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Abstract

We present a new approach to semantic code search based on 
equational reasoning, and the Yogo tool implementing this 
approach. Our approach works by considering not only the 
dataflow graph of a function, but also the dataflow graphs 
of all equivalent functions reachable via a set of rewrite 
rules. In doing so, it can recognize an operation even if it 
uses alternate APIs, is in a different but mathematically-
equivalent form, is split apart with temporary variables, or 
is interleaved with other code. Furthermore, it can recognize 
when code is an instance of some higher-level concept such 
as iterating through a file. Because of this, f rom a  single 
query, Yogo can find equivalent code in multiple languages. 
Our evaluation further shows the utility of Yogo beyond 
code search: encoding a buggy pattern as a Yogo query, 
we found a bug in Oracle’s Graal compiler which had been 
missed by a hand-written static analyzer designed for that 
exact kind of bug. Yogo is built on the Cubix multi-language 
infrastructure, and currently supports Java and Python.

CCS Concepts: · Software and its engineering → Soft-
ware maintenance tools; · Theory of computation → 
Abstraction; Program specifications; Equational logic and 
rewriting.
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1 Introduction

In programming, a common and commonly-intimidating 
task is to discover all places in a codebase which perform 
some similar operation. For instance, if a common idiom is
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discovered to have a bug, then all instances of that idiom
must be changed. Similarly, if there are many places in the
codebase which manually access a data representation, then
changing the representation demands not only locating all
code which accesses the data structure, but also recognizing
which high-level operation they perform. Conventional code
search is helpful in identifying these locations, but can still
miss a long tail of unexpected variations of the common
pattern.

For example, consider an E-commerce app that represents
the items in a shopping cart as an unordered array with du-
plicates. The programmer wishes to find all code that counts
the frequency of a given item in the list, as part of some
larger refactoring, whether to replace all of them with a
shorter or more efficient implementation of frequency count-
ing, or to switch to an alternate representation of shopping
carts altogether. Figures 1a and 1b show example code and a
refactored version.

Although this is one of the simpler instances of this prob-
lem, finding all equivalent code in a codebase is already hard:

1. Code that counts the frequency of items may be inter-
leaved with other code, as in Figure 1c. Any tool that
can identify this example would hence need to identify
it as a discontiguous match.

2. The code may be paraphrased via syntactic variation
or different approaches altogether. Figures 1d and 1e
show alternate implementations of frequency-count
using different naming, loops, and conditionals.

The variants of array-counting are semantic clones of each
other. In our experiments, we use our tool to identify more
subtle duplication in actual codebases.

Abstracting Away Syntax. How can a program recog-
nize that the examples in Figure 1 are all instances of the
same pattern? This has long been the goal of semantic code
search (for recognizing a concept in a codebase), and the
closely-related problem semantic clone detection (identify-
ing semantically-similar code). There are a many tools for
versions of this problem (ğ6), each solving its own varia-
tion of the problem; they vary in scope of the search (single
codebase vs. open web), type of query (natural language,
programmatic, test cases), and priorities (fast/imprecise vs.
slow/accurate). In this work, we are concerned specifically
with code searches intended to help a programmer change
a codebase, measured to be 16% of code searches [69]. We
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count = 0

for a in cart:

if a == item:

count += 1

use(count)

(a)

use(cart.count(item))

(b)

count = 0

for i in cart:

if debug:

print(cart[i])

if cart[i] == item:

count += 1

use(count)

(c)

count = 0

for i in range(len(arr)):

if itm != arr[i]:

continue

count += 1

use(count)

(d)

count = 0

i = 0

while i < len(cart):

if cart[i] == k:

count += 1

i += 1

use(count)

(e)

Figure 1. Variations over the array frequency count pattern in Python

specifically attack an extreme version of the problem, moti-
vated by large refactoring tasks, where every result returned
is programmer time saved Ð or a bug averted. In this ex-
treme, the goal is to exactly match all instances of a semantic
concept within a single codebase. To do so, we are willing
to spend computation on the most powerful reasoning tech-
niques available. Our results offer a search procedure which
is complete in semantic equivalence up to a set of graph-
rewrite rules, and which is embarrassingly parallel, able to
query a 1.2 million line codebase in 2.5 hours using 30 ma-
chines.

In recent decades, the go-to technique for matching code
beyond the syntactic level has been program dependence
graphs [13], used by seven separate tools [15, 22, 24, 34, 36,
39, 85]. PDGs abstract away the exact ordering of statements
in favor of identifying when one statement uses the result
of another (data dependence) or is guarded by a condition
(control dependence). In doing so, they can detect when
statements of interest are interleaved with other code. How-
ever, except for hardcoded special-cases, they are unable to
deal with other isomorphisms such as arithmetic identities
or alternate kinds of loops, let alone alternate APIs. Other
approaches, discussed in ğ6, similarly fall short.
As a result, we are aware of no prior automated tools

that, given the directive to search for array frequency counts,
could match all 5 examples in Figure 1 without also incurring
a large number of false positives. At one end of the spectrum,
a PDG-based tool told to search for the code in Figure 1a
may also detect the interleaved code of Figure 1c, but would
be stymied by the differences of Figure 1e. At the other end
of the spectrum, a grep-user could at best try a set of string
queries like count or for .* in cart, and would still have
to sift through a large number of false-positives. We revisit
this claim in ğ6, backed by discussion of 70 prior tools.

Yogo: You Only Grep Once. In this paper, we present a
new approach to semantic code search based on dataflow
equivalences, and our Yogo tool built on it. Yogo takes as
input the code to search, a library of pre-written rewrite
rules, and a high-level concept expressed as a dataflow pat-
tern. Using a fusion of techniques from Tate et al’s equality
saturation [80] and the Programmer’s Apprentice [64], it is

able to recognize when a code fragment is equivalent to one
of many implementations of said concept.

From equality saturation, we borrow the Program Expres-
sion Graph (PEG) representation. Like program dependence
graphs, Program Expression Graphs ignore statement or-
dering and can match patterns interleaved with other code.
However, they go further by representing all of a program’s
semantics, including mutation and loops, as pure data-flow.
In doing so, it becomes possible to discover equivalent frag-
ments by applying low-level equations and rewrite rules,
and then compactly represent all such equivalent fragments
as a structure called an e-graph [10, 50, 51]. The result is
an efficient procedure for discovering if a program contains
a subprogram equivalent to the search pattern. And, if the
rules given to the system are sound, and they only entail a
finite number of equivalent programs, then the search proce-
dure is sound, and complete with respect to the rules. In our
experiments, given the default rewrite rules, Yogo’s search
terminates in under 3 minutes for over 99% of methods.
From the Programmer’s Apprentice, we borrow the idea

that high-level concepts can be identified as dataflow pat-
terns. Based on this idea, we can e.g.: create rewrite rules that
recognize many implementations of the concept of łiterating
through a sequence." A dataflow pattern for array frequency-
counting can then use this concept as a subnode, so that it
may match any of the varieties of iteration in Figures 1 and 2.
The same idea allows our approach to recognize when a pro-
gram accomplishes the same goal through an alternate API,
or even a different algorithm. With this switch to high-level
concepts, our technique can even abstract away language-
dependent features. The upshot is that, from a single query
for array-count frequency, Yogo can recognize not only all
five Python variations in Figure 1, but also the three Java
variations in Figure 2.

Overall, we make the following contributions:

• A new technique for semantic code search based on
dataflow equivalences, which enables a single search
query to soundly match highly-dissimilar yet equiva-
lent code fragments, even across languages.
• The Yogo tool implementing this technique.
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int count = 0;

for (Item x : list)

if (x == k)

count += 1;

use(count);

(a)

int count = 0;

for (i = 0; i < list.size(); i++)

if (list.get(i) == k)

count += 1;

use(count);

(b)

int count = Collections.frequency(list, k);

use(count);

(c)

Figure 2. Java variations of array frequency count

if (x >= end || x < pos) {

doSomething();

}

(a)

if (x >= rect.getLeft()) {

if (x < rect.getRight()) {

doSomething();

}

}

(b)

boolean b = i >= left;

int j = i;

boolean c = j < right;

if (!(b && c)) {

doSomething();

}

(c)

if 10 <= x < 20:

doSomething()

(d)

Figure 3. Example 1D bounds checks

2 Overview

In this section, we demonstrate how to use Yogo to search for
a 1-dimensional bounds-check equivalent to i < lo || i >= hi.
Although small, this is already challenging. Figure 3 shows
4 examples of bounds-checking code, including examples in
both positive and negated form, in both Java and Python,
and including variants which have no tokens in common
with the given pattern.

To search for a bounds check, the user writes a query in
Figure 5, using Yogo’s DSL1. This query is a textual form of
the dataflow graph pattern in Figure 6a.
The user then invokes Yogo, indicating the target lan-

guage and files, the query, and a standard library of rules.

./yogo java "general_rules.yogo,java_rules.yogo"

query.yogo *.java

The general rules library includes rules for reasoning about
boolean and comparison operators, such as the one in Figure
7, which implements De Morgan’s law a ∨ b = ¬(¬a ∧ ¬b).

1Yogo’s DSL is more verbose than the concrete syntax to simplify parsing

in the implementation. This is not fundamental to the approach.

Figure 4. The organization of the Yogo Search Tool and
its deployment. The system admin maintains a long-term
library of rules and custom types (1), which are reused in
every search session (4). Then for each search session, the
end-user provides source files (2) and search patterns (3).
The tool outputs match results to the end-user (9).

The Java- and Python-specific rule libraries contain rules
for reasoning about language-specific constructs and APIs,
and for mapping them into language-generic concepts. For
example, there is the Python rule giving the isomorphism
between (a <= b < c) and (a <= b and b < c)

2. Over time, a small
set of power-users can add rules for reasoning about new
libraries and domains, enabling a large set of end-users to
rapidly construct deep semantic queries. Figure 4 gives an
overview of how the two kinds of users interact with Yogo.

During execution, Yogo constructs a Program Expression
Graph for each method under search. (Yogo only accepts in-
traprocedural queries.) It then runs its equality saturation

engine to turn that PEG into an equivalence graph on this
PEG, or E-PEG, which represents both the original method
as well as all methods which can be shown equivalent using
the provided rules library.

For example, we showhowYogomatches the query against
the code x >= lo && x < hi. Yogo first translates this code into
the PEG in Box 1 of Figure 6b. After matching the rule for De
Morgan’s law, Yogo’s equality saturation engine extends the
PEG with the new nodes in Box 2, and adds dashed equiv-
alence edge between the and and not. Finally, it matches
two rules run witnessing both directions of the equivalences
¬(a ≥ b) = (b < a), adding the nodes of Box 3. The entire
e-graph in Figure 6b now represents 5 variations of the orig-
inal code. The or node is equivalent to the search query, and
hence Yogo returns a match, with the query variable root

bound to the or node.
Other rules in Yogo’s standard libraries give it the ability

to reason about nested conditionals, memory, and assign-
ments. Using these rules, it can expand the four programs of
Figure 3 into E-PEGs that compactly represent the exponen-
tially large spaces of equivalent programs, and discover that
all four of them contain a 1-dimensional bounds-check.

2The purely-functional PEG representation renders short-circuiting and

duplication a non-issue, at the cost that PEGs cannot always be mapped

back into code.
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(defsearch bound-checking

(root <- (generic/binop :or (generic/binop :< x lo)

(generic/binop :>= x hi))))

Figure 5. A search query for bounds-checking

x lo hi

< >=

or

(a)

x lo hi

>= <

and

1

not not

or

not

2

x lo hi

< >=

3

(b)

Figure 6. (a): PEG for the query in Figure 5. (b): E-graph
representing 5 programs equivalent to x >= lo && x < hi, with
nodes grouped by order of discovery. Dashed lines are be-
tween equivalent nodes. Some nodes duplicated for clarity.

(defeqrule demorgan1

(generic/binop :and a b)

=>

(generic/unop :not (generic/binop :or (generic/unop :not a)

(generic/unop :not b))))

Figure 7. Yogo rule for one direction of De Morgan’s law

Of course, our worked example only shows Yogo reason-
ing about pure code, using the classic techniques of e-graphs
and congruence-closure [10, 50, 51]. In order to scale to all
the examples of Figure 3, Yogo must translate stateful code
to a form amenable to equational reasoning. ğ3 explains how
Yogo leverages E-PEGs [80] to handle stateful and loopy
code, and the insights of the Programmer’s Apprentice [64]
to match high-level concepts rather than specific code.

3 From Code to Concepts

ğ2 demonstrated how our approach can discover a pattern
in equivalent pure code. In this section, we show how Yogo

extends equational reasoning to mutable state and loops, and
even to high-level concepts.
In the remainder of this section, we will show examples

both using Yogo’s DSL, and as general mathematical rules.
For convenience, we will refer to steps of the algorithm as
actions of Yogo. However, other than specific choices of
what nodes may be in the graphs, everything in this section
is part of our general approach.

Table 1. Basic nodes and example encodings

Node Denotation

Q(σ , i) σ (i)

assign(σ , i, e) (σ [i 7→ e], e)

mem((σ , e)) σ

val((σ , e)) e

sel(a, i) Address of a[i]

fcall(σ , f , e) (σ ′, v)∗

* Where (σ ′, v) are the result of eval-

uating f on arguments e , starting in

memory state σ .

(a)

Code: x = y; z = x;

PEG:

λσ .let r =

assign(σ , łx ”, Q(σ , ły”)) in

assign(mem(r ), łz”,

Q(mem(r ), łx ”))

Code: arr[i+1]

PEG:
λσ .Q(σ ,

sel(Q(σ , łarr"),

Q(σ , łi”) + 1))

(b)

Table 2. Loop-related nodes

Node Denotation

loop(e0, e) λi .

{

e∗
0

i = 0

e(i-1) otherwise

final(e, l ) λi .l (minj∈N e(j) = false)

seq(i, k ) (i, i + K, i + 2k, . . . )

iterV((t0, t1, . . . )) λi .

{

ti ti , ⊥

⊥ otherwise

iterP((t0, t1, . . . )) λi .

{

true ti , ⊥

false otherwise

* Actually e0(0), but e0(i) should be invariant in i .

3.1 Memory and Assignments

Yogo’s treatment of mutable state is standard: stateful oper-
ations such as assignment consume and produce a memory
state, denoted σ . Table 1a gives the PEG nodes for state and a
simplified version of their denotations, while Table 1b gives
example translations of mutable programs into PEG. The
most important node is the Q ("query") node for memory
lookup. Note that the denotations are only given to define
the correctness of equational rules; Yogo never needs to
evaluate a PEG.
In our explanation so far, nodes each represent a single

value, and hence a fixed-size graph cannot represent a pro-
gram with loops. In the next section, we introduce the big
insight allowing PEGs to represent loopy programs. The re-
sult is a referentially transparent yet complete representation
of programs, enabling equational reasoning on loops.

3.2 Loops, Conceptually

In this section, we introduce how Yogo is able to reason
about code with loops and mutation, and recognize a higher-
level concept. We demonstrate how Yogo can model a loop
of the form i = 0; while ...: i += 1, and recognize the higher-
level concept of iterating over the infinite sequence 0, 1, . . . .
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0 0

+ +

+ +

+ +

.

.

.
.
.
.

1

1

1

(a)

loopil loopsum
l

0 0

1

+ +

(b)

Figure 8. (a) Unfolded dataflow graph of loop body of sum =

0; for(i = 0; ...; i++){ sum += i; }. (b) PEG for said loop body.

Other queries may be written in terms of this higher-level
operation, so that they may match any kind of iteration.

Background: Loops in PEGs. We first explain how PEGs
model loops, and then show how Yogo leverages this to
recognize higher-level kinds of loops. Consider the loop:
sum = 0; for(i = 0; ...; i++)sum += i; . Without a static bound
on the maximum number of iterations, a dataflow graph for
this loop would need an infinite number of nodes, including
one each for i and j in each iteration of the loop. Such a
dataflow graph is shown in Figure 8a. Yet each unrolled layer
follows a regular pattern, and so it is possible to fold this
infinite graph into the PEG in Figure 8b.

We now introduce the final ingredient of PEGs: every node
of a PEG represents not a single value, as in a vanilla dataflow
graph, but rather a potentially-infinite sequence of values.
More formally, every node represents a value of type

LoopIndex→ Val + ⊥

where LoopIndex is vector of natural numbers, indicating the
iteration index of each loop. In this explanation, we assume
there is only one loop, so that LoopIndex devolves into a sin-
gle natural number. The more general version is elaborated
in Tate et al [80].
So, in Figure 8b, loopil and loopsum

l
represent the values

of i and sum in each iteration of the loop. The l subscript is
a loop label which indicates they are sequences of values in
the same loop.

Table 2 gives the denotations of Yogo’s loop-related nodes.
The two primordial ones are loop and final. loop(e0, e) rep-
resents the infinite sequence whose first element is e0, and
whose successive elements are computed by e . Intuitively,
final(e, l) gives the end result of loop l , by finding the first
iteration where e is false, and giving the corresponding
value of the sequence produced by l . For example, consider
the PEG final(λi .i < 2, e) where e is defined circularly as
e ← loop(3,+(e, 5)), which represents the final value of n in
the program for(i = 0, n = 3; i < 2; i++, n += 5);.

σ0 i 0

assign

mem1

loopl i

Q 1

+i

assign

mem2

i = 0; while ...: i += 1

1

loopil

mem1 i

Q

mem2 i

Q

2

loopil

0

+

1

3
0 1

seq

iterV

4

Figure 9. E-graph for i = 0; while ...: i += 1. Some nodes du-
plicated for clarity.

final(λi .i < 2, e) = e(minj ∈N(λi .i < 2)(j) = false))

= e(2) = loop(3,+(e, 5))(2)
= +(e, 5)(1) = e(1) + 5(1)
= loop(3,+(e, 5))(1) + 5
= +(e, 5)(0) + 5
= loop(3,+(e, 5))(0) + 5 + 5
= 3 + 5 + 5 = 13

Typically, the initial translation of a program will yield
a loop node representing an infinite sequence of memory
states. From this, Yogo′s equational reasoning engine can
discover loop nodes that represent the sequence of values
taken by a single expression within the loop, partially inde-
pendent from the rest of the loop.

The PEG treatment of loops is counterintuitive, but pow-
erful in its ability to bring equational reasoning to loops. For
example, this rule pushes memory lookups inside a loop:

Q(loop(init ,next), λ) =⇒ loop(Q(init , λ),Q(next , λ))

Discovering a counter. We now turn to how Yogo rec-
ognizes that the loop i = 0; while ...: i += 1 is an instance of
the higher-level concept of a sequential counter, giving our
first instance of nodes representing abstract concepts, and
showing how our use of PEGs surpasses its previous appli-
cations in compiler optimization. Box 1 of Figure 9 shows
the initial PEG for this code.
Yogo’s equality saturation engine then begins applying

rewrite rules to obtain the e-graph of equivalent programs.
From the initial PEG in Box 1, the following two rules match,
yielding the nodes in Box 2. The first rule states that, if a
program assigns the value x to l-value λ and then attempts to
read λ from the resulting memory, the result is x . The second
rule states that memory lookups distribute over looping. It
is used to push the Q node inside of the loop, yielding the

loopil node of Box 2, which represents the sequence of values
of i within the loop.
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Q(mem(assign(σ , λ,x)), λ) =⇒ x

Q(loop(init ,next), λ) =⇒ loop(Q(init , λ),Q(next , λ))

Thus far, all nodes described have corresponded directly to
something in the programming language. We now introduce
the first nodes representing higher-level concepts.

The node seq(a,k) represents the infinite sequence of val-
ues a,a + k,a + 2k, . . . . The node iterV(seq(a,k)) then rep-
resents a loop-varying value equal to a in the first iteration,
a + k in the second iteration, etc. With these, we can now
state a rule identifying a loop which increments a value as an
instance of iterating through a sequence. We have redrawn

the loopil node in Box 3 to make it more apparent how the
rule matches this node, yielding the final node in Box 4.

loopl (a,+(i,k)) ⇒ iterVl (seq(a,k))

There are also similar rules which recognize other in-
stances of looping over a sequence, such as a Python’s for i

in range(d): .... Other patterns may now be written in terms
of iterV, and will be able to match any loop over a sequence,
including across languages.

3.3 Auxiliary Facts

Many search patterns have side conditions which cannot be
expressed as another pattern match. For example, loosely
speaking, array frequency counts contain an expression
equivalent to arr[i] == k, but with the extra condition that k
may not change during the loop.
Our solution is to include in the PEG annotation nodes

representing auxiliary facts which do not take part in the
computation, but may nonetheless be inferred by rewrite
rules and used as conditions for other rules. For the problem
above, for example, the annotation invariant(l , e) means
that e is an expression which does not change between ex-
ecutions of loop l . Two other important examples are the
pure(f ) annotation, which indicates the auxiliary fact that
memory state output by a call to function f is the same as the
one input, and the independent(λ1, λ2) annotation, which
indicates that a write to l-value λ1 cannot affect λ2, and vice
versa. (An example of dependent l-values: one l-value rep-
resenting an entire array, and another representing a single
entry in that array.)
Users can program rules to infer auxiliary facts similar

to any other equational rule, allowing the user to augment
queries with information computed by any terminating term-
rewriting system. Auxiliary facts also provide an interface
for Yogo rules to ingest information from arbitrary external
analyzers.

3.4 All the Array Counts

We now have all the ingredients to show how Yogo can use
a single query to match all 8 Java and Python variants in
Figures 1 and 2. We first present a query that matches the 6
variants which do not use library functions, and then explain
how to add domain knowledge about these functions.
The query for these 6 variants is given below in mathe-

matical notation. Figure 10 shows how it is written in Yogo’s
DSL.

counter← loopl (0, next)

next← cond(iterVl (coll) = k,

counter + 1,

counter)

answer← finall (iterPl (coll), counter)

invariantl (k)

We explain this query in parts. The first line says that
the matched PEG must have a node, which we refer to as
counter, which represents a sequence that starts at 0, and
whose successive values are given by the formula for next.

The second part says that the node labeled next must be
a cond node. The guard of this condition must be a com-
parison between some node k and the current element of
the sequence coll. If the condition is true, then the resulting
value of the cond node is 1 plus the current value of counter,
and is otherwise the current value of counter. The iterV node
may be identified from one of many varieties of loop by a
process like the one described in the previous section.

The third part looks for the value of the counter at the end
of the loop. iterPl (coll) is an analogue of iterV which returns
true if the element of coll for the current iteration of loop l
exists, and false otherwise. As counter represents a sequence
of values, finall (iterPl (coll), counter) is the value of counter
when the loop ends.

Finally, the annotation invariantl (k) represents the aux-
iliary fact that the expression k , which represents the item
being counted, must be one which does not change between
iterations of the loop l .
Figure 11 gives the initial PEG for the frequency-count

snippet in Figure 1e. Even before applying any rewrite rules,
several portions already resemble the search pattern.

We now explain how to define a query that also matches
the language-specific function calls. We define a new concept
node, like the existing concept nodes iterVand iterP, for array
counts. We then add three rewrite rules: one that rewrites a
match of the previous query to this concept node, and two
more that do likewise for Python’s array.count() and Java’s
Collections.frequency() functions.
Although this requires hardcoding knowledge about the

Python count and Java frequency functions, it is still useful
for two reasons. First, this knowledge needs only be recorded
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(defsearch array-element-count-v1

(answer <- (generic/final l bound counter))

(counter <- (generic/loop l (generic/const 0) next))

(next <- (generic/cond p inc counter))

(inc <- (generic/binop :+ counter (generic/const 1)))

(p <- (generic/binop :== e k))

(e <- (concept/iter-v l coll))

(bound <- (concept/iter-p l coll))

(invariant l k))

Figure 10. Yogo DSL query for an iterative array count

σ0 i 0

assign

mem

count

assign

mem

i = 0; count = 0

1

loopl
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Figure 11. A PEG for the array frequency count code in
Figure 1e. Some nodes are duplicated in the illustration for
readability, with superscripts to identify them. Only memory
states are shown as loop or conditional nodes.

once, and can then be shipped as part of a library of rules.
Second, the array-count concept can, in turn, be used in a
higher-level concept or search. The query in Figure 12, for
instance, searches for code which implements the rule that
there may be at most four cards of one type in a deck, seen
in collectible card games such as Magic: The Gathering. It
can match code which uses any implementation of array fre-
quency counting, which in turn may use any implementation
of iterating through a sequence.

(defsearch check-at-most-four

(generic/binop :> (concept/array-count arr k)

(generic/const 4)))

Figure 12. A query higher in the concept hierarchy

3.5 Additional Discussion

Soundness. Defining the soundness of low-level rewrite
rules is simple: the RHS must be semantically equivalent to
the LHS. Defining the soundness of a rule that recognizes a
concept is less-so. If two different languages have their own
functions for file I/O, is it really safe to identify them both
with common concepts of file operations?

There are manyways to formalize an answer to this conun-
drum, but a simple one is this: To say that code implements
a concept is to say that the set of behaviors of the code is a
simulation refinement [43] of the behaviors of the concept’s
specification. The function from states of the implementa-
tion to states of the concept’s specification then induces an
equivalence relation that ignores the minute differences in
the implementations of that concept.
So, a rewrite rule need only be sound with respect to

the equivalence relation of its corresponding concept. Then
the library of rewrite rules is collectively sound under the
union of these equivalence relations, and thus the search
procedure is sound in the transitive closure of the union of
these equivalence relations.

Comparison with Tate et al. Yogo features several ex-
tensions and design differences to the original presentation
of PEGs in Tate et al’s system, Peggy [80]. The big conceptual
difference is Yogo’s coarser notion of equality to support
hierarchical abstraction a la the Programmer’s Apprentice.
This motivates many differences in DSL design. For instance,
Yogo has the seq node, whose denotation is an infinite se-
quence, and is used to define the abstract notion of iterating
through a sequence. All of Peggy’s nodes, in contrast, have
lower-level denotations. While Peggy is limited to a fixed
set of equational rules, Yogo offers user-definable one-way
rewrite rules, which are used to implement both auxiliary
facts and higher-level concepts. Another notable difference
in design is Yogo’s richer language of l-values.

Rewriting: The Elephant in the Room. Given the util-
ity of Yogo for refactoring and program repair purposes, an
obvious question is: is it possible to automatically rewrite the
code found by Yogo searches? Unfortunately, the very fea-
ture that makes Yogo so enticing, its flexibility in matching,
also makes rewriting matches an extremely difficult problem.
There are three challenges:

1. Matches may have little syntactic resemblance to the
search query. In the example of Figure 6, the matched
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code has no non-leaf nodes in commonwith the bounds-
check query.

2. Matches may be interleaved with non-matching code.
Even the basic bounds-checking query can match b1

= (x < lo); b2 = (x > hi); do_something(); b1 or b2.
3. Matchesmay be overlapping. For example, when search-

ing for the squared magnitude (x1 − x2)
2
+ (y1 − y2)

2,
every occurrence will actually result in two matches,
because the commuted version (y1 − y2)

2
+ (x1 − x2)

2

is also a match.

We thus leave solving these problems to future work. The
few existing tools that encounter these problems fare no
better. For instance, in ğ6, we discuss the rewriting tool Coc-
cinelle. Although it has limited ability to match across iso-
morphisms, it does not address the problems mentioned here,
and hence can produce poor output.

Other Limitations. Here are three other limitations of
Yogo:

• The Yogo DSL given does not have a good way to
express arbitrarily-nested expressions. For example, it
is not straightforward to write a constraint łx is any
argument in a call to f." The query in ğ5.2 does exactly
this, but it does it by manually constructing a term-
rewriting system to infer this, which is not modular,
and loses some of the benefits of Yogo.
• The current Yogo implementation has a very poor
solution to the frame problem: if there is a call to a
function not known to be pure, Yogo assumes no re-
lation between the memory state before and after the
call. There are many simple improvements that can aid
this. For example, the current Yogo implementation is
not even aware that calls to a different function cannot
modify local variables in Java and Python.
• Yogo cannot handle interprocedural patterns. This
limitation is more fundamental. While it may be easy
to extend Yogo to have all its searches include depth-1
inlining, and Tate et al’s Peggy has some support for
inlining, allowing arbitrary inlining can explode the
size of the E-PEGs.

4 Implementation

Yogo is implemented in 800 lines of Clojure and 2000 lines of
Haskell. The Haskell portion defines translators from Python
and Java to PEGs, and is based on the Cubix multi-language
infrastructure [35]. The Clojure portion defines a DSL for
rewrite rules and queries, as well as an equality saturation
engine based on the Clara implementation of the Rete al-
gorithm [14]. Yogo comes with 300 lines of generic rewrite
rules, 150 lines of Java-specific rules, and 200 lines of Python-
specific rules. Yogo uses a heuristic analysis based onmethod
names for inferring method purity, e.g.: it assumes that Java
methods starting with łget" or łto" are pure.

5 Evaluation

In this Section, we set out to prove Yogo’s ability to search
real codebases and to find paraphrases and discontiguous
matches in multiple languages. ğ5.1 presents our systematic
study of 9 search patterns, gleaned from a mixture of author
suggestions and systematic collection from StackOverflow,
on a corpus of 3 codebases. As this evaluation involves ar-
tificial searches on small (under 60K LOC) codebases, we
follow this with our case study on Oracle’s Graal project
(ğ5.2), where a Yogo query discovered a bug in a 1.2M LOC
codebase. We then discuss why we did not compare Yogo
directly to existing tools (ğ5.3).

5.1 General Patterns, Multiple Codebases

In this section, we develop 9 search patterns independent of
language and codebase, and evaluate Yogo’s ability to find
them in 3 real codebases. The patterns are named in Table 4,
and full descriptions and code for the patterns are given in
the accompanying technical report [58].

The 9 patterns came from two different sources. The first
five, SP1śSP5, were motivating examples in the development
of Yogo, and include both the array-frequency and bounds-
check examples given in ğ2 and ğ3. We obtained our next
four from StackOverflow using the following methodology,
inspired by a previous study [18].

1. Take the 75 highest voted questions tagged łjava,ž and
likewise for łpython.ž

2. Of these, only consider łHow to" question. This, ex-
cludes, e.g.: łDifference between wait() and sleep()."

3. Among the how-to-do-X questions, only consider ones
where the operation X:
• can be described semantically as values being com-
puted, not what the code looks like or how the values
are computed.
• can be generalized to both Java and Python. This fil-
ters out language-specific questions about libraries,
Android, conversions between types that do not
make sense in both languages, etc.
• is more than a single operation over the inputs in
both languages. This is to avoid having a lot of search
patterns that are too simple and have no structure
to highlight Yogo’s multi-language capability. For
instance, we ignore łhow to concatenate two lists
in Pythonž and łWhat’s the simplest way to print a
Java arrayž (which is print arr in Python).
• does not directly involve language constructs which
the current Yogo translator overapproximates, such
as breaks, list comprehensions, and lambdas.

4. Narrow down the remaining questions to those whose
accepted answer contains an intraprocedural snippet
that does X.
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Table 3. Codebases searched, and number of time-outs

Methods Non-methods
Lang. LOC Total TO Total TO

PyGame Python 49k 2345 21 481 3
Cocos Python 53k 2876 2 1082 0

LitiEngine Java 59k 3625 28 997 2

Table 4. The number of matches found for each search pat-
tern and codebase.

Pattern Cocos2D PyGame LitiEngine

SP1. Bound checking 4 3 13

SP2. Squared 2D distance 8 8 10

SP3. Put-if-not-present 3 4 11

SP4. Frequency count 0 0 0

SP5. Time elapsed 1 20 1

SP6. Loop index 120 126 42

SP7. Dictionary iteration 17 6 9

SP8. MD5 hashing 1 1 0

SP9. File writing 8 7 0

5. Rewrite X in a language-generic term (e.g., łIterate
through aHashMapž becomes łIterating over a [language-
generic] dictionaryž).

Codebases. Weuse Yogo to search over 3 real-world open-
source projects: PyGame, Cocos2D, and LitiEngine. All three
are open-source frameworks for creating games. PyGame is
written in Python with 49K LOC (commit ad681aee). Co-
cos2D is also written in Python with 53K LOC (commit
9bb2808). LitiEngine is written in Java with 59K LOC (commit
c188504). We chose game engines because we expected them
to have plenty of meaningful intra-procedural computations,
and because two of the search patterns are geometric com-
putations. Table 3 gives details on these codebases. Using
the Docker container for Yogo shipped in the accompanying
artifact, on one author’s computer, Yogo searched PyGame,
Cocos2D, and LitiEngine in 3.5, 1, and 4.5 hours respectively.

Timeout. A long source function generally results in a
large graph, which may take the rule engine too long to
saturate it with equalities. For both Java and Python, we set
a time limit of three minutes per graph to perform equal-
ity saturation. If a method times out, that means that Yogo
has not expanded the E-PEG to contain all programs equiva-
lent under the rules, but Yogo may nonetheless find some
matches in the partially-saturated E-PEG. Table 3 shows that
Yogo times out on fewer than 1% of methods.

Results. Table 4 reports the number of matches that the
matcher finds for each pattern and codebase.

5.1.1 Inspection ofResults. In the following paragraphs,
we inspect our results for correctness, search for false posi-
tives and false negatives, and share examples of matches to
illustrate the power of Yogo.

Examination of Matches. We manually examined all
found matches, except for SP6, where we sampled 10 from
each codebase. For SP3, SP5, SP6, SP7, SP8, and SP9, all
matches are correct. No matches were found for SP4 in any
codebase.
For SP2, it is worth noting that each code snippet results

in at least two matches because of commutativity. We found
that several matches in PyGame actually implement a 3D
magnitude rather than a 2D point-distance. Specifically, they
compute the magnitude of a vector cross product, and look
like this:

cross = ((self.v1.y * v.z - self.v1.z * v.y) ** 2 +

(self.v1.z * v.x - self.v1.x * v.z) ** 2) +

(self.v1.x * v.y - self.v1.y * v.x) ** 2)

While it can be argued that this subcomputation is in-
deed a 2D magnitude and hence a point distance, it is not
intended as a point distance between (v1.y*v.z, v1.z*v.x) and
the point (v1.z*v.y, v1.x*v.z). This highlights a downside of
our approach, which is that it can be challenging to write a
search pattern that precisely captures the intent. In this case,
the pattern searches for any computation of the form (x1 -

x2)**2 + (y1 - y2)**2 without any constraint on x1, x2, y1,
and y2. The magnitude-of-cross-product formula contains
this computation. A more careful user may define abstrac-
tions and rules for 2D points and for getting their X and Y
components. This requires knowing how points are usually
represented and risks more false negatives.

ExampleMatches. Wepresent examplematches to demon-
strate how Yogo is able to find matches in the presence of
paraphrases, match discontiguity, and multiple languages.

• Figure 13 gives three examples of SP2, squared distance.
Figures 13a and 13c use explicit power-of-2, while 13b
uses self-multiplication. These paraphrases are bridged
by a Java-specific equality rule that rewrites the value
of Math.pow function call to a generic power operation
and a language-generic equality rule that rewrites x

* x to x ** 2, as well as the generic rules for local
variables.
• Figure 14 shows different way one can iterate over key-
value entries of a map (SP7). Although this required
language-specific rules to understand iterating over
the key set vs the entry set of a map, we reused a lot of
rules and abstractions from SP3 and SP4, which also
involved maps and iteration, respectively. As a result,
SP7 is fairly concise, with only 5 node patterns.
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double distSq = Math.pow((a.getCenterX() - b.getCenterX()), 2)

+ Math.pow((a.getCenterY() - b.getCenterY()), 2);

(a) LitiEngine (Java)

return Math.sqrt(

(p1.getX() - p2.getX()) * (p1.getX() - p2.getX())

+ (p1.getY()-p2.getY()) * (p1.getY()-p2.getY()));

(b) LitiEngine (Java)

xdistance = left.rect.centerx - right.rect.centerx

ydistance = left.rect.centery - right.rect.centery

distancesquared = xdistance ** 2 + ydistance ** 2

(c) PyGame (Python)

Figure 13. Excerpts that match SP2 (squared 2D distance).

for n, k in enumerate(self.tileset):

s = pyglet.sprite.Sprite(self.tileset[k].image, y=y, x=x,

batch=self.tiles_batch)

# ...

(a) Cocos2D (Python)

for (final Map.Entry<String, List<Consumer<Float>>> entry :

this.componentReleasedConsumer.entrySet()) {

for (final Consumer<Float> cons : entry.getValue()) {

pad.onReleased(entry.getKey(), cons);

}

}

(b) LitiEngine (Java)

Figure 14. Excerpts that match SP7 (iterating over a map).

More discussion is available in the accompanying technical
report [58], and the set of all matches is available in the
accompanying artifact.

False Negatives. By extensive use of grep, we found sev-
eral false negatives in PyGame, Cocos2D, and LitiEngine.
These occur for five reasons:

• Incompleteness of translator: Yogo’s prototype im-
plementation translates many language constructs to
the łunknown statement" node, yielding false nega-
tives. For example, Yogomissed five instances of open-
ing a file which used Python with-statements.
• Incompleteness of rules: Yogo’s results depend on
the rules given to it. Particularly for patterns that deal
with specific APIs, missing rules cause false negatives.
For example, as Yogo is currently unable to look at
the Java class hierarchy, we manually created rules
equating instances of several types to the file-handler
concept. However, we missed ImageWriter, yielding a

false positive in LitiEngine. Another notable example
of missing rules: for performance reasons, Yogo does
not contain rules for associativity.
• Interprocedural code: Yogo cannot detect patterns
when the code is split across methods. For example,
Yogo missed an instance of squared 2D-distance in
PyGame which invoked vector-subtraction. While this
limitation can be partially addressed by inlining (for a
significant performance price), this is actually a fun-
damental limitation of PEGs.
• Reasoning aboutmemory: Yogo currently contains
a trivial solution to the frame problem: unless the func-
tion is marked pure, it assumes that a function may
mutate all memory Ð and Yogo currently treats even
local variables as memory lookups. Hence, Yogo may
miss a match when the matching code is interleaved
with a call to an impure function.
• Timeout: We identified one false negative due to time-
out in PyGame, in a 110 SLOC function with four-level
nested loops and a long if-elif chain. The function con-
tains six time subtractions; only five are found.

More discussion of false negatives is available in the ac-
companying technical report [58].

5.1.2 Synthetic Fragments. Because SP4, SP8, and SP9
occurred few times in the evaluated codebases, we supple-
mented with synthetic code fragments containing these pat-
terns and near misses, designed to stress-test Yogo. We
briefly describe the synthetic fragments for array-frequency
count (SP4). The rest are detailed in the accompanying techn-
nical report [58].
For array frequency count, we wrote a large number of

test cases in both Java and Python, including the examples
of Figures 1 and 2, as well as ones wth a flipped if-else. These
matched, except in the case where interleaving code con-
tained a function call, and Yogo could not verify this call
did not modify relevant state. In two more variants, the fre-
quency counter is an array element or a field of an object
rather than a simple variable. Yogo matches the example
with an object-field counter, but has a false negative for the
array-field counter, as its ruleset for array-index lvalues is
incomplete. We also mutated several examples to produce
near-misses. One notable false positive occurs because our
rules for for-each loops incorrectly assume that the array is
not modified during the loop.

5.1.3 Reflection on Usability. How hard is it to write
Yogo queries? Here we share our experience from this study.

For patterns which are just expressions, such as the 2D-
distance formula, one can simply translate the expression
into Yogo syntax, and let the Yogo engine untangle isomor-
phic code. It does require more thought, however, to think
of relevant isomorphisms to add.
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For patterns which are łprocedures," such as frequency-
count, there was more work to identify the charateristic
subexpressions, and to identify reusable components and
their respective matchers. After identifying them mentally,
however, actually programming in Yogo’s DSL was straight-
forward.
While we did not track the time spent building these

queries, the lead author recalls that, even for the more com-
plicated queries, he would finish them in under an hour.
According to one definition of design[2], programmers

work by refining high-level intentions into low level code.
Yogo was inspired by a tool, Sequoia [25], built to reverse
this process. The work of building a Yogo query is the work
of discovering the higher-level building blocks of intention.

5.2 Graal Case Study

The GraalVM [90] is a Java VM and JDK built by Oracle
designed to support language-interoperability and ahead-of-
time compilation. As its associated Java compiler, Graal, is
itsef written in Java, the project contains 13 hand-written
static analyzers, built atop Graal’s own bytecode analysis
infrastructure, to enforce coding guidelines and catch bugs
in the project. We determined that the buggy patterns sought
by 4 of these analyzers could be expressed as Yogo queries.
We implemented 3 of these as Yogo queries, and verified
they all caught the defects in past revisions of Graal that
inspired the corresponding analyzer. But, for one of these, we
realized that the Yogo querywould naturally bemore general
than the existing analyzer, opening the possibility that Yogo
could detect new bugs in the codebase. And, excitingly, this
happened to be the one analyzer relevant to other codebases.

VerifyDebugUsage searches for several patterns akin to
Debug.log("A: "+ str) or Debug.log("A: \%s", node.toString). Code
of these patterns all perform string computations whose
results are discarded when debug-logging is not enabled.
These are all minor performance bugs, but ones which the
Graal team has aimed to eradicate from their compiler. The
preferred alternative is Debug.log("A: \%n", node), which does
no string computations unless debug-logging is enabled.
The VerifyDebugUsage analyzer is 330 lines,3 and works

by manual tree-pattern matching. We immediately noticed
a limitation: it would fail to detect the target defect if there
was indirection through temporary variables, as in the exam-
ple str = n.toString(); Debug.log("\%s", str); . However, Yogo
by default treats such a snippet as indistinguishable from its
inlined version, Debug.log("\%s", n.toString()).
After identifying the opportunity, to help with our dead-

line, we outsourced the remaining work to a programmer
in India, Sreenidhi Nair. As evidence for Yogo’s usablity, in
3 days, he learned the tool well enough to implement

this query, along with queries for the other Graal checkers.
The debug-usage query is 69 SLOC of YogoDSL. Of these, 11

3As of SHA 4ce223a1dc

(deftrigger plus-string-string

(e <- (generic/binop :+ s1 s2))

(rules/is-string s1)

(rules/is-string s2)

=>

(rules/is-string e))

(deftrigger string-alloced-argument

(rules/obj-to-string arg)

=>

(rules/bad-debug-argument arg))

Figure 15. Extracts of query for incorrect debug usage

lines merely tag expressions as having type String, owing to
the lack of type information in Yogo’s current information,
leaving 58 lines of actual query code. Figure 15 gives extracts
of this code, which uses Yogo’s support for auxiliary facts
to identify string expressions and to mark expressions as
unsuitable for use in debug-logging.
For testing, we inspected past commits which modified

their checker to find instances of the bug it was designed
to catch. To avoid overfitting the query, the programmer
developing the querywas toldwhich commits and directories
contained instances of the buggy pattern, but was not shown
the instances until after successfully detecting it with Yogo.
Although Graal has a 1.2 million line codebase, as Yogo

runs on each method independently, parallelizing this search
was straightforward. The final run took 2.5 hours using
30 AWS instances (type c5n.xlarge). The search turned up
many uninteresting true positives, such as defects in test
code, which VerifyDebugUsage is not configured to check.
It also turned up one example which, while an instance of
the buggy pattern which should have been caught by their
checker, was not an actual defect, as it was wrapped by
the condition if (log.isLoggable(Level.FINE)). Along with these
uninteresting-yet-correct matches, it also turned up one de-
fect that could not have been found by VerifyDebugUsage.

Figure 16 gives the buggy code, which VerifyDebugUsage
missed because of the indirection through nodeName. Our
fix wrapped this code in a condition checking that logging
was enabled, and was accepted into the Graal codebase.4

And thus, a 60-line Yogo query found a bug missed by

a 330-line checker designed for that exact purpose.

5.3 (Lack of) Comparison to Other Tools

As described in ğ6, we discovered over 70 prior tools re-
lated to semantic code search or clone detection. For most
of these, the focus of the tool was too different for a mean-
ingful comparison. We identified 4 candidates where we saw
potential for an interesting experiment design, but failed for
each. We ran MeCC, the clone detector based on abstract-
interpretation of memory accesses, on the examples of ğ1

4https://github.com/oracle/graal/pull/1965/
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if (object instanceof Node) {

Node node = (Node) object;

String loc = GraphUtil.approxSourceLocation(node);

String name = node.toString(Verbosity.Debugger);

if (loc != null) {

debug.log("Context obj %s (approx. location: %s)", name, loc);

} else {

debug.log("Context obj %s", name);

}

}

Figure 16. Defect caught by Yogo but not custom checker.

translated to C: it failed to detect similarity. Unfortunately,
it only supports C, prohibiting a larger comparison. Dyclone
[26] similarly only supports C. The most promising tools
were the SAT-based search tool Satsy [77] and an unnamed
tool that replicates it [27], but we were unable to obtain a
runnable version of either tool. Beyond these 4 tools which
were strong candidates for a meaningful comparison, we
also substantially investigated 3 other tools (Oreo [72], DCS
[18], and Alice [76]), but for each found that the problems
addressed were too different, the benchmarks were a mutual
poor fit, and/or any experiment protocol would have high
and inescapable experimenter bias.

Although Yogo cannot be used out-of-the-box as a clone
detection tool because it requires manual query definition,
we also investigated BigCloneBench [78], a popular clone-
detection benchmark set. We found that its inclusion criteria
aligned poorly with the granular exact-matches detected
by Yogo, meaning that BigCloneBench contains too many
false positives and false negatives for the problem variant
addressed by Yogo. We ultimately gave up on having an
apples-to-apples comparison with an existing tool, and set-
tled for a comparison based on careful literature review,
presented in ğ6.

6 Related Work

The direct inspiration for Yogo was actually not a code
search tool at all, but a program comprehension / reverse-
engineering tool, Sequoia[25], which is in turn inspired by
the Programmer’s Apprentice [64]. Semantic Designs’ Se-
quoia tool uses graph-pattern matching to hierarchically
discover higher-level code patterns in low-level DOWTRAN
code, and has been used to migrate the control software for
dozens of chemical plants.5 Sequoia proved that, with enough
computational power, the insights of the Programmer’s Ap-
prentice could work at scale, and hence guided us to a code
search technique based on hierarchical dataflow patterns.
Its marriage to Ross Tate’s E-PEGs, together with additional
reasoning capabilities and careful design of a language of
more abstract nodes, produced Yogo.

5James Koppel was an intern at Semantic Designs in 2016, though the

relevant details of Sequoia have been explained at public talks

In the remainder of this section, we discuss code search.
Code search has been heavily studied over the past 30 years.
In this section, we provide a comprehensive survey of 70 tools
for code search, and the related problems of code completion,
clone-detection, and łidentifying reusable components" [57,
67]. While there are countless variations of the code-search
problem, they can be broadly split along two dimensions:

1. Searching the open web vs. searching within a single
codebase

2. Fast searches based on superficial features vs. expen-
sive searches based on program semantics.

While we include all categories of work in our survey,
we focus on the quadrant that contains our work: semantic-
search within a single codebase.

Confusingly, note that some authors use łsemantic search"
to refer to search based on natural language semantics rather
than program semantics.

General Code Search. Classic code search is based on in-
formation retrieval techniques originally designed for textual
search, which focus on the set (boolean model) or multiset
(vector space model / łbag of wordsž) of terms which appear
in the document [41, 73, 89].

Many approaches try to augment these basic search tech-
niques with additional information such as topics/categories
[11, 84, 94], similarity metrics [1, 31], related terms found
on StackOverflow [33, 75], the graph of which developers
work onwhich projects [82], and search engine click-through
data [60, 95]. Two interesting points in this space are Portfo-
lio [47], which refines the initial search results by running
PageRank on the call-graph, and Source Forager [30], which
compares functions using a weighted average of many simi-
larity scores, including fine-grained features such as the set
of shared numeric constants.
While most works focus on improving the search results

of the basic algorithms, there are several papers which study
how providing a better or more-interactive UI can help code
search [3, 45, 55, 76].
Outside of information-retrieval techniques, there are a

few other simple query methods. Several tools offer search
based on type signatures [17, 67]. There aremany tools which
use AST-matching either alone [56, 86] or as part of a multi-
modal query [3], and at least one using a fuzzy tree-similarity
algorithm [70]. An extension of these is context-matching
[59], which can simultaneously match multiple subtrees and
partial-subtrees. LASE [48] can similarly use multiple AST
patterns.

FindingAPI Examples. A common variant of code search
is to find a sequence of API calls that either performs a com-
mon task or returns a desired type. Typically, a query is given
as a set of input types and a desired output type. Approaches
use synthesis, code search, or a blend of both.

1077



Semantic Code Search via Equational Reasoning PLDI ’20, June 15ś20, 2020, London, UK

Type-directed pure-synthesis approaches include Prospec-
tor [42], CodeHint [16], and SyPet [12]. MatchMaker [93]
and DemoMatch [92] use synthesis based on a a database of
example traces collected by dynamic analysis. MAPO [91] is
similar, but creates its database by merging static sequences
of API calls.

Tools on the pure search end include Strathcona [23], XS-
nippet [71], and PARSEWeb [81]. All three of these are based
on using heuristics to rank a set of existing API sequences,
discovered in functions found by a backing general search
engine. Strathcona and ParseWEB both use Google Code
Search [89], while XSnippet provides its own.

Several approaches do heavier processing of identified API
sequences before presenting a result to the user. SNIFF [7]
uses a syntactic code-intersection procedure. Both PRIME
[49] and SWIM [60] use patterns of existing API sequences
to synthesize a new answer.

There are also many tools that search for API sequences as
part of code completion. These tools are based on synthesis,
statistical modeling, or both [4, 19, 52, 53, 62].

One unique approach is taken by RACS [38]. RACS obtains
structure about special dependencies in code such as "is
used in a callback." By obtaining similar information from its
natural-language parser, it can handle queries such as łwhen
someone clicks on an image, change the image source."

Deep-Learning. Several newer tools straddle the line be-
tween search based on textual or other superficial features
and search based on program semantics by applying deep-
learning on both natural-language and code artifacts. Ap-
proaches include running a neural network over important
names [68], the program AST [88], and, for Github Semantic
Code Search [21], lexer output. DCS [18], in contrast, uses
more semantic features such as API-sequences. Cambronero
et al [6] survey many of these techniques.

Another application of deep learning is augmenting queries
based on logs of how developers reformulate queries [40].

Searching onCode Semantics. The hithertomost-common
approach to matching code beyond the syntactic level has
been to use program dependence graphs [13]. PDG-based
tools have the common feature of being able to ignore state-
ment ordering and interleaving with other code, but unable
to deal with larger differences. Rattan et al [61] survey 72
separate clone-detection tools, finding 5 which use PDGs
[15, 22, 24, 34, 36]. We further found one PDG-based tool for
plagiarism detection [39] and one for code search [85].

Rattan et al identify 8 tools [8, 15, 26, 32, 34, 36, 44, 74] as
focusing on semantic clone detection (often called łtype-4
clones" in the literature [66]), including 3 of the PDG-based
tools. Another two work by comparing the sets of identifiers
[44] or API calls [8] used in a function. We discuss the other
3 [26, 32, 74] in more detail, grouped with other works using
similar techniques.

Many tools are based on testing. Behavior sampling [57]
and generalized behavior sampling [20] randomly run pro-
cedures based on user-supplied inputs. Reiss’s system [63]
searches for candidate methods using keyword and type-
signature search, creates many variants of them using a
small set of transformations, and then tests them. Jiang and
Hu [26] built a system which can randomly test every 10-line
snippet in a codebase, looking for ones that match under
some permutation of variables. Their approach is based on
I/O equivalence rather than semantic equivalence, meaning
both snippets must produce the same outputs even on in-
valid inputs. They managed to run their system on the entire
Linux kernel in 189 hours wall-clock time on a shared cluster.

Next are the tools based on program analysis. MeCC [32]
uses a path-sensitive, interprocedural abstract interpretation
to compute a summary of a procedure’s memory state, and
then compares functions based on the similarity of their fi-
nal abstract state. It excels in finding semantic clones which
read or write the same data-structure fields. However, we
tested MeCC on several examples similar to Figure 1 translit-
erated into C, and it reported that none of them matched.
Tracy [9] uses a technique based on dynamic analysis and
constraint-solving to compare functions specifically in bi-
nary executables. There are also several Datalog-based pro-
gram analysis tools whose query engines may be used for
code search [46, 83, 87]. They are uniformly limited by the
expressiveness of their underlying program analysis, which
offer coarse abstractions designed for bug-finding rather
than checking program equivalence.
Aside from the Datalog-based static analyzers, several

other search tools use logic as their query mechanism. The
works of Schügerl [74] and of Sivaraman et al [76] both col-
lect a set of facts about procedures, and accept logical queries
about these facts. Most of these facts are syntactic, and so
both approaches often devolve into simultaneously search-
ing for several AST-patterns, although Schuügerl’s system
has limited ability to treat procedure calls as if they were
inlined, and Sivaraman’s includes control-flow facts but not
data-flow facts. Rollins and Wing [65] assume a world in
which every function comes equipped with a logical spec-
ification, so that search can be done by matching a partial
specification. Satsy [77] features perhaps the most expensive
and powerful of the techniques we surveyed. Satsy takes a
query as input/output examples, converts all snippets under
search to SMT formulas, and then runs an SMT solver, allow-
ing it to detect if a snippet can be specialized to satisfy the
I/O examples. The downside is that it only works on a couple
DSLs and a subset of Java, and requires manually-written
models of library functions. It supports łmost of the Java
string API." We contacted the author of Satsy asking to try
it, but she responded that no runnable version is available.
Jiang et al [27] built a tool similar to Satsy, but extended to
support loops and a few more library functions; they did not
respond to our request .
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Coccinelle [5, 54] is a search and rewrite tool based on
control-flow-graph matching. It resembles an AST-rewriting
tool, except that patterns may include the ł..." wildcard,
which matches an arbitrary set of control-flow paths. It sup-
ports a limited number of isomorphisms, but uses an incom-
plete matching procedure: it matters what order rewrite rules
are given to the system. Note that, although it can rewrite
matched code, it ignores the challenges of rewriting in the
presence of isomorphisms: a rule to rewrite x*2 to x*3will hap-
pily rewrite 2*y to y*3, and, if there are overlapping matches,
it can rewrite both of them, giving incorrect output.

Verified lifting [28] is the task of automatically replacing
certain types of code with equivalent code in some DSL.
Verified-lifting tools implement special-purpose program
analyses to search for candidate lifting targets.

How do we compare? We now revisit our claim from ğ1,
that no existing tool can detect all five array-count snippets
in Figure 1 from a single query without large amounts of false
positives. It is clearly true by a technicality: of the tools which
use more than text and ASTs, only Github Semantic Search
is for Python. That aside, there are only 7 tools to consider
which (1) can deal with code equivalences beyond renaming
and reordering (2) for snippets smaller than a whole function
and (3) strive to return only correct results, rather than a
list of results of varying relevance. Coccinelle is technically
in this category, though its semantic-matching capabilities
extend only slightly beyond AST-matching. Similarly, the
three Datalog-based tools are only incidentally useful for
code search, and only provide coarse dataflow facts. L. Jiang
and Hu’s testing-based approach [26] falls short because it
requires that the two snippets under comparison have the
exact same number of local variables. R. Jiang et al’s exten-
sion to Satsy [27] is a strong contender, and may be able to
recognize the four snippets which do not use array.count(),
depending on the performance of the underlying SMT solver.
From this, an easy conclusion is that recognizing the fifth
snippet merely requires adding a model of array.count() to its
library. Unfortunately, it is not possible to express counting
using first-order logic [37]. Reiss [63] comes the closest, us-
ing slicing to overcome the limitation of L. Jiang and Hu.
Unfortunately, the slicing (1) acts on statement-granularity,
ruling out the snippet of Figure 1b when searching for array
frequency-counting, and (2) depends on the return type of
the query, making it inapplicable when searching for a use
of the frequency-count.

We do, however, wish to point out that one of the Datalog-
based tools is now the commercial product Semmle6, which
features an expansive language for writing custom static
analyses. Although this is far from its intended purpose, we
have not confirmed that it is not possible to write a custom
program analysis to find array frequency-count functions.
In summary:

6http://semmle.com

• Static-analysis based methods offer coarse abstractions
not intended for code search.
• SMT-based methods have difficulty with loops and
function calls.
• To preserve scalability, testing-based methods require
limitations on their search for small snippets.

Equational reasoning, in contrast, can deal with arbitrary
loops and functions, and detect arbitrarily small snippets.

7 Discussion, Future Work, and
Conclusion

If the experiences of our first user outside the authors gen-
eralizes, Yogo and its DSL takes 3 days to learn. In return,
the user gains the power to query codebases without miss-
ing matches due to paraphrase. Though we built Yogo as a
code search tool, the Graal case study shows it’s also usable
as a bug-finder. We are also interested in exploring Yogo’s
use as a program comprehension tool, to hierarchically de-
compose arbitrary code into higher-level concepts, like the
Sequoia and Programmer’s Apprentice systems that inspired
it. The flipside of this generality is that it’s very difficult to
explain exactly what kinds of problems Yogo can and cannot
solve. As demonstrated in the Graal case study, users can use
Yogo’s term-rewriting capabilities to augment it with arbi-
trary computation. We have found no better description then
łsnippets that can be shown equivalent to a pattern using a
terminating system of conditional graph-rewrite rules."
From our survey, it’s safe to conclude that Yogo has the

most flexible matching of any semantic code search tool. Yet
our Yogo implementation is just a prototype, and there are
many unexplored extensions. In addition to the challenges of
rewriting discussed in ğ3.5, and incremental improvements
to performance or reasoning, we seemuch opportunity for re-
search on combining Yogo-like techniques with probabilistic
matching, learning of rules (e.g.: [79]), and matching/unifi-
cation modulo theories [29].
Like many SMT-based tools before it, Yogo is part of a

larger trend of taking heavyweight reasoning techniques
built for compilers and verification, and scaling them to a
software-engineering context. We look forward to seeing
more work in this area to bring about the age of smart tools.
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