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ABSTRACT

Software Engineering must increasingly address the issues of com-
plexity and uncertainty that arise when systems are to be deployed
into a dynamic software ecosystem. There is also interest in using
digital twins of systems in order to design, adapt and control them
when faced with such issues. The use of multi-agent systems in
combination with reinforcement learning is an approach that will
allow software to intelligently adapt to respond to changes in the
environment. This paper proposes a language extension that en-
capsulates learning-based agents and system building operations
and shows how it is implemented in ESL. The paper includes exam-
ples the key features and describes the application of agent-based
learning implemented in ESL applied to a real-world supply chain.
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1 INTRODUCTION

The current era of digitisation, enabled through the technologies
underpinning the so-called Fourth Industrial Revolution such as
ubiquity of sensors, big data, artificial intelligence and low latency
telecommunications [29], has led to increasing design complexity,
and result in systems that need to be deployed into an uncertain en-
vironment. Such complex systems, for example, production plants,
logistics networks, IT service companies, and international financial
companies, are complex systems of systems that operate in highly
dynamic environments that require rapid response to change. The
characteristic features of such systems include scale, complex in-
teractions, knowledge of behaviour limited to localised contexts,
and inherent uncertainty.
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Our hypothesis is that these issues can be addressed through the
use of multi-agent reinforcement learning (MARL) [13] which has
traditionally been used in simulation to design controllers for robots,
resource management and automated trading systems. Our pro-
posal is that MARL is potentially a much more fundamental concept
that can be used to address intra and inter system-complexity by
allowing general systems to achieve an optimal behaviour through
dynamic learning. Similarly, design problems arising from a de-
sire to achieve an algorithmically deterministic solution can be
addressed by leaving non-determinism in the run-time.

The use of MARL to develop and deploy general purpose systems
raises many problems. The design of such systems requires agent
goals to be expressed effectively and in such a way that they do not
conflict. In any non-trivial system, agents need to interact and col-
laborate to achieve shared goals which is an area of active research
[18]. A MARL-based system also needs to address composition as a
first class function. A mechanism by which collaborating agents,
each with their own learning capabilities can be combined in an
optimised way is an essential requirement for a complex system of
systems.

Language support for MARL-based system development is not
widespread, for example AgentSpeak provides support for agents,
but not reinforcement learning [4]. Recent research has been suc-
cessful in integrating reinforcement learning and agent oriented
programming [5], but without introducing a new language con-
struct with the potential for static analyis. Typically reinforcement
learning libraries provide dynamic APIs that limit the potential
for tool supported verification and analysis of system definitions
[32]. Semantic constructs have been proposed for agent-based rein-
forcement learning [3] without the associated language integration
proposed in this paper. Our proposal is the same as that described
by Simpkins et al [31] which is that programming languages, and
thereby Software Engineering, will benefit by using reinforcement
learning in order to become more adaptive. Our work goes fur-
ther than their A?BL language by showing how a strongly typed
language can be extended with both an agent construct with inher-
itance and associated system building and transformation opera-
tions.

This paper provides a contribution to the issue of language sup-
port for MARL. Section 2 describes the motivation for our approach
in more detail and establishes the problem to be addressed. It also
describes approaches to MARL provided by other technology plat-
forms, establishing that our approach is novel and that, if effec-
tive, it provides a contribution to system development. Section 3
establishes the requirements on a language-based approach and
describes an extension to the language ESL that has been developed
to support MARL. Section 4 shows how a supply chain can be imple-
mented using the language feature together with a demonstration
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of the potential of the approach by describing a real-life supply
chain implemented in ESL.

Our work in this area has demonstrated that a MARL-based
approach can be effective in the area of digital twins, but there is
much work to do in broadening the domain of application. Section
5 presents concluding remarks and outlines future steps in our
research plans.

2 BACKGROUND
2.1 Taming System Complexity

Complex systems of systems need to respond quickly to a variety
of change drivers. The characteristic features of such systems in-
clude scale, complex interactions, knowledge of behaviour limited
to localised contexts, and inherent uncertainty. The scale make
it difficult to know the precise behaviour of the system in its en-
tirety even when structure of the overall system in terms of the
various localized modular units and relationships between them is
known. Behaviour of the localized modular units is typically un-
derstood as event-condition-action chains. Moreover, incomplete
knowledge and inherent uncertainty impart a stochastic nature to
this understanding. Behaviour of the overall system emerges from
the interactions of the behaviours of these modular units. Knowing
how to analyse, control, adapt and design such systems is a difficult
problem.

One approach that has been proposed to address this problem
is to define a system in terms of a collection of autonomous, goal-
driven, adaptive agents [6, 16, 27, 28]. Complexity and uncertainty
can be addressed by such an approach by allowing the agents to
adapt through learning mechanisms in order to achieve an overall
system goal and to respond to changes in the operating environ-
ment. The use of agents can be used in: (1) analysis where an
agent-based model is constructed in order to perform what-if sce-
narios, for example to see how the system should organise itself if
goals change; (2) system design by building a simulation model of
the desired system and then allowing the model to self-organise
in order to produce parameters or modifications to be applied to
the real-world implementation; (3) control where an agent-based
model is constructed and connected to the real-world system in
order to produce control inputs learned by observing behavioural
differences between the ideal system and the running system.

2.2 Digital Twins

Along with Al-driven development, smart spaces and autonomous
things, Gartner lists the Digital Twin concept as one of the top 10
strategic technology trends for 2019 . Such a twin is a digital rep-
resentation of a real-world entity or system [19]. Early definitions
of digital twins have centred around mirroring products [24] for
example the structural behaviour of an aircraft by analyzing and
simulating the aircraft’s behaviour on its digital model [34]. Three
recent systematic reviews focussing on digital twins have exposed
a number of other important facets [24, 25, 33] concluding that
most papers are concerned with digital models and digital shadows
while pure-play digital twins remain very much a future project.

!gartner.com/smarterwithgartner/gartner-top- 10-strategic- technology-trends-for-
2019
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Boscher et al [12] propose that next generation digital twins are
those that are purposive for specific tasks but may be combined
with other digital twins and where the feedback loop is closed not
only to the real system but also to earlier lifecycle phases. Further,
such next generation digital twins are coincident with the next
generation of simulation technologies that support both human led
interventions for optimisation as well as automated optimisation
[36].

A high level abstract reference model based derived from a sys-
tematic review of the literature in [25] offers three components:“(1)
an information model that abstracts the specifications of a physical
object, (2) a communication mechanism that transfers bi-directional
data between a Digital Twin and its physical counterpart, and (3) a
data processing module that can extract information from hetero-
geneous multi-source data to construct the live representation of a
physical object” Such a model offers routes to defining a roadmap
for the development of appropriate technologies. For example, in
the context of the Internet of Things, ubiquity of sensors and 5G
technology enables an implementation route to the communica-
tion mechanism in the reference model. Like systems in complex
environments, digital twins must address the dual problems of com-
plexity and uncertainty. In order to achieve a high fidelity twin,
the system must incrementally learn the behaviour of a partially
understood system.

2.3 Actors and Multi-Agent Systems

The actor model of computation [2] has been shown to be effec-
tive when modelling large complex systems whose behaviour can
only be known in localized contexts [7] and we have developed
a technology platform called ESL? that has used actors to create
digital twins of complex systems. By adding goals and intention-
ality to actors we arrive at intentional, autonomous, composable
modular units called agents. An agent tries to achieve its stated goal
by responding suitably to the events of interest and by exchanging
messages with other agents and where behaviour may be stochastic
i.e. there could be a probability distribution of actions associated
with an event.

An agent observes the environment, makes sense of the obser-
vations, and performs actions so as to achieve its objectives. The
action could change the local state of agent or send a message to
other agents. These actions are often stochastic due to uncertainty
and incomplete domain knowledge [8]. An agent should be capable
of adapting its behaviour in response to the changes in its envi-
ronment so that it is able to switch from one behaviour to another
depending on the situation it finds itself in. An agent adapts and
extends its behaviour not only to achieve its local objectives but
also to ensure robustness of the overall system.

Multi-Agent Systems (MAS) have been used extensively as the ba-
sis for simulation [26] where the macro system behaviour is viewed
as arising from the interactions of many different micro behaviours
each of which is defined in terms of perception, deliberation and
action as each agent interacts with its environment. Although MAS
is a general concept, many of the agent-based technology platforms
are designed for Artificial Intelligence and simulation [1]; many of

Zhttp://www.esl-lang.org
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the languages and development environments supporting MAS are
logic-based [11] and development support is generally weak.

As noted in [10] “The fact that multiple agents interact leads to
a highly dynamic, non-deterministic environment. In such an envi-
ronment, defining proper behaviour for each agent in advance is
non-trivial and therefore learning is crucial” Reinforcement Learn-
ing (RL) is a promising approach that can easily be integrated with
agent behaviour since it supports the incremental improvement
of selecting local actions based on an agent’s observation of a
global environment. The integration of RL with MAS leads to Multi
Agent Reinforcement Learning (MARL) which raises agent-specific
challenges including the trade-off between independent and joint
learning.

Although there have been many applications shown to benefit
from MARL techniques, including simulation and digital twins, the
language support for MARL appears to be at the level of libraries
embedded in other languages, for example [37] which creates learn-
ing agents through an API implemented in Python and C++.

Our proposal is that MARL is a key technique that can be used
both to address the creation of digital twins and to tame system
complexity and uncertainty and therefore MARL should be consid-
ered a foundational part of Software Engineering when striving to
deliver quality assured systems into highly dynamic ecosystems.
However, there has been little study of how to integrate agents into
programming languages in order for them to become first-class con-
cepts together with type-safe agent construction operations. This
paper proposes a MARL language extension to ESL together with
system building operations. Before introducing the extension, this
section concludes with a brief overview of reinforcement learning.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is the problem faced by an agent that
must learn behaviour through trial-and-error interactions with a
dynamic environment [21]. Typically an RL model consists of a
collection of states s, a collection of actions a that change the state
and the environment, and a reinforcement signal r that tells an
agent how well an action has performed in the environment. RL
algorithms aim to maximise the reinforcement over the life-time of
the agent.

Q-Learning [35] is an approach to implementing RL where a Q-
table is used to retain information about the reward signal in order
to select actions. Agents interact with their environment in two
modes: exploration which takes random actions and exploitation
which uses the Q-table to select the best available action at the
time. The table maps states and actions to values: Q(s,a) = v. In
any state s if we choose the action a with the highest value v then
this should maximise the likelihood of achieving the goal.

The Q-table is populated incrementally, initially with a random
value or 0.0. Then, each step from state s to state s” selects an action
a based on the best value Q(s, a) and updates the table:

Q(s.a) = (1 - )Q(s,a) + a(r + ymaxy (Q(s",a"))) (1)

where 0 < o < 11is the learning rate, y is the discount factor and r
is the reward received by performing a in state s.
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Figure 1: Agent Based Reinforcement Learning

3 LANGUAGE SUPPORT

Conventional approaches to agent-based reinforcement learning
use a collection of synchronised agents to produce a single pol-
icy based on their collective state and behaviour. Typically this is
achieved using a standard Q-table based algorithm, without any
intrinsic language support. The lack of such support makes static
checking of the relationship between the agents, their states, be-
haviour and actions impossible. Furthermore, if our proposal for
learning based agents is key to addressing the issues of complexity
and uncertainty in systems is correct, then technology platforms
require a range of operations for building and manipulating agent-
based systems.

Consider the situation shown in figure 1 which shows a collection
of agents each with a message queue, a state and a behaviour. The
behaviour is envisaged as a non-deterministic state machine whose
transitions are controlled by a Q-table. In order to take this approach
to systems development, it will be necessary to statically check
agents, to describe how agents can be combined and disaggregated,
to share learning between agents, and to transform learning by one
agent so that it can be used by others.

This section describes a language construct for defining rein-
forcement learning based agents in ESL. The construct is fully inte-
grated with the ESL type system and therefore the state, behaviour
and actions of an agent can be checked. In addition, we describe
a collection of operations that can be used as shown in figure 1 to
build agent-based systems in ESL. All the features in this section
have been implemented and we present some simple examples and
demonstrate the learning through Q-tables and reward graphs.

3.1 Agents

Agents communicate by sending messages which are queued when
they are received. Each message is processed in order and each
system cycle, all agents handle the next message in the queue (or
Tick if no message is present). An agent is in a particular state and a
message causes the agent to update its state and perform an action
that can send messages to any agent in the system.

An agent has the following type Agent[S,M, A] and consists of
a state s:S, a collection of messages m:M, and a collection of actions
a:A. The behaviour of an agent is a possibly non-deterministic state
machine where the states are labelled with values of type S and
whose transitions are labelled with message-action-value triples.
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Figure 2: Counter Behaviour

Given an agent in state s, that receives a message m, the transition
s -(m,a,v)— s' with best value v is selected leading to a new agent
state s' such that action a(s,m)=s'. The meaning of best depends
on a global parameter that determines whether it means highest
or lowest. Where there are multiple transitions with the same best
value, a transition is selected at random. ESL provides a language
construct to create a singleton agent:
agent[best] name (args)=Agent[S,M,A] extends parent {

...learning parameters...

...local values and operations...

statesu[S] = ...

messages:[M] = ...

actions:=[A] = ..

init()=S = ...

terminalState (history=[S]):Bool = ...

reward(history=[S])=Float = ...

Pins Pt when b — {

aj:e
| a;:e,
[
}
3
where best is + or — depending on whether the agent is trying to
maximise or minimise the reward. The learning parameters control
the reinforcement learning algorithm defined by equation 1. The
definitions for states, messages and actions define those elements
of the associated data types that will be used in the state transi-
tions. The function terminalState returns true when the supplied
execution history has terminated. The function reward returns a
value calculated in terms of the current history.

The rest of the agent body defines a collection of i arms con-
sisting of a message pattern p,in, a state pattern pé, a guard b and
expressions e; each of which is labelled with an action a}. When a
message is processed, each arm is tried in turn. When the message
and current state matches the patterns and the guard is true then
one of the expressions is performed and returns the new state of
the agent. Each expression is labelled with an action: the best ac-
tion given the reinforcement learning strategy is selected. Initially,
each action will have the same weighting, however as the agent
is trained, some actions will be assigned a higher weighting than
others.

The agent counter provides a simple example of many features:

type S. = Int;
data M, = Move;
data A. = Inc | Dec | Noop;

agent[-] counter(goal:zInt)zAgent[S. ,M.,A.1{
explorationFactor:=:Float = 0.9;
explorationDecay:Float = 0.9995;

T. Clark et al.

states=[S.] =
messages:=[M.] =
actions=[A.] =

-1..goal+1;
[Move]l;
[Inc,Dec,Noop];

init()=Int = 0;

terminalState ([]) =Bool = false;
terminalState(n:_)=Bool = n = goal;
reward(n:h)=Float when n=goal = length[Int]l(n:h);
reward(_):Float = 40.0;

Move,n when n<o — { Inc:n+1 }

Move,n when n>goal — { Dec:n-1 }

Move,n when n<goal — { Inc:n+1 | Noop:n | Dec:n-1 }
Move,n when n=goal — { Noop:n }

}

The under-specified behaviour of a counter is given in figure 2
where the state of a counter is n and the agent is driven by a single
message Move. When the state is less than 0 or greater than a limit
then the behaviour is deterministic: it increments or decrements the
state. In between these limits, the behaviour is non-deterministic
and may choose actions Inc, Dec or Noop.

The goal of the agent is specified by its terminal state: it stops
when it reaches goal. The reward is calculated in each state. If
the state is currently goal then the reward is the length of the
agent’s history. Otherwise the reward is 40.0. Given that the agent
is required to minimise the reward over the history, reinforcement
learning will tend to favour shorter histories that lead to goal.

3.2 Training and Running Agents

The behaviour of an agent is defined as a collection of non deter-
ministic transitions. Running such an agent will select actions at
random. In order to ensure an agent achieves its goal, it must be
trained. Training involves running an agent for several epochs us-
ing the reward function to evaluate the history of each run. ESL
provides agent operations that can be used to defined training
operations:
train[S ,M,Al(azAgent[S,M,A]l,epochs=Int,steps=:Int,m:[M]) =
for epoch in @..epochs do {
initAgent[S,M,A](a);
for step in 0..steps do
if not(isTerminatedAgent[S,M,Al(a))
then {
sendAgent[S,M,Al(a,select[M]I(m));
runAgent[S,M,Al(a);
3
}

The operation train uses initAgent to reset the state of an agent
at the beginning of each epoch using its init function. Providing
the agent is not terminated, the epoch repeatedly sends a message
selected at random to the agent and then runs the agent. The opera-
tion runAgent takes the oldest message from the agent’s queue and
performs the best transition based on the current Q-table which is
then updated. Once trained, an agent can be run using the following
operation:
run[S,M,Al(a=zAgent[S,M,A], steps=Int,m:z[M],pp=(S)—>Str) ={
initAgent[S,M,Al(a);
stabiliseAgent[S,M,Al(a);
for y in 0..steps do {
if not(isTerminatedAgent[S,M,Al(a))
then {
sendAgent[S,M,Al(a, head[MI(m));
m := tail[M](m);
runAgent[S ,M,Al(a);
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Agent Operation

Description

initAgent:(Agent[S,M,A])—Void

Reset an agent’s state by calling init().

sendAgent:(Agent[S,M,A],M)—Void

Add a message to the end of an agent’s queue.

runAgent:(Agent[S,M,A])—Void

Process a single message at the head of the queue.

isTerminatedAgent:(Agent[S,M,A])—Bool

True when current state satisfies terminatedState.

stabiliseAgent:(Agent[S,M,A])—Void

Turn off exploration.

agentState:(Agent[S,M,A])—[S]

Return the current agent history.

displayQTable:(Agent[S,M,A],Str,Str)—Void

Show the current Q-table for the agent.

agentPair:z(Agent[S;,Mq,A ], Agent[Sy,My,A])—Agent[S; * Sy, My * My, A; * Ayl

Create agent product.

agentFst:(Agent[S; * Sy,Mq * My, Ay * Az]) — Agent[S;,Mq,Aq]

Project first element.

agentsnd:(Agent[S; * Sy,M; * My, A; * A]) — Agent[Sy,My,Az]

Project second element.

agentNil:z:Agent[[S],[M1,[A]] Empty agent list.
agentCons:(Agent[S,M,A], Agent[[S],[M],[A]])—>Agent[[S],[M],[A]] Extend agent list.
agentHead:(Agent[[S],[M],[A]])—Agent[S,M,A] Head agent.
agentTailz(Agent[[S],[M],[A]])—Agent[[S],[M],[A]] Tail agent.
agentQTablex(Agent[S,M,A])—[S * M * Hash[A, Float]] Reify the Q-Table.
setAgentQTable:z(Agent[S,M,A],[S * M * Hash[A, Float]])—>Agent[S,M,A] Set agent Q-Table.
Table 1: Agent Operations

States Messages Inc Dec Noop Rewards

-1 Move 264.15

0 Move 249.072 277.807 |264.242

1 Move 232.315 264204 |249.168

2 Move 213682 [249.121 |232.323 Y

3 |Move 192983 [232449 [213.699 Wit

4 Move 170.05 213.691 |193.189 il

5 Move 144,632 193.005 [170.045 ! “

[ Move 116.277 169.897 [144.349 [ f

7 Move 84.735 144 497 [116.005 aha ] !

B Move 49.629 115.901 [84.825 LY VAR e byl remmeend bed ead Brrnsseennnafennnees

9 Mo“e 10282 84h4?5 49h3-"5 ‘A X { .s’ \I\. .\- .00 sesesecese ’1 -------------

10 [Move [ 0

Figure 3: QTable

print[Str]('—
3

'+ pp(head[S](agentState[S,MI1(a))));

}
}

Suppose that we create a counter that starts at @ and has a goal of
reaching 10 in the shortest possible number of steps. The following
ESL code trains the agent over 500 epochs of 3 steps each, displays
the Q-table and then runs the trained agent for 10 moves:
let azAgent[S. ,M.,A.] = counter (10);

moves:z[A.] = [Move | n«90..10];
in {

train[S. ,M.,A.]1(a,500,30,[Movel);

displayQTable[S. ,M.,A.1(a, 'Table ', "#.###"');

run[S. ,M.,A.]1(a,10,moves ,fun(izInt)=Str i+'"');

3

The Q-table for the trained counter is shown in figure 3. It shows
that a counter in state 0 that receives a message Move will select the
action Inc because 249.072 is the lowest value compared to 277.907
and 264.242. Repeated Move messages select Inc until state 10 is
reached when Noop is the only available action.

The reward function for the agent counter produces the length
of the history when the goal is reached. By minimising the reward,
the training produces a policy that reaches the goal in the shortest
number of steps. The training for three counter agents with goals 10,

m
12
13

Epoch

= counter(20) @ counter(15) + counter(10)

Figure 4: Training the Counter Agent

15 and 20 is shown in figure 4. Initially, exploration causes the agent
to jump around, but once the goal is discovered, the reinforcement
learning algorithm causes the policy to increasingly focus on the
shortest path.

3.3 Building Systems

Single agents can be defined and trained and placed within a com-
plex system. However, our proposal is that complex software sys-
tems that deal with uncertainty should be constructed from many
collaborating agents, each of which uses reinforcement learning to
adapt and incrementally improve. Therefore ESL provides a collec-
tion of system building operations so that composite agents can be
constructed, trained and then decomposed.

The operation agentPair shown in table 1 can be used to con-
struct a composite agent from two component agents. When two
agents are composed, their Q-tables are also composed which al-
lows training and composition to be performed in any order. The
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result of composition produces a product agent which is the least
constrained agent that can be projected back onto the component
agents:

S

|
I

§oy (fay-fay) ‘/;;
|

v

agentPair(al,az)a—)

a a
1 gentSnd 2

agentFst

The effect is that agentPair(ay, az) is the free combination of the
behaviours defined by the corresponding Q-tables. The system
S requires the product agent to be the smallest such agent. For
example, two counter agents can be trained and then composed:

type Pair = Agent[S. * S. M, x M.,A. *x A_.];
mkPair = agentPair[S. ,M.,A.,S. ,M.,A.];
let al=Agent[S. ,M.,A.] = counter(3);
a2zAgent[S. ,M.,A.] = counter(2);
in {
trainAgent[S. ,M.,A.]1(al1,100,20,[Movel);
trainAgent[S. ,M.,A.]1(a2,100,15,[Movel);
let a=zPair = mkPair(al,a2);
ms:[M. * M.] = [(Move,Move) |
in {
displayQTable[S.*S. M. M., A *xA.](a, 'Pair 'K "#.###");
run[Pos,Action](a,10,ms,fun(s=Int *x Int)zStr s+'"');

n o« 0..101;

}

The Q-table produced by the composed agent is shown in figure
5. Notice that the values in the table are of the form (v, v3). In
general values can be tree shaped with floating point numbers at
the leaves. Comparison between tree-shaped values is point-wise
at the leaves, for example two trees are related by < providing that
all the leaf values are equivalently related.

3.4 Agent Inheritance

In order to support modularity and reuse, the ESL agent construct
supports inheritance. Each agent may extend a parent. For example,
the following is an agent that extends the composition of two
counters to form a two-dimensional world. The following actor has
the goal of finding a particular point in the world:

type P = Int x Int;

agent[-] target(w:Int, hzInt,pzP)zPair
extends mkPair (counter(w),counter(h)) {
messages:[M, * M.] = [(Move,Move)];

init()=Pos = (0,0);
terminalState ([])=Bool = false;
terminalState(s:_)=Bool = s = p;
reward(s:h)=Float = length[Pos]I(h) + 1 when s=p;
reward(_)=Float = 101.0;

}

The agent target inherits the learning behaviour of a pair of counter
agents which, at the point of agent creation, are untrained. The
inherited terminal state and reward of the inherited agent are over-
ridden to introduce a new goal that aims to move towards the point
p. Figure 6 shows the result of training three different target agents
on grid-worlds of increasing sizes and with different goals.

T. Clark et al.

3.5 Mapping Q-Tables

Once an agent has been trained, it may be desirable to reuse the
learning in a different context, or to compose learning from multi-
ple agents [30]. One such situation arises when a system requires
multiple independent agents each of which has been trained as a
single system: the system can be trained using a single agent with
a state which contains the information from the composite agents,
then the resulting single Q-table can be mapped to each individual
agent in the system. Once mapped, the resulting agents use their
individual Q-tables to guide their behaviour and communicate with
other agents using message passing.

In order to support mappings, ESL provides two operations that
can be used to process Q-tables: agentQTable and setAgentQTable
such that a = setAgentQTable(a,agentQTable(a)). Given an agent
of type Agent[S, M, A], its Q-table has type [SxMxHash[A,Float]]
where a value (s, (m,t)) represents the values attributed to each
action when processing message min state s. The following example
defines an agent with a goal of reaching position (0,0):

data A, = SubRight | SubLeft;

agent[+] pair(left:Int,right:zInt)zAgent[P,M.,A,] {
init()=P = (left,right);
messages=[M.] = [Movel;
states=[P] = [(n,m)|n < -1..left+1,m <« -1..right+1];
actions:[PairActions] = [ SubLeft, SubRight 1;
reward((0,0):_):Float = 100.0;
reward(_):Float = 0.0;
terminalState ((0,0):_)=Bool = true;
terminalState((l,r):_)=Bool =1 < 0 or r < 0;
terminalState(_)=Bool = false;
Move, (1,r) — {

SubRight (1,r-1)

| SubLeft (1-1,r)
3

}

The agent pair learns to navigate from (left, right) to (0,0). How-
ever, this is a single agent that achieves its goal without any collab-
oration with other agents. Suppose that we want two independent
agents of the following type to collaborate in order to achieve the
same goal:

data A; = SubSelf | SubOther |

data My = Go(Int) | Tick;

agent single(n:zInt,azAgent[Int ,Mg,As])sAgent[Int ,M;, AT {
init()=Int = n;
messages:[M ] = Tick:[ Go(o)
statesxz[Int] = -1..n+1;
actions=[A;] = [ SubOther, SubSelf 1;
reward(ss:[Int])=Float = 0.0;
terminalState (0:_)=Bool = true;
terminalState(_)=Bool = false;
Go(o),s — {

Skip;

| o « -1..n+1 1;

SubOther: { sendAgent[Int M ,A;]J(a,Go(s-1)); s-1; }
| SubSelf: { sendAgent[Int ,M,,A;](self ,Go(o0)); s-1; }
3
Tick,s — { Skip: s }

}

Note that the reward for the agent single is set to 0.0 because it
will not be used for learning. The learning occurs in a pair agent
whose Q-table is then mapped in two different ways to a left and
right single agent. The mapping mapLeft is defined as follows:

mapLeft(state:P,tpiHash[A,, Float]):Int*M xHash[Ag, Float] =
case state {
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States Messages (Noop,Noop) {Noop,Dec) (Noop,Inc) {Dec,Noop) {Dec,Dec) {Dec,Inc) (Ing,Noop) {Inc,Dec) {Inc,Inc)
3.2) (Move Move) (0,0}
3.1) (Move Move) (0,45 285) (0,81.971) (0,5.984)
(3.0) (Move Move) [(0,81.7586) (0,113.544) (0,48.733)
3.-1) (Mave Move) i0,81.785)
(2,2) (Move Move) [(51.258,0) (84.671,0) (4.787,0)
2.1) (Move Move) [(51.258,45.285) |(51.258,81.971) |(51.258,5.984) |(B4.671,45.295) |(84.671,81.971) |(B4.671,5.984) |(4.787,45.205) |(4.787,81.971) (4.787 5.984)
(2,0) (Move Move) [(51.258,81.756) |(51.258,113.544) |(51.258,46.733) |(84.671,81.756) |(84.671,113.544)(84.671,46.733) |(4.787,81.756) |4.787,113.544)  |4.787,46.733)
2.-1) (Mave Move) (51.258 81.785) (84.671,81.785) (4.787 81.785)
1,2) (Move Move) |(83.267,0) (115.679,0) (46.085,0)
(1,1) (Move Move) [(83.267,45.285) |((83.267,81.871) |(83.267,5.984) |(115.679,45.295)((115.679,61.971)[(115.679,5.984) |(46.085,45.295) |(46.085,81.971) (46.085,5.984)
(1,0) (Move Move) |(82.267,81.756) |(83.267,113.544) |(83.267,46.733) [(115.679,81.756)[(115.679,113.5.. (115.679,46.733) |(46.085,81.756) |[46.085,113.544) ||46.085,46.733)
(1,-1) (Mave Move) (83.267 81.785) (115.679,81.785) (46.085,81.785)
0,2) (Move Move) [(115.658,0) (144.538,0) (83.18,0)
(0.1) (Move Move) [(115.658,45.295) [(115.658,81.971) |(115.658,5.984) |(144.536,45.295)(144.536,81.971)[(144.536,5.984) |(83.18,45.205) |(83.18,81.971) (83.18 5.984)
(0,0) (Move Move) |(115.658,81.756) |(115.658,113.544) |(115.658,46.733) [(144.536,81.756) [(144.536,113.5... |(144.536,46.733) |[83.18,81.756) |(83.18,113.544)  |(83.18,46.733)
0.-1) (Mave Move) (115.658 81.785) (144.536,81.785) (83.18,81.785)
1,2) (Mave Move) (115.726,0)
-1.1) (Mave Move) (115.726,45.295) [[115.726,81.971)  |(115.726,5.984)
-1.0) (Mave Move) (115.726,81.756) [(115.726,113.544) [(115.726,46.733)
1,-1) (Mave Move) (115.726,81.785)
Figure 5: Composed QTable
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Figure 6: Training the Target Agent
1,r) > { 3 Anequivalent definition for mapRight allows two instances of single
let z;:Hash[Ap, Float] = new Hash[A,, Float]; 4 to be populated with Q-tables that are derived from a trained pair
in { 5
agent:
for a in t,.keys do { 6
P
case a { 7 type T[, = [P x M, % [[ash[Al,,l-‘loal]];
SubLeft — t5.put(SubSelf ,t,. get(SubLeft)); 8 type Ts = [Int * My * Hash[A,, Float]]
SubRight — ¢5.put(SubOther ,t,.get (SubRight)); 9 let azAgent[P,M.,A,] = pair(4,4);
_ - {3 10 leftzAgent[Int ,M;,A;] = point(4,right);
} 1 rightzAgent[Int M;,A;] = point(4,left);
3 12 in {
(1,(Go(r),ts)); 13 trainAgent[P,M.,A;]1]1(a,3000,9,[Movel);
3 14 let q=T, = agentQTable[P,M.,A,1(a); in
3 15 let ql=Ts = [ mapLeft(s,fp) | (s,(Move,tp,)) < q I;
16 qr=Ts = [ mapRight(s,tp) | (s,(Move,tp)) < q 1;

in {
initAgent[Int M,,A;]1(left);
initAgent[Int ,M,,A.](right);



ISEC 2020, February 27-29, 2020, Jabalpur, India

setAgentQTable[Int ,M ,A;1(left,ql );
setAgentQTable[Int M ,A;1(right,qr);
stabiliseAgent[Int M, ,A;]1(left);
stabiliseAgent[Int M ,A.](right);
sendAgent[Int M ,A;]1(left,Go(4));
for n in 0..20 do {
if not(isTerminatedAgent[Int ,M,,A;1(left))
then runAgent[Int ,M.,A;](left);
if not(isTerminatedAgent[Int ,M ,A;](right))
then runAgent[Int ,M,,A;]J(right);
¥
3}
The resulting Q-tables in agents left and right cause both to col-
laborate by sending messages that arrive at the position (@,0) even
though they have not been individually trained.

3.6 Implementation

ESL programs translate to Java source code which is then compiled
and run using a standard Java compiler. All ESL values are instances
of concrete sub-classes of ESLVal and ESL agents translate to an
object of type ESLAgent that contains a message queue, a state, a
Q-table, and a Java function that maps states s and messages m
to action-lists of the form [(a,f),...] where a is an ESL value
representing one of the actions possible when processing s and m
and f is an action-function that will perform the action. The Q-table
q is a Java hashtable of type:
Hashtable<ESLVal,Hashtable<ESLVal,HashTable<ESLVal,Action>>>

where x = q.get(m).get(s) is an action that contains an action
function f = x.getFunction() and a value v = x.getValue() where
a value is a tree of Java doubles contained in the Q-table. The Q-
table is populated from the action-lists and then the values in the

Q-table are updated by training according to equation 1.

4 A SUPPLY CHAIN AGENT

The previous section has introduced an extension to ESL that sup-
ports agent definition, composition, inheritance and transformation.
RL has been used to learn optimal policies for supply chains which
are inherently complex systems that can exhibit chaotic behaviour
through sub-optimal ordering policies [22]. The MIT Beer Game
is used to teach supply chain dynamics and has been the study of
RL approaches [14]. This section shows how the Beer Game can
be implemented using ESL agents and then describes how ESL has
been used to implement a real-world supply-chain.

4.1 The Beer Game

The Beer Game [15] is a simulation used to teach students about the
issues of supply chains. It is a linear supply chain where customers
place orders for beer at regular intervals to a retailer who connects
to a supply chain involving a wholesaler, a distributor and a factory.
Storage costs are attributed to the nodes in the supply chain in
addition to starvation costs when a node cannot supply product
when requested.

The use of reinforcement learning to produce an optimal policy
that predicts customer demand and thereby minimises the costs
associated with storage and starvation is described in [14] which is
typical of approaches by other researchers where a single policy
is learned to control the co-ordination of supply chain nodes rep-
resented as agents. However, these approaches are not supported
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by a language construct for RL-agents, and there is no support for
nodes as independent agents, both of which are supported by ESL
as described in this paper.

Figure 7 shows a simplified version of the beer game imple-
mented as a single agent in ESL with two supply nodes (compared
to four in the standard game). Unlike other approaches, the key
features of the states and actions are explicit in the definition. A
state is a list consisting of a factory, two processing nodes and a
customer: Factory(n) contains n units of beer to be supplied on the
next cycle; Processor(o,1,d,as, s) records the number of units o to
order on the next cycle, the current inventory i, a record of the
units ordered d, a history of actions as and a number of units to
supply on the next cycle s; Customer(os) containing a list of units
os to order per cycle.

Each cycle of the agent involves two passes through the supply
chain as defined by operations:

supply(n, chain) Each node in the chain is visited: n is the amount
to be supplied to the node at the head of chain. The flow of
supply is generated by the factory which has unlimited beer
and each node decides on the supply pass how much it will
send downstream on the next cycle. The customer simply
consumes beer as it is supplied.

order(as,n,chain) Each node in the chain is visited in reverse: n
is the amount to be ordered from the node at the head of
chain and head(as) is an additional amount to add to the
order. The schedule of all beer requirement for the whole
cycle is controlled by the customer and each node stores the
amount to order upstream on the next cycle.

The additional amount added to each order as supplied to order
is the agent policy to be learned. It will aim to predict the future
demand of the customer so that additional beer is ordered and
thereby minimise future costs. The implementation of the agent
in figure 7 provides four actions that control the policy: ZeroZero,
ZeroTwo, TwoZero, TwoTwo.

The reward for each state is calculated in terms of the storageCost
and the starvationCost:

chainReward(chainxzChain)=zFloat = {
case chain {

[1] — 0.0;
Customer(_):chain — chainReward(chain);
Factory(_):chain — chainReward(chain);
Processor(_,i,_,_,_):chain when i<0 —

-i x starvationCost + chainReward(chain);
Processor(_,i,_,_,_):chain —

i * storageCost + chainReward(chain);
_:chain — chainReward(chain);
}
3

The training for the simple Beer Game agent is shown in Figure 8.
Four different customer demand profiles are shown increasing from
0. The training is shown to stabilise and to find the best preemptive
ordering profile for the demand. Although the example is simple,
this demonstrates that the RL-agent construct in ESL can be used to
design and verify a model. Furthermore, the method of transforming
a single trained ESL agent to produce multiple communicating
trained agents as shown in section 3.5 can be applied to the supply
chain to produce individually trained supply node agents.
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data Link = Customer(orders:[Int])

| Factory(supplieszInt)

|
data A, = ZeroZero | ZeroTwo | TwoZero | TwoTwo;
type Chain = [Link];

agent[-] supplyChain(ordersz[Int]):zAgent[Chain M, A;] {
init () :Chain =
statesz[Chain]
messages:[M.] =
actions=[A..] =
reward(chainsz[Chain])=Float =
terminalState (c:[Chain]) :Bool =
processChain(a=z[Int],chain:Chain)zChain =
supply (n:zInt,chain:Chain):Chain = {
case chain {

[Move];
[ ZeroZero,

length(c) =

sum([ chainReward(chain) |
length(orders);
reverse(order(reverse[Int](a),0,reverse(supply(@,chain))));

Processor (onOrder:Int,inventory:Int,demand=[Int],actions=[Int], toSupply=Int);

[Factory (@), Processor(0,0,[]1,[]1,0),Processor(0,0,[]1,[],0),Customer(orders)];
...generate all states.

ZeroTwo, TwoZero, TwoTwo J;

chain « chains 1);

Factory(pending):chain — Factory (@) :supply(pending,chain);

chain;

chain when i+n <= 0
chain when i < @
chain

[Customer(demand)] —
Processor(o,i,d,as,s):
Processor(o,i,d,as,s):
Processor(o,i,d,as,s):

}

order(actions=[Int],nzInt,chain:Chain):Chain = {
case actions,chain {

— Processor(o,i+n,d,as,0):supply(s+n,chain);
— Processor(o,i+n,d,as,0):supply(s+(n-i),chain);
— Processor(o,i+n,d,as,0):supply(s,chain);

actions,Customer(o:0s):chain — Customer(os):order (actions,o,chain);
[1,[Factory(_)] — [Factory(n)1];
a:actions,Processor(o,i,d,as,_):chain when i < 0 — Processor(n+a,i-n,n:d,a:as,0):order(actions,o,chain);
a:actions,Processor(o,i,d,as,_):chain when i-n >= @ — Processor(a,i-n,n:d,a:as,n):order(actions,o,chain);
a:actions,Processor(o,i,d,as,_):chain — Processor(a + (n-i),i-n,n:d,a:as,i):order(actions,o,chain);
}
3}
Move, chain — {
ZeroZero: processChain([@,0],chain)
| ZeroTwo: processChain([0,2],chain)
| TwoZero: processChain([2,0],chain)
| TwoTwo: processChain([2,2], chain)
3
3}
Figure 7: The Beer Game Agent
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Figure 8: Training the Supply Chain

4.2 A Real Life Supply Chain

This section illustrates a scenario of a real grocery retailer that has
been implemented using reinforcement learning using agents in
ESL. A large grocery retailer is a network of network of stores (S),
local distribution centers (LDC), regional distribution centers (RDC),
and retailers (R) as shown in Figure 9. The end points of this net-
work sell thousands of products to its customers, local distribution

ove
Figure 9: Schematic of supply chain replenishment use case

centers replenish the products to the stores, and regional distribu-
tion centers procure products from retailers and supply to local
distribution centers. All elements in this network are connected
through a fleet of trucks. The goal of the retailers is to regulate
the availability of the entire product range in each store, subject
to the spatio-temporal constraints imposed by (i) available stocks
in the local and regional distribution centers, (ii) labour capacity
for picking and packaging products in the all distributions centers,
(iii) the volume and weight carrying capacity of the trucks, (iv) the
transportation times between distribution centers and stores, (v)
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Figure 10: Replenishment Policy

the product receiving capacity of each store, and (vi) available shelf
space for each product in each store. A typical retailer could have
tens of regional distribution centers, hundreds of local distribution
centers, thousands of stores, thousands of trucks, and a hundred
thousand unique product types.

The overall state and behaviour of the networks emerge from
individual behaviours and their interactions. For example, each
warehouse may have its own policies to package products, utilise
labours, load products into the trucks; each shop may have a set of
situational policies to order products from warehouse. Trucks have
their probabilistic characteristics to transport and deliver products.
Each product type has its shelf-life, propensity for damage (when
they are packed with other product types and transported in specific
carrier/truck). Each product may be damaged, expired, in store, sold,
etc).

Assume that there are m local distribution centers, p trucks, and
n stores in the system. From operational perspective, each store
stocks i = {1,...,k} unique varieties of products, each with a
maximum shelf capacity c; ; where j < n is the index of the store.
Further, let us denote by x;_j(t) the inventory of product i in store
J at time t. The replenishment quantities d are denoted by a; j(tz),
and are to be computed at time (¢4 — A). The observation O(t; — A)
consists of the inventory of each product in each store at the time,
the demand forecast for each product between the next two delivery
moments, and meta-data such as the unit volume v; and weight w;,
and its shelf life [;.

The reward r(t;_;) is a function of the previous actions a; j(t7_1)
and the evolution of inventory states x; j(t) in t € [ty_q,tg). From
a business perspective, of particular interest are: (i) the number
of products that remain available throughout the time interval
[t4_1,tq), and (ii) the wastage of any products that remain unsold
past their shelf lives. We define this as:

k
count(x; j < p) =g 2je1 Wi,j(ta-1)
- k
kn Zi:l Z;Lzl Xi,j
where count(x; ; < p) is the number of products that run out
of inventory (drop below fraction p) at some time ¢ € [t5_1, ),

wi, j(tg—1) is the number of units of product i in store j that had
to be discarded in the time interval because they exceeded their

r(tg-1) =1- )
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shelf lives, and X; ; is the maximum shelf capacity for product i in
store j. Since both negative terms in (2) fall in the range [0, 1], we
see that —1 < r(t4_1) < 1. The goal of the control algorithm is to
compute actions a;, j(t7_;) that maximise the discounted sum of
these rewards from the present moment onwards, 3.7°  y*r(t4. ).

Our initial observations are described in [9]. We developed a
closed loop multi-agent simulation setup for training a reinforce-
ment learning based control policy. A set of RL agents is realised
using multi-layered neural network and Advantage Actor Critic
(A2C) algorithm [23] to compute replenishment orders of the shops.

Figure 10 shows the replenishment quantity requested by trained
RL agent as a function of the inventory level of the product. We
note that the requested replenishment rises as inventory levels drop
from 0.5. A majority of data points are located in the range between
0.3 and 0.4, where (i) the rate of wastage is lower than higher
inventory levels, and (ii) there is no penalty for dropping below
p (in this case it is 0.25). The requested replenishment decreases
as inventory further reduces to 0, probably because the products
have a low probability of recovery due to the severe transportation
constraints (a meaningful learning).

The ESL actor based simulation is used as an environment to
understand the overall implication locally optimum solution of
multiple RL actions (produced for all individual shops) in a global
system context. Our initial tests show that training using ESL is
both feasible and effective. However, the RL realisation presented
in [9] is specified using an external Python library - our next step
is to implement the Python-based learning as a model using the
features described in this paper.

5 EVALUATION AND CONCLUSION

This paper has motivated the need for Software Engineering to
address the issues of complexity and uncertainty that arise due
to dynamic software ecosystems and a desire to construct digital
twins. The use of multi-agent systems and reinforcement learning
is a promising approach. Whilst research has addressed different
approaches to agent architectures and learning algorithms, there
is little work addressing the extension of software languages with
constructs for adaptive agent implementation and associated system
construction. This paper has proposed an agent definition construct
and operators that build systems from agents and has described the
implementation of these in the language ESL.

Software Engineering aims to assure the quality of software
through the use of verification techniques. Therefore, if MARL is
to be a core part of system development, agents must not only
be supported as first-class concepts, but there must be associated
techniques for checking that agent-based systems are correct and
exhibit the desired properties. The ESL agent construct and opera-
tions presented in this paper is a step in this direction by allowing
the types associated with agents messages, state and actions to be
statically checked. Further work is required to specify the behaviour
of agents and to check this statically, especially in the context of
learning mechanisms.

The real-world ESL-based supply chain implementation described
in section 4.2 shows that MARL scales, however it uses an external
library to provide deep learning via neural networks which approxi-
mate the Q-table function due to the size of the system state-space.
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Such an approach is not consistent with the need to statically verify support deep learning [17, 20] in ESL-based agent definitions by in-
the properties of a single system. The next steps for this work are to tegrating neural networks with the Q-table mechanisms described
in this paper.
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