,
10 blocks of real-time data were collected. For the first 4 blocks
(considered as training phase and hence discarded in the analysis
of the results), the recognized gesture was shown on screen after
each trial. There was no visual feedback instead for the remaining 6
blocks, participants performed the gestures using their imagination
and muscle memory.

For each trial, the participants attempted the gesture by approach-
ing the wrist to the appropriate body surface with the sensor facing
the surface, then they drew the gesture, and finally left the surface.
This process was repeated for 3 different conditions. In total, we col-
lected 2880 valid data points = 12 participants x 3 body parts (THIGH,
ABDOMEN, OTHER ARM) x 8 gestures (4 directional and 4 shape) x
10 blocks. Conditions were fully counterbalanced and the order of
the gestures within each block was randomized. The gestures are
motivated by previous work [8, 53]. Examples by participants can
be seen in Figure 2 and 3. At the end of each condition, participants
completed a NASA TLX [15] survey to assess the perceived work-
loads, level of comfort and social acceptability in front of colleagues
or strangers. The study took approximately 60 minutes in total.
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Figure 3: Participant data points from block 5 to 10, excluding practice blocks, each column is a participant, from left to right:
P1 to P12. Gestures from top to bottom: left swipe, right swipe, up swipe, down swipe, rectangle, circle, triangle and question
mark. Red: THIGH, Green: ABDOMEN, Blue: OTHER ARM.
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OTHER ARM

Figure 4: Confusion matrix for condition THIGH, ABDOMEN and OTHER ARM.

4.3 Results
The first 4 blocks were considered as training data and discarded
from the analysis. Results were analyzed using one- and two-way
ANOVA tests followed by Bonferroni correction post-hoc analysis
with α = 0.01. Average time and accuracy were not statistically dif-
ferent across the three conditions and average results per condition
are reported in Figure 5. A deeper analysis of the errors, reveals

instead that errors for different gestures were statistically different
across conditions (F(2,264) = 6.5, p < 0.01) and gestures (F(7,264) =
43, p < 0.01) but not their interaction. Post-hoc comparison reveals
that the directional gestures (Up, Down, Left and Right) were sta-
tistically different from shape gestures (Question mark, Triangle,
Circle and Rectangle), with the second group causing many more
errors than the simple gestures. Confusion matrices for gestures in
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Figure 5: Completion time and accuracy across 3 conditions.

each condition are shown in Figure 4. Finally, we found significant
differences for the workload, measured with the NASA TLX ques-
tionnaire (F(2,33) = 3.3, p < 0.05), with OTHER ARM significantly
more demanding than ABDOMEN.

5 DISCUSSION
Overall, directional gestures are accurately recognized but less so
for shape gestures. There are several factors that contribute to this
result. Naturally, shape gestures are more difficult to draw consis-
tently than simple directional line gestures. This issue becomes
more prominent when gestures are performed on the body, due
to surface friction and different spatial orientations of users, as
we explain below. Fortunately, in many applications for wearable
devices, directional gestures combined with and tap detection are
often sufficient for basic interaction, such as swipe to scroll through
a list and tap to select an item within the list.

Users spatial orientation - From the visualized gesture trails
(Figure 3), we can observe that different participants (indicated
by columns) performed the same gestures with inconsistent di-
rections/orientations even for the same body parts (indicated by
colors). In fact, Vo et al. [44] noted that users employ different
mental spatial orientations depending on the complexity of the
gesture they have to draw. In addition, when no visual orientation
cues are provided users often draw gestures following symmetries
relative to the current view and their perception of the horizontal
and vertical axis.

This means that users have a different perception of what is
left and right and what is top and bottom on their body, i.e., they
may invert one or both axes when prompted to perform a gesture.
For example, some users related the lower part of their torso to
the upper part of the screen, versus the upper part of the torso to
the lower part of the screen, i.e., some moved their hand down to
move the cursor up, and vice-versa. Indeed, during the practice
sessions, some participants were confused and kept changing the
manner in which they would perform certain gestures even on the
same surface. To mitigate this, we asked participants to decide on
one way and to be consistent throughout the experiment. Yet, we
can still notice that P8 and P11 performed a mistake at the gesture
DOWN and UP, respectively.

Non-dominant hand - The majority of participants performed
gestures with their non-dominant hand, which, by nature, does not
possess the same fine motor skills as the dominant hand. The ex-
periment could have been performed with the dominant hand, and
therefore we might expect better results but less ecological validity
as the majority of people wear watches on their non-dominant hand.
From the visualized gesture trails (Figure 3), we can observe that

?
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Figure 6: Errors for each type of gesture.

the data of majority participants were noisy, except for participant
7, 9 and 11, which look particularly clean. The cleaner data allows
for better recognition rate, suggesting that the recognition is highly
user-dependent. Using more advanced machine learning technique
could improve the recognition rate.

Surface properties - The sensor readings also depend on the
surface properties such as the size of the area, its flatness and ma-
terial type. In particular, performing shape gestures on the OTHER
ARM was difficult due to lack of surface area. In fact, it is diffi-
cult to draw a gesture with an appropriate size in the absence of a
large enough canvas, as is visualized with the blue lines in Figure
3. Clearly those lines are shorter than those drawn on the other
two body parts. Furthermore, on some occasions, some participants
did not realize that the sensor was actually outside the boundaries
of the surface, and hence not touching the surface of the forearm,
resulting in missing data points. To compensate for this issue, it
was also observed that some participants would slightly rotate their
arm during gesture input, as a way to create more surface area.

Loose clothing can also cause noisy readings, since these tend
to form folds which makes sliding movements difficult. Specifically,
sliding movements that stretch the cloth are easier than movements
that fold the cloth. Some participants also had to empty their pants
pocket (smartphone and car key) as they create uneven surfaces.
As indicated before, the laser optical sensor works well on many
different surface types but not all types such as reflective surfaces
(e.g., glass). Through our 12 participants study, we found that our
sensor works well on almost all types of clothes worn by our partic-
ipants, except on one type of khakis pant that appears reflective to
the sensor, as observed in the noisy data from P1 in Figure 3 (red)).

Gesture delimiter - Initially we utilized a force sensitive resis-
tor to detect a hard press as the gesture delimiter. However, during
a pilot test we observed it was unnatural and cumbersome to main-
tain a consistent pressure when drawing the gesture. Therefore we
removed this requirement, and used only the sensor’s built-in lift
detection threshold. Yet, it was noted during the experiment that
participants sometimes accidentally performed two consecutive
gestures, even when they lift the device slowly for adjustments.

User feedback - From the questionnaire results, it can be seen
that ABDOMEN has the lowest workload, followed by THIGH
and then OTHER ARM. However, ABDOMEN was also voted the
least socially acceptable location to perform these gestures, either
in front of friends or strangers. Therefore, THIGH may be the
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Figure 7: Left: 3D object measurement tool. Middle: Bimanual interaction for controlling stylus properties. Right: Anywhere
cursor control for inputting text using gesture keyboard technique.
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Figure 8: StandardNASATLX score (range from1 to 5), along
with comfortability and social acceptability scores, which
are inverted to match plot. Lower scores are better.

participants’ most preferred body location, maintaining a balance
between perceived workload and social acceptability.

6 APPLICATIONS AND USE CASES
In this section, we demonstrate how WristLens can enable several
applications and scenarios leveraging both gesture input and 2D
position tracking, as shown in Figure 7, 9 and the video figure.

On-body Interaction: WristLens enables surface gesture in-
teraction on body parts while on the go (Figure 9). This can be
useful to control mobile or wearable devices, such as dismissing
notifications, skipping to the next song, changing volume, etc. This
can be performed single-handedly and an in eyes-free manner, ef-
fortlessly near the upper thigh or abdomen area, without requiring
a user to take out the phone from pockets, which might causes
higher cognitive load, especially while on the go. Extending input
to simple body interaction opens up the space of what is possible
for interactive spaces, without requiring the instrumentation of
new surfaces, or bodies with other sensors.

Bimanual Interaction: Since smartwatches are often worn on
the non-dominant hand, WristLens can be leveraged to enable bi-
manual interaction in desktop or tablet environments. For example,
while holding a mouse on the right hand and wearing WristLens on
the left hand, standard two-handed gestures such as zoom, rotate,
panning can be realized (see video figure). While using a stylus on
the right hand to paint, the left hand can intuitively swipe or rotate

Figure 9: Left: taking out the phone to control the music
player while walking on the street is dangerous, but miti-
gated by WristLens. Right: User can draw gestures on the
body to perform simple commands without losing focus.

on a surface to alter the properties of the painting brush, such as
color, size and tilt angle (Figure 7 middle).

Anywhere Cursor Control: WristLens also supports cursor
control, for example in situations where a mouse is not available,
such as in a conference meeting space, or when using a laptop in a
coffee shop and users have only access to the computers’ trackpad.
In addition, combining cursor control with gesture keyboard [21]
allows users to input text with only one hand (Figure 7 right).
Indeed, WristLens works almost like a computer mouse since it
uses the same optical sensor. The difference is that the center point
is at the wrist instead of the palm, so it might require more arm
movement instead of subtle wrist movements. Nonetheless, this
can potentially avoid repetitive stress injuries in the wrist joint,
since movement from the elbow causes less wrist strain.

Dirty or Covered Hand In some scenarios where the hand
is dirty (e.g., kitchen, operation room, factory), the user might
be reluctant to touch the screen or hold a pointing device. With
WristLens, the user can use the smartwatch strap on the wrist area
to glide over any nearby surface to achieve point and click input.

3D Measuring Tool: By measuring the distance travelled by
the optical motion sensor when sliding on a surface, WristLens can
be used to achieve 2D measurements. Furthermore, by combining
this functionality with the rotational tracking in the smartwatch,
objects can be measured in 3D (Figure 7 left and video figure).

Future Applications We also envision future applications that
can be enabled with WristLens. For one, text can be scanned [3]
and digitized by sliding through WristLens as if using a marker pen.
Different textures (clothing or desk surfaces) can be recognized
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[40, 52], enabling placement awareness and shortcut commands.
This technique further enables cross-device interaction such as
picking and dropping data [35]. Albeit not the focus of this work, it
could also allow under side or back-of-device [2, 50, 51] interaction,
avoiding occlusion and the fat-finger problem [5]. Finally, we be-
lieve that WristLens can be useful for virtual reality environment
because proprioception allows users to accurately touch their body
parts without looking at them while wearing VR display.

7 LIMITATIONS AND FUTUREWORK
This work presents several limitations related to the current proto-
type, which we aim to overcome in future work.

Form factor: In the current prototype, the embedded optical
sensor is extruded from the watch-strap of 5mm, because the lens
itself is 3mm and it requires a 2-3mm gap for the focal length.
Therefore, it is not as flat as a standardwatch-strap. Futureworkwill
need to improve the form factor and shrink the thickness (smaller
sensor and lens) of the device.

Limited evaluation: Our experimental study was conducted
with participants standing still. Thus, we cannot generalize our
results for situations in which the user is on the move, such as
walking or running. We also did not evaluate the performance
of 2D targeting and how it compares to a computer mouse. In
future work, a complete evaluation with these conditions should
be conducted.

Surface recognition: Our current prototype does not recognize
which surface/body part it is touching, thus it could not enable
context-aware interaction such as body-shortcuts. We could utilize
the IMU data to infer the touched body part [7] but this is very user
dependent, because, as seen in the results, different users orient
their wrist differently over time. In future work, we propose to use
the raw image captured by the optical sensor for surface/texture
recognition [40] using machine learning techniques.

8 CONCLUSION
We presented WristLens — a system that enables surface gesture
interaction using a wrist-worn wearable device. The system is based
on a low-cost optical motion sensor commonly found in computer
mice. Our evaluation results show that directional gestures can
be accurately recognized on different body parts, but less so for
shape gestures. Participants also feel it’s comfortable and socially
acceptable to perform these gestures on the thighs and on the other
arm in public, but less acceptable on the abdomen area. While more
work needs to be done to fully evaluate the system in real-world
conditions, we envision such type of sensor, when included in future
wearable device, unlocks a high potential interaction modality.
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