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Abstract—Data-centric approaches are becoming increasingly
common in the creation of defense mechanisms for critical
infrastructure such as the electric power grid and water treat-
ment plants. Such approaches often use well-known methods
from machine learning and system identification, i.e., the Multi-
Layer Perceptron, Convolutional Neural Network, and Deep Auto
Encoders to create process anomaly detectors. Such detectors
are then evaluated using data generated from an operational
plant or a simulator; rarely is the assessment conducted in real
time on a live plant. Regardless of the method to create an
anomaly detector, and the data used for performance evaluation,
there remain significant challenges that ought to be overcome
before such detectors can be deployed with confidence in city-
scale plants or large electric power grids. This position paper
enumerates such challenges that the authors have faced when
creating data-centric anomaly detectors and using them in a live
plant.

Index Terms—Anomaly detection; Critical Infrastructure; In-
dustrial Control Systems; Machine Learning; System Identifica-
tion; Water Treatment Plant.

I. INTRODUCTION

Industrial Control Systems (ICS) are found in modern
critical infrastructure (CI) such as the electric power grid
and water treatment plants. The primary role of an ICS is
to control the underlying process in a CI. Such control is
effected through the use of computing and communication
elements such as Programmable Logic Controllers (PLCs) and
Supervisory Control and Data Acquisition systems (SCADA),
and communications networks. The PLCs receive data from
sensors, compute control actions, and send these over to the
actuators for effecting control over the process. The SCADA
workstations are used to exert high level control over the PLCs,
and the process, and provide a view into the current process
state. Each of these computing elements is vulnerable to cyber
attacks as evident from several widely reported successful
attempts such as those reported in, [1]–[3]. Such attacks have
demonstrated that while air-gapping a system might be a
means to consider securing a CI, it does not guarantee keeping
attackers from gaining access to the ICS.

Successful attacks on CI have led to a surge in the develop-
ment of defense mechanisms to prevent, contain, and react to
cyber attacks. One such defense mechanism is the anomaly

detector that aims at raising an alert when the controlled
process in a CI moves from its normal to an unexpected,
i.e. anomalous, state. Approaches used in the design of such
detectors fall into two broad categories: design-centric [4] and
data-centric [5]. The focus of this position paper is on the data-
centric approaches that rely on well-known methods for model
creation such as those found in the system identification [6]
and machine learning literature.

The use of machine learning to create anomaly detectors
becomes attractive with increasing availability of data and
advanced computational resources. However, our attempts to
create anomaly detectors, and test them in a live water treat-
ment plant, point to several challenges that must be overcome
before such detectors can be deployed with confidence in a live
plant. It is these challenges that are described in the remainder
of this paper with the hope that other researchers will come
forward and propose practical solutions to overcome these
challenges.

Organization: The remainder of this paper is organized as
follows. Section II is a brief introduction to a live water
treatment plant used extensively by the authors for testing
anomaly detectors derived using process data. Terminology
related to anomaly detectors is explained in Section III.
Challenges in the design of anomaly detectors using plant
data are enumerated and explained in Section IV. Research
directions aimed at the development of methods to overcome
the challenges are summarized in SectionV.

II. SWAT: A LIVE WATER TREATMENT PLANT

The Secure Water Treatment (SWaT) plant is a testbed
at the Singapore University of Technology and Design [7].
SWaT has been used extensively by researchers to test defense
mechanisms for CI [8]. A brief introduction is provided in the
following to aid in understanding the challenges described in
this work.

SWaT is a scaled-down version of a modern water treatment
process. It produces 5 gallons/minute of water purified first
using ultrafiltration followed by reverse osmosis. The ICS in
SWaT is a distributed control system consisting of six stages.



Each stage is labeled as Pn, where n denotes the nth stage.
Each stage is equipped with a set of sensors and actuators.
Sensors include those to measure water quantity, such as, level
in a tank, flow, and pressure, and those to measure water
quality parameters such as pH, oxidation reduction potential,
and conductivity. Motorized valves and electric pumps serve
as actuators.

Stage 1 processes raw water for treatment. Chemical dosing
takes place in stage 2 to treat the water depending on the
measurements from the water quality sensors. Ultrafiltration
occurs in stage 3. In stage 4 any free chlorine is removed from
water before it is passed to the reverse osmosis units in stage 5.
Stage 6 holds the treated water for distribution and cleaning the
ultrafiltration unit through a backwash process. Data from the
sensors and actuators is communicated to the PLCs through
a level 0 network. PLCs communicate with each other over a
level 1 network.

III. ANOMALIES, DETECTION, AND DEVELOPMENT
STAGES

A physical process in a CI is controlled to stay within its
design limits. Thus, bounds are placed on each state variable
in the process while the controller ensures that there is no drift
beyond these. For example, water level in a tank must never
exceed a high mark or fall below a low mark. In addition, each
state variable evolves over time in accordance with process
design. For example, the ultrafiltration unit must be cleaned
at least every 30 minutes thus ensuring that the pressure drop
across the unit remains within safety limits.

Any violation in the bounds or evolution of one or more
state variables is considered process anomaly. Assuming cor-
rect controller design, such anomalies could arise due to faults
in the physical components in the plant or due to cyber attacks.
It is such anomalies that ought to be detected rapidly, and the
operators alerted, before any remedial actions are initiated.
The key objective of an anomaly detector is to ensure that
any process anomaly is detect preferably as soon as it occurs
and the plant operator notified.

An anomaly detector can be considered as a black box that
receives data in real time from an operational plant, such as
SWaT. Thus, the detector is continuously monitoring the state
of the plant and comparing it with the predicted state; the
prediction being carried out using the model built. The model
itself is built using data from an operational plant where the
detector is intended to be deployed. Once the model is built,
it is tested to ensure that expected anomalies are detected and
alerts generated in a timely manner. The tested model is then
deployed in the plant.

The model becomes increasingly useless if it generates false
positives that annoy the operators and waste their time in
debugging the process that is otherwise operating normally.
Thus, an anomaly detector must have ultra-high detection rate
as well as ultra-low rate of false alarms. There is no widely
accepted numbers associated with such rates though we believe
that a detection rate of at least 99%, and a false alarm rate
of less than one false alarm in 6-months, is needed for an

anomaly detector deployed for real time monitoring of a city-
scale plant or power grid. Thus, as the plant components
degrade, or the plant is upgraded, the anomaly detector must
adapt itself to the new reality.

IV. CHALLENGES IN THE DESIGN OF ANOMALY
DETECTORS

The development of an anomaly detector goes through
several phases. The process begins with model creation, val-
idation, and testing, followed by deployment and tuning, and
lastly operation and retraining. Figure 1 shows the activities
during these three phases. During the model creation phase,
one needs to decide on the model to be used. There exist
a variety of methods one could use to create a model that
would eventually serve as an anomaly detector. Often used
methods include those based on deep learning techniques,
such as MLP, autoencoder (AE), CNN, Generative Adversarial
Network (GAN), Recurrent Neural Network (RNN), Long
short-term memory (LSTM)) as well as shallow learning
models (Support vector machine (SVM), Decision tree (DT),
Random forest (RF)) [10]–[12].

System identification [6] is another well known method
often used by control engineers to build the state space model
of a system using state observations. Once the model is
created, and tested, it needs to be deployed in an operational
plant. Doing so requires overcoming logistical challenges.
Once the model is deployed and is operational, it’s parameters
will likely need re-tuning, and possibly retraining, as the plant
being defended ages or is upgraded with new equipment and
modified control policies.

Given the above phases, challenges described here are
classified into the following categories: model creation, model
deployment, and model retraining.

A. Challenges: Model creation

Challenges faced during the creation of an anomaly detector
are described next.

Challenge 1: Supervised vs unsupervised Learning: Recently,
there have been studies where supervised machine learning is
used for attack detection [13]–[15]. Although these models
possess high detection rate and generate few false alarms
for known attacks, they fail to detect the unknown or new
attacks due to the lack of signatures. Further, upgrading to
the signature database at regular intervals seems to be a
better solution though the generation of signatures for process
anomalies in case of multivariate operational ICS environment
is highly complex and impractical task.

Position 1: Supervised learning is not suitable for detecting
zero day vulnerabilities in ICS.

Recent studies have used unsupervised or semi-supervised
machine learning algorithms to detect attacks in an ICS
[5], [16]–[18]. In particular, data was obtained from Secure
Water Treatment (SWaT) testbed [19]. Generally, unsuper-
vised learning models are designed based on the normal
operation of the plant’s behavior wherein any observation that
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Fig. 1. Three phases in the development of an anomaly detector: creation, deployment, and retraining/tuning. Real-time data from the host plant needs to be
mutated to create attacks for testing the anomaly detector before enabling it operationally. This step is needed for in-plant testing of the detector [9]. A, B,
C and D denote the successively enhanced detectors created in each phase.

deviates from the “normal” is termed as an anomaly. In [5]
the authors compared models derived using both supervised
and unsupervised learning. In this study it was observed that
models created using unsupervised learning perform better in
attack detection though, due to sensitivity to noise in the data,
they lead to a higher rate of false alarms than those derived
using supervised learning.

Position 2: Unsupervised learning can detect unknown attacks
but can also increase the number of false alarms.

In recent years, the design of anomaly detector for ICS is
treated as an “one class classification problem” and several
unsupervised learning methods are effectively employed [20].
Unsupervised learning approaches construct a baseline for
the normal behaviour through feature learning and monitor
whether the current behaviour is within the specified range
or not. Although these techniques are able to detect zero
day vulnerabilities, they generate high false alarms due to
the existence of several hyperparameters and multivariate
nature of ICS data. In [12] the authors have investigated the
performance of several unsupervised neural network models
for anomaly detection in SWaT testbed and proposed various
statistical anomaly scoring techniques to achieve minimal false
alarms.

Challenge 2: Model localization: An ICS in large systems is
mostly a complex distributed control system. For example, a
water treatment process consists of several stages and sub-
processes. These separate physical processes might be con-
nected logically and physically. An important consideration
here is whether to create a machine learning model for the
entire process or one each for different stages.

Position 3: Considering the distributed model versus a model
for the whole system, or having a cluster of models, is an
important design consideration that can influence detector

performance.
Recently, iTrust researchers carried out an investigation

on the significance of design knowledge in the data centric
approaches for anomaly detection in SWaT testbed. In this
work, three different variants of deep autoencoder (DAE)
were designed and evaluated. These are: (i) DAE-CAD - six
AE models monitoring each stage independently, (ii) DAE-
CAD - three AE models monitoring the stage 1-2-3, stage
3-4-5, and stage 5-6-1 independently and (iii) DAE-OAD -
one AE model monitoring the entire SWaT operation. The
creation of each DAE uses uses different amounts of plant
design knowledge; These models were implemented and tested
against several real time attack scenarios. Interestingly, DAE-
OAD outperforms the other two variants, since each AE model
captures the sensor dependencies within the particular stage
more effectively and also the computational complexity is
minimized due to their distributed nature. Similar observations
are reported in [16] when using LSTM based autoencoders.
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Fig. 2. Training Phase: data used for creating a system model for a pH sensor.

Challenge 3: Scalability: The reference system for this ar-
ticle is the SWaT testbed [19]. There is a multitude of
sensors including level, flow, pressure, and chemical sensors
for measuring the water quality and quantity. Studies have
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Fig. 3. Testing Phase: validating the model in the process plant.

reported results from using models derived using supervised
and unsupervised learning [21] on the SWaT testbed. It has
been observed that supervised learning lacks scalability due
to the lack of labeled data. On the other hand, unsupervised
algorithms can be trained for a large process plant without the
need of having a labeled dataset. An interesting example of the
scalability of one class classifiers is found in [21] for the case
of sensor fingerprinting. The idea is that by using a one-class
classifier for each sensor, a unique fingerprint is created to
detect intrusion without the need to train the classifier based
on the labeled data from all the sensors. The limitation for
supervised learning, in that case, is in the event of an increase
or decrease in the number of sensors; the models would need
to be retrained but using one-class classifier the models would
be retrained only for the affected sensors.

Position 4: Unsupervised learning has been shown to better
scale in real world ICS.

Challenge 4: Data availability and reliability: Data availability
plays a vital role in the design and performance of any
anomaly detector. Prior to model creation, one ought to ensure
that there exists sufficient amounts of data that represents the
components’ entire performance cycle and covers all possible
modes of ICS operation in the absence of temporal glitches
and outliers. The dataset available in [22], represents only
one of the SWaT’s operational modes. For example, it does
not include the behaviour of few backup actuators such as
P102, P302, and P402. Though these components are not
operational frequently, it is necessary to ensure the presence
of their behaviour in the training dataset to guarantee minimal
false alarms. Recently researchers [23] conducted a statistical
analysis using Kolmogorov-Smirnov test (K-S test) on SWaT,
WADI, and the BATADAL datasets to quantify the similarity
between the probability distributions of the training and testing
data. Outcome of this work has led to the avoidance of
several features (ICS components) for model creation since
there exists difference between the distribution in training and
testing samples. Further, the authors claim that the absence of
these features forms an important reason for the reduced false
alarm rate of the proposed model.

B. Challenges: Model deployment

Next we point to challenges that arise in the second phase
of model development, namely the model deployment phase.

Challenge 5: Data sampling rate : Using a anomaly detec-
tors requires sampling plant data at regular intervals. During
deployment of the trained models in the SWaT testbed, the
sampling rate was not constant due to the load on the server
used for collecting and disseminating plant data. Such a
variation in the sampling rates, i.e., different sampling rates
during training and deployment, causes the detector to fail to
perform as expected.

Challenge 6: System Modeling/Exhaustive discovery of state
space at the training phase: Modeling a cyber physical process
is important for a variety of reasons. Intrusion detectors use
such system models to learn the baseline of a system [24].
System models can be learned either using machine learning
methods or subspace system identification techniques. In the
latter case, an important task is to determine how stable is
the resultant model. For creating a system model, the input
is the process data in the form of sensor measurements.
It is challenging to get a stable model when the physical
quantity/input has been modified. For example, a level sensor
in a water tank is not affected by the quality of the water.
In other words, the water level should stay within the defined
control limits regardless of whether it is clean or dirty water.
On the other hand, the quality of water affects the sensor
measurements. Thus, when there exist impurities, not present
during model creation, then such a change in the data input
will raise false alarms.

Figure 2 shows the estimates obtained for a pH sensor based
on the system model obtained from the data. It can be seen
from Figure 2 that the obtained system model can accurately
estimate the sensor measurement but when tested in the live
plant the distribution of residuals for this model is radically
different. Validation results are in Figure 3. Quality of the
incoming water is the prime cause for the observed deviation;
during the training phase in the lab environment, pH of the
incoming water was in a different range as compared to that
during the testing phase.

Position 5: Exhaustively discovering the entire physical state
space of a process during the training phase is a challenging
problem.

C. Challenges: Model retraining and retuning

Once a detector has been built, tested, validated, and has
been in operation in a live plant, it may begin to perform
differently than how it did during the early phases of operation.
This observation leads to several challenges described next.

Challenge 7: Distribution Shift:
There can be instances when the behavior is physically

acceptable for the process but the detector raises alarms.
This may happen due to component degradation over time.
Another reason relates to the plant modes of operation. Thus,
a plant may have multiple modes of operation though data was
collected for model creation using a subset of such modes. For
example, a power grid may operate in a different mode during
public vacation periods than the during normal period.



Position 6: It is challenging to figure out the distribution shifts
in the data due to the component degradation or process
variations at the time of training a model.

Challenge 8: Noisy data: It has been demonstrated that an
attacker can “hide” in the noise distribution of the data [5].
In [25] the authors conclude that often machine learning
algorithms miss the attacks in the noisy process data. For such
a stealthy attacker it is important to consider the process noise
distribution to train the detector.

Position 7: Process noise needs to be considered while mod-
eling the physical process.

The challenge arises because the noise is specific to the
particular state of the process. For example, a water tank
filling process in a tank would exhibit different noise profile
as compared to the water tank emptying process.

Challenge 9: Attack Localization: It has been reported that
even though detectors using machine learning algorithms can
detect anomalies, they fail to provide hint relevant to the
location in the plant where the anomaly may have originated.
One solution to this problem is to use a model for each
sensor. However, doing so may miss anomalies created due
to coordinated multi-point attacks.

Position 8: Locating the source of attack when detectors
created using machine learning, is a challenging problem.

Challenge 10: Unbalanced Data: The problem of unbalanced
data in the use of machine learning for anomaly detection is
well understood [26]. Specifically, the problem is that under
normal settings, few examples of anomalous data, as compared
to the normal data, are available to train the models. This
results in a classifier biased towards normal operation; any
slight change due to process noise may therefore be flagged
as an anomaly. The problem of unbalanced data due to the
lack of attack data exists in the ICS domain. Moreover, there
are additional reasons for this imbalance, for example, failure
of components and the modes of operation.

Position 9: The problem of unbalanced data-set in ICS goes
beyond the legacy IT systems.

Challenge 11: Parameter Alteration: Over the lifetime of a
plant, the process parameters might be altered. For example,
for a water storage tank there are set points such as high (H)
and low (L) that represent normal operating levels. Boundary
set points can be high-high (HH) and low-low (LL). Due to
sudden increase or reduction in demand or for process opti-
mization due to economical constraints, for example, reducing
the consumed power, these process parameters can be altered.
This renders useless the models trained during the design
stage.

Position 10: Change in process parameters render useless
models trained during design stage.

Challenge 12: Model Validation: In terms of data driven

approaches, model validation is a process of testing the devel-
oped model using the historical dataset prior to its deployment
in the plant. During this process, since the validation dataset
does not consist of anomalies, the performance of the model
is evaluated in terms of false positives. For example, in the
case of SWaT, current anomaly detectors such as GARX [27]
and MLP CUSUM approaches were validated with several
data subsets collected from the SWaT testbed at different time
intervals. Since these models were developed using mostly
parametric approaches, for fine tuning of the parameters that
captures the dynamic nature of ICS, the validation dataset must
effectively reflect multiple modes of operation.

Challenge 13: Model complexity: Model complexity plays a
vital role in the selection of the type of learning model to
design an anomaly detector. Generally, the complexity of the
model refers to the number of hyperparameters that need to
be fine-tuned during the training process. This varies based
on the type of the model under consideration. For example, in
case of MLP CUSUM, due to the non-linearity of the SWaT
dataset, several hyperparameters, namely number of hidden
layers, number of input and hidden neurons, learning rate,
weight decay, momentum, and dropout factor, were fine tuned
during the training process to achieve minimal forecast error.
Similarly, for one class SVM, authors in [20] have fined
tuned the parameters, namely c and γ for better performance
on the SWaT dataset. Although there exists several automated
approaches, such as gird search, randomized search, and meta
heuristic optimization techniques for fine tuning, a significant
challenge we face is with overfitting. Generally, the error rate
during the validation process should be less for the trained
model; higher validation error for the model trained with large
volume of data implies that the model is over-fitted.

Challenge 14: Attack Detection Speed: The speed at which a
process anomaly is detected is of prime concern due to safety
of the plant. The earlier the anomaly is detected, and reported,
the sooner appropriate actions to mitigate the imp[act could
be undertaken.

Position 11: The speed of anomaly detection is an important
parameter to consider while designing machine learning-
based intrusion detection for ICS.

Position 12: Machine learning models must be retrained to
cater to environmental effects.

V. FUTURE WORK AND RECOMMENDATIONS

Challenges mentioned above lead to new research direc-
tions. Following are a few recommendations for future work
based on these challenges.

Recommendation 1: Feature Engineering: From the previous
studies on the SWaT dataset, it is observed that most of
the research is focused on using machine learning on the
raw process data. Taking all the process data and using it
as input to machine learning algorithms is susceptible to
adversarial attacks as demonstrated in [28]. Therefore, it is



important to derive features that are specific to the physical
process in an ICS. For example, one study on SwaT used the
measurement noise generated from the sensors with machine
learning algorithms to design an anomaly detector [21]. It is
recommended that feature engineering should be specific to
the physical process for it to be relevant to the ICS.

Recommendation 2: Define the scope of the IDS: Sommer and
Paxson [29] recommended to define the scope of the IDS
for the legacy IT systems. In the realm of ICS, this recom-
mendation becomes even more relevant as these are complex
systems composed of both cyber and physical components. An
IDS for ICS should have a clearly defined scope. It would be
challenging to come up with an IDS which could detect cyber,
i.e., in the ICS communications network, as well as a physical
anomalies.

Recommendation 3: Distinguish between fault and attack:
Most of the studies reported using the SWaT testbed have
used the process data. It is a challenge to determine whether
the reported anomaly is due to a fault or an attack. It is
recommended to design a detector which could distinguish
between an anomaly due to a fault with that due to an attack
[30]. For example, if a sensor reports a measurement that is
not expected by the machine learning model, can we determine
whether this i anomalous measurement is due to a cyber attack
or a fault in the sensor?
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