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Abstract
Byte-addressable non-volatile memory (NVM) makes it pos-
sible to perform fast in-memory accesses to persistent data
using standard load/store processor instructions. Some ap-
proaches for NVM are based on durablememory transactions
and provide a persistent programming paradigm. However,
they cannot be applied to existing multi-threaded applica-
tions without extensive source code modifications. Durable
transactions typically rely on logging to enforce failure-
atomic commits that include additional writes to NVM and
considerable ordering overheads.
This paper presents PMThreads, a novel user-space run-

time that provides transparent failure-atomicity for lock-
based parallel programs. A shadow DRAM page is used to
buffer application writes for efficient propagation to a dual-
copy NVM persistent storage framework during a global
quiescent state. In this state, the working NVM copy and the
crash-consistent copy of each page are atomically updated,
and their roles are switched. A global quiescent state is en-
tered at timed intervals by intercepting pthread lock acquire
and release operations to ensure that no thread holds a lock
to persistent data.

Running on a dual-socket system with 20 cores, we show
that PMThreads substantially outperforms the state-of-the-
art Atlas, Mnemosyne and NVthreads systems for lock-based
benchmarks (Phoenix, PARSEC benchmarks, andmicrobench-
mark stress tests). Using Memcached, we also investigate
the scalability of PMThreads and the effect of different time
intervals for the quiescent state.
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1 Introduction
Non-volatile memory (NVM) access latency improvements
potentially enable data persistence to be implemented with
much lower overhead by replacing costly serial accesses to
block devices with accesses to NVM resources. To leverage
NVM technology, it is necessary to address the fundamental
challenge of providing, and ensuring correct consistent re-
covery of data from persistent memory in the presence of
system crashes (e.g., unexpected power failures) [20, 36–38].
Durable memory transactions are one approach for en-

forcing memory persistence that have been investigated in
[4, 7, 10, 22, 24, 30, 42], where, a group of persistent updates
are atomically committed to NVM with respect to any poten-
tial system failure. Note that the implementation of durable
memory transactions imposes strict constraints on the or-
dering of writes to persistent memory [22, 35], and this can
severely limit performance. Typically, most durable mem-
ory transaction implementations rely on logging [10, 24, 42],
where additional write accesses to NVM are used to record
each update to persistent memory as a log entry [47]. This
results in a twice-write overhead, making logging less de-
sirable because of the limited write endurance of NVM [2].
Further, legacy applications must be rewritten to adhere to a
transactional programming paradigm, and to directly exploit
durable transaction APIs for NVM [5].

https://doi.org/10.1145/3385412.3386000
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Beyond durable memory transactions, research projects
have applied persistent semantics to lock-based programs
via the inference of program-defined Failure-Atomic SEctions
(FASEs) [5] from conventional critical sections. These sys-
tems either adopt logging mechanisms [5, 16, 25], or target
(not available) non-volatile on-chip cache features [19].

We propose PMThreads, a novel runtime that leverages
a dual-copy scheme to enforce crash-consistent FASE exe-
cution. More specifically, the PMThreads runtime maintains
dual-versioned persistent data in NVM and only a single
DRAM copy of each page is transparently accessible to the
application. PMThreads safely exploits its dual-versioned
operation by intercepting lock acquire and release opera-
tions to enforce global quiescent states to occur at regular
timed intervals where no thread can hold a lock on persistent
data. Write updates are buffered in the DRAM copy of a page
before persistently propagating the updates in-place to the
NVM working copy without any kind of logging. After a
successful update, PMThreads atomically switches the roles
between the working copy and the consistent copy in NVM.
Our main contributions are summarized as follows:

• PMThreads introduce a new dual-copy mechanism to
perform in-place persistent writes over one copy and
to obtain a consistent fallback using the other copy.
Thus we reduce the two writes to NVM present in
conventional log-based solutions to a single write.
• Global quiescent states are enforced to occur at timed
intervals by intercepting pthread operations. Buffered
writes to DRAM are safely and crash-consistently per-
sisted to NVM within quiescent states.
• Wedemonstrate substantial performance improvements
for PMThreads over NVthreads and Atlas using mi-
crobenchmarks for stress-tests (at least 4.7× faster), as
well as the Parsec and Phoenix benchmark suites (at
least 2.6× faster).
• Using Memcached, we also investigate the scalability
of PMThreads and the effect of different time intervals
for the quiescent state. We show that PMThreads is
less than 2× average slowdown compared to a volatile
pthread-based Memcached baseline.
• The recovery time of PMThreads is more than 1000×
faster than Atlas, and the NVM space overheads of
Atlas are at least 16× greater than that of PMThreads.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background and related work. Section 3
provides an overview of the design of PMThreads, while
Section 4 describes the implementation. Section 5 discusses
the limitations of PMThreads. Section 6 describes the experi-
mental evaluation, and Section 7 presents the conclusions.

2 Background and Motivation
NVM technology trends and the main challenges for persis-
tence and crash recovery support in hybrid systems with
DRAM and NVM, are presented along with related work.

2.1 Non-Volatile Memory Trends
RAM (STT-RAM) [6], Phase Change Memory (PCM) [44],
and Intel and Micron’s 3D XPoint memory [33], offer im-
proved write durability/endurance as well as byte-addressing
with DRAM-like performance and higher storage density
than DRAM. Current technology trends suggest that future
NVM will offer larger main memory resources than DRAM,
but with relatively longer access latency. Consequently, mem-
ory systems based on volatile caches and hybrid combina-
tions of DRAM and NVM are expected to become one of
the preferred design choices for incorporating NVM into
existing storage hierarchies [45].
Intel Optane DC Persistent Memory (OPM) [1] became

generally available in 2019 in a hybrid DRAM/NVM style.
OPM features two different operating modes. In Memory
Mode, OPM serves as a volatile cost-effective DRAM replace-
ment with its large memory capacity. In App Direct Mode,
both volatile DRAM and non-volatile OPM are explicitly
available to applications. To make effective use of Optane,
applications need to flexibly decide what is to be maintained
in DRAM vs. what is stored in OPM.
Persistent memory must be able to determine when an

update has propagated to main memory, and this is conven-
tionally determined by the cache line eviction policy that is
implemented using a combination of operating system and
hardware functionality.

Processors typically expose explicit cache flushing instruc-
tions to software, such as clflush and clflushopt on the
x86 architecture. Such instructions lead to excessive and un-
necessary cache line invalidations that can eliminate the
performance gains of cache memory. To address this prob-
lem, Intel has proposed the clwb instruction to explicitly
write back a cache line without invalidation. However, each
individual clwb may still incur a significant stall overhead.
We found clwb to have a similar overhead to clflushopt
when executing a simple microbenchmark that uses a for-
loop to increment and flush each integer in an array. The
microbenchmark was executed on an Alibaba cloud server
with an Intel Xeon Platinum 8269 Cascade Lake processor.

Enforcing cache flushing on its own is insufficient to en-
sure consistent updates to persistent memory because out-of-
order processor microarchitectures typically allow stores to
different addresses to be reordered and stores may not reach
NVM in program specified order [36]. Memory barriers, like
sfence on x86, are therefore necessary to control the order
of persistent updates to NVM, but guarding each persistent
write with a memory barrier is prohibitively expensive [28].
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Furthermore, it is evenmore challenging to perform failure-
atomic updates to NVM [11, 17, 23, 24, 29]. To ensure correct
recovery from NVM in the case of a failure, persistent data
requires atomic updates. Currently, only word-granularity
(e.g. 64 bits) failure-atomic memory operations are provided,
and a logical update to NVMmay consist of a series of writes
to different (word) locations.

Write ahead logging (WAL) is a commonly-used technique
to enforce memory persistence [7, 42]. WAL constrains mod-
ifications to target NVM locations to be delayed (not applied)
until the corresponding log entries are persistent, thus, NVM
data can always be recovered to a consistent state after a
system crash using the log. Undo logging and redo logging
are two essential WAL paradigms. Undo logging records old
values of NVM data to log entries and performs in-place up-
date after persisting the log, this incurs persistent ordering
overhead for each individual persistent store. Redo logging
redirects persistent updates to a redo log instead of per-
forming an in-place update, thus, this only requires a single
persistent ordering for each transaction (or FASE). A sin-
gle persistent ordering can be enforced by a single memory
fence operation between all log entries, and all writes in a
completed FASE. However, the cost induced by the update
redirection in redo logging can itself also be expensive [41].
For example, with redo-logging, one must sequentially go
through the redo log to obtain the latest value.

2.2 Related Work
Lock-delineated Failure-Atomic Section. NVthreads [16],

Atlas [5], JUSTDO logging [19], iDo [25] have in common
that they enforce failure-atomicity to persistent data at the
boundaries of Failure Atomic SEctions (FASEs). This is in-
ferred from lock acquisition, and lock release operations.
They maintain a persistent log to ensure correct crash re-
covery, which introduces extra writes to NVM because they
must maintain logging entries for their in-progress updates.
In contrast, PMThreads benefits from performing direct in-
place updates to persistent data using only a single NVM
round-trip. Among these systems, PMThreads is closer to
NVthreads [16], which aims at a hybrid DRAM/NVM archi-
tecture, whereas the other three runtime are designed for
NVM-only memory systems.

Persistent Memory Transactions. Persistent memory
transactions [4, 12, 15, 24, 30, 42, 46] are sequences of in-
structions guaranteed to take effects in an all-or-nothing
way with respect to a system crash. DudeTM [24] and NV-
HTM [4] leverage shadow DRAM copies of NVM to buffer
modifications to persistent memory, and to decouple data
persistence from transaction execution. For example with
DudeTM, each persistent location L in NVM has a shadow
location Shadow-L in DRAM. When application writes to L

(a persistent write), DudeTM will direct the write to Shadow-
L and return to the user. The real target L will be asyn-
chronously updated. For workloads that present hot-spots1,
NV-HTM and DudeTM checkpoint only the most recent
hot-spot update to persistent memory, and this is used to
supersede repeated redo logs for the hot persistent spots. In
contrast, the periodic-persistence used by PMThreads offers
the potential to incur only one propagation to persistent
memory for repeated updates to the same persistent location
within one execution period. The quiescence enforcement of
PMThreads makes it possible for updates issued by different
threads over a concentrated hot-spot region to be coalesced,
instead of maintaining per-thread log entries as in DudeTM
and NV-HTM.

Pisces [15] leverages Multi-Version Concurrency Control
(MVCC) to exploit snapshot isolation on persistent mem-
ory. Pisces maintains two data versions in NVM, and reuses
redo logs to provide its newest data version. Crafty [21] has
developed a novel technique called nondestructive undo log-
ging where undo log updates are decoupled from program
memory writes for persistent transactions.
Kamino-Tx [30] relies on dual NVM copies to achieve

memory persistence. In particular, Kamino-Tx synchronizes
its dual persistent heaps, whereas PMThreads updates its
dual persistent NVM copies separately, in turns. In Kamino-
Tx, any dependent transactions (transactions with read/write
sets intersecting with those of a prior transaction) must wait
for the main and backup copies to become consistent with
each other. This requires the dependent transaction to hold a
read-write lock for each object in its working set until com-
mitting, and this introduces significant programming efforts.
PMThreads adopts page versioning to dynamically switch be-
tween the working and the persistent NVM copies of pages.
During each interval, only the working copies are modified,
and the persistent copies serve as a consistent fallback. For
DudeTM, NV-HTM, Kamino-Tx and other systems in this cat-
egory, the underlying assumption is that applications contain
transactions rather than lock-based applications. PMThreads
does not require transactional applications. Furthermore,
Kamino-Tx and Crafty target pure NVM systems, whereas
DudeTM, NV-HTM and PMThreads are designed for hybrid
DRAM/NVM systems.

Periodic Persistence. Periodic persistence solutions, such
as [8, 34], partition data structure operations into epochs.
Persistent data can be recovered to the state at the end of the
last completed epoch before a crash. By only issuing cache
line flush operations at the end of an epoch, periodic persis-
tence solutions achieve considerable improved performance
over traditional approaches that adopt eager cache flushing
for each individual persistent store. PMThreads extends this
idea to general-purpose persistent memory programs, by

1A hot-spot occurs when large streams of updates are issued by different
transactions over a small memory region [4].
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Figure 1. Crash-consistent page modification based on dual-
versioned persistent copies.

periodically enforcing a global quiescent state to occur. Ad-
ditionally, PMThreads integrates this with dual-copy based
memory persistence.

3 PMThreads Design Overview
PMThreads provides persistence for FASEs delineated by the
outermost lock and unlock pairs in lock-based programs fol-
lowing programming model of NVthreads. Persistent writes
must be issued only within critical sections (FASEs), and all
applications must rely on locking primitives provided by the
pthread library. A persistent memory allocation interface
nvmalloc is provided for user programs.

Overall, PMThreads works following the five aspects that
are described in the next subsections: Section 3.1 the dual
persistent copy framework for data objects allocated by
nvmalloc, Section 3.2 memory access write monitoring, Sec-
tion 3.3 enforcing a quiescent state to capture consistent
state to NVM, Section 3.4 failure-atomic version switching,
and Section 3.5 failure recovery.

3.1 The Dual-Copy Framework
The dual-copy framework is similar to a conventional dy-
namic memory allocation using malloc, except that user
programs acquire persistent memory using our nvmalloc
interface. For each persistent page allocated to a user pro-
gram, the PMThreads runtime maintains a shadow DRAM
page that is assigned and associated with one working copy
and one consistent copy in NVM.

A user application directly interacts only with the DRAM
copy, and the PMThreads runtime is responsible for quies-
cent state operations where DRAM shadow page write up-
dates are transferred to the corresponding durable NVM re-
gions, and for performing the role-switching between work-
ing and consistent copies.

As illustrated in Figure 1, each time we persist data from
the DRAM-side to the NVM-side, only one persistent copy,
referred to as the working copy, will be modified. The other
persistent page will be regarded as the consistent copy. Rather

than persisting undo or redo log entries before touching the
target NVM region (this involves two-round-trips to NVM),
during a global quiescent state, we perform in-place updates
directly to the working copy and leverage the consistent copy
as a fallback to ensure failure-atomicity. Dynamic role switch-
ing changes between working copy and consistent copy are
part of the version update policy of PMThreads. As we only
make the DRAM-side memory accessible to user programs,
version switching on the NVM-side will be fully transparent,
and no application modifications are required. The resource
consumption costs of the dual-copy mechanism incurs the
additional cost of double-sized persistent NVM memory al-
location compared to a conventional memory allocator.

For ease of implementation, and to ensure that our results
are comparable to NVthreads, we have used eager NVM
page allocation, but lazy allocation could be used to reduce
additional memory overheads to 2x of the working set size
of persistent memory.
Note that the dual-copy mechanism avoids the costs of

logging, and also eliminates the extra memory usage for stor-
ing log entries. Furthermore, because of dynamic version
switching between dual copies, PMThreads enforces mem-
ory persistence with only one-round-trip to NVM. As in
Dthreads [26], PMThreads leverages page-diffing to deter-
mine page updates. Byte-by-byte comparisons between the
DRAM-side copy and the working copy are performed to
minimise persistent writes to NVM. Therefore, the dual-
version mechanism should achieve better wear-leveling than
logging-based solutions due to a reduced number of writes.
PMThreads only stores changes, rather than every store in-
struction to the consistent copy.

3.2 Memory Access Monitoring
In PMThreads, we prefer transparent memory modification
tracking approaches, based on compiler instrumentation
as used by Atlas, and a virtual memory protection based
approach as used by NVthreads. This enables PMThreads to
avoid the need for programmers to wrap persistent writes
with special library functions, as in [13]. Though PMThreads
employs page-level dual-copy management, we still observe
that excessive TLB misses triggered by page protection
faults can prevent PMThreads from accomplishing efficient
memory tracking.
On the other hand, compiler instrumentation, could be

used as a page-level tracking scheme, for example, by hashing
tracked addresses to their corresponding page boundaries
as a substitute for expensive page-based memory protection
solutions. However, word-level memory tracking still needs
to intercept each store instruction.
Regarding the above design considerations, we provide

two versions of PMThreads, where each persists data at
page-level granularity, PMThreads-I tracks DRAM memory
modifications at word-level, and PMThreads-P that lever-
ages page protection mechanisms to monitor DRAM writes
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at page-level. We observe that fine-grained tracking and
coarse-grained persistence results in substantially improved
performance, Section 6 discusses this in detail.

3.3 Capture Consistent State to NVM
Memory access tracking records the dirty DRAM locations,
but we must also determine when to persist the buffered
updates to NVM. Determining when to capture and preserve
the memory state for persistence is challenging for lock-
based code, and significantly different from transactional
memory systems, that typically guarantee isolation between
concurrent memory transactions.
In lock-based programs, especially ones having nested

critical sections, intermediate updates in one FASE can be
visible to other ones. For a FASE FB that observes the in-
progress persistent states of FASE FA, then FB is dependent
on FA. Thus, to ensure correct recovery, if the early FASE
FA fails, then the effects of FB have to be aborted, and this
can lead to complex dependencies. Dependencies between
critical sections can be described as related to i), an inner
critical section that is completely surrounded by an outer
critical section (perfect nesting), ii) overlapping nested criti-
cal sections, such as occurs in lock-chaining, and iii), critical
sections that require condition variables to signal and wait
on changes in application synchronization states.
To address the problem of dealing with arbitrary inter-

leaving patterns for critical sections, NVthreads adopts the
multi-threading paradigm proposed by Dthreads [26], this
converts conventional threads running in a shared address
space into child processes with separated address spaces, that
enables isolated thread execution. To preserve the original
multi-threaded semantics, key synchronization points in pro-
gram execution, such as thread creation/destruction, thread
joining, lock acquisition, lock release, etc., are intercepted
by the runtime to sequentially merge the modifications to
shared state. However, this is at the cost of heavyweight pro-
cess context switches that are more expensive than switching
threads within a single shared process address space.

In addition, when threads in isolated address spaces mod-
ify the same shared page, each thread will generate its own
private redo log entries, leading to further increases in writes
to NVM. Essentially, this involves merging threads updates
in different process address spaces to the shared memory.
Further, the isolated threads will suffer from inefficient fine-
grained synchronization operations due to excessive global
barriers andmemory page copies between private and shared
address spaces. This is because at each synchronization point,
isolated threads need to commit their local changes from
private memory to shared memory resources.

Addressing these issues, PMThreads does not employ iso-
lated execution in different processes, instead it keeps threads
in a single shared memory space and takes control over isola-
tion by enforcing a quiescent application state that exploits

bool crashed ();
void* nvmalloc(size_t sz, char* handle);
void* nvrecover(void* v, size_t s, char* handle);
int main() {

int* p;
if(crashed ())

nvrecover(p, sizeof(int), "Integer");
else

p = (int*) nvmalloc(sizeof(int), "Integer");
return 0;

}

Figure 2. Failure recovery API [16].

careful interception of lock acquisition and lock release oper-
ations. As mentioned previously, PMThreads expects writes
to persistent regions to be protected by critical sections. Thus,
PMThreads assumes that when a thread does not hold a lock,
it will not issue writes to persistent memory. We consider
such a thread to be in a quiescent thread state.
Through intercepting lock acquisition and lock release

operations, PMThreads can capture the states of each live
thread and how many locks it holds. When locally observing
a point at which a thread becomes quiescent, we can instruct
it to enter a barrier to wait for the globally quiescent thread
state. The exact operation of PMThreads in this context is de-
scribed in Section 4. Once a global quiescent state is reached,
PMThreads can ensure that data in the DRAM-side will not
be corrupted while it is moved to the NVM-side home loca-
tions. After making the captured consistent states durable,
PMThreads will return control back to the application pro-
gram to continue from its suspended execution.

3.4 Failure-Atomic Version Switching
PMThreads can execute in-place modifications from DRAM
onto the NVM working copy because it maintains dual per-
sistent copies. Each time PMThreads successfully makes the
working copy consistent, roles between the working copy
and consistent copy are switched. Thus, persistent data is
updated to point to the new consistent version. However,
the dual-copy mechanism is only capable of ensuring failure-
atomicity for updating a single page. When persisting mul-
tiple pages together, role switching itself needs to occur
failure-atomically to guarantee memory persistence for the
whole persistent data. Addressing this problem, we propose
a failure-atomic version switching algorithm, to guarantee
that roles switching between multiple dual-copy pairs will
be atomically visible to application programs.

3.5 Failure Recovery
NVthreads, must replay redo log entries to the post-recovery
address space, while PMThreads can directly map consistent
durable copies into shadow memory via the copy-on-write
mechanism of the operating system. Having put the per-
sistent heap into a consistent state, further recovery tasks
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are considered as application-specific in PMThreads. We
implement the recovery interfaces proposed by NVthreads
to facilitate the user-defined recovery process (see Figure 2,
each durable object is attached with a user-defined handle in
nvmalloc, that is used in conjunction with the nvrecovery
method to recover a variable after a crash. Note that the
crashed function returns a boolean value to differentiate
between initial execution and a recovered one. As is the case
with other failure-atomicity runtimes, failure recovery in
PMThreads is orthogonal to the object-specific recovery as
proposed in [9] and [31].

4 Implementation of PMThreads
This section describes (i) the implementation for the inter-
ception of lock acquisition and lock release functions re-
lated to algorithm 1, (ii) the details of failure-atomic version
switching in algorithm 2, and (iii) the recovery from crash
procedure for PMThreads.

4.1 Persist Interval and Lock/Unlock Interception
PMThreads requires a global quiescent period, during which
there will be no thread holding any mutex lock, in order to
be able to move DRAM buffered writes consistently to the
NVM pages. Quiescent states are enforced periodically, using
a configurable ∆T persist interval, where all threads execute
a pmthreads_barrier in order to safely persist modified
shared data.
PMThreads intercepts the mutex lock and unlock func-

tions from the standard pthread library, andmaintains thread
local lock counters Lt for each thread t to observe the quies-
cent status of each individual thread. In addition, PMThreads
assigns each thread t with a thread local timing duration δt .
Each time Ltdrops to zero, the thread will check its local δt
against ∆T to determine whether it is necessary to continue
to execute or, if it must wait on a pmthreads_barrier in
order to persist the DRAM buffered writes to shared storage.
Therefore, each thread locally determines when it must wait
on a pmthreads_barrier. In this way, we enforce global qui-
escent states to occur where it is safe to persist data. Threads
can only exit the barrier, once all threads that potentially
issue persistent memory writes in the current persist inter-
val have entered the barrier, and the persist operation has
completed.
Hereafter, we refer to such potential persistent writer

threads as live pmthreads. PMThreads keep records of the
total number of live pmthreads as Σpm . In detail, follow-
ing the practice of Dthreads[26], we intercept pthread li-
brary functions to let them call into pmthreads_enter or
pmthreads_exit to register or unregister the intention of
a thread to write to persistent memory. It is intuitive to in-
tercept pthread_create with pmthreads_enter, and inter-
cept pthread_exitwith our pmthreads_exit. For function
calls that may result in the calling thread blocking, such

Algorithm 1: pthread interception
globally shared :∆T , Σpm , ω, PMcond , PMmtx
thread local :Lt , δt
func pthread_mutex_lock_hook(mutex)

Lt ← Lt + 1 ;
return pthread_mutex_lock(mutex);

end

func pthread_mutex_unlock_hook(mutex)
pthread_mutex_unlock(mutex);
Lt ← Lt - 1;
if Lt == 0 then

update δt ;
if δt > ∆T then

pmthreads_barrier();
end

end
end

func pmthreads_barrier()
pthread_mutex_lock(PMmtx);
ω ← ω + 1;
if ω < Σpm then

pthread_cond_wait(PMcond , PMmtx);
else

persist();
ω ← 0;
pthread_cond_broadcast(PMcond);

end
pthread_mutex_unlock(PMmtx);

end

func pmthreads_enter()
pthread_mutex_lock(PMmtx);
Σpm ← Σpm + 1;
pthread_mutex_unlock(PMmtx);

end

func pmthreads_exit()
pthread_mutex_lock(PMmtx);
Σpm ← Σpm - 1;
if ω == Σpm ∧ Σpm>0 then

persist();
ω ← 0;
pthread_cond_broadcast(PMcond);

end
pthread_mutex_unlock(PMmtx);

end

as condition wait, thread join, etc., our interceptions will
firstly deregister the calling thread with the PMThreads
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Algorithm 2: Failure-atomic version switching
func persist()

for each dirty page p in DRAM do
p ′← NVM copy of p with smaller seq;
p ′.seq← VERd + 1;
clflush p ′.seq;
sfence;
update p ′ with diff_bytes(p, p ′);
clflush diff_bytes(p, p ′);

end
sfence;
VERd ← VERd + 1;
clflush VERd ;
sfence;

end

runtime, then execute the original pthread function. Mean-
while, we intercept the return point where the blocked thread
will be woken up, and there a thread is re-registered to the
PMThreads runtime. If a thread performs unregistration with
the PMThreads runtime in a locally non-quiescent state, such
as a condition wait, the PMThreads runtime will check if a
thread has performed any modifications to DRAM shadow
pages. If it has issued no such writes, the PMThreads runtime
will allow a thread to directly leave the runtime. Otherwise,
the runtime will temporally turn off the periodical quies-
cence enforcement until this thread is back to active.

Note that Dthreads injects a global barrier for all synchro-
nization operations, thereby serializing all parallel opera-
tions and incurring significant synchronization overhead.
PMThreads need only periodically enforce a global barrier
to ensure the persist interval ∆T is respected.

4.2 Failure-Atomic Version-Switching
Algorithm 2 enforces failure-atomicity for version switch-
ing, we maintain a global latest durable version number
(VERd ), that is atomically incremented at the end of the per-
sist procedure. Meanwhile, each persistent copy is associated
with a local version number (seq) that is used to distinguish
the working copy from the consistent copy in a dual-version
shadow pair. More specifically, during the persist procedure,
the persistent copy with smaller seq in a dual-version pair
becomes the working copy. Right before being updated, the
seq of the working copy is set with the version number next
to the current one (VERd + 1).
In the case that the persist procedure is interrupted by a

system crash, the recover process leverages the VERd and
the seqs to reach the last consistent state before the crash.
During crash recovery, the retained VERd will effectively
denote persistent copies with seqs larger than the VERd as
inconsistent. In case both seqs of a dual-version pair are

Recovered VERd : 5

0

1

3

6

4

5

1

2

4

6

2

6

DRAM page inconsistent NVM copy consistent NVM copy

Figure 3. Failure recovery process.

no larger than the retained VERd , the one with larger seq
will be the consistent copy. In summary, updating the seq
of a working copy is represented as a version-switch local
to the dual-version shadow pair, which cannot be visible to
the post-crash stage unless the persist procedure completes
normally. Thus, version switching for multiple dual-copy
pairs will take effect atomically with the atomic increment
of the global VERd .

4.3 Recovery
With dual-copy based memory persistence assurance and
failure-atomic version-switching, the PMThreads runtime
is capable of recovering a persistent region to the consis-
tent state before a crash occurred. The recovery process of
PMThreads essentially involves making the consistent copy
in each dual-copy pair visible to the user program.
As illustrated in Figure 3, the consistent versions can be

recognized through the global VERd and the seqs. The re-
covered VERd (5 in the example) indicates the last consis-
tent global version before a crash. The retained seq value
(depicted in the bottom-right part of each persistent copy)
reveals whether it has been enforced to be consistent. Ac-
cordingly, the seqs that are larger than the recovered VERd
reflect interrupted updates, that were assigned to modified
pages during the interrupted update procedure. We could
infer that the runtime was trying to move forward to version
6, but a failure occurred. Thus, persistent copies with seqs
larger than 5 are recognized as holding inconsistent informa-
tion. For dual-version durable pairs with both seqs no larger
than the recoveredVERd , the copy with the larger seq in the
pair will be the consistent copy.

We abstract persistent memory pages as NVM-backed files
and leverage the mmap interface to map consistent copies into
the shadowing address space.Wemake the recovered DRAM-
side shadow persistent pages as copy-on-write mappings of
the consistent copies to facilitate the recovery procedure,
which is implemented through calling mmap in combination
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with the MAP_PRIVATE flag. After recovering the persistent
heap to a consistent state, further recovery is application-
specific, and directly related to how to restart the applica-
tion’s processing from a consistent persistent storage state.
We keep track of the base address of the DRAM-side mem-
ory in persistent memory and try to map that region at the
same virtual address (calling mmap with MAP_FIXED) after
restarting. If we cannot establish the fixed mapping, offsets
between the new base and the previous one will be provided
to the application-specific recovery procedure.

5 Discussion
PMThreads-I requires the source code of user programs and
third-party libraries that could access persistent memory to
be available for compile-time instrumentation. PMThreads
intercepts standard C library functions such as memcpy, str-
cpy, etc. to track memory locations being touched by func-
tion calls. Related work, such as Breeze [31], complements
PMThreads to address these issues. Durable writes should
only be issued inside critical sections, this allows the co-
existence of transient and persistent memory allocations. As
transient contents will not be retained, user programs need
to carefully manage the interaction between the two kinds
of dynamic memory, for example during application-specific
failure recovery routines. Further, any memory pointers val-
ues in persistent fields can become invalid if the recovery
procedure maps NVM pages into different virtual memory
addresses. Object-oriented recovery systems, such as [9],
complement our work.
PMThreads can be adjusted to operate its dual-copy and

failure-atomic role-switching at sub-page granularity. Mem-
ory tracking can be adjusted by, i), compiler instrumentation
hashing schemes that track writes at sub-page boundaries,
and ii), page protection monitoring using schemes such as
proposed in [27] to achieve sub-page granularity. The failure-
atomic role switching can be adjusted to use similar tech-
niques. Making PMThreads work at sub-page granularity
mainly adds additional complexity to the recovery proce-
dure. With sub-page granularity, consistent contents of a
single page may be distributed into multiple dual-copy pairs.
The recovery procedure needs to integrate the subpage-sized
consistent copies into complete compact page(s), as sub-pages
cannot benefit from existing operating system mechanisms,
such as mmap.

With Kamino-Tx [30] and NV-HTM [4], the write updates
of a transaction will effectively reach a durable state immedi-
ately after committing and be persisted in NVM. In contrast,
PMThreads provides lower overhead and latency (see Section
6 using DRAM plus a dual copy NVM memory without pro-
viding immediate durability guarantees for FASEs. Instead,
PMThreads achieves durability periodically.

For example, with DudeTM [24] and PMThreads, the write
set of a transaction, or FASE, is buffered in DRAM and then

asynchronously persisted to NVM (durable). This helps to
hide the NVM access latency. To bound the asynchronicity,
and differently to DudeTM, PMThreads use an interval ∆T
to specify the maximum duration between FASEs persisted
to NVM.

For some applications, it may be necessary to ensure that
a FASE, or a transaction, is durable to perform an exter-
nally visible event; e.g. an operating system system call that
is expected to modify persistent storage consistently. Such
applications require an explicit acknowledgement of the
durability of a transaction or FASE. For these applications,
PMThreads can implement an acknowledgment process sim-
ilar to DudeTM (see next paragraph), or can implement an
NVM-fence operation for insertion between FASEs to force
a specific FASE to wait until its predecessors have completed
and persisted their write updates.

DudeTM allow applications to read the latest globally per-
sisted durable transaction ID and compare this with a thread
local transaction ID to determine if a transaction has been
committed to NVM. Following this approach, PMThreads can
exploit its failure-atomic version switching algorithm (de-
scribed in Section 4.2) so that application threads can obtain
the latest global durable version number VERd . In addition,
each thread needs a FASE ID Fi that captures the maximum
local durable version number so that durable FASEs can be
determined by evaluating whether Fi ≤ VERd .

6 Evaluation
All the experiments are executed on a two-socket NUMAma-
chine running Ubuntu 16.04, kernel 4.15.0 (Hyper-threading
disabled). Each socket has an Intel(R) Xeon(R) E5-2670 v2
@2.50GHz, containing 10 physical cores, giving a system
total of 20 physical cores (no hyperthreading). Each Xeon
chip shares 25MB of L3 cache between its 10 cores, and each
core has 64KB L1 cache and 256KB L2 cache. Each socket is
populated with 16GB of DRAM, providing a total of 32GB
main memory. The frequency of each core is fixed to 2.0GHz
using cpufrequtils. All benchmarks are built with clang++
7.0.1, except for the Mnemosyne counterparts that required
g++ 5.4.0. The compiler instrumentation is implemented in
LLVM 7.0.1. All figures report the average of 10 execution
runs.

6.1 NVM Emulation
NVM is emulated with DRAM as in [10, 13, 43], where NVM
read latency is discarded and an extra delay of 100ns is in-
jected to a clflush operation (clflush-opt was not avail-
able on our machine.) to model the increased write latencies
of NVM technologies. The delay is obtained by looping on
the timestamp counter of the processor via the RDTSC in-
struction as in [18, 24]. The sfence instruction is also used
to enforce ordering for non-volatile writes.
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Table 1. Geometric mean slowdown of PMThreads-I,
PMThreads-P, NVthreads and Atlas (lower is better).

System PMT-I PMT-P NVthreads Atlas
Parsec 1.43 1.95 7.70 2.35
Phoenix 2.22 1.39 2.08 4.69

6.2 Evaluated NVM Systems
Atlas [5] uses word-granularity for compiler instrumenta-
tion to track and persist memory writes, and also for undo
logging to enforce memory persistence.
Mnemosyne [42] is a transactional memory system based
on word-level redo logging.
NVthreads [16] executes a single shared address spacemulti-
threaded program as a multi-process program having multi-
ple address spaces where virtual memory protection is used
to track persistent memory access at page granularity. It
leverages NVM filesystem interfaces to maintain at page-
granularity redo log entries for crash recovery.
PMThreads-I tracks persistent stores at word-granularity
with compiler instrumentation. Failure-atomicity of persis-
tent data modification is guaranteed by our dual-copy mech-
anism.
PMThreads-P is similar to PMThreads-I except that it uses
the hardware page protection mechanism to monitor persis-
tent memory accesses. Note that the persist interval, ∆T ,
of all PMThreads implementations is configured to be 100ms
(i.e. equal to the time quantum of the OS scheduler on the
dual-socket test machine) for all experiments, unless other-
wise specified.
Pthread acts as the ‘ideal’ baseline in the experiments. It
runs the benchmarks on DRAM using the standard pthread
library; no persistent data.

6.3 Parsec and Phoenix
The 14 multi-threaded benchmarks from PARSEC [3] and
Phoenix [39] suites (with our ports to ATLAS) are used for
evaluation, following the NVthreads methodology [16]. We
analyze the potential overheads imposed by memory access
monitoring and memory persistence enforcement by consid-
ering all memory allocations to be persistent.

Normalized to Pthread using 20 threads, Figures 4a and 4b
present the runtime overhead of PMThreads-I, PMThreads-
P, Atlas, and NVthreads. Table 1 summarizes the geomet-
ric mean (geo.) performance slowdown in comparison to
PThread and find that PMThreads-I (1.43), and PMThreads-P
(1.39) achieve the best performance for Parsec and Phoenix
benchmarks, respectively.
PMThreads-I mostly incurs less than 20% slowdown for

Parsec, except for ferret (fer.), and swaptions (swap.); with
approximately 2× and 3.4× slowdowns respectively. PMThre-
ads-I has the best performance for 3 Parsec benchmarks
while PMThreads-P has the best performance for the other
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Figure 4. Parsec and Phoenix.

two; ferret (fer.) and stream. Despite the big slowdowns
with dedup. and fer., NVthreads achieves the best perfor-
mance for the swaptions benchmark.
The main source of PMThreads-P overhead comes from

hardware page protection basedmemory tracking. NVthreads
and PMThreads-P incur the overhead of write protecting
pages in the persistent heap (at least the already allocated re-
gion) to track potential memory writes, which inevitably re-
sults in extra TLB misses and page fault handling overheads.
This is demonstrated by the high performance penalty im-
posed by NVthreads (circa 71x slowdown) and PMThreads-P
(circa 7x slowdown) in the more lock-intensive benchmarks,
such as dedup.
NVthreads and PMThreads-P outperform Atlas and PM-

Threads-I when the workloads contain no locking, such as in
blackscholes (black.) and swaptions (swap.). In stream-
cluster (stream.), a condition variable is used for synchro-
nization. As a consequence, the results for streamcluster
reveal the dependence tracking overhead of NVthreads and
Atlas. Figure 4a shows that both PMThreads-I and PMThreads-
P incur moderate overheads of circa 1.13× and 1.04× slow-
down in comparison with nearly 2× and almost 8× slow-
down faced by Atlas and NVthreads. The greater than 10×
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slowdown of NVthreads in canneal (can.) is due to exces-
sive memory copying between thread-private memory and
shared memory. This overhead is specific to the isolated
thread implementation using separate process address spaces.
Figure 4b gives the results for Phoenix benchmarks that

contain no lock except for reverse index. Such lock-free
benchmarks serve mainly to demonstrate the overheads
of running applications under persistent runtimes where
no updates to persistent memory are present, because all
systems assume that writes occur inside critical sections
that are protected by a lock. As a consequence, NVthreads
and PMThreads-P degrade performance marginally in many
Phoenix benchmarks. Three outliers are kmeans (kme.), li-
near regression (l.r.) and string match (s.m.), where
NVthreads presents 1.8× to 2.6× slowdown, whereas the
overhead introduced by PMThreads-P is below 20% in these
workloads.

The kmeans (kme.) benchmark creates and destroys nu-
merous short-lived threads during its execution, consequently,
its results demonstrate the performance penalty of convert-
ing threads into separate processes for isolated thread exe-
cution in NVthreads at nearly 2x. In contrast, the Pthread
library interceptions of PMThreads incur less than 20% over-
head, even for kmeans (kme.). Atlas suffers high tracking
overhead in histogram (hist.), linear regression (l.r.),
string match (str.) and word count (w.c.), where word-
granularity write instrumentation costs dominates the total
execution time of the program. PMThreads-I uses a similar
memory access monitoring mechanism to Atlas, and it in-
curs significant memory tracking overhead in histogram,
linear regression and string match, where PMThreads-
I gives respective slowdowns in comparison to PThread of
circa 5.0×, 12.1× and 6.5×. The slowdown of Atlas in word
count (w.c.) is due to extensive logging overhead incurred
from memmove function calls, whereas PMThreads-I performs
library interception, and only performs logging when such
calls are invoked inside a critical section.
Overall, Table 1 shows that PMThreads-I achieves more

than 5.38× speedup over NVthreads and is 1.64× faster than
Atlas on average in the 6 Parsec benchmarks. In addition,
PMThreads-P is over 50% slower than PMThreads-I in these
workloads. For the Phoenix benchmarks, the memory track-
ing overhead incurred by PMThreads-I is less than 50% of
that of Atlas. NVthreads is 40% slower than PMThreads-P.

6.4 Stress Tests
PMThreads scalability is evaluated in comparison to Atlas,
NVthreads and Mnemosyne, using different write-update
loads, on two different lock-based concurrent data struc-
tures. The overheads of mutex interception are also analyzed.
The microbenchmarks issue repeated concurrent access to
a shared data structure with varied ratio of read and write
operations. The data structures considered are:

• FAST-FAIR [18], a concurrent persistent B+Tree. We
comment out the persistence-related operations in
FAST-FAIR, such as clflush, memory fence, etc., and
instruct the tree node constructor (destructor) to allo-
cate (release) tree nodes with nvmalloc (nvfree).
• Lock-Coupling List, a concurrent ordered linked list
from synchrobench [14]. Again, we replace malloc
and free with nvmalloc and nvfree for persistent
heap management of linked list nodes.

Considering Mnemosyne, we remove the lock and unlock
operations in FAST-FAIR and Lock-Coupling Linked List to
obtain the corresponding sequential versions. Then, we port
the sequential data structure to Mnemosyne via wrapping
data structure manipulations with the transactional inter-
faces of Mnemosyne.

We analyse the scalability of our two-socket target system
via execution with the 1, 2, 4, 8, 10, 16, 20, 32, and 40 threads.
We capture deviations in performance trends expected be-
yond one socket with 10 cores, i.e with threads between 10
to 20, and also when the number of threads per core is over
committed across both sockets with 32 and 40 threads. In our
experiments, we consistently pin each thread to a specific
processor core. We avoid use of the second CPU socket when
the thread count is 10 or less, and for the over committing
cases, we pin threads in a round-robin order across the 20
available cores.
In this section, we refer to data structure operations that

issue writes to shared memory as PUT operations, and this
includes both insert and delete functions. While perform-
ing a PUT operation, the threads will randomly insert or
delete an element from the data structure. Read-only op-
erations, such as search, are regarded as GET operations.
We vary the percentage of PUT operations for all the experi-
ments as 10%, 50% and 90%. For each configuration, we run
for a fixed number of operations and measure the aggregated
throughput achieved by all the threads. For the B+tree, we
generate 2,000,000 8-byte keys following the uniform distri-
bution. The microbenchmark program dynamically gener-
ates 8-byte values for each insert. For all the evaluations to-
wards B+tree, we insert 1,000,000 key-value pairs during the
warming-up phase, and measure the aggregated throughput
achieved in 1,000,000 operations under different PUT/GET
ratios. For the ordered linked list, the stress test program in-
serts 40,000 uniformly distributed elements to the list during
warming up, and performs an extra 40,000 list operations
with the configured PUT/GET ratio. Also, we measure the
aggregated throughput of all the threads.
Figure 5 gives our stress test results of B+tree. We use

the volatile FAST-FAIR (with persistence-related operations
commented out) running with standard pthread library as
the baseline program (PThread in Figure 5). To investigate
the impact of pthread interception in PMThreads, we also
present the results of PMThreads-ZERO, which does not



PMThreads PLDI ’20, June 15–20, 2020, London, UK

1 2 4 8 10 16 20 32 40
Threads

0

2

5

8

Th
ro
ug

hp
ut

(o
ps
/m

s)
×103 10% PUT

1 2 4 8 10 16 20 32 40
Threads

0

1

2

3

×103 50% PUT

PThread PMThreads-ZERO PMThreads-I PMThreads-P Mnemosyne Atlas NVthreads

1 2 4 8 10 16 20 32 40
Threads

0

1

2

×103 90% PUT

Figure 5. B+tree stress tests.
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Figure 6. Linked List stress tests.

enforce durability for persistent memory accesses (it nei-
ther instruments write operations nor performs page pro-
tection) but merely performs the necessary interceptions to
pthread library by PMThreads. The figures demonstrate that
PMThreads-ZERO scales in a similar manner to Pthread with
all the stress-test evaluatedworkloads, therefore we conclude
that interception overhead is not significant. PMThreads-
P outperforms PMThreads-I when the number of worker
threads is less than 10. PMThreads-I achieves improved
performance to PMThreads-P as the number of threads in-
creases over 10. Considering scalability, PMThreads-I scales
to 20 threads with all workloads, whereas PMThreads-P only
scales to 10 threads with the 10% PUT workload. Under 50%
and 90% PUT rates, PMThreads-P only scales to 8 and 4
threads, respectively. With overcommitted workloads, the
throughput of PMThreads-P drops dramatically, it incurs
2.8× to 7.8× slowdown over a single thread. whereas the
slowdown trend of PMThreads-I is similar to that of the
native PThread.
Stress results over the ordered linked list appear in Fig-

ure 6. In the less-contended cases (10% PUT with 1, 2, 4

threads), Mnemosyne achieves the best performance. How-
ever, its performance reduces significantly in comparison to
PMThreads-I and PMThreads-P with increasing contention.
Note that we port sequential versions of the evaluated data
structures, containing no function calls to lock and unlock,
whereas for all other systems, such calls are still invokedwith
1 thread. Pthread scales up to 10 threads with all the evalu-
ated inputs. Both PMThreads-I and PMThreads-P present a
similar scalability curve to the Pthread baseline. Significantly
less data is persisted in the linked list (where lock/unlock
interception costs dominate overheads, leading to similar
performance for PMThread-I and PMThread-P) in compari-
son to the B+tree.

6.5 Memcached
Memcached [32] is a memory object querying system, that
caches key-value pairs in main memory to boost web ser-
vice performance. We investigate the performance over-
head of data persistence enforcement in Memcached-1.2.4
(adding nvmalloc calls to create a persistent heap) using the
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Figure 7.Memcached throughput scalability test.
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memtier_benchmark [40] to generate requests to the Mem-
cached server. On the dual-socket machine, we bind the
Memcached server to one socket and thememtier_benchmark
executes on the other socket. An unmodified Memcached
running with standard pthread (and no persistence) is used
as an ‘ideal’ baseline.
Figure 7 presents the performance of PMThreads-I with

different ∆T configurations. The label PMThreads-∞ repre-
sents PMThreads with no quiescence enforcement. We use
different numbers of Memcached server threads to examine
the scalability of PMThreads.
Figure 8 presents for each quiescent point enforced by

PMThreads (x-axis), the volume of data persisted (y-axis)

Table 2. Average volume of persistent writes reduced by
PMThreads per interval.

∆T (ms) 10 20 40 100 200 500
Data
Volume
(MB)

3.7 7.7 15.2 37.8 76.1 176.5

with different∆T configurations for the memtier_benchmark
running for a fixed time of 10s, using a 1:1 PUT-GET ratio
workload. In the figure, (volatile writes are updates to dy-
namic persistent memory objects allocated by nvmalloc is-
sued by user programs, that are buffered by the DRAM-side
shadowing memory, whereas durable writes are the exact vol-
ume of dirtied shadowing memory moved by the PMThreads
runtime from DRAM to NVM at the end of one persist in-
terval.). PMThreads significantly reduces the writes to NVM
through buffering persistent writes leveraging the DRAM-
side shadow memory, and the average volume of persistent
writes reduced by PMThreads per interval is listed in Ta-
ble 2 (i.e. the average of total writes to shadow DRAMminus
actual writes to NVM at each persistent interval). Such re-
ductions will improve NVM wear-levelling. With longer ∆T ,
PMThreads generates fewer interventions, while moving
more data at each persistence point. Figure 8 also clearly
demonstrates that PMThreads is capable of enforcing quies-
cent states.

To measure the overhead of pmthreads_barrier in Mem-
cached, we collect statistics of time consumption in crossing
the barrier from the 100ms test with 50% PUT rates. As
depicted in Figure 9, we observe rising average delays as
the number of worker threads increases. This is expected
behaviour when barriers involve more threads.
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Figure 9. Memcached synchronization overhead boxplots.

Table 3. B+Tree. Very little lost inserts with ∆T =10ms,
whereas PM-100 and PM-500 suffers 1.3% and 22.3% data
lost, respectively.

Configuration PM-10 PM-100 PM-500 Atlas
Inserted 599992 1146872 1271418 164970
Recovered 599989 1132363 979564 164970
Recovery Time 4.39ms 6.55ms 5.30ms 8.20s
Volume 29MB 51MB 36MB 860MB

Table 4. Linked List. PM-10 incurs negligible lost inserts.
Percentage of data lost in PM-100 and PM-500 are 1.2% and
15.4%, respectively.

Configuration PM-10 PM-100 PM-500 Atlas
Inserted 24675 25231 24233 6379
Recovered 24675 24940 20505 6379
Recovery Time 0.71ms 0.76ms 0.57ms 108.8s
Volume 4.4MB 4.5MB 3.5MB 602MB

6.6 Recovery and NVM Consumption
Tables 3 and 4 present crash recovery results for Atlas and
PMThread-I running 10-threads B+Tree and Linked List
write-heavy workloads (insert only), respectively. The work-
loads are executed for a fixed duration of 2000ms, then the
program is forced to ‘crash’. A measurement is taken of how
many keys were Inserted prior to forcing the crash. The Re-
covery Time taken to recover the persistent crashed program,
and the Recovered number of successfully persisted keys are
displayed along with the total Volume of persistent storage
used. Elements that are failed to be durably written to per-
sistent memory (because the abort occurs before they are

persisted) are denoted as lost ones. We compute the percent-
age of lost elements to compare the recovery efficiency of
PMThreads with different ∆T configurations.
Atlas presents longer recovering time than PMThreads;

at least three orders of magnitude — see row labeled Re-
covery Time in Tables 3 and 4). Atlas needs to replay its
fine-grained (word-level) log entries during crash recovery.
We also observe significantly higher Volume NVM consump-
tion in Atlas, because Atlas maintains per-thread logging
and tracks each persistent write at word-level. On the other
hand, PMThreads maintains dual NVM pages, and its writes
are buffered in the DRAM shadow pages. The results show
that the NVM memory overheads are significantly lower for
PMThreads than logging based solutions such as Atlas.

We perform a best-effort fix-mapping in preference. Oth-
erwise, a non-volatile pointer fixed tool-chain, such as [9],
would be a practical fallback for the crash recovery of PM-
Threads. As with NVthreads, the recovery procedure is appli-
cation-specific, PMThreads relies on programming efforts
to establish the recovery logic. For pointer-based data struc-
tures, the recovery process of PMThreads only requires the
recovery of a root persistent pointer, the head of a linked
list, root node of a B+Tree, etc. Whereas NVthreads must tra-
verse over all the non-volatile pointers, imposing significant
further burdens to programmers and the runtime system.
Thus, we omit further recovery information for NVthreads.

7 Conclusions
Motivated by NVM technologies, we have presented the
PMThreads system, a novel user-space runtime that provides
transparent memory persistence for traditional lock-based
parallel programs. The runtime maintains dual-versioned
persistent data in NVM and only a single DRAM copy of each
page is transparently accessible to the application. Write
updates are buffered in the DRAM copy of a page before
persistently propagating the updates in-place to the NVM
working copy without any kind of logging. After a successful
update, PMThreads atomically switches the roles between
the working copy and the consistent copy in NVM.
Running on a dual-socket system with 20 cores, the ex-

perimental evaluation results have showed that PMThreads
substantially outperforms the state-of-the-art persistent run-
times targeting lock-based programs. We have evaluated
PMThreads with 14 multi-threaded applications from PAR-
SEC [3] and Phoenix [39] as well as Memcached. In addition,
we have used two stress case scenarios.

The results have showed that PMThreads on average out-
performs NVthreads and Atlas by 3.1× and 2.6× on the Par-
sec and Phoenix benchmarks, respectively. For the stress test,
PMThreads is at least 4.7× faster thanNVthreads,Mnemosyne
and Atlas. For Memcached, PMThreads incurs within 2×
average slowdown to the baseline program running with
standard pthreads; a theoretical best case.
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