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Abstract

Variational Quantum Circuits (VQCs), or the so-called quan-
tum neural-networks, are predicted to be one of the most im-
portant near-term quantum applications, not only because of
their similar promises as classical neural-networks, but also
because of their feasibility on near-term noisy intermediate-
size quantum (NISQ) machines. The need for gradient in-
formation in the training procedure of VQC applications
has stimulated the development of auto-differentiation tech-
niques for quantum circuits. We propose the first formaliza-
tion of this technique, not only in the context of quantum
circuits but also for imperative quantum programs (e.g., with
controls), inspired by the success of differentiable program-
ming languages in classical machine learning. In particular,
we overcome a few unique difficulties caused by exotic quan-
tum features (such as quantum no-cloning) and provide a
rigorous formulation of differentiation applied to bounded-
loop imperative quantum programs, its code-transformation
rules, as well as a sound logic to reason about their correct-
ness. Moreover, we have implemented our code transforma-
tion in OCaml and demonstrated the resource-efficiency of
our scheme both analytically and empirically. We also con-
duct a case study of training a VQC instance with controls,
which shows the advantage of our scheme over existing
auto-differentiation for quantum circuits without controls.
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1 Introduction

Background. Recent years have witnessed the rapid de-
velopment of quantum computing, with practical advances
coming from both research and industry. Quantum program-
ming is one topic that has been actively investigated. Early
work on language design [23, 33, 40, 41, 45] has been fol-
lowed up recently by several implementations of these lan-
guages, including Quipper [25], Scaffold [2], LIQUi|⟩ [48],
Q# [47], and QWIRE [34]. Extensions of program logics have
also been proposed for verification of quantum programs
[4, 10, 11, 19, 28, 29, 51, 53]. See also surveys [20, 44, 52].
With the availability of prototypes of quantum ma-

chines, especially the recent establishment of quantum
supremacy [3], the research of quantum computing has en-
tered a new stage where near-term Noisy Intermediate-Scale
Quantum (NISQ) computers [38], e.g., the 53-qubit quantum
machines from Google [3] and IBM [22], become the im-
portant platform for demonstrating quantum applications.
Variational quantum circuits (VQCs) [17, 18, 36], or the so-
called quantum neural networks, are predicted to be one of
the most important applications on NISQ machines. It is not
only because VQCs bear a lot of similar promises like classi-
cal neural networks as well as potential quantum speed-ups
from the perspective of machine learning (e.g., see the sur-
vey [9]), but also because VQC is, if not the only, one of the
few candidates that can be implemented on NISQ machines.
Because of this, a lot of study has already been devoted to the
design, analysis, and small-scale implementation of VQCs
(e.g., see the survey [7]).
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Typical VQC applications replace classical neural net-
works, which are just parameterized classical circuits, by
quantum circuits with classically parameterized unitary gates.
Namely, one will have a "quantum" mapping from input to
output replacing classical mapping in machine learning ap-
plications. An important component of these applications
is a training procedure which optimizes a loss function that
now depends on the read-outs and the parameters of VQCs.
Gradient-based approaches are widely used in the train-

ing procedure. However, computing these gradients of loss
functions from quantum circuits has a similar complexity of
simulating quantum circuits, which is infeasible for classical
computation. Thus, the ability of evaluating these "quantum"
gradients efficiently by quantum computation is critical for
the scalability of VQC applications.

Fortunately, analytical formulas of gradients used in VQCs
have been studied by [18, 21, 31, 42, 43]. In particular, Schuld
et al. [42] proposed the so-called phase-shift rule that uses
two quantum circuits to compute the partial derivative re-
spective to one parameter for quantum circuits. One of the
very successful tools for quantum machine learning, called
PennyLane [8], implemented the phase-shift rule to achieve
auto differentiation (AD) for the read-outs of quantum cir-
cuits. However, none of these studies was conducted from
the perspective of programming languages and no rigorous
foundation or principles have been formalized.

Motivations. An important motivation of this paper is to
provide a rigorous formalization of the auto-differentiation
technique applied to quantum circuits. In particular, we
will provide a formal formulation of quantum programs,
their semantics, and the meaning of differentiation of them.
We will also study the code-transformation rules for auto-
differentiation and prove their correctness.

As we will highlight below, research on the formalization
will encounter many new challenges that have not been con-
sidered or addressed by existing results [18, 21, 31, 42, 43].
Consider one of the basic requirements, e.g., compositionality.
As we will show, differentiating the composition of quantum
programs will necessarily involve running multiple quan-
tum programs on copies of initial quantum states. How to
represent the collection of quantum programs succinctly and
also bound the number of required copies is a totally new
question. Among our techniques to address this question,
we also need to change the previously proposed construct,
e.g., the phase-shift rule [42], to something different.
Moreover, we want to go beyond the restriction of quan-

tum circuits. Our inspiration comes from classical machine
learning examples that demonstrate the advantage of neural-
networks with program features (e.g. controls) over the plain
ones (e.g., classical circuits), e.g. [24, 26], which is also the
major motivation of promoting the the paradigm shift from
deep learning toward differentiable programming.

Augmenting VQCs with controls, at least for simple ones,
is not only feasible on NISQ machines, but also a logical
step for the study of their applications in machine learning.
Therefore, we are inspired to investigate the principles of
differentiable quantum imperative languages beyond
circuits. Indeed, we conduct one such case study in Section 8.

Research Challenges & Solutions. We will rely on a few
notations that should be self-explanatory. Please refer to a
detailed preliminary on quantum information in Section 2.
Let us start with a simple classical program

MUL ≡ v3 = v1 ×v2, (1.1)

where v3 is the product of v1 and v2. Consider the differenti-
ation with respect to θ , we have

∂

∂θ
(MUL) ≡ v3 = v1 ×v2; (1.2)

Ûv3 = Ûv1 ×v2 +v1 × Ûv2, (1.3)

where MUL keeps track of variables v1,v2,v3 and their
derivatives Ûv1, Ûv2, Ûv3 at the same time. One simple yet im-
portant observation is that classical variables v1,v2,v3 are
real-valued and can be naturally differentiated.
Given that quantum states are represented by matrices,

what are the natural quantities to differentiate in the quan-
tum setting? One natural choice from the principles of quan-
tum mechanics is the (classical) read-outs of quantum sys-
tems through measurements, which we formulate as the
observable semantics of quantum programs. This natural
choice also serves the purpose of gradient computation of
loss functions in quantum machine learning, which are typi-
cally defined in terms of these read-outs. We directly model
the parameterization of quantum programs after VQCs, i.e.,
each unitary gate becomes classically parameterized. 1

To model the meaning of one quantum program com-
puting the derivative of another, we define the differential
semantics of programs. There is a subtle quantum-unique
design choice. The observable semantics of any quantum pro-
gram will depend on the observable and its input state. Thus,
any program computing its derivative could potentially de-
pend on these two extra factors. We find out this potential
dependence is undesirable and propose the strongest possi-
ble definition: i.e., one derivative computing program should
work for any pair of observables and input states. We demon-
strate that this strong requirement is not only achievable but
also critical for the composition of auto differentiation.
We are ready to describe the technical challenges for the

compositionality. Consider the following quantum program:

QMUL ≡ U1(θ );U2(θ ), (1.4)

which performsU1(θ ) andU2(θ ) gates sequentially. Note that
gate application is matrix multiplication in the quantum set-
ting. Roughly speaking, if the product rule of differentiation

1The above modeling of quantum programs is very different from classical

ones. It is unclear whether any reasonable analogue of classical chain-rule

and forward/backward mode can exist within quantum programs.
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(as exhibited in (1.3)) remains in the quantum setting, at least
symbolically, then one should expect ∂

∂θ
(QMUL) contains

∂

∂θ
(U1(θ ));U2(θ ) andU1(θ );

∂

∂θ
(U2(θ )) (1.5)

two different parts as sub-programs similarly in (1.3).
However, we cannot run ∂

∂θ
(U1(θ ));U2 and U1(θ );

∂
∂θ

(U2(θ )) together due to the quantum no-cloning theo-
rem [50]. It is simply because they share the same initial
state and we cannot clone two copies of it. This is not an
issue classically as we can store all vi , Ûvi at the same time
as in (1.3). As a result, quantum differentiation needs to run
multiple (sub-)programs onmultiple copies of the initial state.

This change poses a unique challenge for differentiation of
quantum composition: (1) we hope to have a simple scheme
of code transformation, ideally close-to-classical, for intu-
ition and easy implementation of the compiler, whereas it
needs to express correctly the collection of quantum pro-
grams during code transformation; (2) for the purpose of
efficiency, we also want to reasonably bound the number of
required copies of the initial states, which roughly refers to
the number of different quantum programs in the collection.

We develop a few techniques to achieve both goals at the
same time. First, we propose the so-called additive quantum
programs as a succinct intermediate representation for the
collection of programs during the code transformation. Now
the entire differentiation procedure will be divided into two
steps: (1) all code transformations happen on additive pro-
grams and are very similar to classical ones (see Figure 4) ; (2)
the collection of programs can be recovered by a compilation
procedure from any additive program. Additive quantum pro-
grams are equipped with a new sum operation that models
the multiple choices as exhibited in (1.5), which resembles a
similar idea in the differential lambda-calculus [14].
Second, we also design a new rule for ∂

∂θ
(U (θ )) which

is slightly different from [18, 21, 31, 42, 43]. The existing
phase-shift rule makes use of two quantum circuits for one
differentiation, which causes a lot of inconvenience in the
formulation and potential trouble for efficiency. Instead, we
use only one extra ancilla as the control qubit to create a su-
perposition of two quantum circuits and effectively achieve
the same differentiation with only one quantum circuit. We
also conduct a careful resource analysis of our differentia-
tion procedure and show the number of required copies of
initial states is reasonable comparing to the classical setting.
The correctness of the code transformation of composition
critically relies on our design choice as well as the strong
definition related to the differential semantics.
With the previous setup, we can naturally build the dif-

ferentiation for quantum controls (i.e., the condition state-
ment). Note that a general solution for classical controls is
unknown [6] due to the non-smoothness of the guard. Simi-
lar to the classical setting [37], we only provide a solution to
deal with bounded loops and leave it open for general ones.

Contributions.We formulate the parameterized quantum
bounded while-programs with classically parameterized uni-
tary gates modelled after VQCs [17, 32, 36] and their realistic
examples on ion-trap machines, e.g. [54], in Section 3.

In Section 4, we illustrate our design of additive quantum
programs. Specifically, we add the syntax P1+P2 to represent
the either-or choice between P1 and P2 in (1.5). We formu-
late its semantics and compilation rules that map additive
programs into collections of normal ones for our purpose.
In Section 5, we formulate the observable and the differ-

ential semantics of quantum programs and formally define
the meaning of program S ′(θ ) computing the differential
semantics of S(θ ) in the strongest possible sense.

In Section 6, we show that such a strong requirement is in-
deed achievable by demonstrating the code-transformation
rules for the differentiation procedure. Thanks to the use
of additive quantum programs, the code transformation is
much simplified and as intuitive as classical ones.We develop
a logic with the judgement S ′(θ )|S(θ ) stating that S ′(θ ) com-
putes the differential semantics of S(θ ). We prove it sound
and use it to show the correctness of the code transformation.
In Section 7, we conduct a resource analysis to further

justify our design. We show that the occurrence count of
parameters capture the extra resource required in both the
classical auto-differentiation and our scheme. Hence, our re-
source cost is reasonable compared with the classical setting.

Finally, in Section 8, we demonstrate the implementation
of our code transformation in OCaml and apply it to the
training of one VQC instance with controls via classical sim-
ulation. Specifically, this instance shows an advantage of con-
trols in machine learning tasks, which implies the advantage
of our scheme over previous ones that cannot handle controls.
We have also empirically verified the resource-efficiency of
our scheme on representative VQC instances.

Related Classical Work. There is an extensive study of au-
tomatic differentiation (AD) or differentiable programming
in the classical setting (e.g., see books [12, 27]). The most rele-
vant to us are those studies from the programming language
perspective. AD has traditionally been applied to imperative
programs in both the forward mode, e.g. [30, 49], and the
reverse mode, e.g., [46]. The famous backpropagation algo-
rithm [39] is also a special case of reserve-mode AD used to
compute the gradient of a multi-layer perceptron. AD has
also been recently applied to functional programs [15, 16, 35].
Motivated by the success of deep learning, there is significant
recent interest to develop both the theory and the implemen-
tation of AD techniques. Please refer to the survey [5] and
the keynote talk at POPL’18 [37] and [1] for more details.

2 Quantum Preliminaries

We present basic quantum preliminaries (a summary of nota-
tion in Table 1). Details are deferred to the full version [55].
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Table 1. A brief summary of notation used in this paper

Spaces H , A L(H) (Linear operators)
States (pure states) |ψ ⟩, |ϕ⟩;

|0⟩, |1⟩, |+⟩, |−⟩
(density) ρ,σ ; |ψ ⟩⟨ψ |

Operations (unitaries) U ,V ,σ ;
H ,X ,Z ,X ⊗ X

(superoperators) E,F (general);
Φ (quantum channels)

Measurements M {Mm}m ;
{|0⟩⟨0|, |1⟩⟨1|} (example)

Observables O
∑
m λm |ϕm⟩⟨ϕm |;

|0⟩⟨0| − |1⟩⟨1| (example)
Programs (no parameters) P ,Q

(parameterized) P(θ ), S(θ );
R′

σ (θ )(notable examples)
(additive) P(θ ), S(θ ) ;

∂
∂θ

(S(θ )) (example)
Semantics (operational) ⟨P , ρ⟩ → ⟨Q, ρ ′⟩ (steps)

(denotational) [[P]]ρ = ρ ′
(observable) [[(O, ρ)�P(θ )]]

Code Process (Transform) ∂
∂θ

(S(θ )) (example)

(Compile) Compile(S ′(θ )) (example)

Logic (Judgement) S ′(θ )|S(θ ) (example)

Count (Non-Abort) |# ∂
∂θ j

(P(θ ))| (example)

(Occurrence) OCj (P(θ )) (example)

2.1 Math Preliminaries

Let n be a natural number. We refer to the complex vector
space Cn as an n-dimensional Hilbert spaceH . We use |ψ ⟩ to
denote a complex vector in Cn . The Hermitian conjugate of
|ψ ⟩ ∈ Cn is denoted by ⟨ψ |. The inner product of |ψ ⟩ and |ϕ⟩,
defined as the product of ⟨ψ | and |ϕ⟩, is denoted by ⟨ψ |ϕ⟩.
The norm of a vector |ψ ⟩ is denoted by ∥|ψ ⟩∥ =

√
⟨ψ |ψ ⟩.

We define operators as linear maps between Hilbert spaces,
which can be represented by matrices for finite dimensions.
Let A be an operator and its Hermitian conjugate A†. A is
Hermitian if A = A†. The trace of A is the sum of the entries
on the main diagonal, i.e., tr(A) = ∑

i Aii . ⟨ψ |A|ψ ⟩ denotes
the inner product of |ψ ⟩ and A|ψ ⟩. Hermitian operator A is
positive semidefinite if for all vectors |ψ ⟩ ∈ H , ⟨ψ |A|ψ ⟩ ≥ 0.

2.2 Quantum States and Operations

The state space of a qubit is a 2-dimensional Hilbert space.
Two important orthonormal bases of a qubit system are: the
computational basis with |0⟩ = (1, 0)† and |1⟩ = (0, 1)†; the ±
basis, consisting of |+⟩ = 1√

2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩−|1⟩).

A pure quantum state is a unit vector |ψ ⟩. A mixed state,
which refers to an ensemble of pure states {|ψi ⟩}i each with
probabilitypi , can be represented by a density operator that is

a trace-one positive semidefinite operator ρ =
∑

i pi |ψi ⟩⟨ψi |;
ρ is a partial density operator if tr(ρ) ≤ 1. The set of partial
density operators on H is denoted by D(H).
Operations on quantum systems can be characterized by

unitary operators. Denoting the set of linear operators onH
as L(H), an operatorU ∈ L(H) is unitary ifU †U = UU †

=

IH . A unitary evolves a pure state |ψ ⟩ toU |ψ ⟩ , or a density
operator ρ to UρU †. Common unitary operators include:
the Hadamard operator H , which transforms between the
computational and the ± basis via H |0⟩ = |+⟩ and H |1⟩ =
|−⟩; the PauliX operator which performs a bit flip, i.e.,X |0⟩ =
|1⟩ and X |1⟩ = |0⟩; Pauli Z which performs a phase flip, i.e.,
Z |0⟩ = |0⟩ and Z |1⟩ = −|1⟩; CNOT gate mapping |00⟩ 7→
|00⟩, |01⟩ 7→ |01⟩, |10⟩ 7→ |11⟩, |11⟩ 7→ |10⟩. More generally,
evolution of a quantum system can be characterized by an
admissible superoperator E, namely a completely-positive and
trace-non-increasing linear map from D(H) to D(H ′).
For every superoperator E, there exists a set of Kraus

operators {Ek }k such that E(ρ) = ∑
k EkρE

†
k
for any input

ρ ∈ D(H). The Kraus form of E is therefore E = ∑
k Ek ◦E†k .

The Schrödinger-Heisenberg dual of a superoperator E =∑
k Ek ◦ E†

k
, denoted by E∗, is defined as follows: for every

state ρ ∈ D(H) and any operatorA, tr(AE(ρ)) = tr(E∗(A)ρ).
The Kraus form of E∗ is

∑
k E

†
k
◦ Ek .

2.3 Quantum Measurements

Quantum measurements extracts classical information out of
quantum systems. A quantummeasurement on a system over
Hilbert spaceH can be described by a set of linear operators

{Mm}m with
∑
m M†

mMm = IH (identity matrix onH ). If we
perform a measurement {Mm}m on a state ρ, the outcomem

is observed with probability pm = tr(MmρM
†
m) for eachm,

and the post-measurement state collapses toMmρM
†
m/pm .

3 Parameterized Quantum Bounded
While-Programs

We adopt the bounded-loop variant of the quantum while-
language developed by Ying [52], and augment it by parame-
terizing the unitaries, as this provides sufficient expressibility
for parameterized quantum operations: indeed, abort, skip
and initialization behave independently of parameters, while
łparameterized measurementsž can be implemented with a
regular measurement followed by a parameterized unitary.
From here onward, v is a finite set of variables, and θ a

length-k vector of real-valued parameters.

3.1 Syntax

Define Var as the set of quantum variables. We use the sym-
bol q as a metavariable ranging over quantum variables and
define a quantum register q to be a finite set of distinct vari-
ables. For each q ∈ Var , its state space is denoted by Hq .
The quantum register q is associated with the Hilbert space
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Hq =
⊗

q∈q Hq .
2 A T -bounded, k-parameterized quantum

while-program is generated by the following syntax:

P(θ ) ::= abort[q] | skip[q] | q := |0⟩ | q := U (θ )[q] |
P1(θ ); P2(θ ) | caseM[q] =m → Pm(θ ) end |
while(T ) M[q] = 1 do P1(θ ) done,

where

while(1) M[q] = 1 do P1(θ ) done
≡ caseM[q] = {0 → skip, 1 → P1(θ ); abort},(3.1)

while(T ≥2) M[q] = 1 do P1(θ ) done
≡ caseM[q] = {0 → skip, 1 → P1(θ );while(T−1)}

Unparameterized programs can be obtained by fixing θ ∗ ∈ Rk
in some P(θ ). We denote the set of variables accessible to
P(θ ) as qVar(P(θ )); the collection of all łT -bounded while-

programs P(θ ) s.t. qVar(P(θ )) = vž as q-while
(T )
v

(θ ), and
similarly, the unparameterized one as q-while

(T )
v

.
Now let us formally define parameteriztion of unitaries:

let θ := (θ1, · · · ,θk ) (k ≥ 1). A k-parameterized unitary

U (θ ) is a function Rk → L(H) s.t. (1) given any θ ∗ ∈ Rk ,
U (θ ∗) is an unitary on H , and (2) the parameterized-matrix
representation ofU (θ ) is entry-wise smooth.

A important family is the single-qubit rotations about the
Pauli axis X ,Y ,Z with angle θ (matrix exponential here):

Rσ (θ ) := exp

(
−iθ
2
σ

)
,σ ∈ {X ,Y ,Z } . (3.2)

One can also extend Pauli rotations to multiple qubits.
For example, consider two-qubit coupling gates {Rσ ⊗σ :=

exp(−iθ2 σ ⊗ σ )}σ ∈{X ,Y ,Z } , which generate entanglement be-
tween two qubits. Combined with single-qubit rotations,
they form a universal gate set for quantum computation. An-
other important feature is that they can already be reliably
implemented in such as ion-trap quantum computers [54].
As a result, we will work mostly with these gates in the

rest of this paper. However, note that one can easily add and
study other parameterized gates in our framework as well.

The language constructed above is similar to their classical
counterparts. (0) abort terminates the program, outputting
0 ∈ D(Hq). (1) skip does nothing to states in D(Hq). (2)
q := |0⟩ sets quantum variable q to the basis state |0⟩. The
underlying quantum procedure is to apply super-operators
Ebool
q→0(·) (or E int

q→0(·))3 to q and identity operations to the

rest of variables. The correlation between q and the rest of
quantum variables could be potentially disturbed. (3) for any
θ ∗ ∈ Rk ,q := U (θ ∗)[q] applies the unitaryU (θ ∗) to the qubits
in q. (4) Sequencing has the same behavior as its classical

2If type(q) = Bool then Hq = span{ |0⟩, |1⟩ }. If type(q) = Bounded Int

then Hq is with basis { |n ⟩ : n ∈ [−N , N ]} (N ∈ Z+) for some finite N .

We require the Hilbert space to be finite dimensional for implementation.
3Ebool

q→0(ρ) = |0⟩q ⟨0 |ρ |0⟩q ⟨0 | + |0⟩q ⟨1 |ρ |1⟩q ⟨0 | and EB−int
q→0 (ρ) =∑N

n=−N |0⟩q ⟨n |ρ |n ⟩q ⟨0 | (N ∈ Z+).

counterpart. (5) for θ ∗ ∈ Rk , case M[q] =m → Pm(θ ∗) end
performs themeasurementM = {Mm} on the qubits inq, and
executes program Pm(θ ∗) if the outcome of the measurement

ism. The bar overm → Pm indicates that there may be one

or more repetitions of this expression. (6) while(T ) M[q] =
1 do P1(θ ∗) done performs the measurementM = {M0,M1}
on q, and terminates if the outcome corresponds to M0, or
executes P1(θ ∗) then reiterates (T ≥ 2) / aborts (T = 1)
otherwise. The program iterates at most T times.

We highlight two differences between quantum and clas-
sical while languages: (1) Qubits may only be initialized to
the state |0⟩. There is no quantum analogue for initialization
to any expression (i.e. x := e) due to the no-cloning theorem
of quantum states. Any state |ψ ⟩ ∈ Hq , however, can be
constructed by applying some unitaryU to |0⟩. (2) Evaluat-
ing the guard of a case statement or loop, which performs a
measurement, potentially disturbs the state of the system.

3.2 Operational and Denotational Semantics

We present the operational semantics of parameterized pro-
grams in Figure 1a. Transition rules are represented as ⟨P , ρ⟩
→ ⟨P ′, ρ ′⟩, where ⟨P , ρ⟩ and ⟨P ′, ρ ′⟩ are quantum config-
urations.4 In configurations, P (or P ′) could be a quantum
program or the empty program ↓, and ρ and ρ ′ are partial
density operators representing the current state. Intuitively,
in one step, we can evaluate program P on input state ρ to
program P ′ (or ↓) and output state ρ ′. In order to present
the rules in a non-probabilistic manner, the probabilities
associated with each transition are encoded in the output
partial density operator. For each indexm of branches in a
loop/control statement, the superoperator Em is defined by

Em(ρ) = MmρM
†
m , yielding the post-measurement state.

We present the denotational semantics of parameterized
programs in 1b, defining [[P]] as a superoperator on ρ ∈
Hv [52]. For more details we refer the reader to Ying [51, 52].
We have the following connection between the deno-

tational semantics and operational for parameterized pro-
grams: in short, the meaning of running program P(θ ∗) on
input state ρ and any θ ∗ ∈ Rk is the sum of all possible output
states with multiplicity, weighted by their probabilities.

Proposition 3.1 ([52]). ∀P(θ ) ∈ q-while
(T )
v

(θ ), and any spe-
cific θ ∗ ∈ Rk , ρ ∈ D(Hv ),

[[P(θ ∗)]](ρ) =
∑

{|ρ ′ : (P(θ ∗), ρ) →∗ (↓, ρ ′)|}. (3.3)

Here →∗ is the reflexive, transitive closure of → and {| · |}
denotes amulti-set.

We close the section with a notion arising from the fol-
lowing observation: some programs, while syntactically
not łabort[q]ž, semantically aborts. Simple examples include
U (θ ); abort or a case sentence that has abort on each branch.

4Recall that, fixing arbitrary θ ∗ ∈ Rk , both semantics reduce to those of

unparameterized programs, so for compactness we write P for P (θ ∗), etc.
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(Abort) ⟨abort[q], ρ⟩ → ⟨↓, 0⟩

(Skip) ⟨skip[q], ρ⟩ → ⟨↓, ρ⟩

(Init) ⟨q := |0⟩, ρ⟩ → ⟨↓, ρq0 ⟩

where ρ
q
0 =

{
Ebool
q→0(ρ) if type(q) = Bool

EB−int
q→0 (ρ) if type(q) = Bdd Int

(Unitary) ⟨q := U (θ∗)[q], ρ⟩ → ⟨↓, U (θ∗)ρU †(θ∗)⟩

(Sequence)

⟨P1(θ∗), ρ⟩ → ⟨P ′1(θ
∗), ρ ′⟩

⟨P1(θ∗); P2(θ∗), ρ⟩ → ⟨P ′1(θ
∗); P2(θ∗), ρ ′⟩

(Casem) ⟨caseM[q] =m → Pm (θ∗) end, ρ⟩ →
⟨Pm (θ∗),Em (ρ)⟩ , ∀ outcomem ofM = {Mm }

(While(T ) 0) ⟨while(T ) M[q] = 1 do P1(θ∗) done, ρ⟩ →
⟨↓, E0(ρ)⟩

(While(T ) 1) ⟨while(T ) M[q] = 1 do P1(θ∗) done, ρ⟩ →

⟨P1(θ∗);while(T−1),E1(ρ)⟩

(a)

[[abort[q]]]ρ = 0

[[skip[q]]]ρ = ρ

[[q := |0⟩]]ρ = Ebool
q→0(ρ) or E

B−int
q→0 (ρ)

[[q := U (θ∗)[q]]]ρ = U (θ∗)ρU †(θ∗)
[[P1(θ∗); P2(θ∗)]]ρ = [[P2(θ∗)]]([[P1(θ∗)]]ρ)

[[caseM[q] =m → Pm (θ∗) end]]ρ =

∑
m [[Pm (θ∗)]]Em (ρ)

[[while(T ) M[q] = 1 do P1(θ∗) done]]ρ =

∑T−1
n=0 E0◦

([[P1(θ∗)]] ◦ E1)n (ρ)

(b)

Figure 1. Parameterized T -bounded quantum while pro-
grams: (a) operational semantics (b) denotational semantics.

These programs essentially don’t contribute to the finite com-
putation output, as semantically aborted programs always
result in zero output state 0.
We formalize this concept (essential-abortion for unpa-

rameterized programs may be analogously defined) so that
the compilation of our programs could be optimized:

Definition 3.2 (łEssentially Abortž). Let P(θ ) ∈
q-while

(T )
v

(θ ). P(θ ) łessentially abortsž if one of the
following holds:

1. P(θ ) ≡ abort[q];
2. P(θ ) ≡ P1(θ ); P2(θ ), and either P1(θ ) or P2(θ ) essentially

aborts;

3. P ≡ case M[q] = m → Pm(θ ) end, and each Pm(θ )
essentially aborts.

(Sum Components) ⟨P1(θ∗) + P2(θ∗), ρ⟩ → ⟨P1(θ∗), ρ⟩,
⟨P1(θ∗) + P2(θ∗), ρ⟩ → ⟨P2(θ∗), ρ⟩

Figure 2. additive parameterized quantum bounded while-
programs: operational semantics. We fix θ ∗ ∈ Rk and inherit
all the other rules from parameterized programs in Fig. 1a.

4 Additive Parameterized Quantum
Bounded While-Programs

We introduce a variant of additive quantum programs as
a succinct way to describe the collection of programs that
are necessary to compute the derivatives. To that end, we
introduce our design of the syntax and the semantics of
additive quantum programs as well as a compilation method
that turns any additive quantum program into a collection of
normal programs for the actual computation of derivatives.

4.1 Syntax

We adopt the convention to use underlines to indicate ad-
ditive programs, such as P(θ ), to distinguish from normal

program P(θ ). The syntax of P(θ ) is given by

P(θ ) ::= abort[q] | skip[q] | q := |0⟩ | q := U (θ )[q] |

P1(θ ); P2(θ ) | caseM[q] =m → Pm(θ ) end |

while(T ) M[q] = 1 do P1(θ ) done | P1(θ ) + P2(θ ),

where the only new syntax + is the additive choice. In-
tuitively, P1(θ ) + P2(θ ) allows the program to either exe-

cute P1(θ ) or P2(θ ) nondeterminisitcally. The denotational

semantics will include all possible execution traces. We
assume + has lower precedence order than composition,
and is left associative.5 If P(θ ) = P1(θ ) + P2(θ ), then
qVar(P(θ )) ≡ qVar(P1(θ )) ∪ qVar(P2(θ )). Denote the col-

lection of all non-deterministic P(θ ) s.t. qVar(P(θ )) = v as

add-q-while
(T )
v

(θ ).

4.2 Operational and Denotational Semantics

We exhibit operational semantics in Figure 2 and de-
fine a similar denotational semantics for any P(θ ∗) ∈
add-q-while

(T )
v

(θ ).

Definition 4.1 (Denotational Semantics). ∀θ ∗, ρ ∈ D(Hv ),
[[P(θ ∗)]](ρ) ≡ {|ρ ′ : ⟨P(θ ∗), ρ⟩ →∗ ⟨↓, ρ ′⟩|}. (4.1)

Note that there is no sum in (4.1) compared with (3.3).
This is because we want to capture the behavior of + by stor-
ing all possible execution traces in a multi-set. This resem-
bles the idea of the sum operator in the differential lambda-
calculus [14].

5E.g., X + Y ;Z = X + (Y ;Z ), X + Y + Z := (X + Y ) + Z .
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4.3 Compilation Rules

We exhibit the compilation rules in Figure 3 as a way to
transform an additive program P(θ ) into a multiset of normal

programs. The compiled set of programs will be later used in
the actual implementation of the differentiation procedure.
Our compilation rule is also well-defined as it is compatible
with the denotational semantics and operational semantics
of P(θ ) in the following sense:

Proposition 4.2. Denoting with
∐

the union of multisets,
then for any ρ ∈ D(Hv ),

{|ρ ′ : ρ ′ , 0, ρ ′ ∈ [[P(θ ∗)]]ρ |} =
∐

Q (θ )∈Compile(P (θ ))
{|ρ ′ , 0 : ⟨Q(θ ∗), ρ⟩ →∗ ⟨↓, ρ ′⟩|}. (4.2)

Proof. Structural Induction. See the full version [55] for de-
tails. □

Note that (4.2) removes 0 from the multi-set as we are
only interested in non-trivial final states. In Compile(P(θ )),
some programs may essentially abort (Definition 3.2). For
implementation, we are interested in the number of Q(θ ) ∈
Compile(P(θ )) that do not essentially abort:

Definition 4.3. The number of non-aborting programs of
P(θ ), denoted as |#P(θ )|, is defined as
|#P(θ )| = |Compile(P(θ )) \ {|Q(θ ) ∈ Compile(P(θ )) :

Q(θ ) essentially aborts.|}|
where |C | is the cardinality of a multisetC andC0∖C1 denotes
the multiset difference of C0 and C1.

We remark that |#P(θ )| could be exponentially large for

general P(θ ), e.g., P(θ ) ≡ (Q1+R1); ...; (Qn+Rn). However, as
we show in Section 7, for instances of additive programs from
differentiation, this number is well bounded. (i.e., instances
with exponential blow-up are irrelevant in our context.)

Example 4.1 (Generic-Case). Consider the following simple
program with the case statement

P(θ ) ≡ caseM[q] = 0 → P1(θ ) + P2(θ ),
1 → P3(θ )

where P1(θ ), P2(θ ), P3(θ ) ∈ q-while
(T )
v

(θ ), none of them essen-

tially aborts, and each of P1(θ ), P2(θ ), P3(θ ) contains no control
gates. Then for any ρ ∈ D(Hv ), fixing θ ∗ we have

⟨P(θ ∗), ρ⟩ (Casem)→ ⟨P1(θ ∗) + P2(θ ∗),M0ρM
†
0 ⟩

(Sum)→ ⟨P1(θ ∗),M0ρM
†
0 ⟩

→∗ ⟨↓, [[P1(θ ∗)]](M0ρM
†
0 )⟩;

⟨P(θ ∗), ρ⟩ (Casem)→ ⟨P1(θ ∗) + P2(θ ∗),M0ρM
†
0 ⟩

(Sum)→ ⟨P2(θ ∗),M0ρM
†
0 ⟩→∗⟨↓, [[P2(θ ∗)]](M0ρM

†
0 )⟩;

⟨P(θ ∗), ρ⟩ (Casem)→ ⟨P3(θ ∗),M1ρM
†
1 ⟩

→∗ ⟨↓, [[P3(θ ∗)]](M1ρM
†
1 )⟩

(Atomic) Compile(P(θ )) ≡ {|P(θ )|},
if P(θ ) ≡ abort[v] | skip[v] | q := |0⟩
|v := U (θ )[v].

(Sequence) Compile(P1(θ ); P2(θ )) ≡




{|abort|}, if Compile(P1(θ )) = {|abort|};
{|abort|}, if Compile(P2(θ )) = {|abort|};
{|Q1(θ );Q2(θ ) : Qb (θ ) ∈ Compile(Pb (θ ))|},

otherwise.
(Casem) Compile(case) ≡ FB(case), described in Fig.3b .

(While(T )) Compile(while(T)) : use (Casem) and (Sequence).
(Sum ) Compile(P1(θ ) + P2(θ )) ≡




Compile(P1(θ ))
∐
Compile(P2(θ )), if ∀b ∈ {1,

2}, Compile(Pb (θ )) , {|abort|};
Compile(P1(θ )), if Compile(P2(θ )) = {|abort|},

Compile(P1(θ )) , {|abort|};
Compile(P2(θ )), if Compile(P1(θ )) = {|abort|},

Compile(P2(θ )) , {|abort|};
{|abort|}, otherwise

(a)
1. ∀m ∈ [0,w], letCm denote the sub-multiset of Compile(Pm (θ ))

composed of programs that do not essentially abort; without
loss of generality, assume |C0 | ≥ |C1 | ≥ · · · ≥ |Cw |.

2. If all Cm ’s are empty, return FB(case) ≡ {|abort[v]|}; else, pad
each Cm to size |C0 | by adding łabort[v]ž.

3. ∀m ∈ [0,w], index programs in Cm as {|Qm,0(θ ), · · · ,
Qm, |C0 |−1(θ )|}. Return FB(case) ≡ {| case M[q] =

m → Qm, j∗ end |}j∗ with 0 ≤ j∗ ≤ |C0 | − 1.

(b)

Figure 3. nondeterministic programs: (a) compilation rules.
(b) łFill and Breakž (łFB(•)ž) procedure for computing

Compile(case). case stands for caseM[q] =m → Pm(θ ) end;
while(T) stands for while(T ) M[q] = 1 do P1(θ ) done. Here∐

denotes union of multisets. One may observe from a rou-
tine structural induction and the definition of łessentially
abortž that: for all P(θ ), either Compile(P(θ )) = {|abort|}, or
Compile(P(θ )) does not contain essentially abort programs.

Hence by Definition 4.1.

[[P(θ ∗)]]ρ = {|[[P1(θ ∗)]](M0ρM
†
0 ), [[P2(θ

∗)]](M0ρM
†
0 ),

[[P3(θ ∗)]](M1ρM
†
1 )|}

We verify computation results from the compilation rules
are consistent with this. Writing łcompilation rulež as łCPž,

one observes Compile(P1(θ ) + P2(θ ))
CP,Sum
= {|P1(θ ), P2(θ )|},

while Compile(P3(θ )) = {|P3(θ )|} since we assumed non-

essentially-abortness. Apply our łfill and breakž procedure
to obtain C0 = {|P1(θ ), P2(θ )|}, C1 = {|P3(θ ), abort[v]|}.
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Compile(P(θ )) =
{
| caseM[q] = 0 → P1(θ ),

1 → P3(θ ),
caseM[q] = 0 → P2(θ ),

1 → abort[v] |
}

It’s easy to check that evolving pursuant to the normal pro-
grams operational semantics (Fig 1) agrees with [[P(θ ∗)]]ρ.

5 Observable and Differential Semantics

To capture physically observable quantities from quantum
systems, physicists propose the notation of observablewhich
is a Hermitian matrix over the same space. Any observ-
able O is a combination of information about quantum mea-
surements and classical values for each measurement out-
come. To see why, let us take its spectral decomposition of
O =

∑
m λm |ψm⟩⟨ψm |. Then {|ψm⟩⟨ψm |}m form a projective

measurement. We can design an experiment to perform this
projective measurement and output λm when the outcome
ism. The expectation of the output is exactly given by

tr(Oρ) =
∑

m

λmtr(MmρM
†
m). (5.1)

The expectation tr(Oρ) represents meaningful classical in-
formation of quantum systems, which is also used in the
loss functions in quantum machine learning applications.
Thus, given any observable O , we will define the observable
semantics of quantum programs as both the mathematical
object to take derivatives from the original programs and
the read-out of the programs that compute these derivatives.
One can repeat the {|ψm⟩⟨ψm |}m measurement and use

the statistical information to recover tr(Oρ). The number of
iterations depends on the additive precision δ and the norm
of O . To simplify our presentation, also to make a precise
resource count as detailed in Section 7, we assume that6

− IH ⊑ O ⊑ IH . (5.2)

Note that the observable O is different from quantum pred-
icate P (0 ⊑ P ⊑ I ), which is defined [13] as the quantum
analogue of continuous logic with true values in [0, 1]. By
statistically concentration bounds (e.g. the Chernoff bound),
to approximate tr(Oρ) with additive error δ , one needs to
repeat O(1/δ 2) times with O(1/δ 2) copies of initial states.

5.1 Observable Semantics

We define the observable semantics of both normal (denoted
by P(θ ), P ′(θ )) and additive (denoted by S(θ ), S ′(θ )) parame-

terized programs as follows.

Definition 5.1 (Observable Semantics). ∀P(θ ) ∈
q-while

(T )
v

(θ ), any observable O ∈ Ov and input state

ρ ∈ D(Hv ), the observable semantics of P , denoted
[[(O, ρ)�P(θ )]], is

[[(O, ρ)�P(θ )]](θ ∗) ≡ tr(O[[P(θ ∗)]]ρ),∀θ ∗ ∈ Rk . (5.3)

6⊑ is defined by A ⊑ B ⇐⇒ B − A positive semidefinite.

Namely, [[(O, ρ) � P(θ )]] is a function from Rk to R whose
value per point is given by (5.3).

Similarly, for any S(θ ) ∈ add-q-while
(T )
v

(θ ) with Compile
(S(θ )) = {|Pi (θ )|}ti=1 where Pi (θ ) ∈ q-while

(T )
v

(θ ), its observ-
able semantics is given by, ∀θ ∗ ∈ Rk ,

[[(O, ρ)�S(θ )]](θ ∗) ≡
∑

i ∈[1,t ]
[[(O, ρ)�Pi (θ )]](θ ∗). (5.4)

To compute gradients of quantum observables for each
parameter, one needs an ancilla variable as hinted by results
in quantum information theory about gradient calculations
for simple unitaries (e.g., Bergholm et al. [8], Schuld et al.
[42]). To that end, we can easily extend quantum programs
with ancilla variables. For each j ∈ [1,k], the j-th ancilla of

q-while
(T )
v

(θ ) is a quantum variable denoted byAj,v disjoint
from v . We write A instead of Aj,v when j,v are clear from
context. Ancilla A could consist of any number of qubits
while we will mostly use one-qubit A in this paper.

We will only consider programs augmented with one an-
cilla variable Aj at any time. (So let us fix j for the following
discussion). We will then consider programs that operate on
the larger space D(Hv∪{A}) and an additional observable A
to define the observable semantics with ancilla.

Definition 5.2 (Observable Semantics with Ancilla). Given

any P ′(θ ) ∈ q-while
(T )
v∪{Aj,v }(θ ), any observable O ∈ Ov , in-

put state ρ ∈ D(Hv ), and moreover the observable OA on
ancilla A, the observable semantics with ancilla of P , over-
loading the notation [[(O, ρ)�P ′(θ )]], is

[[((O,OA), ρ)�P ′(θ )]](θ ∗) ≡
tr
( (
OA ⊗ O

)
[[P ′(θ ∗)]]((|0⟩{A}⟨0|) ⊗ ρ)

)
,∀θ ∗ ∈ Rk . (5.5)

Again, [[((O,OA), ρ)�P(θ )]] is a function from Rk to R whose
value per point is given by (5.5).

Similarly, for S ′(θ ) ∈ add-q-while
(T )
v∪{Aj,v }(θ ) s.t. Compile

(S ′(θ )) = {|P ′
i (θ )|}ti=1 where P ′

i (θ ) ∈ q-while
(T )
v∪{Aj,v }(θ ), its

observable semantics is: ∀θ ∗ ∈ Rk ,

[[((O,OA), ρ)�S ′(θ )]](θ ∗) ≡
∑

i ∈[1,t ]
[[((O,OA), ρ)�P ′

i (θ )]](θ ∗).

The only difference from the normal observable semantics
lies in (5.5), where we initialize the ancilla with |0⟩, which is
a natural choice and evaluate the observable OA ⊗ O . As we
will see in the technique, the independence between OA and
O in the form of OA ⊗ O will help us obtain the strongest
guarantee of our differentiation procedure.

5.2 Differential Semantics

Given the definition of observable semantics, its differential
semantics can be naturally defined by
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Definition 5.3 (Differential Semantics). Given additive pro-

gram S(θ ) ∈ add-q-while
(T )
v

(θ ), its j-th differential seman-

tics is defined by

∂

∂θ j
([[(O, ρ)�S(θ )]]), (5.6)

which is again a function from Rk to R. Moreover, for any

S ′(θ ) ∈ add-q-while
(T )
v∪{A}(θ ) with ancilla A, we say that

łS ′(θ ) computes the j-th differential semantics of S(θ )ž if and
only if there exists an observableOA on ancillaA for S ′(θ ) such
that ∀O ∈ Ov , ρ ∈ D(Hv ),

[[((O,OA), ρ)�S ′(θ )]] = ∂
∂θ j

([[(O, ρ)�S(θ )]]). (5.7)

We remark that (5.6) is well defined because [[(O, ρ) �

S(θ )]] is a function from Rk to R. It is also a smooth function

because we assume that parameterized unitaries are entry-
wise smooth, and the observable semantics is obtained by
multiplication and addition of such entries. Note also that
there is one specific choice of OA in our current design. We
leave it as a parameter to allow flexibility for future designs.

We also remark that the order of quantifiers in (5.7) is the
strongest that one can hope for. This is because the observ-
able semantics of S(θ ) will depend on O and ρ in general.

Thus, the program to compute its differential semantics could
also depend on O and ρ in general. However, in our defini-
tion, S ′(θ ) is a single fixed program that works for any O

and ρ regardless of the seemingly complicated relationship.
This definition is consistent with the classical case where a
single program can compute the derivatives for any input.
We can achieve the same definition in the quantum setting
and it is critical in the proof of Theorem 6.2 (item (5)).

6 Code Transformations and the
Differentiation Logic

We describe the code transformation rules of the differentia-
tion operator ∂

∂θ
(·) in Section 6.1. We also define a logic and

prove its soundness for reasoning about the correctness of
these code transformations, with the following judgement

S ′(θ )|S(θ ), (6.1)

which states that S ′(θ ) computes the differential semantics of

S(θ ) in the sense of Definition 5.3. We fix θ = θ j and hence

A stands for Aj,v and ∂
∂θ

for ∂
∂θ j

through this section.7

6.1 Code Transformations

We first define some gates associated with the single-qubit
rotation and the two-qubit coupling gates, which will appear
in the code transformation rules. Let A be a single qubit.

7If A already exists, i.e., S (θ ) ∈ add-q-while
(T )
v∪{A}(θ ), we treat vnew as

vold ∪ Aold and add Anew. Any observable O on vold becomes OAold
⊗ O

on vnew. Both Aold and Anew are initialized to |0⟩ in observable semantics.

(Trivial) ∂
∂θ

(abort[v]), ∂
∂θ

(skip[v]), ∂
∂θ

(q := |0⟩) ≡
abort[v ∪ {A}].

(Trivial-U) ∂
∂θ

(v := U (θ )[v]) ≡ abort[v ∪ {A}], if θ j < θ .
(1-qb) ∂

∂θ
(q1 := Rσ (θ )[q1]) ≡ A,q1 := R

′
σ (θ )[A,q1].

(2-qb) ∂
∂θ

(q1,q2 := Rσ ⊗σ (θ )[q1,q2]) ≡
A,q1,q2 := R

′
σ ⊗σ (θ )[A,q1,q2].

(Sequence) ∂
∂θ

(S1(θ ); S2(θ )) ≡ (S1(θ ); ∂
∂θ

(S2(θ ))) +
( ∂
∂θ

(S1(θ )); S2(θ )).
(Case) ∂

∂θ
(caseM[q] =m → Sm(θ ) end) ≡
caseM[q] = m → ∂

∂θ
(Sm(θ )) end.

(while(T )) Use (Case) and (Sequence).

(S-C) ∂
∂θ

(S1(θ ) + S2(θ )) ≡ ∂
∂θ

(S1(θ )) + ∂
∂θ

(S2(θ )).

Figure 4. Code Transformation Rules. For (1-qb Rotation)
and (2-qb Coupling), (σ ∈ {X ,Y ,Z }); R′

σ (θ ),R′
σ ⊗σ (θ ) are as

in Definition 6.1. θ j < θ means łthe unitary U (θ ) trivially
uses θ j ž: for example in P(θ ) ≡ RX (θ1);RZ (θ2), θ = (θ1,θ2)
and RX (θ1) trivially uses θ2.

Definition 6.1. 1. Consider unitary Rσ (θ ) where σ ∈
{X ,Y ,Z }. We define unitary C_Rσ (θ ) as

C_Rσ (θ ) ≡ |0⟩A⟨0| ⊗ Rσ (θ ) + |1⟩A⟨1| ⊗ Rσ (θ+π ). (6.2)

We also define a new gadget program R′
σ (θ ) as

R′
σ (θ )[A,q1] ≡ A := H [A];A,q1 := C_Rσ (θ )[A,q1];

A := H [A]. (6.3)

2. Substituting σ ⊗σ for σ andq1,q2 forq1 in Eqns (6.2,6.3),
one defines C_Rσ ⊗σ (θ ),R′

σ ⊗σ (θ ).

For 1-qubit rotation Rσ (θ ), the łcontrolled-rotationž gate
C_Rσ (θ )maps |0,q1⟩ 7→ |0⟩ ⊗Rσ (θ ) |q1⟩, and |1,q1⟩ 7→ |1⟩ ⊗
Rσ (θ+π ) |q1⟩; R′

σ (θ ) conjugates C_Rσ (θ ) with Hadamard.
Similarly for corresponding two-qubit coupling gates.

We exhibit our code transformation rules in Figure 4. For
Unitary rules we only include 1-qubit rotations and two-
qubit coupling gates, since they form a universal gate set
and are easy to implement on quantum machines. It is also
possible to include more unitary rules (e.g., by following the
calculations in [42]), which we will leave as future directions.

6.2 The Differentiation Logic and Its Soundness

We develop the differentiation logic given in Figure 5 to rea-
son about the correctness of code transformations. It suffices
to show that our logic is sound. For ease of notation, in fu-
ture analysis we write ∂

∂θ
(P(θ )) in place of ∂

∂θ
(P(θ )) when

P(θ ) ∈ q-while
(T )
v

(θ ).

Theorem 6.2 (Soundness). Let S(θ ) ∈ add-q-while
(T )
v

(θ ),
S ′(θ ) ∈ add-q-while

(T )
v∪{A}(θ ). Then, S

′(θ )|S(θ ) implies that

S ′(θ ) computes the differential semantics of S(θ ).
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(Abort) ∂
∂θ

(abort[v])|abort[v] (Skip) ∂
∂θ

(skip[v])|skip[v]

(Initialization) ∂
∂θ

(q := |0⟩)|(q := |0⟩)

(Trivial-Unitary)

θ j < θ

∂
∂θ

(q = U (θ )[v])|q = U (θ )[v]

(Rot-Couple) ∂
∂θ

(q = Rσ (θ )[v])|(q = Rσ (θ )[v])

(Sequence)

∂
∂θ

(S0(θ ))|S0(θ ) ∂
∂θ

(S1(θ ))|S1(θ )
∂
∂θ

(S0(θ ); S1(θ ))|(S0(θ ); S1(θ ))

(Case)

∀m, ∂
∂θ

(Sm(θ ))|Sm(θ )
∂
∂θ

(caseM[q] =m → Sm(θ ) end)|
caseM[q] =m → Sm(θ ) end

(While(T ))

∂
∂θ

(S1(θ ))
���S1(θ )

∂
∂θ

(while(T ) M[q] = 1 do S1(θ ) done)|
while(T ) M[q] = 1 do S1(θ ) done

(Sum Component)

∂
∂θ

(S0(θ ))|S0(θ ) ∂
∂θ

(S1(θ ))|S1(θ )
∂
∂θ

(S0(θ ) + S1(θ ))|(S0(θ ) + S1(θ ))

Figure 5. The differentiation logic. Wherever applicable,

q ∈ v,q ⊆ v, Si (θ ) ∈ add-q-while
(T )
v

(θ ). In (Rot-Couple),

σ ∈ {X ,Y ,Z ,X ⊗ X ,Y ⊗ Y ,Z ⊗ Z }.

Let us highlight the ideas behind the proof of the sound-
ness and all detailed proofs are deferred to the full ver-
sion [55]. First remember that θ = θ j and for all the proofs
we can choose ZA = |0⟩⟨0| − |1⟩⟨1| as the observable on the
one-qubit ancilla A. Thus, we will omit ZA and overload the

notation, ∀P ′(θ ) ∈ q-while
(T )
v∪{A}(θ ):

[[(O, ρ)�P ′(θ )]] means [[((O,ZA), ρ)�P ′(θ )]], (6.4)

to simplify the presentation. We make similar overloading

convention for S ′(θ ) ∈ add-q-while
(T )
v∪{A}(θ ). Let us go

through these logic rules one by one.

1. Abort, Skip, Initialization, Trivial-Unitary rules work be-
cause these statements do not depend on θ .

2. Since While(T ) can be deemed as a macro of other state-
ments, the correctness ofWhile(T ) rule follows by unfolding
while(T ) and applying other rules.

3. The Sum Component rule is due to the property of observ-
able semantics ([[·]]) and additive operator (+):

∂

∂θ
([[P1 + P2]]) = [[ ∂

∂θ
(P1)]] + [[

∂

∂θ
(P2)]], (6.5)

which follows from our definition design.
4. Our Rot-Couple rule is different from the phase-shift rule

in [42] by using only one circuit in derivative computing.
However, the proof of the Rot-Couple rule is largely inspired
by the one of the phase-shift rule.

5. The proof of the Sequence rule relies very non-trivially
on our design of the observable semantics with ancilla
(Definition 5.2) and the strong requirement of computing
differential semantics in Definition 5.3. Firstly, note that

[[(O, ρ)� ∂
∂θ

(S0(θ ); S1(θ ))]] = [[(O, ρ)� ∂
∂θ

(S0(θ )); S1(θ )]]

+[[(O, ρ)�S0(θ ); ∂
∂θ

(S1(θ ))]].

We use the induction hypothesis to reason about each
term above. Consider the case S0(θ ) = S0(θ ) and S1(θ ) =
S1(θ ). Note that S0(θ ), S1(θ ) ∈ q-while

(T )
v

(θ ) and ∂
∂θ

(S0(θ )),
∂
∂θ

(S1(θ )) ∈ add-q-while
(T )
v∪{A}(θ ). First, we show

[[(O, ρ)�S0(θ );
∂

∂θ
(S1(θ ))]]= [[(O, [[S0(θ )]](ρ))�

∂

∂θ
(S1(θ ))]].

(6.6)
This is because ∂

∂θ
(S1(θ )) computes the derivative for any

input state and observable. We simply choose the input
state [[S0(θ )]](ρ) and observable O . Secondly, we show

[[(O, ρ)� ∂
∂θ

(S0(θ )); S1(θ )]]= [[([[S1(θ )]]∗(O), ρ)�
∂

∂θ
(S0(θ ))]].

(6.7)
For (6.7), we don’t change the state ρ but change the ob-
servable O by applying the dual super-operator [[S1(θ )]]∗.
Since ∂

∂θ
(S0(θ )) computes the derivative for any input state

and any observable, we choose the input state ρ and observ-
able [[S1(θ )]]∗(O). The dual super-operator [[S1(θ )]]∗ has the
property that tr(O[[S1(θ )]](ρ)) = tr([[S1(θ )]]∗(O)ρ), which
corresponds to the Schrodinger picture (evolving states)
and Heisenberg picture (evolving observables) respectively
in quantum mechanics.

6. The proof of the Case rule basically follows from the linear-
ity of the observable semantics and the smooth semantics of
Case. It is interesting to compare with the classical case [6]
where the non-smoothness of the guard causes an issue for
auto differentiation.

Example 6.1 (Simple-Case). Consider the following simple
instantiating of Example 4.1

P(θ ) ≡ caseM[q1] = 0 → RX (θ )[q1];RY (θ )[q1],
1 → RZ (θ )[q1]

Let us apply code transformation and compilation. Let CT, CP
to denote łcode transformationž and łcompilationž, and łSeqž
and łRotž denote Sequence and Rotation rules resp.

∂

∂θ
(P(θ )) CT,case

=

caseM[q1] = 0 → ∂
∂θ

(RX (θ )[q1];
RY (θ )[q1]),

1 → ∂
∂θ

(RZ (θ )[q1])
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CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ )[A,q1];
RY (θ )[q1])+
(RX (θ )[q1];
R′

Y (θ )[A,q1]),
1 → R′

Z (θ )[A,q1]

Compile(•)7−→
{
|
caseM[q1] = 0 → R′

X (θ )[A,q1];
RY (θ )[q1],

1 → R′
Z (θ )[A,q1],

caseM[q1] = 0 → RX (θ )[q1];
R′

Y (θ )[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis

In this section we illustrate the execution of the entire differ-
entiation procedure and analyze its resource cost. Consider

any program P(θ ) ∈ q-while
(T )
v

(θ ) and the parameter θ .

Execution. The first step in differentiation is to apply the
code transformation rules (in Section 6) to P(θ ) and obtain
an additive program ∂

∂θ
(P(θ )). Then one needs to compile

∂
∂θ

(P(θ )) into a multiset {|P ′
i (θ )|}mi=1 of normal non-aborting

programs P ′
i (θ ). The total count of these programs is given

bym = |# ∂
∂θ

(P(θ ))|. Note that the above procedure could be
done at the compilation time.

Given any pair of O and ρ, the real execution to compute
the derivative of [[(O, ρ)� P(θ )]] is to approximate the ob-
servable semantics [[(O, ρ) �

∂
∂θ

(P(θ ))]]. By Definition 5.2,
we need to approximate

m∑

i=1

tr
( (
ZA ⊗ O

)
[[P ′

i (θ )]]((|0⟩{A}⟨0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ ) given input state ρ and the ancilla qubit |0⟩.
To approximate the sum in (7.1) to precision δ , one could

first treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ ). By Chernoff bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ
(P(θ ))|. We argue that our code transformation is

efficient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity defined
on the original program P(θ ) (i.e., before applying any ∂

∂θ
(·)

operator) called the occurrence count of the parameter θ .

Definition 7.1. The łOccurrence Count for θ j ž in P(θ ), de-
noted OCj (P(θ )), is defined as follows:

1. If P(θ ) ≡ abort[v]|skip[v]|q := |0⟩ (q ∈ v), then
OCj (P(θ )) = 0;

2. P(θ ) ≡ U (θ ): ifU (θ ) trivially uses θ j , then OCj (P(θ )) =
0; otherwise OCj (P(θ )) = 1.

3. If P(θ ) ≡ U (θ ) = P1(θ ); P2(θ )) then OCj (P(θ )) =
OCj (P1(θ )) +OCj (P2(θ )).

4. If P(θ ) ≡ caseM[q] =m → Pm(θ ) end thenOCj (P(θ ))
= maxm OCj (Pm(θ )).

5. If P(θ ) ≡ while(T ) M[q] = 1 do P1(θ ) done then
OCj (P(θ )) = T · OCj (P1(θ )).

Intuition of the łOccurrence Countž definition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-differentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ ), we will compute both v and ∂

∂θ
(v) and store them both

as variables in the new program. Thus, the classical auto-
differentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ ))| ≤ OCj (P(θ )).

Proof. Structural induction. For details, see the full ver-
sion [55]. □

8 Implementation and Case Study

We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-efficiency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classification problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} define the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at https://github.com/LibertasSpZ/adcompile.
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where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, define

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, define
P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)

1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classification or in the
training, we first initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classifiers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classifier with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1⟩⟨1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α
(P1) for α ∈ Θ,Φ (or ∂

∂α
(P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them sufficiently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-efficient as |# ∂

∂θ
(·)|

is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
łmedium, largež; {i,w} stands for including łif, whilež.

P(θ ) OC(·) |# ∂
∂θ

(·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18

QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36

QNNL,w 504 48 2079 244 33 36

VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12

VQEL,i 40 40 576 628 5 40

VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18

QAOAM,w 42 18 168 94 5 18

QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36
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