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Abstract

Byte-addressable persistent memory, such as Intel/Micron
3D XPoint, is an emerging technology that bridges the gap
between volatile memory and persistent storage. Data in
persistent memory survives crashes and restarts; however,
it is challenging to ensure that this data is consistent after
failures. Existing approaches incur significant performance
costs to ensure crash consistency.

This paper introduces Crafty, a new approach for ensuring
consistency and atomicity on persistent memory operations
using commodity hardware with existing hardware transac-
tional memory (HTM) capabilities, while incurring low over-
head. Crafty employs a novel technique called nondestructive
undo logging that leverages commodity HTM to control per-
sist ordering. Our evaluation shows that Crafty outperforms
state-of-the-art prior work under low contention, and per-
forms competitively under high contention.
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1 Introduction

Non-volatile memory (NVM) technologies, such as phase
change memory (PCM) [38, 56, 61], resistive random-access
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memory (RRAM) [55], spin-transfer torque memory (STT-
MRAM) [35], and 3D XPoint [26], are designed to combine
DRAM’s byte-addressability and storage’s durability: A pro-
gram’s updates to data structures residing in persistent mem-
ory can persist across failures such as a program crash or
power interruption. As a result, NVM has the potential to
fundamentally change the dichotomy between DRAM and
durable storage in many important domains such as storage
systems [24, 36, 58, 59, 63], databases [1, 2, 25, 64], and big
data analytics [53].

State of the art. As with any storage system, the first chal-
lenge in effectively using NVM is to provide crash consis-

tency [44, 52], which allows a program to correctly recover
from persistent data upon a failure. Crash consistency is
often achieved by leveraging transactional support in a high-
level programming model. The developer specifies persistent
transactions, in which updates to persistent memory appear
to be one atomic unitÐupon a program crash, either all or
none of these updates are committed, ensuring that impor-
tant data structures are always left in a consistent state.

However, prior work’s mechanisms for persistent transac-
tions have twomain drawbacks. First, all of themechanismsÐ
undo logging [9, 32], redo logging [52], and copy-on-write [7,
15, 39, 43, 57]Ðincur performance costs such as persist la-
tency on each write, lookups at program reads, maintenance
of shadow memory, and poor multithreaded scalability.

Second, while commodity hardware transactional memory
(HTM) such as Intel’s transactional synchronization exten-
sions (TSX) [21, 22, 60] is an appealingmechanism for supple-
menting persistent transactions to achieve full ACID trans-
actions, persistent transaction mechanisms are incompatible

with commodity HTM because of the following dilemma: To
ensure correct recovery, log entries must be persisted before a

transaction commits, yet the nature of transactions dictates

that executing transactions cannot perform persist operations.

Although some recent work shows how to make hardware
transactions persistent [3, 4, 7, 15, 16, 39, 54], it has ma-
jor drawbacks such as requiring log lookups at reads, using
shadowmemory, incurring scalability bottlenecks, or relying
on nontrivial hardware changes (Section 2).

Contributions. This paper addresses bothmajor limitations
of prior work by leveraging commodity HTM to control per-
sist ordering. We introduce a new kind of persistent transac-
tion mechanism, nondestructive undo logging, that exploits
commodity HTM to populate and persist undo logs before
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making persistent writes visible. Key to nondestructive undo
loggingÐwhich runs a persistent transaction’s code in a hard-
ware transaction and logs persistent writes in an undo logÐis
that the hardware transaction rolls back its persistent writes
prior to committing, effectively creating its undo log entries
without performing actual persistent writes. This behavior
breaks HTM’s persistścommit dependence cycle mentioned
above, by decoupling the undo log updates from the persis-
tent writes. After committing its hardware transaction that
computes the undo log entries, a persistent transaction can
perform its persistent writesÐalbeit in a way that is con-
sistent with the persisted undo log entries and with other
threads’ persistent transactions.
We apply nondestructive undo logging in introducing

Crafty, a novel and general approach for correct and efficient
persistent transactions using unmodified commodity HTM.
For each persistent transaction, Crafty first uses nondestruc-
tive undo logging to compute and persist undo log entries. It
then performs the transaction’s writesÐby performing the
logged writes directly if contention is low, or by repeating
the transaction’s execution while validating its consistency
with the persisted undo log entry if contention is high. Crafty
can operate in a thread-unsafe mode that provides only fail-
ure atomicity (relying on some other mechanisms such as
locks for thread atomicity), or it can operate in a thread-safe
mode that provides both failure and thread atomicity (i.e.,
full ACID transactions).
We implemented Crafty by extending the publicly avail-

able implementation of NV-HTM [7], which also implements
DudeTM [39]; both approaches support persistent transac-
tionswithHTMusing shadow-memory-based copy-on-write
mechanisms. Our evaluation uses several programs with
varying levels of thread contention: persistent transaction
microbenchmarks and transactional benchmarks. Our results
demonstrate that Crafty outperforms the two state-of-the-
art HTM-based persistent transaction implementations NV-
HTM and DudeTM, especially under low thread contention.
Furthermore, Crafty usually adds low run-time overhead
over non-durable transactions, and its overhead is largely
thread local and thus scales well with additional threads.
These results suggest that nondestructive undo logging

and Crafty are promising approaches for providing efficient,
HTM-compatible persistent transactions.

2 Background and Motivation

This section covers background on persistent memory pro-
gramming models and motivates the need for better mecha-
nisms for persistent transactions.

2.1 Persistent Memory Programming Model

The key challenge of supporting persistent memory is en-
suring that if a failure occurs, a recovery observer can restore
persistent memory to a state that is usable by the restarted

program. This property is often provided through failure

atomicity: in the event of a crash or power failure, persis-
tent memory state can be restored so that each persistent

transaction appears to have executed fully or not executed
at all [5, 7ś9, 18, 23, 27, 39, 41].
In addition, a multithreaded program generally needs

thread atomicityÐpersistent transactions execute atomically
with respect to other threadsÐand state reconstructed by
the recovery observer should be consistent with the commit
order of persistent transactions. A program with persistent
transactions can provide thread atomicity by using locks [8,
18, 23], or by using transactional memory [7, 9, 15, 39, 52]Ðin
which case the transactions have full ACID properties.

Requirements. An implementation of persistent transac-
tions must ensure that, after a crash, the recovery observer
can restore the program’s persistent state so that it corre-
sponds to a serialization of persistent transactions consistent
with the program’s multithreaded execution. For example, if
transaction 𝐴 happened before transaction 𝐵, the recovered
state must correspond to one of the following three execu-
tion scenarios: (1) 𝐵 executed after 𝐴, (2) only 𝐴 executed, or
(3) no transaction executed at all.

Furthermore, recovered state should correspond to a point
in time that is not too łfar backž from the crash time. Other-
wise, the amount of work that needs to be re-executed may
be too large to be practical.

2.2 Persistent Transaction Mechanisms

Upon a crash or power failure, the recovery observer must
reconstruct a state in which transactions appear to have
executed fully or not at all. This challenge is exacerbated by
the fact that stores do not reach persistent memory in their
issuing order. This is because processor caches effectively
buffer writes until eviction or explicit write-back of the dirty
line to persistent memory.
To ensure that stores reach persistent memory in order,

one can use persist operations. A persist operation consists
of one or more flush operations that write back specified
cache lines to persistent memory, followed by a drain oper-
ation that waits until the flush operations have completed.
On x86, flush can be implemented with the CLWB (cache
line write-back) instruction, and drain can be implemented
with the SFENCE (store fence) instruction [49]. A persist
operation is expensive because it incurs the roundtrip write
latency of NVM, which is expected to be several hundreds
of nanoseconds [38, 50]. Even if the NVM controller buffers
persistent stores and includes the buffer as part of the persis-
tence domain [49], persist latency (i.e., the time for roundtrip
communication with the NVM controller) is still significant.
If a commodity approach can be developed that amortizes
persistent latency effectively across many persistent writes,
one can make a case for removing the buffer from the per-
sistence domain, simplifying future hardware designs.
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failure_atomic {

∗p = 1;

... = ∗q;

∗r = 2;

}

undoLog.append(p, ∗p) ;

flush( last log entry) ;

drain;

∗p = 1;

... = ∗q;

undoLog.append(r, ∗ r ) ;

flush( last log entry) ;

drain;

∗ r = 2;

undoLog.append(COMMITTED);

redoLog.put(p, 1) ;

... = redoLog.lookup(q) ;

redoLog.put(r , 2) ;

redoLog.append(COMMITTED);

foreach entry in redoLog

flush(entry) ;

drain;

foreach <ptr , val> in redoLog

∗ptr = val ;

∗p = 1; // writes shadow mem

redoLog.append(p, 1) ;

... = ∗q; // reads shadow mem

∗r = 2; // writes shadow mem

redoLog.append(r, 2) ;

redoLog.append(COMMITTED);

foreach entry in redoLog

flush(entry) ;

drain;

foreach <ptr , val> in redoLog

// Write to persistent addr

∗ getPersistAddr ( ptr ) = val ;

(a) A persistent transaction (b) Undo logging applied to (a) (c) Redo logging applied to (a) (d) Copy-on-write applied to (a)

Figure 1.To providing failure atomicity for the persistent transaction in (a), a system uses one of the following crash-consistency
mechanisms: (b) undo logging, (c) redo logging, or (d) copy-on-write. Initial values for all locations are 0.

Persistent transactions generally use one of the following
three mechanisms to provide crash consistency: undo log-
ging [9, 32], redo logging [52], and copy-on-write [7, 39, 43, 57].
Marathe et al. compared these mechanisms quantitatively
and found that no mechanism is a clear winner in all situ-
ations (e.g., across thread counts or transaction sizes) [41].
Here we describe each mechanism and its drawbacks. We
use Figure 1(a) as a simple example persistent transaction.

Undo logging. In undo logging, a persistent transaction logs
the old value of a persistent location in a persistent undo
log before the location is updated by a memory store. Undo
logging enables fast read accesses: Since each store performs
an in-place memory update, any memory load can directly
read the latest value from persistent memory without being
remapped to a different address. However, to ensure correct
rollback after a crash, the implementation must persist (i.e.,
flush and drain) each update to the undo log before writing
to the corresponding persistent memory location, incurring
a high write latency for each NVM write.

Figure 1(b) shows how undo logging works for the persis-
tent transaction in Figure 1(a). To signal the end of a persis-
tent transaction’s log entries, the implementation appends
a COMMITTED entry to the undo log. A multithreaded im-
plementation can include a timestamp (not shown in the
figure) with the COMMITTED entry to enable the recov-
ery observer to reconstruct a state corresponding to some
globally consistent point in time.

Redo logging. In contrast, instead of performing in-place
updates to persistent memory, redo logging buffers all per-
sistent writes and performs them together at the end of
the transaction. By buffering writes, redo logging pays the
cost of persist ordering once only at the end of each trans-
action, effectively amortizing the latency across all of the
writes. However, it adds an overhead for each persistent read
because the read needs to find the latest value in a set of

buffered writes. Since reads often significantly outnumber
writes, redo logging can also incur significant overhead.

Figure 1(c) illustrates how redo logging works. Writes and
reads to persistent memory are replaced with updates and
lookups, respectively, to a map-based log so that reads of
persistent memory correctly read from any preceding writes.

Copy-on-write. Recent work proposes copy-on-write mech-
anisms that maintain a volatile shadow for each persistent
page to bemodified [7, 39, 43, 57].We focus on copy-on-write
mechanisms that use shadow paging because it allows effi-
cient in-place writes. Other copy-on-write mechanisms use
indirection to copy an object upon the first write in a transac-
tion, incurring costs similar to redo logging [15, 41]. Persis-
tent transactions perform reads and writes normally, since
virtual addresses are mapped to physical volatile shadow
memory addresses. At the end of the transaction, changes
to each shadow page are persisted to its corresponding non-
volatile page. Figure 1(d) shows how this mechanism works.

Although copy-on-write techniques enjoy the performance
benefits of undo and redo loggingÐand can be made compat-
ible with commodity HTM as described shortlyÐshadowing
the entire NVM is expensive and impractical. Most signifi-
cantly, copy-on-write mechanisms must ensure consistency
between the updates to volatile and non-volatile pages, lead-
ing to scalability bottlenecks, as detailed below.

2.3 Transactional Memory

A natural way to implement persistent transactions that pro-
vide full ACID properties is to leverage transactional mem-

ory [21, 22]. Much of the existing work on persistent trans-
actions extends software transactional memory (STM) [20],
which incurs a high overhead in detecting and resolving
conflicts between concurrent transactions.
Hardware transactional memory (HTM), which detects

and resolves conflicts at the hardware level, is an appealing
technique for implementing efficient persistent transactions.
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However, commodity HTM implementations including Intel’s
restricted TM (RTM) [60] are fundamentally incompatible
with persistency. Because log updates must occur before
memory updates, there is an obvious dilemma: On the one
hand, undo or redo log entries must be persisted before the
hardware transaction commits the actual memory updates
(to ensure crash consistency), while on the other hand, the
nature of the transaction dictates that these log entries can-
not be persisted before the transaction commitsÐotherwise
they cannot be revoked upon an abort. The updates to the
log entries and the actual memory updates depend on each
others, forming a dependence cycle that seemingly thwarts
the use of HTM for persistent transactions.
Recent approaches use commodity HTM for persistent

transactions, by decoupling persistence from HTM’s con-
currency control. DudeTM [39] and NV-HTM [7] show how
copy-on-write mechanisms can support HTM-based persis-
tent transactions. Hardware transactions perform in-place

reads and writes to shadow memory. After a transaction
commits, redo log entries can be persisted before copying
the transaction’s writes to persistent memory. In addition,
by writing redo log entries and program writes to persis-
tent memory asynchronously, writes to the same persistent
locations can be combined.

The drawback, though, is that DudeTM and NV-HTMhave
significant disadvantages in maintaining shadow state and
keeping updates to persistent memory consistent with the
order of transactions writing to the volatile shadow state.
First, these approaches add space overhead by maintaining
two copies of program state, as discussed above. Second, they
must ensure consistency between the order of the writes to
DRAM inside a transaction and that to NVM at the end of the
transaction. DudeTM computes timestamps by incrementing
a global variable in commodity HTM, making it effectively
incompatible with commodity HTM [39].

NV-HTM, on the other hand, works with unmodified com-
modity HTM, but it has two major scalability bottlenecks
that limit performance at higher thread counts [7]. First, each
persistent transaction cannot complete until every other on-

going transaction completes. In particular, each transaction
cannot write a COMMIT entry to its redo log until it ensures
that no ongoing transaction may still write a COMMIT entry
for an earlier transaction, since redo logs are used by the
recovery observer to roll the persistent state forward after a
crash. Waiting ensures that if the recovery observer sees a
COMMIT entry for a transaction, it sees COMMIT entries
for all earlier transactions. Of course, this incurs overhead.
Second, threads that persist logs and program writes to

persistent memory must do it in a serialized manner. In NV-
HTM, an asynchronous background thread applies transac-
tions’ writes (based on their redo log entries) to persistent
memory locations in timestamp order. This serialization of

writes to persistent memory is inherent in the fact that trans-
actions record a timestamp (for efficiency), from which only
a global transaction order can be inferred.

The DudeTM paper surmises that decoupling persistence
from HTM may be łthe best (and possibly the only) way
to avoid the drawbacks of both undo and redo logging and
reduce the performance penaltyž [39]. Our work seeks to
counter that supposition and overcome the performance dis-
advantages of existing persistent transaction mechanisms.

3 Crafty Overview

As Section 2.3 explained, the main obstacle that precludes
efficient use of commodity HTM in implementing persistent
transactions is the dependence cycle that results from the
tight coupling of log entry updates and program memory
updates: If a hardware transaction contains a mix of these
two types of updates, it can neither commit before persisting,
nor persist before committing.

To address this problem, we introduce a new persist trans-
action design called Crafty that leverages a new logging
mechanism called nondestructive undo logging. Key to Crafty’s
success is breaking the persistścommit dependence cycle by
executing the log entry updates and the program memory
updates in separate hardware transactions, effectively decou-
pling these two types of updates. In nondestructive undo
logging, a hardware transaction performs a Log phase that
executes a persistent transaction in a way that updates only
undo log entries, not the program’s persistent data. These
log entries are persisted after the hardware transaction com-
mits. Next, Crafty executes the programwrites using another
hardware transaction. These writes are performed in a way
that is consistent with the updates of the log entries and also
with other threads’ executed transactions.

Challenges and insights. Achieving a correct and efficient
design presents three major challenges. The first challenge
is how to make the Log phase only update undo or redo
log entries without modifying program memory locations.
To overcome this challenge, Crafty uses undo logging when
executing the Log phase: Before each write to a persistent
memory location, the old value in the location is recorded in
a thread-local undo log. At the end of the transaction, Crafty
rolls back all of these writes by applying the entries of the
undo log in a reverse order, effectively setting the modified
values back to the their original values before the transaction
executed. Furthermore, during this rollback process, when
both the old and new values are visible, the hardware trans-
action builds a redo log for these locations. After the Log
phase commits, all of the undo log entries are persisted into
persistent memory. Figure 2 shows how the Log phase uses
nondestructive undo logging to construct an undo log for
the persistent transaction from Figure 1.
The second challenge is how to execute the program’s

memory updates in the same order as the updates to log
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HTM_BEGIN;

undoLog.append(p, ∗p) ;

∗p = 1;

... = ∗q;

undoLog.append(r, ∗ r ) ;

∗ r = 2;

foreach entry <ptr , oldVal> in undoLog in reverse

redoLog.append(ptr, ∗ptr ) ;

∗ptr = oldVal ; // undo each write

HTM_END;

foreach entry in undoLog

flush(entry) ;

drain; // persist the undo log entries

/∗ ... Transaction’s writes can now be performed here ... ∗/

undoLog.append(COMMITTED);

Figure 2. How Crafty’s crash-consistency mechanism, non-
destructive undo logging, provides failure atomicity for the
persistent transaction in Figure 1(a).

entries. To do this, Crafty starts the second phase, which
updates program memory locations. In theory, all we need
is a Redo phase that applies the redo log constructed at
the end of the Log phase. This naïve approach would work
if persistent transactions were protected by a pessimistic
technique such as locking, because transactions executed by
different threads would conflict with each other. However,
if persistent transactions can conflict, then a thread’s Log
and Redo phasesÐwhich executed in two separate hardware
transactionsÐmay not execute together atomically. This can
potentially lead to inconsistencies between the log entries
and the contents in their corresponding memory locations.
To solve this problem, Crafty lets the Redo phase check a
conservative conflict constraint based on timestamps. Failure
of this check is a necessary but insufficient condition for a
transaction conflict. To guarantee safety, Crafty aborts the
HTM transaction that executes this Redo phase.

The third challenge is what to do if and when Redo aborts.
Due to the conservative nature of our conflict constraint,
a Redo abort does not necessarily indicate a real conflict.
Hence, if and only if Redo aborts, Crafty executes a Validate
phase, which re-executes the persistent transaction to check
the validity of the undo log entries that were persisted in
the Log phase. If all of the undo log entries are still valid,
the transaction succeeds, allowing the memory writes to
be committed and visible to other threads. Any mismatch
between the values in a log entry and its corresponding mem-
ory location makes Validate abort, indicating that another
thread has committed new, conflicting writes after the cur-
rent thread’s Log phase finished. The aborted thread handles
this case by starting overÐby re-executing the Log phase
and constructing new undo and redo logs.

Outline. Section 4 describes how Crafty executes persistent
transactions to provide atomicity at run time and support re-
covery on a crash. Section 5 describes how recovery restores
persistent state after a crash.

4 How Crafty Executes Transactions

This section describes how Crafty leverages nondestructive
undo logging to execute persistent transactions.

Executionmodes. Crafty can operate in either of twomodes.
In its thread-safe mode (this paper’s focus), programmers
specify persistent transaction boundaries, and Crafty pro-
vides both atomicity and durability (i.e., all ACID properties)
for persistent transactions.

Crafty’s thread-unsafe mode is appropriate when locks or
another mechanism already provides atomicity, so Crafty
only needs to provide durability. In this mode, program-
mers can specify transaction boundaries explicitly or in-
form Crafty to treat all critical sections [5, 8, 23, 27, 40] or
synchronization-free regions [18] as persistent transactions.
Figures 3 and 4 show how Crafty operates in its thread-

safe and thread-unsafe modes (Section 3), respectively. Sec-
tions 4.1ś4.3 provide a detailed description of the Log, Redo,
and Validate phases in the context of Crafty’s thread-safe
mode. In thread-safe mode, repeated aborts cause Crafty
to transition to thread-unsafe mode while holding a single
global lock (SGL), as Figure 3 shows and Section 4.4 describes.
The rest of this section uses Figure 5 as an example to

show how Crafty works.

4.1 Log Phase

Crafty’s Log phase generates undo log entries for an exe-
cuted persistent transaction and then persists these entries.
The key treatment here is that the Log phase does not com-
mit any programwrites to persistent memory. The Log phase
achieves this outcome by allowing the persistent transaction
to perform writes normally during its execution, but rolling
back the writes before the hardware transaction commits.

Algorithm 1 shows the details of the Log phase, which ex-
ecutes the persistent transaction body in a hardware transac-
tion. Before each persistent write, the Log phase records the
old value of the written-to address in the executing thread’s
persistent undo log. For example, in Figure 5, each persis-
tent transaction’s Log phase adds old values to the undo log
before each write.
At the transaction end, the Log phase uses the undo log

entries to roll back the transaction’s writes, by applying the
undo log entries’ old values in the reverse order.When rolling
back the writes, Crafty simultaneously builds a volatile redo
log for the transaction, which can be used by the subsequent
Redo phase to perform program writes. For example, in
Figure 5, starting from the łStart roll back:ž comment, the
persistent transaction’s Log phase rolls back the writes by
applying the values from the undo log. Before committing the
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Start persistent transaction

Log phase

Redo phase

Validate phase

SGL-based execution

in thread-unsafe mode

End persistent transaction

success

fallback

read-only
failure

success

validation

failure

success

fallback

Figure 3. Crafty’s phases in thread-safe mode.

Start persistent transaction;

𝑘 ← MAX_WRITES

Execute until persistent

write or transaction end

Log phase for

up to 𝑘 writes

Return to last

Log phase’s

start; 𝑘 ← 𝑘

2

Redo phase for

Log phase’s writes

Persist undo log entry

before persistent write

End persistent

transaction

...

persistent write

(if 𝑘 > 1)

persistent write

(if 𝑘 = 1)

transaction end
success

failure

failure

success

Figure 4. Crafty’s phases in thread-unsafe mode.

hardware transaction, the Log phase adds a LOGGED entry
with a Lamport timestamp1 denoting the current logical
time (which is equivalent to the logical time at the beginning
of the hardware transaction since HTM ensures atomicity).
The timestamps will be used by recovery to order undo log
entries by different threads. In Figure 5, each Log phase
concludes by inserting a LOGGED entry into the undo log
before committing the hardware transaction.
After committing the transaction, the Log phase flushes

the transaction’s undo log entries to persistent memory. The
algorithm flushes the transaction’s undo log entries but does

1If two events are ordered by happens-before, their logical times are corre-

spondingly ordered [37].

Thread 1 Thread 2

atomic_and_durable {

∗p = ∗q;

∗r = 1;

}

atomic_and_durable {

∗q = 2;

∗s = 3;

}

(a) Two persistent transactions.

Thread 1 Thread 2

Log phase:

HTM_BEGIN

undoLogT1 . add(p, 0)

∗p = ∗q

undoLogT1 . add(r , 0)

∗r = 1

// Start roll back :

redoLogT1 . add(r , 1)

∗r = 0 // from undo log

redoLogT1 . add(p, 0)

∗p = 0 // from undo log

lastTST1 = ts ()

undoLogT1 . add(LOGGED,

lastTST1 )

HTM_END

Redo phase:

HTM_BEGIN

check gLastRedoTS < lastTST1

∗p = 0 // from redo log

∗r = 1 // from redo log

gLastRedoTS = ts ()

undoLogT1 . add(COMMITTED,

gLastRedoTS)

HTM_END

Log phase:

HTM_BEGIN

undoLogT2 . add(q, 0)

∗q = 2

undoLogT2 . add(s , 0)

∗s = 3

// Start roll back :

redoLogT2 . add(s , 3)

∗s = 0 // from undo log

redoLogT2 . add(q, 2)

∗q = 0 // from undo log

lastTST2 = ts ()

undoLogT2 . add(LOGGED,

lastTST2 )

HTM_END

Redo phase:

HTM_BEGIN // redo

check gLastRedoTS < lastTST2

ABORT // check failed

Validate phase:

HTM_BEGIN

check ∗q == 0 // from undo log

∗q = 2

check ∗s == 0 // from undo log

∗s = 3

check # writes == # log entries

gLastRedoTS = ts ()

undoLogT2 . add(COMMITTED,

gLastRedoTS)

HTM_END

(b) A possible execution of the persistent transactions in (a) using

Crafty in its thread-safe mode, which provides all ACID properties.

Figure 5. An example of Crafty’s thread-safe mode execut-
ing persistent transactions. Initial values of *p, *q, *r, and *s

are 0. The example omits flush and drain instructions.
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Algorithm 1 Log phase

1: HTM_BEGIN

⊲ Start of persistent transaction

. . .

⊲ Program write to persistent variable:

2: Add ⟨addr, oldValue⟩ to T.undoLog ⊲ T is current thread

3: *addr = newValue ⊲ Original program write

. . .

⊲ End of persistent transaction

4: Roll back transaction’s writes using T.undoLog, and populate

local redo log from T.undoLog

5: Add ⟨LOGGED, getTimestamp()⟩ to T.undoLog

6: HTM_END

7: flush(T.undoLog entries for this transaction)

not wait for them to be written back to persistent memory
(i.e., flush but no drain) because the program writes will
be committed by the Redo or Validate phase inside of a
hardware transaction, which has drain semantics (e.g., an
RTM transaction has SFENCE semantics).
Once the Log phase completes, undo log entries for the

transaction have been persisted, but the transaction has ef-
fectively not executed from the perspective of other threads
and memory because none of the memory updates have been
performed. In Figure 5, after the Log phase completes, *p, *r,
*q, and *s still have their initial values (0). To make these up-
dates visible to other threads and persistent memory, Crafty
uses the Redo or, if needed, the Validate phase.

A read-only transaction need not add a LOGGED entry to
the undo log or perform any persist operations, and it can
skip the Redo and Validate phases, as shown in Figure 3.

4.2 Redo Phase

The Redo phase applies the writes from the redo log (in the
reverse order of how they were recorded in the Log phase),
as illustrated in Algorithm 2.
If the program is single-threaded or no other threads ac-

cess persistent memory, it is safe to execute the Redo phase
unconditionally. However, if multiple threads are executing
persistent transactions, atomicity can be violated. For exam-
ple, thread B’s Redo phase can occur between thread A’s
Log and Redo phases. Hence, it is important to ensure that
A’s Redo phase completes only if it executes atomically with

its preceding Log phase.
To this end, Crafty uses a global variable gLastRedoTS that

represents the timestamp of the last writes committed by any
thread. Figure 5 demonstrates how gLastRedoTS is updated
and used. Crafty checks gLastRedoTS at the start of the Redo
phase in Thread 1. The check succeeds because no thread
has committed writes since Thread 1’s Log phase. The Redo
phase then performs the writes from the redo log. Thread 1
completes the Redo phase by updating gLastRedoTS and
adding a timestamped COMMITTED entry to the log. This

Algorithm 2 Redo phase

Thread-safe Redo phase:

1: HTM_BEGIN

2: if gLastRedoTS < LOGGED timestamp from Log phase

then

3: gLastRedoTS← getTimestamp()

4: Perform thread-unsafe Redo phase

5: else

6: Abort transaction and fail Redo phase

7: end if

8: HTM_END

9: flush(written-to addresses)

Thread-unsafe Redo phase:

10: Perform writes from redo log

11: if not in hardware transaction then

12: flush(written-to addresses)

13: end if

14: Add ⟨COMMITTED, getTimestamp()⟩ to T.undoLog

timestamp represents the time at which the transaction’s
writes happened in relation to other threads’ transactions.

A failed check indicates a potential atomicity violation.
In Figure 5, Thread 2’s check of gLastRedoTS fails because
Thread 1 updated gLastRedoTS to reflect that it commit-
ted writes (in its Redo phase) after Thread 2’s Log phase.
Thread 2’s Redo phase thus fails, and Crafty tries the Vali-
date phase. (Alternatively, under different timing, Thread 2’s
Redo phase could start and complete before Thread 1’s Redo
phase read gLastRedoTS, allowing Thread 2 to commit its
writes with the Redo phase. Thread 1 would fail the Redo
phase and try the Validate phase, re-execuing the transac-
tion and writing an updated value of *q, 2, to *p.)
If successful, the Redo phase concludes by flushing the

transaction’s writes to persistent memory, but does not wait
for the write-backs to finish (i.e., flush but no drain). The next
persistent transaction’s Log phase will perform a hardware
transaction, which has drain semantics, and the recovery
algorithm always rolls back each thread’s latest transaction
in case its writes had not fully persisted (Section 5).
The Redo phases of all transactions are effectively seri-

alized. This does not necessarily cause a bottleneck in per-
formance because the Redo phase is often short and can
execute concurrently with Log and Validate phases.

4.3 Validate Phase

The goal of the Validate phase is to execute a persistent
transaction that is consistent with the persisted undo log
entries. The Validate phase checks consistency by compar-
ing the old values recorded in the undo log with the current
values of the same locations, as Algorithm 3 illustrates.

The Validate phase checks whether, for each program
write, its corresponding entry in the undo log matches the
write’s address and the value at the address. If it does, this
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Algorithm 3 Validate phase

1: Reset T.undoLog to the beginning of the transaction

2: HTM_BEGIN

⊲ Start of the persistent transaction

. . .

⊲ Program write to a persistent variable:

3: let ⟨expectedAddr, expectedValue⟩ be next entry in T.undoLog

4: if addr ≠ expectedAddr ∨ *addr ≠ expectedValue then

5: Abort transaction and fail validation

6: end if

7: *addr← newValue ⊲ Original program write

. . .

⊲ End of the persistent transaction

8: Check that the next entry in T.undoLog is a LOGGED entry (if

not, abort the transaction and fail the validation)

9: gLastRedoTS← getTimestamp()

10: Add ⟨COMMITTED, gLastRedoTS⟩ to T.undoLog after the

LOGGED entry

11: HTM_END

12: flush(written-to addresses)

implies the validity of the undo log entry. For example, in
Figure 5, Thread 2’s Validate phase checks that both writes
to q and s match the original addresses and old values in
the undo log, and that there are no new writes. At the end
of the persistent transaction, the hardware transaction is
committed, and the writes are persisted and made visible
to other threads. Note that it is important to re-execute the
transactionÐby validating the undo log entries rather than
just performing the writesÐto ensure (implicitly) that values
read by the transaction are still consistent with the undo log
entries. Like the Redo phase, after performing the writes,
Crafty adds a ⟨COMMITTED, getTimestamp()⟩ entry to the
log, which represents the time at which the transaction’s
writes happened in relation to other threads.

Note that the Validate phase executes only if the Redo
phase fails, Every persistent transaction commits its writes
exactly once, with either the Redo or Validate phase.

4.4 Single Global Lock Fallback

A hardware transaction may abort for a variety of reasons
including a conflict with other threads, cache capacity over-
flow, or an unsupported event such as an interrupt [60]. Since
commodity HTM generally provides no progress guarantee,
special care must be taken to ensure that an execution makes
progress. As Figure 3 shows, Crafty’s thread-safe mode re-
tries an aborted transaction several times; if no Redo or
Validate phase commits successfully, it falls back to acquir-
ing a single global lock (SGL) to provide progress guarantees.
The SGL serves two purposes. First, it eliminates conflicts
among different threads. Second, it allows Crafty to execute
in thread-unsafe mode, where Crafty can execute shorter
hardware transactions (fewer instructions) or without hard-
ware transactions to ensure progress.

The SGL is a global variable that a thread acquires by up-
dating it atomically from 0 to 1, and releases by setting it to
0 (with proper memory fencing). To ensure consistency with
respect to other threads executing hardware transactions in
thread-safe mode, each hardware transaction in thread-safe
mode must check whether the SGL is 0 at the beginning of
the transaction; if the SGL is 1, the transaction must abort
(not shown in the algorithms). This handling ensures consis-
tency with an ongoing SGL section or with an SGL section
that starts while the transaction is executing (since the trans-
action’s read set contains the SGL). This fallback method is
referred to as speculative lock elision in the literature and has
been widely studied [28, 46, 60].
After acquiring the SGL, a thread can safely execute in

Crafty’s thread-unsafe mode, as illustrated in Figure 4. In
this mode, the SGL ensures atomicity, so HTM serves solely
to implement nondestructive undo logging (i.e., to prevent
updated cache lines from being written back to persistent
memory prematurely), not for thread atomicity.
As a result, thread-unsafe mode uses hardware transac-

tions for the Log phase only, which can wait to start a hard-
ware transaction until the first persistent write of the per-
sistent transaction. Thread-unsafe mode does not use HTM
for the Redo phase because no other threads can update the
global timestamp gLastRedoTS, and hence this phase always
succeeds. The Validate phase is not needed at all.

Ensuring progress. Even without contention from other
threads, a hardware transaction may still abort for cache
capacity or other reasons. The Log phase in thread-unsafe
mode can ensure progress by breaking a persistent trans-
action into smaller hardware transactions, each executing
at most 𝑘 persistent writes. After executing 𝑘 persistent
writes (or fewer, if the persistent transaction ends before 𝑘
is reached), the Log phase completes normally, rolling back
writes and persisting undo log entries including a LOGGED
entry. The Redo phase then performs the 𝑘 (or fewer) per-
sistent writes, except that it does not add a COMMITTED

entry, which should only be used to indicate the end of the
(SGL-based) transaction. The Log and Redo phases continue
executing the persistent transaction, in chunks of up to 𝑘

writes. If 𝑘 = 1, the Log phase writes and persists an undo
log entry before performing the write to memory, without
using any hardware transaction.

When entering thread-unsafe mode for a persistent trans-
action, Crafty begins with a (relatively large) value of 𝑘 (e.g.,
64) with the goal to amortize persist latency across multiple
writes. After each transactional abort in thread-unsafe mode,
Crafty decreases 𝑘 geometrically for the next hardware trans-
action. When the value of 𝑘 drops to 1, thread-unsafe mode
is guaranteed to make progress. Figure 4 illustrates the logic
for thread-unsafe mode, which executes the transaction in
𝑘-write chunks until completion.
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Before releasing the SGL, Crafty adds a COMMITTED

entry to the persistent undo log. All of the SGL section’s
hardware transaction’s LOGGED and COMMITTED entries
use the same timestamp (from the first call to getTimes-

tamp()) to ensure that the recovery algorithm either rolls
back all or none of the SGL section’s writes.

Crafty thus adaptively adjusts transaction sizes to provide
a tradeoff between persist latency and the risk of aborting.
Prior work in other contexts splits transactions to balance
between per-transaction costs and aborts costs [42, 51].

5 How Crafty Recovers After a Crash

This section presents Crafty’s recovery logic. We first de-
scribe how recovery is done under the assumptions that an
infinite log is initially zeroed (i.e., no wraparound or reuse)

and log entries are persisted atomically. Then we show how
to handle logs without these simplifying assumptions.

5.1 Basic Recovery Logic

Under the above-mentioned assumptions, the recovery ob-
server can detect persisted entries, which are entries with a
nonzero addr field (which is either an address or a LOGGED
or COMMITTED tag). A fully persisted sequence is a consecu-
tive sequence of persisted ⟨addr, oldValue⟩ entries preceded
by a (persisted) LOGGED or COMMITTED entry and con-
cluded by a persisted LOGGED entry.
The recovery observer needs to roll back the last fully

persisted sequence of each thread because some of the corre-
sponding writes may have persisted, but not all of them have
definitely persisted. Let ⟨LOGGED, ts⟩ be the sequence’s con-
cluding entry. Then we define a sequence’s timestamp to
be ts. To arrive at a globally consistent snapshot, the recov-
ery observer must also roll back every sequence that has a
timestamp later than or equal to the timestamp of any se-
quence being rolled back. Any persisted entries outside a
fully persisted sequence must not be rolled back because
their corresponding writes definitely have not persisted.

To roll back a sequence, the recovery observer applies the
⟨addr, oldValue⟩ entries in reverse order, performing *addr
= oldValue for each entry. The recovery observer rolls back
the fully persisted sequences in the reverse timestamp order.

5.2 Handling High-Performance Logs

Next, we discuss how Crafty provides correct recovery in
the absence of simplifying assumptions about the logs. The
following design handles circular logs that reuse entries, and
it does not require a log entry to be persisted atomically.
The design also addresses a limitation of Crafty’s design as
presented so far: Because the recovery observer rolls back at
least each thread’s last transaction, a rolled-back transaction
can be arbitrarily far back in time if a thread has not executed
a transaction in a while.

The design assumes that the system provides persistence
at word (or coarser) granularity. The design relies on each
thread’s circular log being large enough to hold log entries
for at least two persisted sequences (which are bounded due
to HTM bounding constraints).

Distinguishing reused entries. To handle reuse of undo
log entries (e.g., via a circular log), the recovery observer
needs to be able to tell whether an entry ⟨addr, oldValue⟩
is from the latest transaction or the last wraparound of
the log. Inspired by prior mechanisms [10], Crafty’s exe-
cution of transactions maintains a per-thread wraparound

bit that is encoded in each word and flips each time the log
wraps around. This wraparound bit allows recovery to dif-
ferentiate words written after versus before the latest log
wraparound. Because logged transactions occur more often
than wraparound, recovery can only observe log entries that
are after the next-to-latest wraparound and hence a single
wraparound bit suffices.

We further assume that all addresses are word (4- or 8-
byte) aligned. This allows us to steal two or three bits of the
addr word in each ⟨addr, value⟩ log entry. One of them is
used as the wraparound bit. The LOGGED and COMMIT-

TED tags are each represented as a reserved, aligned address.
Because NVM is only guaranteed to provide persistence

at word granularity, the value word in a ⟨addr, value⟩ log
entry will also need a wraparound bit. However, value needs
all of its bits for program values. We thus steal another bit
in each addr word to store a bit (e.g., the lowest bit) of the
value word, allowing that same bit of the value word to be
replaced with the wraparound bit.

Discarding entries and bounding rollback severity. In
order for Crafty’s Log phase to reuse log entries (e.g., via a
circular log), we must be able to discard some entries that
would no longer be needed by the recovery observer. Since
Crafty must not discard entries for a logged transaction that
needs to be rolled back, we need to ensure that the earliest
possible rollback timestamp ts is greater than the timestamp
of a logged transaction that Crafty is ready to discard. A
related issue we address here is bounding how far back in
time the recovery observer must roll back to. This distance
can be quite far if a thread has not executed a persistent
transaction for a while.

The logging algorithmmaintains a global timestamp tsLow-
erBound that is a lower bound on the earliest possible times-
tamp 𝑟 that recovery might need to roll back to. It is a lower
bound because, for performance reasons, it is kept up to
date lazily. When adding a LOGGED entry to its undo log, a
thread checks that

currentTS() < tsLowerBound +MAX_LAG

where MAX_LAG represents a customizable maximum time
duration for which recovery might need to roll back, and
currentTS() is a timestamp representing the current time.
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Likewise, whenever a thread T gets halfway through its cir-
cular log, it first checks if overwriting the next half of the
log will violate

T.log.earliestTSToBeOverwritten > tsLowerBound

If either of these conditions fails, thread T performs further
inspection, by checking the following two conditions for
every other thread U:

currentTS() < U.lastCommittedTxn.ts +MAX_LAG

T.log.earliestTSToBeOverwritten < U.lastCommittedTxn.ts

T can perform these checks safely (atomically) by executing
them in a hardware transaction, performing read-only ac-
cesses to U.logStart and U’s log. If either condition fails on
U, then T forces U to append an by committing a ⟨LOGGED,
getTimestamp()⟩ entry to U’s log (representing an empty
completed transaction). T can accomplish this by using a
transaction to safely update U’s log (because we need to
be careful about interference with U, especially its non-
transactional state manipulations).
After T makes each delinquent thread U commit a more

up-to-date transaction, it sets

tsLowerBound← min
U

U.lastCommittedTxn.ts

Note that most transactions only need to read a global shared
variable (tsLowerBound) that is mostly read-only, resorting
to more expensive operations only when they are halfway
through the circular undo log. The frequency of expensive
operations can be reduced by increasing the size of each
thread’s circular log.

Providing immediate persistence. Some persistent trans-
action systems, including DudeTM [39] and NV-HTM [7],
guarantee that if a persistent transaction completes and the
thread continues execution, then the recovered state will
include the completed transaction’s state. This łimmediate
persistencež property ensures that the persistent state is
consistent with any externally visible, irrevocable actions
between transactions such as system calls. However, Crafty
does not provide łimmediate persistencež because it does
not ensure that all writes have been persisted when a trans-
action completes (which is why recovery rolls back each
thread’s last logged transaction). Some prior work including
PMThreads [57] also does not provide immediate persistence.
Instead of providing immediate persistence, Crafty can

provide a method for łon-demandž immediate persistence
(to be invoked before performing externally visible, irrevo-
cable actions). Crafty can implement on-demand immediate
persistence by adding an ⟨LOGGED, getTimestamp()⟩ entry
to each thread’s, similar to the approach described above for
reusing log entries and bounding rollback severity. Modify-
ing other threads’ logs can be performed safely by executing
in a hardware transaction. Our prototype implementation
does not suppport on-demand immediate persistence.

6 Implementation

Our Crafty implementation, which we have made publicly
available,2 extends the publicly available NV-HTM imple-
mentation [7].3 The NV-HTM implementation also provides
a configuration that represents the prior work DudeTM [39].
It also includes an Non-durable configuration that simply ex-
ecutes each persistent transaction in a hardware transaction
and thus does not provide any crash-consistency guarantees.

The NV-HTM implementation emulates non-volatile mem-
ory in volatile memory by performing 300 ns of busy waiting
at drain operations (emulating the roundtrip latency of each
SFENCE instruction that follows one or more CLWB instru-
tions). This methodology is consistent with the evaluations
of prior work including DudeTM and NV-HTM [7, 39].

Crafty logging details. Each thread has an undo and a redo
log. Undo logs are in non-volatile memory and are circu-
lar. Redo logs are in volatile memory and not needed after
a persistent transaction completes, so the next persistent
transaction can reuse the redo log from the beginning.

Each undo log entry ⟨addr, oldValue⟩ contains two 8-byte
words: the written-to address and the old value. Each addr

value is 8-byte-aligned because all writes are expressed as 8-
byte, aligned stores. The implementationmerges the LOGGED
and COMMITTED entries into a single entry, overwriting
the entry’s timestamp on commit. This optimization is safe as
the recovery observer does not need to differentiate between
LOGGED and COMMITTED entries when deciding what
sequences to roll back. The recovery observer can check
if each log entry has persisted using the wraparound bit.
Timestamps come from RDTSC.

The implementation performs the work needed to sup-
port rollback (i.e., the wraparound bit and the log checks in
Section 5.2). However, we have not implemented the actual
recovery logic, leaving it and its evaluation to future work.

Mixed-mode accesses. The implementation requires that
all writes to persistent memory happen in persistent trans-
actions. Crafty can support writes to volatile memory in
transactions by ensuring transactions are idempotent with
respect to volatile memory accesses. Our implementation re-
quires manual transformation of transactions to make them
idempotent with respect to function-local variables. It does
not allow other volatile memory writes in transactions, but
could do so by adding undo logs for volatile accesses.

The same (volatile or persistent) variable can be accessed
both in and out of transactions, subject to the aforemen-
tioned constraints. Programmers must be careful to synchro-
nize such accesses correctly: Although Intel’s RTM provides
strong atomicity [21], Crafty may fall back to using a global
lock for providing thread atomicity. Programs thus must
ensure transactional data race freedom [12].

2https://github.com/PLaSSticity/Crafty
3https://bitbucket.org/dfscastro/nvhtm-selfcontained/src/master/
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Memorymanagement. Because the Log andValidate phases

execute the same code, the implementation must handle side
effects from malloc and free to avoid leaking memory and
failing checks in the Validate phase. The implementation
thus logs allocations during the Log phase and reuses the
allocated memory at corresponding malloc calls during the
Validate phase. Similarly, the Log phase logs free calls dur-
ing the Log phase, and either performs the logged frees after
completing the Redo phase or allows the Validate phase to
performed free calls and then discards logged frees.

7 Evaluation

This section evaluates the performance of Crafty by compar-
ing it with prior work’s HTM-compatible persistent transac-
tions and with non-durable transactions.

7.1 Methodology

Configurations. Our experiments run Crafty in thread-safe
mode to provide full ACID transactions. NV-HTM and Dude-
TM are run under their standard configurations. As a base-
line, we run the implementation’s Non-durable configuration
that does not provide any guarantees on crash consistency.
In addition to evaluating Crafty’s full-blown version (in

thread-safe mode), we evaluate two variants of Crafty that
exclude the Validate and Redo phases, referred to as Crafty-
NoRedo and Crafty-NoValidate, respectively, in the rest of the
section. These configurations help tease out the performance
effects of Crafty’s components. Note that these configura-
tions are also fully functioning configurations that provide
the same guarantees as Crafty.

Evaluated programs. We use two microbenchmarks and a
set of transactional memory benchmarks.
The bank microbenchmark is from the publicly available

NV-HTM implementation [7] that performs random trans-
fers between accounts. We configure the benchmark to run
five transfers (ten persistent writes) per transaction with
three levels of contention: high,medium, and no conflict. The
difference in conflict rates is achieved by varying the number
of accountsÐthe medium- and high-conflict configurations
operate on 4,096 and 1,024 cache-line-aligned accounts, re-
spectively. The no-conflict configuration avoids all conflicts
by partitioning the accounts among threads.
The other microbenchmark performs operations on a B+

tree and is adapted from the implementation of Zardoshti et
al. [62] by annotating writes to shared memory. The bench-
mark provides two variants: one performs only insertions
on the tree, and the other performs a mixture of lookups,
insertions, and removals.

As a standard benchmark suite for transaction memory re-
search, our experiments use the transactional STAMP bench-

marks [6]. In particular, we consider each transaction to be a
persistent transaction, and treat all shared-memory accesses
in transactions as accesses to persistent memory. This same

methodology was used in the evaluation of prior work [7].
We exclude the benchmark yada as it fails to run with Non-
durable and NV-HTM due to a pointer corruption, and bayes
because around half of the transactions fall back to the SGL
mode due to HTM incompatible instructions which makes
the results not meaningful.

Experimental setup. We run the experiments on a machine
with a quiet 16-core Intel Skylake processor with hyper-
threading disabled. The implementation uses native hard-
ware transactions [48] and emulates non-volatile memory as
described in Section 6. Each reported result is the arithmetic
mean of five trials. The throughput results are normalized
to the throughput of the single-thread, non-durable configu-
ration of the same benchmark. We define throughput as the
inverse of the execution’s wall-clock time.

7.2 Performance Results

This subsection presents our main results: performance and
scalability for the evaluated programs across thread counts
and persistent transaction implementations. We also per-
form additional measurements that help explain the perfor-
mance including (1) breakdowns of persistent transactions
by Crafty phases and (2) hardware transaction commit and
abort counts and abort causes. These additional measure-
ments, as well as performance results that emulate 100 ns
(instead of 300 ns) write latency, can be found in an extended
arXiv version [14].

Bankmicrobenchmark. Figure 6 compares Crafty and other
persistent transaction implementations, under different con-
tention levels. The general trend behind these results is
that Crafty outperforms NV-HTM and DudeTM under low-
contention settings, when there are few threads or few con-
flicting transactions. For example, under all contention levels
Crafty outperforms NV-HTM and DudeTM for 1ś2 threads.
Under high contention, Crafty scales poorly because it

Crafty amplifies the transactional conflicts by executing per-
sistent transactions using more hardware transactions than
other approaches.While NV-HTM scales well up to 4 threads,
its scalability limitations (Section 2) cause it to anti-scales
above 4 threads and underperforms Crafty above 8 threads.
Crafty outperforms or performs as well as the competing
approaches except for NV-HTM on the high-conflict config-
uration at 4 threads.
Note that NV-HTM’s and DudeTM’s throughput drops

dramatically at 16 threads. NV-HTM and DudeTM use an
extra thread that performs writes to persistent memory. Be-
cause 16 program threads are running on 16 cores, the extra
thread is scheduled on the same core as a program thread,
causing frequent context switches because of the producerś
consumer relationship between the two threads.

Figure 6(c) motivates the Validate phase. When the num-
ber of threads is above 4, Crafty-NoValidate is slower than
Crafty because Redo fails due to timestamp checks, but
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(c) No contention

Figure 6. Throughput of Crafty and competing approaches,
using the bank microbenchmark at three contention levels.
Crafty generally outperforms NV-HTM and DudeTM, espe-
cially under low contention and at low thread counts.
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(a) Insert operations only
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(b) Lookup, insert, and remove operations

Figure 7. Throughput of Crafty and competing approaches,
on the B+ tree microbenchmark, for mixed operations and
insert only. Crafty scales better than NV-HTM and DudeTM
and has low overhead compared with Non-durable.

Validate succeeds since there is no true contention. Re-
sults in our extended arXiv version [14] support this conclu-
sion: Crafty-NoValidate incurs many explicit aborts at thread
counts above 4, caused by failed timestamp checks.

B+ tree microbenchmark. Figure 7 shows the results for
the B+ tree microbenchmark. NV-HTM and DudeTM scale
poorly compared with Crafty and Non-durable, presumably
as a result of serializing execution during transaction commit
and when persisting writes; our extended results [14] do not
show significant differences in transaction abort rates.
For both configurations of the benchmark at all thread

counts, Crafty outperforms NV-HTM and DudeTM, and has
modest overhead over Non-durable.

STAMPbenchmarks. Figure 8 shows results for the STAMP
benchmarks. Across the benchmarks, Crafty generally per-
forms better than NV-HTM and DudeTM and scales as well
as Non-durable (the exception is intruder, discussed below).
Figures 8(a) and 8(b) show that Crafty outperforms NV-

HTM and DudeTM at thread counts above 4 for kmeans

under both high and low contention.
Figures 8(c) and 8(d) show that Crafty adds modest over-

head over Non-durable on vacation. Except for the high-
contention vacation configuration above 8 threads, for which
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Figure 8. Throughput of Crafty and competing approaches, on the STAMP benchmarks. Crafty has low overhead and scales
well at high thread counts.
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NV-HTM and DudeTM perform best, Crafty outperforms
competing approaches. (The sudden drop in NV-HTM and
DudeTM’s throughput at 16 threads is the same issue as
described above for the bank microbenchmark.) Both fig-
ures show the benefits of using both the Redo and Validate
phases under higher thread counts but low contention.

Figures 8(e) and 8(f) show similar performance for Crafty,
NV-HTM, and DudeTM on labyrinth and ssca2. An excep-
tion is that for ssca2, which has very low contention, Crafty-
NoRedo performs significantly better than the other configu-
rations. As our extended results show [14], across all thread
counts, Crafty-NoRedo, which uses only Log and Validate

phases, experiences very few aborts.
Figure 8(g) shows that Crafty scales well at high thread

counts for genome, while NV-HTM and DudeTM are un-
able to scale quite as well. Crafty-NoValidate scales poorly
with more threads, showing the value of the Validate phase
when the Redo phase fails frequently due to numerous si-
multaneous transactions.

Figure 8(h) shows that for intruder, Crafty performs worse
than NV-HTM and DudeTM. While detailed statistics in our
extended results [14] show that Crafty configurations com-
mit and abort significantly more hardware transactions than
the other configurations, these results do not explain Crafty’s
poor performance: Crafty inherently commits, and often
aborts, more hardware transactions than other approaches
across the other programs, yet generally outperforms NV-
HTM and DudeTM. As of the camera-ready deadline, we
have not been able to understand this issue better (we fixed
an issue just days before the deadline that allowed our im-
plementation to run intruder without error).

8 Related Work

Crafty leverages hardware transactional memory (HTM)
to control persist ordering, while also supporting the use
of commodity HTM for concurrency control in persistent
transactions. To our knowledge, no prior work has used
HTM to control persist ordering. Prior work supports com-
modity HTM for concurrency control in persistent transac-
tions [7, 15, 39]. DudeTM and NV-HTM use shadow-paging-
based copy-on-write mechanisms and incur scalability bot-
tlenecks [7, 39]; we compared with them qualitatively and
quantitatively in this paper. Giles et al. introduced an ap-
proach for HTM-based persistent transactions that requires
instrumenting program reads [15], arguably forgoing a key
benefit of using HTM instead of STM. In contrast with the
prior work, which works around the challenges of combin-
ing persistence and HTM, Crafty leverages HTM to control
persist ordering, as realized in the new nondestructive undo
logging mechanism.

Modifying HTM. Several research efforts propose nontriv-
ial modifications to commodity HTM to support persistent

transactions [3, 4, 16, 30, 54]. In contrast, Crafty shows how
to leverage and work with contemporary systems.

Software persistent transactions. Many existing systems
provide persistent transactions [9, 11, 13, 17, 19, 32, 33, 41, 43,
45, 47, 49, 52, 57]. These approaches use undo, redo, or copy-
on-write mechanisms to provide failure atomicity. The ap-
proaches either assume that programs provide thread atomic-
ity through locks or another concurrency control mechanism,
or they apply STM to provide thread atomicity together with
failure atomicity.

Failure atomicity of critical sections. Several approaches
including Atlas provide failure atomicity for lock-based crit-
ical sections [5, 8, 23, 27, 40] or synchronization-free re-
gions [18]. Crafty (in its thread-unsafe mode) could likewise
provide failure atomicity for lock-based regions.

Failure ordering. This paper focuses on providing failure
atomicity. Providing failure atomicity relies on the lower-
level property of failure ordering, which refers to the order
of persisted writes that the recovery observer sees. This pa-
per’s nondestructive undo logging leverages HTM to control
persist ordering. Prior work introduces memory persistency

models, which extend memory consistency models to incor-
porate the recovery observer [29, 31, 34, 44].

9 Conclusion

Nondestructive undo logging is a new crash-consistency
mechanism that leverages commodity HTM to persist a trans-
action’s undo log entries before its persistent writes. Crafty
is a new design that uses nondestructive undo logging to pro-
vide persistent transactions. An evaluation shows that Crafty
performs well compared with non-durable transactions and
has better performance than state-of-the-art persistent trans-
action designs. These results show the potential for efficient
persistent transactions using today’s computing systems.
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