
Securing Smart Contract On The Fly
Ao Li

University of Toronto
leo@cs.toronto.edu

Jemin Andrew Choi
University of Toronto
choi@cs.toronto.edu

Fan Long
University of Toronto
fanl@cs.toronto.edu

Abstract
We present Solythesis, a source to source Solidity compiler
which takes a smart contract code and a user specified in-
variant as the input and produces an instrumented contract
that rejects all transactions that violate the invariant. The
design of Solythesis is driven by our observation that the
consensus protocol and the storage layer are the primary
and the secondary performance bottlenecks of Ethereum, re-
spectively. Solythesis operates with our novel delta update
and delta check techniques to minimize the overhead caused
by the instrumented storage access statements. Our experi-
mental results validate our hypothesis that the overhead of
runtime validation, which is often too expensive for other
domains, is in fact negligible for smart contracts. The CPU
overhead of Solythesis is only 0.12% on average for our 23
benchmark contracts.

1 Introduction
Smart contracts are one of the most important features of
blockchain systems [48]. A smart contract is a program
that encodes a set of transaction rules. Once deployed to
a blockchain, its encoded rules are enforced by all partici-
pants of the blockchain network, and therefore it eliminates
counter party risks in sophisticated transactions. People have
applied smart contracts to a wide range of domains such as
finance, supply chain management, and insurance.
Unfortunately, like other programs, smart contracts may

contain errors. Errors inside smart contracts are particularly
severe because 1) it is often impossible or at least difficult to
change a smart contract once deployed; 2) smart contracts
often stores and manages critical information such as dig-
ital assets and identities; 3) errors are treated as intended
behavior of the smart contract and faithfully executed by
blockchain systems. As a result, errors inside smart contracts
often lead to large financial losses in the real world [17, 22].

To make smart contracts secure and correct, one approach
is to build static analysis tools. But such static analysis tools
are often inaccurate and generate a large amount of false
positives and/or false negatives [44]. Another approach is to
formally verify the consistency between the implementation
and specification of a smart contract [16, 24, 33]. But such
verification processes typically require human intervention
and are often too expensive to apply in practice.

1.1 Runtime Validation with Solythesis
In this paper, we argue that runtime validation is an effec-
tive and efficient approach to secure smart contracts. For

traditional programs, with the access of runtime informa-
tion, runtime validation techniques can be fully automated
and can typically achieve much higher coverage than static
analysis techniques. The downside of runtime validation is
its excessive performance overhead. However, the Proof-of-
Work consensus is the primary performance bottleneck of
existing blockchain systems. For example, the consensus pro-
tocol of Ethereum can only process up to 38 transactions per
second, while the execution engine of Parity [10], a popular
efficient Ethereum implementation, can process more than
700 transactions on an ordinary laptop with a SSD. Therefore,
our hypothesis is that the overhead of runtime validation,
which is often too expensive for other domains, is in fact
negligible for smart contracts.
To validate our hypothesis, we design and implement

Solythesis, a novel runtime validation framework for
Ethereum smart contracts. Unlike static analysis and formal
verification techniques that attempt to detect errors in smart
contracts offline, Solythesis works as a source to source
Solidity compiler and detects errors at runtime. Solythesis
provides an expressive language that includes quantifiers
to allow users to specify critical safety invariants of smart
contracts. Taking a potentially insecure smart contract and
the specified invariants as inputs, Solythesis instruments
the Solidity code of the smart contract with runtime checks
to enforce the invariants. The instrumented contract is guar-
anteed to nullify all transactions that violate the specified
invariants.
The design of Solythesis is driven by our observation

that the storage layer is the secondary performance bottle-
neck of Ethereum after the consensus layer. Our program
counter profiling results show that the execution engine of
Parity spent over 67% of time on components that are rel-
evant to blockchain state load and store operations. Such
load and store operations are expensive because 1) it may
be amplified to multiple slow disk I/O operations, 2) it is
translated by the Solidity compiler into multiple instructions
(up to 11 EVM instructions), and 3) the Solidity compiler
uses expensive cryptographic hash functions to compute the
address of accessed state objects. We therefore design the
instrumentation algorithm of Solythesis to minimize the
number of blockchain state accesses. This enables Solythe-
sis to generate secure contracts with acceptable overhead
even if Ethereum or future blockchain systems adopt a fast
consensus protocol.

1

ar
X

iv
:1

91
1.

12
55

5v
1

 [
cs

.P
L

]
 2

8
N

ov
 2

01
9

, Ao Li, Jemin Andrew Choi, and Fan Long

One naive approach to enforce the invariant is to just
instrument the runtime checks at the end of each transac-
tion. For sophisticated invariants that involve iterative sums,
maps, and quantifiers, the runtime checks must use loops
to access many blockchain state values, which will be ex-
tremely expensive. To address this challenge, Solythesis
instead uses a novel combination of delta update and delta
check techniques. Solythesis statically analyzes the source
code of each contract function to conservatively determine
the set of state values that could be modified and the set of
sub-constraints that could be violated during a transaction.
It then instruments the instructions to maintain these poten-
tially changed values and to only enforce these potentially
violated constraints.

1.2 Experimental Results
We evaluate Solythesis with 23 smart contracts from
ERC20 [5], ERC721 [7], and ERC1202 [6] standards. ERC20
and ERC721 are two Ethereum smart contract standards for
fungible and non-fungible tokens. ERC1202 is a draft stan-
dard for a voting system which is the key process to many
blockchain applications. For each standard, we first compose
an invariant and then apply Solythesis to instrument the
smart contracts.

Our experimental results show that Solythesis prevents
all vulnerable contracts from violating the defined invariants.
The results also validate our hypothesis — the instrumen-
tation overhead is negligible with only 0.12% CPU usage
overhead and 4.2KB/s disk write overhead on average. Our
results also highlight the effectiveness of our instrumenta-
tion algorithm. Even in extreme cases where the consensus
protocol is no longer the performance bottleneck at all, the
Solythesis instrumentation only causes 24% overhead in
transaction throughput on average. In comparison, if we use
the naive approach that inserts runtime checks at the end of
each transaction, the transaction throughput would be two
orders of magnitude smaller. We believe our results encour-
age future explorations on new languages, new analyses,
and new virtual machine designs that can further exploit
rigorous runtime validation to secure smart contracts (see
Section 6.4).

1.3 Contributions
This paper makes the following contributions:

• Runtime Validation for Smart Contracts: Our ex-
periment results show that processing transactions
and smart contract execution are not the bottleneck
of current blockchain systems. We show that runtime
validation has the potential of significantly increasing
the security of the smart contracts with only a small
or even negligible overhead.

ERC20 ERC721 ERC1202
Native 34 11 9

NoConsensus 2181 1184 1439
NoConsensus+Empty 3647 1869 2460

Figure 1.Number of transactions can be processed by Parity
client with different configurations.

• Solythesis: This paper presents a novel source to
source Solidity compiler, Solythesis, which instru-
ments smart contracts to reject transactions that vio-
late the specified invariants on the fly.
• InstrumentationOptimizations:This paper presents
novel delta update and delta check techniques to opti-
mize runtime instrumentation.

2 Observation
We next present our observations on Ethereum blockchain
performance. Ethereum uses a modified version of Nakamoto
consensus as its consensus protocol [36, 43, 48]. It stores
transactions in a chain of blocks. Participants solve proof-of-
work (PoW) problems to generate new blocks to extend the
chain.
Consensus Bottleneck:Nakamoto consensus and its chain
structure limits the performance of Ethereum — it generates
a new block every 13 seconds and the sizes of the blocks
are limited by its gas mechanism, which measures the size
and the complexity of a transaction [48]. Currently, each
Ethereum block has a gas limit of 10,000,000 [9], and it was
8,000,000 when we performed our experiments. A simple
transaction that only transfers Ether consumes 21,000 gas,
and the gas consumption for transactions calling smart con-
tract functions is higher.
To understand the impact of the consensus layer on the

overall performance of Ethereum, we run experiments with
representative transaction traces for the following contracts:
the BEC contract [2], an ERC-20 smart contract for managing
fungible BEC tokens, the DozDoll contract [4], an ERC-721
smart contract for managing non-fungible DOZ tokens, and
an example contract in the ERC-1202 contract standard [6],
which is designed for hosting voting on Ethereum. We use
Parity, the most efficient Ethereum client that is publicly
available, to start a private Ethereum network to process
these transactions.
Figure 1 presents the number of transactions that can be

processed per second for each contract. Note that we run
our experiments with three different configurations: 1) we
use the Ethereum state at the block height 5,052,259 as the
initial state and run PoW consensus to pack and process
transactions (corresponding to the group “Native” in Fig-
ure 1); 2) we remove the PoW consensus limit so that Parity
can process as many transactions as its transaction execution
engine allows (corresponding to the group “NoConsensus”

2

Securing Smart Contract On The Fly ,

Storage Verifier EVM Other
ERC20 67.0% 25.9% 3.9% 3.2%
ERC721 73.5% 18.3% 5.7% 2.5%
ERC1202 73.1% 20.5% 3.6% 2.8%

Figure 2. The performance counter results for different com-
ponents of Parity client.

in Figure 1); 3) we remove the PoW limit and start Parity
with an empty genesis state instead (corresponding to the
group “NoConsensus+Empty” in Figure 1).
The results in Figure 1 show that the consensus protocol

of Ethereum is the primary performance bottleneck. Parity
only processes 9 to 34 transactions per second for the ERC-20,
ERC-721, and ERC-1202 contracts. If the consensus protocol
is disabled, Parity processes 1184 to 2181 transactions per
second for the same set of contracts. Therefore, our hypothe-
sis is that the overhead of runtime validation is negligible for
smart contracts, because the transaction execution engine is
not the bottleneck of Ethereum clients like Parity at all.
Storage Bottleneck: The results in Figure 1 show that Par-
ity would run much faster with an empty initial state than
with an initial state corresponding to the real Ethereum net-
work at block 5,052,259. This is because all Ethereum clients,
including Parity, store the blockchain state as a Merkle Patri-
cia Tree (MPT) [48] on the disk. Each update on the blockchain
state will be amplified to multiple disk I/O operations de-
pending on the height of the MPT. When Parity starts with
an empty state, the MPT is simpler. Therefore, there will be
fewer I/O operations than starting with a complicated state.

To better understand the performance impact of the block
chain state updates (i.e., load/store EVM instructions), we
profile Parity in our experimental runs to collect the per-
formance counters of different components in Parity. Fig-
ure 2 presents the profiling results. It classifies the perfor-
mance counters into four categories: 1) the modules for
the blockchain state updates, including the RocksDB stor-
age layer and the functions in the EVM interpreter for the
load/store Solidity statements; 2) the modules for verifying
signatures in transactions; 3) the modules for other EVM
instructions except loads/stores; 4) all remaining modules.

Our results show that the blockchain state updates account
for more than 67% of the performance counters for all exper-
imental runs of Parity when we turn off the consensus layer.
The load and store operations to the blockchain state are
particularly expensive because 1) these operations could trig-
ger one or more disk I/O operations, 2) the Solidity compiler
often generates expensive SHA3 EVM instructions to com-
pute the address operands of these operations [31, 39], and
3) the Solidity compiler often translates one state load/store
statement into multiple EVM instructions (up to eleven).
Therefore, if Ethereum or any other blockchain system

could adapt a fast consensus protocol which eliminates the

1 contract ERC1202Example {
2 mapping(uint => uint[]) options;
3 mapping(uint => bool) internal isOpen;
4 mapping(uint => mapping(address => uint256)) public

weights;↪→
5 mapping(uint => mapping(uint => uint256)) public

weightedVoteCounts;↪→
6 mapping(uint => mapping(address => uint)) public

ballots;↪→
7 function createIssue(...) public { ... }
8 function winningOption(...) public returns (uint

option) { ... }↪→
9 function vote(uint issueId, uint option) public

returns (bool success) {↪→
10 require(isOpen[issueId]);
11 uint256 weight = weights[issueId][msg.sender];
12 // weightedVoteCounts[issueId]

[ballots[issueId][msg.sender]] -= weight;↪→
13 weightedVoteCounts[issueId][option] += weight;
14 // assert(weightedVoteCounts[issueId][option] >=

weight);↪→
15 ballots[issueId][msg.sender] = option;
16 emit OnVote(issueId, msg.sender, option);
17 return true;
18 }
19 }

Figure 3. Simplified source code from a voting contract.

consensus performance bottleneck, the state storage layer
would become the new bottleneck of the system. This ob-
servation implies that, to reduce the overhead of a runtime
instrumentation tool, one should minimize the number of
instrumented load/store statements.

3 Example
We next present a motivating example to illustrate the

design of Solythesis. Figure 3 shows a simplified source
code from the draft of ERC1202 [6], which is a technical
standard draft that defines a set of function interfaces to
implement a voting system. A voting system allows a user to
vote different issues, and returns the winning option. This
example is used for illustration purposes in the ERC1202
draft, but it contains a logic error.
In Figure 3, the vote() function updates the vote of a

transaction initiator given an option and an issue. The con-
tract implements vote() and other functions with five state
variables. options stores the available options of each issue;
isOpen stores the current status of the issue; weights stores
the weight of each voter on each issue; weightedVoteCount
stores the total weighted count of each option on each issue;
ballots stores the vote of each voter on each issue.
In the implementation of the vote() function, it first

fetches the weight of the transaction initiator and updates
the weighted votes of the given option and issue (lines 11
and 13 in Figure 3). However, the implementation contains

3

, Ao Li, Jemin Andrew Choi, and Fan Long

1 standard ERC1202 {
2 s = Map (a, c) Sum weights[a][b] Over (b) Where

ballots[a][b] == c;↪→
3 ForAll (x, y) Assert y == 0 || s[x][y] ==

weightedVoteCounts[x][y];↪→
4 }

Figure 4. Specification for ERC1202 standard.

two errors: 1) the original implementation fails to consider
the case where the transaction initiator votes multiple times
on the same issue; 2) it is possible for an attacker to trigger
an overflow error at line 13 to illegally modify the weighted
vote count. Note the original implementation misses line
12 and line 14 which are necessary to avoid these errors.
We next apply Solythesis to the contract and describe how
Solythesis instruments the contract to nullify these errors.
Specify Invariant: Note that both of these errors cause the
contract to potentially violate the ERC-1202 invariant where
the total weighted count of an option on an issue should
equal to the sum of all weights of voters who voted for the
option. To apply Solythesis, we first specify this invariant
shown as Figure 4. The first line in Figure 4 defines an inter-
mediate map s that corresponds to the sum of all weights of
the voters that voted for an issue and option pair. The second
line defines a constraint with the ForAll quantifier to en-
force that for all pairs of issues and options, the intermediate
map s should equal to the calculated weightedVoteCount in
the state. Note that in ERC-1202, zero is a special option id to
denote that a voter did not vote yet. Therefore our invariant
excludes the option id zero.
Figure 4 highlights the expressiveness of the invariant

language in Solythesis. A user can refer to any state vari-
able in the contract (e.g., weights, ballot, and weighted-
VoteCount in Figure 4), define intermediate values including
maps, and specify constraints on state variables and defined
intermediate values. Solythesis supports sophisticated op-
erations such as a conditional sum over values inside maps
(e.g., line 1 in Figure 4) and a ForAll quantifier to define a
group of constraints for multiple state values at once (e.g.,
line 2 in Figure 4).
Instrument the Contract: One naive approach to enforce
the invariant in Figure 4 is to instrument a brute force check
at the end of every transaction. This would cause prohib-
itive overhead because of the iterative sum operation and
the quantifier constraint. It would cost two or even three
nested loops to check the invariant for every transaction.
Solythesis instead instruments code to perform delta up-
dates and delta checks to reduce the overhead. The intuition
is to maintain intermediate values such as s in Figure 4 and
to instrument updates and checks only when necessary. Fig-
ure 5 presents the instrumented contract code generated by
Solythesis for our example.

1 contract ERC1202Example {
2 mapping (uint => mapping(uint => uint)) s;
3 uint256[] x_arr;
4 uint256[] y_arr;
5 ...
6 function vote (uint issueId, uint option) public

returns (bool success) {↪→
7 require(isOpen[issueId]);
8 uint256 weight = weights[issueId][msg.sender];
9

10 x_arr.push(issueId);
11 y_arr.push(option);
12 weightedVoteCounts[issueId][option] += weight;
13

14 x_arr.push(issueId);
15 y_arr.push(ballots[issueId][msg.sender]);
16 assert(s[issueId] [ballots[issueId][msg.sender]] >=

weights[issueId][msg.sender]);↪→
17 s[issueId] [ballots[issueId][msg.sender]] -=

weights[issueId][msg.sender];↪→
18 ballots[issueId][msg.sender] = option;
19 x_arr.push(issueId);
20 y_arr.push(ballots[issueId][msg.sender]);
21 s[issueId] [ballots[issueId][msg.sender]] +=

weights[issueId][msg.sender];↪→
22 assert(s[issueId] [ballots[issueId][msg.sender]] >=

weights[issueId][msg.sender]);↪→
23

24 emit OnVote(issueId, msg.sender, option);
25 for (uint256 index = 0; index < x_arr.length; index

+= 1)↪→
26 assert(y_arr[index] == 0 || s[

x_arr[index]][y_arr[index]] ==
weightedVoteCounts[x_arr[index]]
[y_arr[index]]);

↪→
↪→
↪→

27 x_arr.length = 0;
28 y_arr.length = 0;
29 return true;
30 }
31 ...
32 }

Figure 5. Instrumented voting contract.

Instrument Delta Updates: For every intermediate value
such as s in Figure 4, Solythesis instruments the contract to
add it as a state variable. Then for every write operation to an
original state variable in the contract (e.g., line 18 in Figure 5),
Solythesis performs static analysis to determine whether
modifying the original variable may cause the intermediate
value to change. If so, Solythesis instruments code to update
the intermediate value conditionally (e.g., line 17 and 21 in
Figure 5).
Compute Free Variable Bindings: For every state write
operation in the contract, Solythesis computes free
variable bindings against each rule in the invariant. For
example, for the write operation to ballots at line 18 in
Figure 5, Solythesis determines that the operation may
change the intermediate value defined in the first line

4

Securing Smart Contract On The Fly ,

of the invariant. Solythesis also binds the free variable
a in the invariant to issueId, binds b to msg.sender,
and binds c to ballot[issueId][msg.sender].
These bindings indicate that the write to bal-
lot[issueId][msg.sender] may only change the interme-
diate value s[issueId][ballot[issueId][msg.sender]].
Therefore Solythesis instruments code at lines 17 and 21 to
only update this value.
Instrument Delta Check: For every state write operation,
Solythesis also checks it against Assert constraints in
the invariant. For example, for the write operation to bal-
lots at line 18 in Figure 5, Solythesis first runs its bind-
ing analysis against the constraint at line 2 in Figure 3
which contains a ForAll quantifier. This analysis deter-
mines that the write operation may cause the contract to
violate the constraint when x binds to issueId and y binds
to ballot[issueId][msg.sender]. Solythesis defines ad-
ditional arrays like x_arr and y_arr to collect such free
variable combinations that may lead to constraint violations
lines 3 and 4 in Figure 5. Solythesis then instruments state-
ments at lines 14-15 and 19-20 to appropriately maintain
these arrays. Solythesis finally instruments a loop at the
end of the transactions to only check these potentially vio-
lated constraints (lines 25-26).
Nullify Errors: Solythesis generates the instrumented pro-
gram as its output shown as Figure 5. This instrumented
program will enforce the invariant faithfully during runtime
and detect any malicious transactions that cause the con-
tract to violate the invariant. In our example, we deploy the
instrumented contract to Ethereum and intentionally trigger
the error by sending transactions to vote for an issue mul-
tiple times. The instrumented assertion at line 22 catches
this error and aborts the offending transactions as NoOps.
Therefore Solythesis successfully nullifies the error.

4 Design
We next formally present the design of Solythesis. In this
section, we use the notation s[X/Y] to denote replacing every
occurrence ofX in the statement s withY . To avoid confusion,
we will use “JK” instead of “[]” to denote indexing of map
variables. We also use the notation #»x to denote a list of
variables x1,x2,

4.1 Invariant and Contract Languages
Invariant Language: Figure 6 presents the syntax of our
invariant specification language with integers, variables,
arithmetic expressions, conditional expressions, interme-
diate value declarations, and constraints. There are three
types of variables: state variables, intermediate variables,
and free variables. State variables are variables declared in
smart contracts and stored in persistent storage. Intermedi-
ate variables correspond to the intermediate values defined
in the invariant rules of the form “v = Map . . .”. Note that

const ∈ Int x ,y ∈ FreeVar v ∈ Var
e, e1, e2 ∈ Expr := const | v | vJx1KJx2KJ. . .K | e1 aop e2

c, c1, c2 ∈ CondExpr := e1 cop e2 | e1 == x | c1 ∧ c2
r ∈ Rule := v = Map x1,x2, . . . Sum e

Over y1,y2, . . . Where c; |
ForAll x1,x2, . . . Assert e; | r1r2

Figure 6. The invariant specification language.

in our language we do not distinguish these two kinds of
variables, because Solythesis instruments code to declare
intermediate variables as state variables. Free variables are
only used together with Map, Sum or ForAll. They act as
indexes for a defined intermediate map, as iterators for a
sum operation, or as quantifier variables to define a group
of constraints at once.
Expressions are built out of variables and integer con-

stants. “aop” represents an arbitrary binary operator; “cop”
represents an arbitrary integer comparison operator. There
are three possible types for expressions, integers for scalar
values, maps that have integer keys, and booleans for con-
ditional expressions. All variables and expressions should
be well typed. eJxK denotes accessing the map e at the index
x , where e must be an expression with a map type and x
must be a free variable with the integer type. It is possible
to have multi-dimensional maps. In the rest of this section,
the notation eJ #»x K is an abbreviation of eJx1KJx2KJ. . .K for
accessing such multi-dimensional maps.
The language has two kinds of rules: intermediate value

declaration rules and constraint declaration rules. An inter-
mediate value declaration can define a map value indexing
over a list of free variables and can conditionally and itera-
tively sum over state variable values to compute each map
entry. For a rule of the form “v =Map #»x Sum e Over #»y
Where c”, each entry of the intermediate map v is defined as
follows:

∀ #»x vJ #»x K =
∑

#»y

{
e if c is True
0 otherwise

A constraint declaration rule of the form “ForAll #»x Assert
c” checks all possible assignments of #»x to ensure that c is
always satisfied. Note that free variable lists after Map and
ForAll can be empty. Therefore, users can use these rules
to define scalar values and simple constraints as well. Also
note that free variables in invariants iterate over all defined
keys in maps where those variables are used as indexes. For
example, in “ForAll #»x Assert eJxK”, x should iterate over
values that correspond to defined keys in e .
Smart Contract Language: Figure 7 presents the core lan-
guage of smart contracts that we use to illustrate Solythesis.

5

, Ao Li, Jemin Andrew Choi, and Fan Long

c ∈ Int v,v1 ∈ StateVar t , t1 ∈ TempVar
a,a1 ∈ Address := v | vJe1KJe2KJ. . .K

e, e1, e2 ∈ Exp := c | t | e1 op e2

s, s1, s2 ∈ Statement := t = e; | s1s2 | t = load a; | store a, e; |
if e {s1} | for t1, t2, . . . in v {s1} |
assert e;

Figure 7. Core language for smart contracts.

“op” denotes an arbitrary binary operator. We do not distin-
guish normal expressions and conditional expressions in our
contract language. There are two kinds of variables: state
variables that may be referred in the invariant and temporary
scalar variables that are local to the contract program.

“load” and “store” are statements for accessing blockchain
state variables. Similar to Solidity, state variables can be
either scalar values or maps. “for t1, t2, . . . in v {s1}” would
iterate over all possible assignment combinations of t1, t2, . . .
based on how t1, t2, . . . are used as indexing variables for the
mapv in s1. If any of these variables are not used as indexing
variables for v , this statement is undefined. Loop statements
in our language capture the most common usage of loops in
Solidity contracts, and its syntax simplifies the presentation
of our instrumentation algorithm. Note that in Solidity, every
state variable has to be declared before its use. We omit the
declaration syntax for brevity.

4.2 Instrumentation Algorithm
Figure 8 presents the Solythesis instrumentation algorithm.
Given a program P as a list of contract statements and an
invariantR as a list of rules, the algorithm produces an instru-
mented program P ′ that enforces the invariant dynamically.
The algorithm has two parts. Lines 2-12 handle the interme-
diate value declarations in R, while lines 13-24 handle the
quantifier constraint rules in R.
For every defined intermediate value v , the algorithm

instruments a fresh state variable declaration for the value
(line 4). The algorithm then inspects every store statement
s in P and instruments the contract to maintain v (lines 5-
12). The algorithm first computes possible bindings of free
variables in the definition of v (lines 6-7). A binding is a set
of pairs of free variables in the definition and expressions in
the contract. The binding corresponds to possible entries of
v (if v is a map) that s may influence via state variable write
operations. The algorithm prepares statement templates for
updating v (lines 8 and 10), rewrites free variables in these
templates based on the computed bindings (lines 9 and 11),
and then instruments the rewritten statements into P ′ (line
12). The update strategy is to first subtract the old expression
value (e.g., pre in lines 8-9) before the execution of s , and
then add the new expression value (e.g., post in lines 10-11)
after the execution of s . See Section 4.3 for our binding and
rewrite algorithms.

Input :Program P as a list of statements and a list of
invariant rules R

Output :The instrumented program as a list of
statements

1 P ′← P

2 for r ∈ R do
3 if r = “v = Map #»x Sum e Over #»y Where c; ” then
4 Assume v is fresh. Insert a declaration of v in P ′.
5 for s = “store a, _; ” ∈ P do
6 B ← BindExpr(a, e) ∪ BindExpr(a, c)
7 b ← BindCond(a, c)
8 pre← “if c { t = load vJ #»x K;

t ′ = t − e; store vJ #»x K, t ′; }”
9 pre← Rewrite(pre,B,b)

10 post ← “if c { t = load vJ #»x K;
t ′ = t + e; store vJ #»x K, t ′; }”

11 post ← Rewrite(post,B,b)
12 Insert pre before s and insert post after s in

P ′

13 else if r = “ForAll #»x Assert c; ” then
14 Declare a fresh map α in P ′ corresponding to r
15 for s = “store a, _” ∈ P do
16 B ← BindExpr(a, c)
17 pre← “αJ #»x K = 1”
18 pre← Rewrite(pre,B, ⟨⊥,⊥⟩)
19 Insert pre before s in P ′

20 P ← P ′

21 for r = “ForAll #»x Assert c; ” ∈ R do
22 α ← The defined map that corresponds to r
23 s ′← “for #»x in α { assert c; } ”
24 Insert s ′ at the end of P ′

25 return P ′

Figure 8. Instrumentation algorithm.

For every quantifier constraint rule r , the algorithm also
instruments the declaration for a fresh state map variable
α . Note that because of the ForAll quantifier, r may corre-
spond to multiple constraint instances. To handle this, the
algorithm inspects every store statement s in P and uses its
binding algorithm to determine whether the execution of
s may cause some previously satisfied constraint instance
of r to be violated again. If so, the algorithm sets the corre-
sponding entry in α (lines 16-19) to mark these instances.
The algorithm finally instruments a for loop iterating over α
at the end of the contract to check these potentially violated
constraints (lines 21-24).

6

Securing Smart Contract On The Fly ,

const ∈ Int
BindExpr(a, const) = ∅

a = v

BindExpr(a,v) = {∅}

a = v ′ v ′ , v

BindExpr(a,v) = ∅
a = v ′J. . .K e = vJ. . .K v ′ , v

BindExpr(a,v) = ∅

a = vJx1KJ. . .KJxk K e = vJe1KJ. . .KJek K

BindExpr(a,v) = {{⟨x1, e1⟩, . . . , ⟨xk , ek ⟩}}

e = e1 aop e2

BindExpr(a, e) = BindExpr(a, e1) ∪ BindExpr(a, e2)

c = e1 cop e2

BindExpr(a, c) = BindExpr(a, e1) ∪ BindExpr(a, e2)
BindCond(a, c) = ∅

c = “e1 == x” e1 contains x
BindExpr(a, c) = BindExpr(a, e1) BindCond(a, c) = ⟨⊥,⊥⟩

c = “e1 == x” e1 does not contain x

BindExpr(a, c) = BindExpr(a, e1) BindCond(a, c) = ⟨x , e1⟩

c = “c1 ∧ c2” BindCond(a, c1) , ⟨⊥,⊥⟩
BindExpr(a, c) = BindExpr(a, c1) ∪ BindExpr(a, c2)

BindCond(a, c) = BindCond(a, c1)

c = “c1 ∧ c2” BindCond(a, c1) = ⟨⊥,⊥⟩
BindExpr(a, c) = BindExpr(a, c1) ∪ BindExpr(a, c2)

BindCond(a, c) = BindCond(a, c2)

Figure 9. Binding algorithm.

4.3 Binding and Rewrite Algorithms
Free Variable Binding: Figure 9 presents our binding algo-
rithm. It defines two functions BindExpr() and BindCond()
that are used in our instrumentation algorithm (see Figure 8).
Given a modified address a in a contract store statement and
an expression e in an invariant rule, BindExpr(a, e) returns a
set of binding maps that maps free variables in e to indexing
expressions in a. To compute BindExpr(a, e), Solythesis re-
cursively traverses the structure of e and looks for the map
indexing expressions that match the state variable in a. The
fifth rule in Figure 9 creates a binding map for such matching
index expressions for the matching free variables.
Note that because e is an expression from the invariant,

it can have multiple instantiations with different free vari-
able assignments. Intuitively, a binding map corresponds
possible free variable assignments for e that the state value
at the address a may influence. Because one free variable
may map to multiple indexing expressions in a binding map,
in our notation we represent the binding map as a set of

Input :The original statement s , a set of binding maps
B extracted from expressions, and a binding b
extracted from conditions.

Output :The rewritten statement respecting the
bindings.

1 s ′← ∅
2 for B ∈ B do
3 s ′′← s

4 B′← B ∪ {b}
5 for x ∈ FreeVar,where x appears in s do
6 if x appears in B′ multiple times as

⟨x , e1⟩, . . . ⟨x , ek ⟩ then
7 s ′′← “if e1 == e2 ∧ . . . ∧ e1 == ek {s ′′}”
8 B′← B′ − {⟨x , e2⟩, . . . , ⟨x , ek ⟩}
9 else if x does not appear in B′ then

10 Create a fresh variable t
11 Find v in s , where x is used as its index
12 s ′′← “for t in v {s ′′}”
13 B′← B′ ∪ {⟨x , t⟩}

14 if b = ⟨x ′, e ′⟩ ∧ x ′ , ⊥ then
15 s ′′← s ′′[x ′/e ′]
16 B′← B′ − {b}
17 for ⟨x , e⟩ ∈ B′ do
18 s ′′← s ′′[x/e]
19 s ′← s ′s ′′

20 return s ′

Figure 10. The definition of Rewrite().

pairs of free variables and indexing expressions. For exam-
ple, BindExpr(a, e) = {{⟨x1, e1⟩, ⟨x2, e2⟩}} means that state
value changes at the address a may influence the evaluation
of the instantiations of e in which we replace x1 with e1 and
x2 with e2. If BindExpr(a, e) returns a set that contains mul-
tiple binding maps, it means that the state value changes at
a may influence instantiations that are represented by all of
these maps.

Given a modified address a and a condition expression c in
an invariant rule, BindCond(a, c) returns a tuple pair of a free
variable and an expression. The instrumentation algorithm
in Figure 8 uses BindCond() to handle intermediate value
declaration rules only. The computation of BindCond() scans
for the condition of the form e1 == x , where x is a free
variable. If an intermediate value declaration rule has such a
condition, Solythesis can directly infer that the free variable
x must equal to the expression e1 for all cases.
Free Variable Rewrite: Figure 10 presents the definition
of Rewrite(). Given a statement template s that may contain
free variables, a set of binding maps B extracted from ex-
pressions with BindExpr(), and a binding tuple b extracted

7

, Ao Li, Jemin Andrew Choi, and Fan Long

from conditions with BindCond(), Rewrite(s,B,b) produces
a new statement with all free variables being rewritten based
on the provided bindings.
The Rewrite algorithm iterates over binding maps in B

and generates one statement instantiation based on each
binding map. For each free variable in s , it detects whether
it has exactly one appearance in the binding map. If the free
variable appears multiple times, i.e., the free variable maps to
multiple indexing expressions, the algorithm instruments ad-
ditional if statement guards to ensure that all of the matched
indexing expressions have the same value (line 7). The algo-
rithm then removes redundant tuples and only keeps one
of these indexing expressions (line 8). If the free variable
does not appear in the binding map, the algorithm would
wrap the statement with a for loop to handle this missing
binding and add a tuple that maps the missing free variable
to the iterator variable of the loop (lines 10-13). Therefore,
at line 14, the binding map B′ should map each free variable
in s exactly to each expression. The algorithm then replaces
these free variables with their corresponding expressions
(lines 14-18).

5 Implementation
We implement Solythesis for Solidity smart contracts. We
use Antlr [1] and the Solidity parser [12] to parse standard
specifications and Solidity programs. Solythesis extends
the language described in Section 4 to support all Solidity
features including contract function calls.

5.1 Function Calls
Because state variables are often updated sequentially in a
transaction, and the invariant may be temporarily violated
during the middle of the transaction, Solythesis should
only check the constraints at the end of each transaction. For
function calls, simply inserting those checks at the end of
each function may cause those checks to be triggered multi-
ple times during a transaction and result in false positives.
To this end, Solythesis declares an additional global state
variable to track the current function call stack depth of the
execution. The instrumented constraint checks will only ex-
ecute if it is the entry function of the transaction (i.e., the
stack depth is one).
Solythesis uses Surya [13] to build the call graph of the

smart contract. With the call graph information, Solythe-
sis can obtain the set of functions that are reachable from
an entry function. For each function, Solythesis prunes
away instrumented checks for constraints whose status will
never change if the function is the entry function. Specially,
smart contracts in Ethereum can call functions defined in
other smart contracts. To guarantee correctness, Solythesis
over estimates that the inter-contract calls will call back any
function defined inside the contract.

1 uint256 x_slot;
2 function vote(...) {
3 address[] memory x_arr;
4 if (call_depth == 0) assembly {
5 x_arr := mload(0x40)
6 mstore(0x40,add(x_arr,0x280))
7 sstore(x_slot,x_arr)
8 mstore(x_arr,0x260)
9 }
10 else assembly {
11 x_arr := sload(x_slot)
12 }
13 ...
14 }

Figure 11. Inline assembly to initialize or load a global array.

5.2 Global Memory
Solythesis uses global memory arrays to store free vari-

able bindings for ForAll constraint rules (line 10-11, 14-15,
and 19-20 in Figure 5). It uses the global memory rather than
the intra-procedure volatile memory or the blockchain state
because 1) a transaction may contain multiple functions and
the instrumented code of these functions all need to access
these arrays and 2) accessing global memory is cheaper than
accessing the blockchain state.
Since the global memory array is not natively supported

by Solidity, Solythesis uses inline assembly to allocate the
in-memory array as well as assigning the start location of the
array to an array pointer. Figure 11 presents the generated
global array of x_arr in Figure 5. x_slot is a state variable
stores the start location of x_arr and x_arr is the array
pointer. Solythesis only initializes x_arr when the transac-
tion starts and sets the x_arr to the value of x_slot directly
if the call depth is not zero. Solythesis further uses mload
and mstore instructions to load and store data from/to array.

5.3 State Variable Caches
As an optimization, Solythesis uses stack or volatile mem-
ory in Solidity to cache state variable values. Our second
observation in Section 2 indicates that blockchain state
load/store operations are very expensive, involving disk I/O,
cryptographic computations, and multiple EVM instructions.
On the other hand, loading/storing values from/to stack or
memory only requires a single instruction.

Solythesis performs static analysis to determine whether
the same blockchain state value is accessed multiple times in
a function. For every such value, Solythesis creates a tempo-
rary variable to cache it. If multiple functions can access the
state value, Solythesis will create the temporary variable
in the global memory and will use the technique similar to
Section 5.2 to enable all functions to access it. Otherwise,
Solythesis creates the temporary variable in the stack. At
the end of the function, Solythesis instruments code to
write back cached values to the state variable. This enables

8

Securing Smart Contract On The Fly ,

1 uint opt_13 = ballots[issueId][msg.sender];
2 uint256 opt_14 = weights[issueId][msg.sender];
3 assert(sum_votes[issueId][opt_13] >= opt_14);
4 x_arr.push(issueId);
5 y_arr.push(opt_13);
6 sum_votes[issueId][opt_13] -= opt_14;
7 opt_13 = option;
8 x_arr.push(issueId);
9 y_arr.push(opt_13);
10 sum_votes[issueId][opt_13] += opt_14;
11 assert(sum_votes[issueId][opt_13] >= opt_14);
12 ballots[issueId][msg.sender] = opt_13;

Figure 12. Vote function with state variable caches.

the optimized code to only execute one state load operation
and one state store operation for such a state value. Note that
the optimized code is equivalent to the original code because
in Ethereum, all transactions are executed sequentially, i.e.,
the blockchain state can only be read/written by a single
transaction at one time.
Figure 12 presents the code after the state variable

cache optimization of lines 14-21 from vote in Figure 5.
Solythesis creates two cache variables opt_13 and opt_-
14 for state variable ballots[issueId][msg.sender] and
weights[issueId][msg.sender] (line 1-2). And the oper-
ations of those two state variables are replaced by cache
variables. Note that not all state variables can be cached.
For example, Solythesis does not cache the state variable
sum_votes[issueId][opt_13] in line 6 because opt_13 is
updated in line 7 and the state variable in line 10 is rep-
resents a different state variable. Solythesis then stores
opt_13 back to ballots[issueId][msg.sender]. opt_14
is not stored because its value is not updated.

6 Evaluation
We next evaluate Solythesis on three representative stan-
dards: ERC20 [5] for the fungible token standard, ERC721 [7]
for the non-fungible token standard, and ERC1202 [6] for the
voting standard. The goal of this evaluation is to measure
the overhead introduced by runtime validation and to under-
stand the effectiveness of the Solythesis instrumentation
optimizations. All experiments were performed on an AWS
EC2 m5.xlarge virtual machine, which has 4 cores and 16GB
RAM. We downloaded and modified Parity v2.6.0 [10] as the
Ethereum client to run our experiments.

6.1 Methodology
Benchmark Contracts: We collected 10 popular ERC20
and ERC721 smart contracts from EtherScan [8]. To evaluate
the effectiveness of Solythesis, we also include BecToken
(an ERC20 contract) and DozerDoll (an ERC721 contract),

1 standard ERC20 {
2 sum_balance = Map () Sum balances[a] Over (a) Where

true;↪→
3 ForAll () Assert totalSupply == sum_balance;
4 }

Figure 13. Standard for ERC20.

1 standard ERC721 {
2 sum_tokenCount = Map () Sum _ownedTokensCount[a] Over

(a) Where a != 0;↪→
3 ForAll () Assert sum_tokenCount == _allTokens.length;
4 sum_ownersToken = Map (b) Sum 1 Over (a) Where

_tokenOwner[a]==b && _tokenOwner[a] != 0;↪→
5 ForAll (a) Assert _ownedTokensCount[a] ==

sum_ownersToken[a];↪→
6 }

Figure 14. Standard for ERC721.

two contracts that we successfully collect their history trans-
actions from Ethereum. We further include the ERC1202
example we described in Section 3 in our benchmark set.
Note that BECToken implements a customized function,

batchTransfer, which has an integer overflow error and
violates the total supply invariant specified by ERC-20 stan-
dard. This error was exploited in 2018 and the market cap
of BECToken was evaporated in days [17]. The ERC1202
example has vulnerabilities which we described in Section 3.
In our experiments, Solythesis successfully nullify errors
in both of these contracts. We validate that the instrumented
contracts reject our crafted malicious transactions.
Standard Specifications:We specify invariants for ERC20,
ERC721, and ERC1202 respectively using the language de-
scribed in Section 4. ERC1202 is a smart contract standard for
implementing a voting contract. The example in the ERC1202
standard draft unfortunately contains logic errors. See Sec-
tion 3 for details.
ERC20: ERC20 is an important smart contract standard that
defines the contract interface and specification of implement-
ing fungible digital assets. Figure 13 shows the invariant for
ERC20 standard. balances and totalSupply are two state
variables in BECToken that store the balance of each address
and the total supply of the token. The invariant specifies that
the sum of account balances is equal to total supply.
ERC721: Similar to ERC20, ERC721 is a smart contract stan-
dard of implementing non-fungible digital assets. Figure 14
shows our invariant for the ERC721 standard. sum_token-
Count and sum_ownersToken are two intermediate variables
created by the invariant to track the state of the contract.
sum_tokenCount stores the number of minted tokens, which
is the number of tokens whose owner is not 0, and sum_own-
ersToken stores the number of tokens owned by each ad-
dress. The invariant specifies that sum_tokenCount equals to

9

, Ao Li, Jemin Andrew Choi, and Fan Long

the length of _allTokens, and the number of tokens owned
by each user equals to the values stored in _ownedToken-
sCount. _allTokens and _ownedTokensCount are two state
variables declared in ERC721 smart contracts.
Benchmark Trace Generation:We crawled the Ethereum
blockchain and collected the real transaction history of Bec-
Token and DozerDoll. We chose BecToken because its his-
tory contains attacks. We chose DozerDoll because it is an
ERC721 token, and it has a long transaction history for our
experiments. Note that the collected history transactions
depend on the blockchain state (e.g., the token balance of
accounts), so we cannot reproduce them directly. To address
this issue, we first create a mapping that maps real world
addresses to local addresses that are managed by the Parity
client. For each transaction, we replaced the addresses of
the transaction sender and receiver, as well as addresses in
transaction data.

For the remaining contracts, we developed a script to au-
tomatically generate random transaction traces that exercise
core functionalities of ERC20, ERC721, and ERC1202. For
ERC20 and ERC721, the generated trace contains mainly
transfer transactions. For ERC1202, the generated trace
contains transactions that call createIssue and vote func-
tions repeatedly. Each createIssue transaction is accom-
panied by five vote transactions created by different voters
respectively.
Experiments with PoW Consensus:We apply Solythe-
sis to instrument all of the 23 benchmark contracts. We then
run Parity 2.6.0 to start a single node Ethereum network to
measure the overhead of instrumented contracts. For BecTo-
ken and DozerToken, we use the collected Ethereum history
trace. For the ERC1202 example contract and other contracts,
we use the generated trace. To run a contract on a transac-
tion trace, we initialize the network with the first 5,052,259
blocks downloaded from Ethereum main net. We then feed
the transactions in the trace into the network.

In this experiment, we deploy the same smart contract to
the blockchain multiple times and take the average results.
To address the randomness of the PoW consensus process,
we modified Parity client so that Parity generates new blocks
at a fixed speed of 1 block per ten seconds, which is the gen-
eration speed upper bound Ethereum ever reaches with its
difficulty adjustment mechanism. Note the gas usage for each
transaction is set to the gas usage of executing the original
smart contract, which allows Parity to pack the same number
of transactions for both the instrumented and the original
smart contract. We set the block gas limit to 8,000,000. We
monitor the CPU usage and disk IOs of the Parity client
for 500 blocks (~1.4 hours). Because the consensus is the
performance bottleneck and there is no throughput differ-
ence between the original contracts and the instrumented
contracts, we measure the resource consumption as the in-
strumentation overhead in this set of experiments.

Experiments without PoW Consensus:We modified the
Parity client to remove the proof of work consensus, but
preserved all required computations and storage operations
for the transaction execution. To evaluate the potential over-
head of Solythesis when the consensus is no longer the
performance bottleneck, we apply Solythesis to instrument
all benchmark contracts and run the modified Parity client
to measure the overhead. To evaluate the Solythesis in-
strumentation optimizations, we also run naively instru-
mented contracts that iteratively check invariants at the
end of transactions for comparison. Specifically, we compare
the transaction throughput of the original contracts and the
instrumented contracts. Note that similar to the previous set
of experiments, we initialize the Parity client with the first
5,052,259 blocks from the Ethereum main net.

6.2 Results with Consensus
Figure 15 shows the resources consumed by Parity for all
benchmark contracts. For each experiment, we measure the
performance of the instrumented smart contracts (S) and the
original smart contract (O) respectively. Rows 2-3 present the
average CPU usage of Parity. We observe that the CPU usage
of Parity is lower than 10% for 95% of time and the average
CPU usage of Parity is lower than 4% for all benchmarks.
Rows 4-5 present the average data written to the disk per
second by Parity.

Our results show that for all contracts, the transaction ex-
ecution consumes only a very small portion of the CPU and
disk resources. The overhead introduced by the Solythesis
instrumentation is negligible considering the current capac-
ity of CPU and disk storage devices and the cost of solving
proof of work. Note that the instrumented ERC1202 VOTE
contract consumes sightly more (12 KB/s) disk write band-
width because the ERC1202 standard uses a map variable to
track the states for different issues and options, and this map
variable is updated multiple times in vote and createIssue.
This result validates our previous observation again that the
transaction execution is not the bottle neck of the Ethereum
blockchain system. Thus, adding runtime validation will not
downgrade the performance of Ethereum, but improves the
security significantly.

6.3 Results without Consensus
To understand the overhead of the Solythesis instrumen-
tation under fast consensus protocols, we run experiments
on Parity when we turn off the consensus layer. We also
compare the instrumentation overhead of Solythesis with
the baseline instrumentation algorithm (which naively per-
forms iterative checks at the end of each transaction call) to
evaluate the effectiveness of our optimizations.
Figure 16 presents our experimental results. X axis cor-

responds to different smart contracts. The label in the X
axis include both the smart contract name and the TPS of

10

Securing Smart Contract On The Fly ,

BEC USDT ZRX THETA INB HEDG DAI EKT XIN HOT SWP
CPU S 3.11 3.31 3.12 3.11 3.04 3.34 3.13 3.13 3.09 3.29 3.32
(%) O 3.11 2.99 3.02 3.10 3.02 3.14 3.09 2.92 3.08 3.04 3.12
Disk S 96.8 97.4 96.4 96.3 96.7 97.0 96.5 96.6 96.2 96.6 96.7
(KB/s) O 96.6 96.6 96.1 96.2 96.5 96.8 96.3 96.1 96.1 96.2 96.6

DOZ MCHH CC CLV LAND CARDS KB TRINK BKC PACKS EGG VOTE
CPU S 1.97 1.99 1.98 1.95 1.89 1.92 1.89 1.90 1.94 1.93 2.04 2.81
(%) O 1.83 1.80 1.91 1.94 1.81 1.77 1.83 1.79 1.91 1.86 1.82 2.51
Disk S 85.7 77.5 73.9 77.9 77.7 76.2 75.9 76.9 80.6 74.6 76.4 83.4
(KB/s) O 74.5 68.2 72.2 69.5 68.8 69.5 66.6 67.9 75.3 70.5 69.6 71.1

Figure 15. Resources usage for Parity client. “S” corresponds to Solythesis results. “O” corresponds to original contract result.

BEC
2181

USDT
1235

ZRX
2636

THETA
2791

INB
2098

HEDG
2153

DAI
2260

EKT
2629

XIN
2745

HOT
2728

SWP
1762

0
20
40
60
80
100

%
of

or
ig
in
al
tx Baseline Solythesis

DOZ
1184

MCHH
2257

CC
2326

CLV
2062

LAND
2346

CARDS
2307

KB
2361

TRINK
2324

BKC
2472

PACKS
2119

EGG
2261

VOTE
1439

0
20
40
60
80
100

%
of

or
ig
in
al
tx Baseline Solythesis

Figure 16. Overhead Comparison with respect to original contract for top ERC20, ERC721 and ERC1202 contracts.

the original contract. Y axis corresponds to the transaction
throughput in the number of transactions processed by Par-
ity per second (TPS). The Y axis is normalized to the TPS
of the original smart contracts. Red bars in Figure 16 corre-
spond to the throughput results of Solythesis, while blue
bars correspond to the results of the baseline algorithm.
Our results show that even in the extreme cases where

the consensus is no longer the performance bottleneck at
all, the instrumentation overhead of Solythesis would still
be acceptable. The average TPS slowdown caused by the
Solythesis instrumentation in this set of experiments is 24%.
Our results also highlight the importance of the delta update
and delta check techniques in Solythesis. Without those
optimizations, the naive instrumentation brings two orders
of magnitude of slowdown in the transaction throughput.

6.4 Discussion and Future Directions
Our experimental results demonstrate that runtime valida-
tion is much more affordable in smart contracts than it is
in many other domains. Because of the performance bot-
tlenecks at the consensus layer and the storage layer, light-
weight runtime instrumentations can have small or even

negligible overhead. Our results reveal several future re-
search directions on how to make secure and efficient smart
contracts and blockchain platforms.
New Languages with Runtime Validation: To secure
smart contracts, people are designing new smart contract
languages that can eliminate certain classes of errors at
compile time, at the cost of limiting language expressive-
ness [18, 21, 41]. Our results imply that making the difficult
trade-off between correctness and expressiveness may not
be necessary. One possible future direction is to design new
languages that can better utilize rigorous runtime validation
to enforce the correctness and security.
Static Analysis and Verification: Developing static anal-
ysis and verification techniques to secure smart contracts is
both an active research topic and an industrial trend [3, 11,
16, 24, 27, 29, 31–34, 38, 44, 46]. Like similar techniques in
traditional programs, static analysis techniques often have
inaccurate results, while verification techniques typically
require human intervention. Because of the inexpensive cost,
runtime validation can act as backup techniques to cover
scenarios that static analysis techniques fail to fully analyze
or that verification techniques cannot fully prove.

11

, Ao Li, Jemin Andrew Choi, and Fan Long

Runtime Validation in Blockchain VM: Solythesis im-
plements runtime validation via Solidity source code instru-
mentation. We can further reduce the overhead if we im-
plement some of the instrumented runtime checks in the
blockchain virtual machine, although this would require a
hard fork for existing blockchains like Ethereum.
New Gas Mechanism: Each EVM instruction charges gas
and the fee of an Ethereum smart contract transaction is
determined by the total gas the transaction consumes. In
our experiments, the average gas overhead of the instru-
mented contracts is 77.8%, which is significantly higher than
the actual resource consumption overhead (which is negli-
gible). One possible explanation is that the gas schedule in
Ethereum does not correctly reflect the execution cost of
each EVM instruction. The gas overhead would cause the
users of the instrumented contracts to pay additional trans-
action fees. In light of our results, we believe Ethereum and
future blockchain systems should adopt a more flexible gas
mechanism to facilitate runtime validation techniques.

7 Related Work
Smart Contract Security: There is a rich body of work
on detecting vulnerable smart contracts with different tech-
niques such as symbolic execution [27, 29, 31, 32, 34, 37–
39, 46], fuzzing [23, 26], domain specific static analysis [44],
and formal verification [16, 20, 24, 33]. Oyente [32] detect
transaction-order dependency attacks, reentrance attacks,
and mishandled exception attacks using symbolic execution.
Verx [39] uses delayed abstraction to detect and verify tem-
poral safety properties automatically. He et al. present a new
fuzzing technique that learns from symbolic execution traces
to achieve both high coverage and high speed [23]. Securify
presents a domain specific formal verification technique that
translates Solidity smart contract into Datalog and verifies se-
curity properties such as restricted storage writes and ether
transfers [44].

K-framework is a rewrite-based semantic framework that
allows developers to specify semantics of programming lan-
guage formally [40]. KEVM [24] defines the semantic of EVM
in K and verifies the smart contract against user defined
specifications. IELE [28] presents a smart contract virtual
machine with a formal specification described in K which
achieves similar performance as EVM and provides verifia-
bility.
Solythesis differs from these previous static analysis,

fuzzing, and symbolic execution approaches in that it in-
serts runtime checks to enforce user specified invariants.
Unlike these approaches, Solythesis does not suffer from
false positives and false negatives. Comparing to most for-
mal verification approaches, Solythesis is fully automated
and does not require human intervention. Securify is an
automated verification tool using SMT solvers, but it may
not scale to complicated contracts due to the potential SMT

expression explosion problem. Also unlike Solythesis it
cannot support sophisticated constraints like quantifiers.
New Language Design: Many new programming lan-
guages have been proposed recently to improve the smart
contract security. Scilla [41] is a low level smart contract
language with a refined type system which is easy to be ver-
ified. Move [18] introduces resources types and uses linear
logic to enforced access control policies for digital assets.
Obsidian [21] uses typestate and linear type to enforce static
checks. The trend of these new languages is to sacrifice
expressiveness (e.g., no longer turing-complete) to gain cor-
rectness or security guarantees. Interestingly, our results
reveal an alternative path. — one possible future direction
is to design new languages that can better utilize rigorous
runtime validation to enforce the correctness and security.
Secure Compilation: The security community has been fo-
cusing on secure compilation for a long while. However, such
tools are not immediately applicable to smart contracts be-
cause the computation model between EVM and traditional
computer system is quite different. Many existing work fo-
cus on memory safety [25, 35], side-channel attacks [47],
and error isolation [45]. ContractLarva presents a runtime
verification technique that enforces the execution path of
Ethereum smart contracts to stop vulnerabilities that an at-
tacker invokes a contract constructor maliciously. Unlike
ContractLarva, Solythesis supports user defined invariants
and works for a much wider scope.
Runtime Checks: Performing runtime checks is a useful
technique to improve the software security. Abadi et al. pro-
pose a framework that enforces the control-flow integrity to
mitigate memory attacks [14]. Simpson and Barua enforce
both spatial and temporal memory safety of C programs
without introducing high overhead by modelling temporal
errors as spatial errors and removing redundant checks [42].
Similarly, Frama-C generates runtime memory monitor au-
tomatically to check E-ACSL specifications [30]. Chandola
et al. describe that patterns in data that do not conform to
expected behavior can help the system to detect intrusions,
frauds and faults [19]. Berger and Zorn, for example, imple-
ments a runtime system which executes multiple replicas of
the same application simultaneously and detects memory
errors dynamically [15]. Solythesis inserts runtime checks
at the Solidity level. Modifying the EVM implementation to
perform runtime checks may further reduce the overhead,
but it would require a blockchain hard-fork.

8 Conclusion
Runtime validation is an effective and efficient approach
to secure smart contracts. Our results show that because
the transaction execution is not the performance bottleneck
in Ethereum, the overhead of runtime validation, which is
often too expensive for other domains, is in fact negligible
for smart contracts.

12

Securing Smart Contract On The Fly ,

References
[1] [n. d.]. ANTLR: ANother Tool for Language Recognition. https:

//www.antlr.org/.
[2] [n. d.]. Beauty Chain: The world’s first blockchain platform dedicated

to the beauty ecosystem. http://www.beauty.io/.
[3] [n. d.]. Certik: World’s most advanced formal verification technology

for smart contracts. https://www.certik.org/.
[4] [n. d.]. CryptoDozer. https://cryptodozer.io/.
[5] [n. d.]. EIP 1202: Token Standard. https://eips.ethereum.org/EIPS/

eip-20.
[6] [n. d.]. EIP 1202: Voting Standard. https://eips.ethereum.org/EIPS/

eip-1202.
[7] [n. d.]. EIP 721: Non-Fungible Token Standard. https://eips.ethereum.

org/EIPS/eip-721.
[8] [n. d.]. Ethereum (ETH) Blockchain Explorer. https://etherscan.io/.
[9] [n. d.]. Ethereum Gas Limit History. https://etherscan.io/chart/

gaslimit.
[10] [n. d.]. Parity: The fastest and most advanced Ethereum client. https:

//www.parity.io/ethereum/.
[11] [n. d.]. Quantstamp: Leaders in blockchain security and solutions.

https://quantstamp.com/.
[12] [n. d.]. solidity-parser-antlr. https://github.com/federicobond/

solidity-parser-antlr.
[13] [n. d.]. Surya, The Sun God: A Solidity Inspector. https://github.com/

ConsenSys/surya.
[14] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005.

Control-flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS ’05). ACM, New York,
NY, USA, 340–353. https://doi.org/10.1145/1102120.1102165

[15] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Proba-
bilistic Memory Safety for Unsafe Languages. In Proceedings of the
27th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’06). ACM, New York, NY, USA, 158–168.
https://doi.org/10.1145/1133981.1134000

[16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-
tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santi-
ago Zanella-Béguelin. 2016. Formal Verification of Smart Contracts:
Short Paper. In Proceedings of the 2016 ACMWorkshop on Programming
Languages and Analysis for Security (PLAS ’16). ACM, New York, NY,
USA, 91–96. https://doi.org/10.1145/2993600.2993611

[17] John Biggs. 2018. Overflow error shuts down to-
ken trading. https://techcrunch.com/2018/04/25/
overflow-error-shuts-down-token-trading/.

[18] Sam Blackshear, Evan Chengand David L. Dill, Victor Gao,
Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain,
Dario Russi, Stephane Sezer, Tim Zakian, and Runtian Zhou.
2019. Move: A Language With Programmable Resources. Tech-
nical Report. https://developers.libra.org/docs/assets/papers/
libra-move-a-language-with-programmable-resources.pdf

[19] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly
Detection: A Survey. ACM Comput. Surv. 41, 3, Article 15, 58 pages.
https://doi.org/10.1145/1541880.1541882

[20] Xiaohong Chen, Daejun Park, and Grigore Roşu. 2018. A Language-
Independent Approach to Smart Contract Verification. In Leveraging
Applications of Formal Methods, Verification and Validation. Industrial
Practice, Tiziana Margaria and Bernhard Steffen (Eds.). Springer Inter-
national Publishing, Cham, 405–413.

[21] Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles
Baker, Yannick Bloem, Brad A. Myers, Joshua Sunshine, and Jonathan
Aldrich. 2019. Obsidian: Typestate and Assets for Safer Blockchain
Programming. ArXiv abs/1909.03523 (2019).

[22] Phil Daian. 2016. Analysis of the DAO exploit. http://
hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.

[23] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and
Martin Vechev. 2019. Learning to Fuzz from Symbolic Execution with
Application to Smart Contracts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19). ACM,
New York, NY, USA, 531–548. https://doi.org/10.1145/3319535.3363230

[24] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B.
Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. 2018. KEVM: A
Complete Formal Semantics of the Ethereum Virtual Machine. In 2018
IEEE 31st Computer Security Foundations Symposium (CSF). 204–217.
https://doi.org/10.1109/CSF.2018.00022

[25] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Math-
ias Payer. 2017. HexType: Efficient Detection of Type Confusion Errors
for C++. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’17). ACM, New York, NY,
USA, 2373–2387. https://doi.org/10.1145/3133956.3134062

[26] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing
Smart Contracts for Vulnerability Detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering
(ASE 2018). ACM, New York, NY, USA, 259–269. https://doi.org/10.
1145/3238147.3238177

[27] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018.
Zeus: Analyzing safety of smart contracts. NDSS.

[28] Theodoros Kasampalis, Dwight Guth, Brandon Moore, Traian Florin
ÈŸerbănuÈŻă, Yi Zhang, Daniele Filaretti, Virgil ÈŸerbănuÈŻă, Ralph
Johnson, and Grigore Roşu. 2019. IELE: A Rigorously Designed Lan-
guage and Tool Ecosystem for the Blockchain. In Formal Methods –
The Next 30 Years, Maurice H. ter Beek, Annabelle McIver, and José N.
Oliveira (Eds.). Springer International Publishing, Cham, 593–610.

[29] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek
Saxena. 2018. Exploiting The Laws of Order in Smart Contracts. CoRR
abs/1810.11605 (2018). arXiv:1810.11605 http://arxiv.org/abs/1810.
11605

[30] Nikolai Kosmatov, Guillaume Petiot, and Julien Signoles. 2013. An
Optimized Memory Monitoring for Runtime Assertion Checking of C
Programs. In Runtime Verification, Axel Legay and Saddek Bensalem
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 167–182.

[31] Ao Li and Fan Long. 2018. Detecting Standard Violation Errors in
Smart Contracts. CoRR abs/1812.07702 (2018). arXiv:1812.07702 http:
//arxiv.org/abs/1812.07702

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. 2016. Making Smart Contracts Smarter. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’16). ACM, New York, NY, USA, 254–269. https:
//doi.org/10.1145/2976749.2978309

[33] Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Ab-
hishek Dubey. 2019. VeriSolid: Correct-by-Design Smart Contracts
for Ethereum. CoRR abs/1901.01292 (2019). arXiv:1901.01292 http:
//arxiv.org/abs/1901.01292

[34] Bernhard Mueller. [n. d.]. Mythril Classic: Security analysis
tool for Ethereum smart contracts. https://github.com/ConsenSys/
mythril-classic.

[35] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015.
Everything You Want to Know About Pointer-Based Checking. In 1st
Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz
International Proceedings in Informatics (LIPIcs)), Thomas Ball, Rastislav
Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett
(Eds.), Vol. 32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 190–208. https://doi.org/10.4230/LIPIcs.SNAPL.
2015.190

[36] Satoshi Nakamoto. [n. d.]. Bitcoin: A peer-to-peer electronic cash
system,âĂİ http://bitcoin.org/bitcoin.pdf.

[37] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, andAquinas
Hobor. 2018. Finding The Greedy, Prodigal, and Suicidal Contracts at
Scale. CoRR abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/

13

https://www.antlr.org/
https://www.antlr.org/
http://www.beauty.io/
https://www.certik.org/
https://cryptodozer.io/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-1202
https://eips.ethereum.org/EIPS/eip-1202
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://etherscan.io/
https://etherscan.io/chart/gaslimit
https://etherscan.io/chart/gaslimit
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/
https://quantstamp.com/
https://github.com/federicobond/solidity-parser-antlr
https://github.com/federicobond/solidity-parser-antlr
https://github.com/ConsenSys/surya
https://github.com/ConsenSys/surya
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/2993600.2993611
https://techcrunch.com/2018/04/25/overflow-error-shuts-down-token-trading/
https://techcrunch.com/2018/04/25/overflow-error-shuts-down-token-trading/
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://doi.org/10.1145/1541880.1541882
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/3133956.3134062
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
http://arxiv.org/abs/1810.11605
http://arxiv.org/abs/1810.11605
http://arxiv.org/abs/1810.11605
http://arxiv.org/abs/1812.07702
http://arxiv.org/abs/1812.07702
http://arxiv.org/abs/1812.07702
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
http://arxiv.org/abs/1901.01292
http://arxiv.org/abs/1901.01292
http://arxiv.org/abs/1901.01292
https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://doi.org/10.4230/LIPIcs.SNAPL.2015.190
https://doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038

, Ao Li, Jemin Andrew Choi, and Fan Long

abs/1802.06038
[38] Trail of Bits. [n. d.]. Manticore: Symbolic Execution for Humans.

https://github.com/trailofbits/manticore.
[39] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-

Cohen, and Martin Vechev. [n. d.]. VerX: Safety Verification of Smart
Contracts. ([n. d.]).

[40] G. Rosu. 2017. K: A semantic framework for programming lan-
guages and formal analysis tools. 186–206. https://doi.org/10.3233/
978-1-61499-810-5-186

[41] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar,
Anton Trunov, and Ken Chan Guan Hao. 2019. Safer Smart Contract
Programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA,
Article 185 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360611

[42] M. S. Simpson and R. K. Barua. 2010. MemSafe: Ensuring the Spatial
and Temporal Memory Safety of C at Runtime. In 2010 10th IEEE
Working Conference on Source Code Analysis and Manipulation. 199–
208. https://doi.org/10.1109/SCAM.2010.15

[43] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Trans-
action Processing in Bitcoin. In Financial Cryptography and Data Se-
curity, Rainer Böhme and Tatsuaki Okamoto (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 507–527.

[44] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bunzli, and Martin Vechev. 2018. Securify: Practical Security
Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18). ACM,
New York, NY, USA, 67–82. https://doi.org/10.1145/3243734.3243780

[45] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-based Fault Isolation. SIGOPS Oper. Syst.
Rev. 27, 5 (Dec. 1993), 203–216. https://doi.org/10.1145/173668.168635

[46] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting
Nondeterministic Payment Bugs in Ethereum Smart Contracts. Proc.
ACM Program. Lang. 3, OOPSLA, Article 189 (Oct. 2019), 29 pages.
https://doi.org/10.1145/3360615

[47] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian
Stefan. 2019. CT-wasm: Type-driven Secure Cryptography for the
Web Ecosystem. Proc. ACM Program. Lang. 3, POPL, Article 77 (Jan.
2019), 29 pages. https://doi.org/10.1145/3290390

[48] Gavin Wood. 2014. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151 (2014), 1–32.

14

http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038
https://github.com/trailofbits/manticore
https://doi.org/10.3233/978-1-61499-810-5-186
https://doi.org/10.3233/978-1-61499-810-5-186
https://doi.org/10.1145/3360611
https://doi.org/10.1109/SCAM.2010.15
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/173668.168635
https://doi.org/10.1145/3360615
https://doi.org/10.1145/3290390

	Abstract
	1 Introduction
	1.1 Runtime Validation with Solythesis
	1.2 Experimental Results
	1.3 Contributions

	2 Observation
	3 Example
	4 Design
	4.1 Invariant and Contract Languages
	4.2 Instrumentation Algorithm
	4.3 Binding and Rewrite Algorithms

	5 Implementation
	5.1 Function Calls
	5.2 Global Memory
	5.3 State Variable Caches

	6 Evaluation
	6.1 Methodology
	6.2 Results with Consensus
	6.3 Results without Consensus
	6.4 Discussion and Future Directions

	7 Related Work
	8 Conclusion
	References

