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Abstract

Modern Hardware Description Languages (HDLs) such as
SystemVerilog or VHDL are, due to their sheer complexity,
insufficient to transport designs through modern circuit de-
sign flows. Instead, each design automation tool lowers HDLs
to its own Intermediate Representation (IR). These tools are
monolithic and mostly proprietary, disagree in their imple-
mentation of HDLs, and while many redundant IRs exists,
no IR today can be used through the entire circuit design
flow. To solve this problem, we propose the LLHD multi-
level IR. LLHD is designed as simple, unambiguous reference
description of a digital circuit, yet fully captures existing
HDLs. We show this with our reference compiler on designs
as complex as full CPU cores. LLHD comes with lowering
passes to a hardware-near structural IR, which readily in-
tegrates with existing tools. LLHD establishes the basis for
innovation in HDLs and tools without redundant compil-
ers or disjoint IRs. For instance, we implement an LLHD
simulator that runs up to 2.4x faster than commercial sim-
ulators but produces equivalent, cycle-accurate results. An
initial vertically-integrated research prototype is capable of
representing all levels of the IR, implements lowering from
the behavioural to the structural IR, and covers a sufficient
subset of SystemVerilog to support a full CPU design.

CCS Concepts: - Hardware — Hardware description lan-
guages and compilation; - Computing methodologies
— Simulation languages; « Software and its engineering
— Compilers.

Keywords: hardware description languages, intermediate
representations, transformation passes

1 Introduction

The workflow we use today to design digital circuits, includ-
ing CPUs and GPUs, has a severe redundancy problem. The
sheer complexity of modern designs, requiring billions of
transistors to be placed and costing millions of dollars on
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Figure 1. Redundancy in today’s hardware design flow (top).
Replacement flow with Moore as compiler frontend and
LLHD as unifying IR (bottom). Maturity of the implementa-
tion at the time of writing is indicated.

each silicon iteration, has given rise to a very deep design
toolchain — much more so than in software development.
Along their way to becoming silicon, digital designs pass sim-
ulators, formal verifiers, linters, synthesizers, logical equiva-
lence checkers, and many other tools. HDLs are used as the
input to these tools, with SystemVerilog and VHDL being
widely used in industry. Both are highly complex languages:
their specifications span 1275 and 626 pages of text, respec-
tively [1, 4]. The aforementioned tools come from different
vendors (often by design to rule out systematic sources of
error), each of which has its own implementation of the com-
plex language standards, as depicted in Figure 1. Hardware



designers have to “hope”, for example, that the circuit syn-
thesizer interprets the semantics of a design in the same way
as the simulator used for verification, and the standards can
be very subtle [26]. As a consequence, designers resort to a
“safe subset” of each language known to produce identical
results across most tools, which precludes the practical use
of many distinguishing high-level features of SystemVerilog
and VHDL.

All of our modern computing infrastructure depends on
getting this tool flow right. As a consequence, the Electronic
Design Automation (EDA) industry invests significant re-
sources into finding safe subsets of the languages, establish-
ing coding styles, and developing linting tools to enforce
adherence to such conventions [26]. In contrast to software
development, where the advent of IRs and frameworks such
as LLVM [16] has provided a productive platform for open
development, the hardware design flow remains isolated and
vendor-locked. The EDA market is dominated by closed-
source, proprietary, monolithic toolchains, which have been
highly optimized over decades. New open-source tools face
the hurdle of implementing complex language frontends
before being able to compete. We observe that hardware
engineering and compiler design communities have evolved
in isolation, even though many optimizations and method-
ological improvements readily apply to both worlds. This is
to hardware engineering’s severe disadvantage, as we see
ample opportunity for the two communities to connect, ex-
change, and benefit from each other.

We propose LLHD, an IR to represent digital circuits through-
out the entire design flow, from simulation, testbenches and
formal verification, behavioural and structural modeling,
to synthesis and the final gate-level netlist. There cannot
be a single IR that fits all hardware needs, as this would
require high-level simulation constructs without hardware
equivalents, yet still be trivially synthesizable. However, the
constructs needed to describe a netlist form a subset of those
needed for synthesis, which are in turn a subset of those
needed for simulation. As such, LLHD is a multi-level IR
with three distinct levels or dialects, which cater to the cor-
responding parts of the tool flow. LLHD adheres to Static
Single Assignment (SSA) form [5, 12], which lends itself
exceptionally well to represent digital circuits, which are
exactly that: signals with single, static driver assignments.
LLHD borrows the basic IR syntax from LLVM but defines
an IR for digital circuits, which must explicitly deal with the
passing of time and, since digital circuits are inherently con-
current, must be able to describe concurrency. Together with
Moore, a compiler frontend for HDLs, LLHD significantly
reduces redundancy in the design flow and allows novel,
open languages to thrive, as depicted in Figure 1.

Many IRs for hardware designs already exist. For instance,
EDA tools have internal IRs, but these are highly tool-specific
and mostly proprietary. In general, the vast majority of IRs
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puts a narrow focus on circuit synthesis. To prevent redun-
dancy and disagreement in compilers and gaps between IRs,
we argue that one IR must cover the entire circuit design
flow. To our knowledge this paper is the first to propose this
solution. We make the following contributions:

o We define a multi-level IR that captures current HDLs
in an SSA-based form compatible with modern, imper-
ative compilers but with extensions and specializations
crucial to represent digital hardware (§ 2).

e We show how existing industry-standard HDLs, such
as SystemVerilog and VHDL, map to this IR (§ 3).

e We establish transformation passes to lower from Be-
havioural LLHD to hardware-near Structural LLHD (§ 4).

e We show that such a multi-level IR can improve the
existing EDA tool flow, even without explicit support
by commercial tools (§ 5).

e We provide evidence that the IR can capture complex
designs such as entire CPU cores [31], that a minimal
reference simulator models those designs identically
to commercial simulators, and that an early optimized
simulator runs up to 2.4X faster than a commercial
simulator (§ 6).

Finally, we provide an open-source implementation of our
IR, its reference simulator, and an accompanying HDL com-
piler.! The implementation acts as a vertically-integrated
research prototype. This prototype is currently capable of
capturing behavioural, structural, and netlist LLHD. Low-
ering from behavioural to structural LLHD is partially im-
plemented in order to demonstrate the key transformations,
but is not complete at the time of writing. Lowering from
structural to netlist LLHD is the domain of hardware syn-
thesizers and as such outside the scope of this work. The
Moore compiler supports a subset of SystemVerilog which
is large enough to represent a full CPU core [31] and cov-
ers a sufficient amount of non-synthesizable constructs of
the language to support simple testbenches. Initial experi-
mental work on VHDL support is underway. Our simulator
implementation covers the vast majority of all three LLHD
dialects, except a few instruction that were not instrumental
to simulate the designs presented in this work.

2 The LLHD Intermediate Representation

The LLHD IR is designed as an SSA language [5, 12] which
enables a very direct representation of the data flow in a
digital circuit. The rationale is that modern digital circuits are
essentially the same as an SSA data flow graph, where each
logic gate corresponds to a node in the graph. LLHD has an
in-memory representation, a human-readable representation,
and a planned binary on-disk representation, and all three
representations are equivalent. In this section, we define
the core concepts of the LLHD language; the complete and
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entity @acc_tb O > O { @
%zero@ = const i1 @
%zerol = const 132 0
%clk = sig i1 %zero@
%en = sig i1 %zero@ o
%x = sig 132 %zerol
%q = sig 132 %zerol
inst @acc (i1$ %clk, i32% %x, i1$ %en) -> (i32% %q) o
inst @acc_tb_initial (i32% %q) -> (i1$ %clk, i32$ %x, i1$ %en)

} (€]
proc @acc_tb_initial (i32$ %q) -> (i1$ %clk, 132% %x, i1$ %en) {
entry: 0
%bit@ = const i1 @
%bit1 = const i1 1
%zero = const 132 @

%one = const 132 1
%many = const 132 1337
%dellns = const time Tns
%del2ns = const time 2ns
%i = var 132 %zero
drv i1$ %en, %bit1 after %del2ns
br %loop
loop:
%ip = 1d 132% %i
drv i32% %x, %ip after %del2ns
drv i1$ %clk, %bit1 after %delins @
drv i1$ %clk, %bit@ after %del2ns
wait %next for %del2ns €@
next:
%qp = prb 132% %q
call void @acc_tb_check (i32 %ip, 132 %ap) @
%in = add 132 %ip, %one
st 132% %i, %in
%cont = ult 132 %ip, %many
br %cont, %end, %loop
end:

halt @

func @acc_tb_check (i32 %i, 132 %q) void { @
entry:
%one = const 132 1
%two = const i32 2
%ip1 = add 132 %i, %one ; 1+
%ixipl = mul 132 %i, %ipl ; ix(i+1)
%gexp = div 132 %ixip1, %two ; ix(i+1)/2
%eq = eq 132 %qgexp, %q ; q == i*x(i+1)/2
call void @llhd.assert (i1 %eq) ; not yet implemented
ret

Figure 2. A testbench for an accumulator design as an il-
lustrative example for LLHD code. See § 2 for a detailed
description, Figure 3 for the corresponding SystemVerilog
code, and Figure 5 for the implementation of @acc.

precise specification is part of the LLHD Language Reference
Manual.?

2.1 Describing Digital Circuits

A hardware description requires a notion of passing time,
must be able to represent concurrency, and provide a way to
describe the structure and hierarchy of a circuit. This is due
to digital circuits being inherently hierarchical, concurrent,
and time-dependent. LLHD draws from the abstractions es-
tablished in modern HDLs over the past decades, and distills
them into fundamental orthogonal concepts. Figure 2 shows
a sample LLHD source text describing a testbench for an
accumulator circuit as an illustrative example. The language
provides three modeling constructs:

?Language Reference Manual: http://Ilhd.io/spec.html

Functions capture a mapping from a set of input values
to an output and allow for reuse of computation. They
facilitate code reuse, recursion and program-defined
mapping of a set of input values to a singular output
value in the SSA graph, but they do not have a direct
hardware equivalent. (See Figure 2a)

Processes are Turing-complete subprograms that de-
scribe how a circuit’s state and output reacts to a
change in its input. This provides a behavioural circuit
description. (See Figure 2b)

Entities build hierarchy by instantiating other processes
or entities, which then operate concurrently. This pro-
vides a structural circuit description. Such instantiation
translates into reuse by replication in the physical sili-
con, which is an essential contributor to our ability to
manufacture designs with billions of transistors. (See
Figure 2c)

Circuit designs written in HDLs generally model circuits
behaviourally and structurally. Physical silicon itself is a
purely structural arrangement of circuits and thus fully cap-
tured by a hierarchy of entities. Functions and processes are
merely modeling tools to fully capture HDLs, including sim-
ulation and verification components which have no physical
equivalent. To capture these levels of abstraction, LLHD is a
three-level IR, as described in the following paragraph.

2.2 Multi-level Intermediate Representation

LLHD can capture all aspects of a digital design written in a
higher-level HDL such as SystemVerilog or VHDL, including
simulation, verification, and testing constructs. However,
its structure also allows it to clearly capture parts relevant
for synthesis, as well as represent the netlist that results
from synthesis. This makes LLHD a multi-level IR with the
following levels:

Behavioural LLHD aims at capturing circuit descrip-
tions in higher-level HDLs as easily as possible. It al-
lows for simulation constructs and test benches to
be fully represented, including assertions, file I/O, or
formal verification information as intrinsics.

Structural LLHD limits the description to the parts that
describe the input to output relations of a design. This
covers essentially everything that can be represented
by an entity (see § 4 for a more technical description).

Netlist LLHD further limits the description to just en-
tities and instructions to instantiate and connect sub-
circuits. More specifically allowed are just the entity
construct, as well as signal creation (sig), connection
(con), delay (del), and sub-circuit instantiation (inst).

We observe that the constructs of Netlist LLHD are a strict
subset of Structural LLHD, which in turn is a strict subset of
Behavioural LLHD. Rather than defining three separate IRs,
we thus propose one holistic IR to cover the entire process. As
a design makes its way through the hardware design flow, the
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simulation and design verification phase uses the full IR of
Behavioural LLHD. Before synthesis, LLHD compiler passes
lower the design to Structural LLHD. A synthesizer then
lowers the design to a netlist by performing logic synthesis
and mapping the design to a target silicon technology, which
can be expressed in Netlist LLHD.

The remainder of this section provides a more detailed
treatment of the constructs in LLHD. In the following two
sections, we first discuss mapping a design from a HDL to
LLHD (§ 3) and then the compiler passes to transform the
design between the different LLHD levels (§ 4).

2.3 Modules, Names, and Types

A single LLHD source text is called a module. Modules consist
of functions, processes, and entities. Multiple modules can
be combined by a linker, which resolves references in one
module against the definitions made in the other.

LLHD distinguishes between three types of names. Most
importantly, to minimize naming conflicts in complex de-
signs, only global names, such as @foo, are visible to other
modules during linking. Local names, such as %bar, and
anonymous names, such as %42, are only visible within the
current module (for functions, processes, and entities) or the
current unit (for values).

LLHD is a strongly-typed language, i.e., every value must
have a type. LLHD supports a set of types typical for an
imperative compiler: void (no value), iN (N-bit integers), T*
(pointer to type T), [N x T] (array of N elements of type
T,and {T1,T2, ...} (structure with fields of type T1 etc.).
LLHD defines the following hardware-specific types:

time represents a point in time. This allows to describe
delays (e.g., through gates) and elapsed time (e.g., in
simulation).

nN is an enumeration value that can take one of N distinct
values. This allows to represent non-power-of-two
values (e.g., the set of states in a state machine or the
inputs to a multiplexer).

IN is a nine-valued logic value, defined in the IEEE 1164
standard [2]. This allows to model states that a physical
signal wire may be in (drive strength, drive collision,
floating gates, and unknown values).

T$ is a signal carrying a value of type T. This represents
a physical signal wire. The prb and drv instructions
are used to read the current value of the signal and
trigger a future change of the signal.

2.4 Units

The three main constructs of LLHD, functions, processes,
and entities, are called units. As shown in Table 1, LLHD
defines for each unit how instructions are executed (execution
paradigm) and how time passes during the execution of the
unit (timing model).
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Table 1. Overview of the design units available in LLHD
with their execution paradigm and timing model. See § 2.1
and § 2.4 for a detailed description.

Unit Execution Timing Use

Function control flow immediate user-def. SSA mapping
Process  control flow timed behavioural circ. desc.
Entity data flow timed structural circ. desc.

The execution paradigm is either control or data flow.
Control flow units consist of basic blocks, where execution
follows a clear control flow path. Each basic block must have
exactly one terminator instruction which transfers control
to another basic block, to the caller, or halts completely. Data
flow units consist only of a set of instructions which form a
Data Flow Graph (DFG). Execution of instructions is implied
by the propagation of value changes through the graph.

The timing model can be immediate or timed. Immediate
units execute in zero time. They may not contain any instruc-
tions that suspend execution or manipulate signals. These
units are ephemeral in the sense that their execution starts
and terminates in between physical time steps. As such no
immediate units coexist or persist across time steps. Timed
units coexist and persist during the entire execution of the
IR. They represent reactions to changes in signals and as
such model the behaviour of a digital circuit. Such units may
suspend execution or interact with signals by probing their
value or scheduling state changes.

2.4.1 Functions. Functions represent a mapping from zero
or more input arguments to zero or one return value. Func-
tions are defined with the func keyword and are called from
other units with the call instruction. For example, Figure 2a
defines a function to assert that an input value %q matches
the sum of all integers up to %i, and Figure 2d calls that
function. Functions execute immediately, meaning that they
cannot interact with signals or suspend execution.

2.4.2 Processes. Processes, in contrast, can interact with
time. Similar to functions, they are executed in a control flow
manner. Processes represent a circuit with zero or more in-
puts and outputs. The inputs and outputs must be of a signal
type T$; other types are not permitted. Figure 2b defines a
process that generates the patterns to test an accumulator
circuit, and Figure 2e instantiates that process. Upon initial-
ization, control starts at the first basic block and proceeds
as it would in a function. Processes may probe and drive
the value of signals (see § 2.5.2), which are a process’ only
means to communicate with other parts of the design. Ad-
ditionally, processes may suspend execution for a period of
time or until a signal change (wait, Figure 2f), or indefinitely
(halt, Figure 2g). In contrast to functions, processes exist
throughout the entire lifetime of the circuit and never return.
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2.4.3 Entities. Entities describe a pure DFG and their ex-
ecution is not governed by any control flow. Upon initial-
ization, all instructions are executed once. At all subsequent
points in time, instructions are re-executed if one of their in-
puts changes. This creates an implicit execution schedule for
the instructions. Entities build structure and design hierar-
chies by allocating registers and signals via the reg and sig
instructions, and instantiating other entities and processes
via the inst instruction. For example, Figure 2c defines an
entity which has four local signals (h), and instantiates the
@acc design to be tested (k) and the @acc_tb_initial pro-
cess to execute the test (e).

2.5 Instruction Set

LLHD’s simple instruction set captures the essence of hard-
ware descriptions at a hardware-near level of abstraction.
Nevertheless, LLHD preserves arithmetic operations, which
are the main target of many optimizations in commercial
hardware synthesizers. As a general rule, all instructions
contain sufficient type annotations to determine the type
of each operand and the result. We omit a detailed descrip-
tion of all instructions, especially those that are common
in imperative compiler IRs such as LLVM, and focus on the
hardware-specific concepts.

2.5.1 Hierarchy. Hierarchy and structure is described via
the inst instruction, which is limited to entities. The in-
struction names a process or entity to be instantiated and
associates each of its inputs and outputs with a signal (see
Figure 2ek).

2.5.2 Signals. Signals are created with the sig instruction
by providing the type of the value the signal carries, together
with its initial value. The current value of a signal can be
probed with the prb instruction, which takes a signal as its
argument. A new value may be driven onto the signal with
the drv instruction, which takes a target signal, value to be
driven, drive delay, and an optional condition as arguments.
These instructions are limited to processes and entities. For
example in Figure 2, the @acc_tb_initial process (b) uses
prb to “read” the value of its input %q (m), and drv to “write”
a change to its outputs %en, %clk, and %x (n). The @acc_tb
entity uses sig to define local signals (h) that connect @acc
(k) and @acc_tb_initial (e).

2.5.3 Registers. State-holding storage elements such as
registers and latches are created with the reg instruction,
which is limited to entities. The reg instruction takes the
stored value type and the initial value as first arguments.
These are followed by a list of values, each with a trigger
that describes when this value is stored. The trigger consists
of the keyword low, high, rise, fall, and both, followed
by a value. This allows for active-low/high, as well as rising,
falling, and dual edge-triggered devices to be described. To
model conditionally-enabled circuits, an optional if gating

clause can be used to discard the trigger if some condition
is not met. For example, the optimized @acc_ff entity in
Figure 5k further ahead uses reg to allocate a rising-edge
triggered flip-flop to store the current accumulator state.

2.5.4 Data Flow. Data flow instructions, including con-
stants, logic and arithmetic operations, shifts, and compar-
isons, are a significant part of the instructions in LLHD. For
example in Figure 2, the @acc_tb_check function (a) uses
the add, mul, div, and eq instructions to check the accumu-
lator result. Selection between multiple values is performed
with the mux instruction, which takes a sequence of values
of the same type as arguments followed by a discriminator
that chooses among them.

2.5.5 Bit-precise Insertion/Extraction. Bit-precise con-
trol of values is essential to describe digital designs. The insf
and extf instructions allow to set (insert) or get (extract) the
value of individual array elements or struct fields. The inss
and exts instructions allow to set or get the value of a slice
of array elements or bits of an integer.

2.5.6 Pointer/Signal Arithmetic. The extraction (extf
and exts) and shift (shl and shr) instructions can also oper-
ate on pointers and signals. In this mode, these instructions
return a new pointer or signal, which directly points at the ex-
tracted field or slice or to the shifted value. These operations
are very useful when translating from HDLs, where slices or
subsets of signals are frequently accessed or driven. In order
to translate into hardware, these partially-accessed signals
must be subdivided to the granularity of these accesses, in
order to arrive at canonical drive and storage conditions for
generated flip-flops or signal wires.

2.5.7 Control and Time Flow. Control flow instructions
are the typical ones used in imperative compilers: conditional
and unconditional branches, function calls, and returns. The
example in Figure 2 uses br to implement a loop, call to
execute the @acc_tb_check function (d), and ret to return
from that function.

Time flow instructions allow processes to control the pass-
ing of time. The wait instruction suspends execution until
one of its operand signals changes and optionally until a
certain amount of time has passed. Execution then resumes
at the basic block passed to the wait instruction as its first
argument. The halt instruction suspends execution of the
process forever. The example in Figure 2 uses wait to sus-
pend execution for 2 ns in each loop iteration (f), and halt
to stop once the loop terminates (g).

2.5.8 Memory. Stack and heap (or “dynamic”) memory
are required to fully map HDLs. Stack memory holds local
variables in functions (e.g., loop variables). Heap memory is
required for Turing completeness, which is necessary to rep-
resent all simulation and verification code in today’s HDLs.
For example, SystemVerilog provides builtin dynamic queues



and vectors, sparse associative arrays, and a mechanism to
call into native code loaded from an object file, or vice versa.
These features require heap allocation and deallocation of
memory, and are heavily used in more advanced testbenches
and verification code. Values in allocated memory are loaded
and stored with the 1d and st instructions. Stack allocation
is implemented by the var instruction, and heap allocation
and deallocation by alloc and free, respectively.

LLHD code intended for hardware synthesis is expected
to require a bounded amount of stack and heap memory
known at compile-time, usually none at all. Bounded heap
allocations are guaranteed to be promotable to stack alloca-
tions, and bounded stack allocations guarantee that the total
amount of required memory is known at compile time. An
algorithm similar to LLVM’s memory-to-register promotion
allows LLHD to promote memory instructions to values and
phi nodes. Lowering to Structural LLHD requires all stack
and heap memory instructions to be promoted in this way,
as a design is otherwise not implementable in hardware and
can be rejected. Verification code, which is expected to run
in an interpreter, does not have to meet these requirements.

2.5.9 Intrinsics and Debugging. Additional functional-
ity beyond what is provided as explicit instructions may be
represented as intrinsics. An intrinsic is a call to a predefined
function prefixed with “11hd.” (e.g. Figure 2p). This allows
for concepts such as stdin/stdout, file I/O, or assertions to be
preserved when transporting from HDLs into LLHD. We en-
vision debug information such as HDL source locations and
naming to be attached to instructions and units via metadata
nodes akin to LLVM. Furthermore, a special obs instruc-
tion could be used to describe an observation point for a
signal as the user has written it in the original HDL. This
allows a design to remain debuggable and recognizable to a
user despite aggressive synthesis transformation — a feature
which is currently lacking in commercial synthesizers and
place-and-route software.

3 Mapping HDLs to LLHD

LLHD’s primary goal is to capture designs described in HDLs
such as SystemVerilog or VHDL. This explicitly includes sim-
ulation and verification constructs and not just the synthesiz-
able subset of a language. As part of the LLHD project we are
developing the Moore compiler, which maps SystemVerilog
and VHDL to LLHD. This is comparable to the interaction
between Clang and LLVM. Moore’s goal is to map as much
of SystemVerilog and VHDL to LLHD as possible, providing
a reference implementation for both HDLs and a platform
for future efforts in hardware synthesis, verification, and
simulation without the need to reinvent the HDL compiler
wheel. This section explores how common constructs in
these languages map to LLHD, based on our accumulator
and testbench running example, the SystemVerilog source
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module acc_tb;

@ bit clk, en;
bit [31:0] x, q;
acc i_dut (.*%);

initial begin
automatic bit [31:0] i = 0;
en <= #2ns 1;
do begin
X <= #2ns 1i;
clk <= #Ins 1;
clk <= #2ns 0@;
#2ns;
check(i, q);
end while (i++ < 1337);
end

function check(bit [31:0] i, bit [31:0] q);
assert(q == ix(i+1)/2);
endfunction
endmodule

module acc (input clk, input [31:0] x, input en, output [31:0] q);
@ bit [31:0]d, q;

always_ff @(posedge clk) q <= #Ins d; @

always_comb begin @

d <= #2ns q;
if (en) d <= #2ns g+x;
end
endmodule

Figure 3. SystemVerilog source code for the testbench and
accumulator LLHD code in Figure 2 and Figure 5, as an
instructive example as to how HDL concepts map to LLHD.
See § 3 for a detailed description.

code of which is shown in Figure 3. The resulting LLHD code
is shown in Figure 2 (testbench) and Figure 5 (accumulator).

3.1 Hierarchy

The fundamental elements of reuse and hierarchy are “mod-
ules” in SystemVerilog and “entities” in VHDL. Both describe
a circuit as a list of input and output ports and a body of
signals, sub-circuits, and processes. Thus, they trivially map
to LLHD entities, for example Figure 3a to Figure 2c, or Fig-
ure 3b to Figure 5m.

3.2 Processes

Processes are the main circuit modeling tool in most HDLs.

SystemVerilog provides the always, always_ff, always_latch,

always_comb, initial, and final constructs, while VHDL
has a general-purpose process concept. Using these con-
structs, a circuit can be described in a behavioural fashion
by providing an imperative subprogram that maps a change
in input signals to a change in output signals: essentially,
the body of a process is re-executed whenever one of its
input signals changes. LLHD’s processes are designed to cap-
ture these constructs through an almost verbatim translation
from an HDL process. Processes allow for a very high-level
and general description of circuits. However, it is common
practice to follow a strict modeling style in HDLSs to ensure
synthesizers infer the proper hardware, which we briefly
describe in the following.
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3.2.1 Combinational Processes. Combinational processes
describe a purely functional mapping from input signals to
output signals, without any state-keeping elements such
as flip-flops as side effect. Synthesizers can readily map
such processes to logic gates. A process is combinational
if there are no control flow paths that leave any of its out-
put signals unassigned. Combinational processes can be
mapped to a pure data flow graph of logic gates. Consider
the always_comb process in Figure 3c, which directly maps
signals g and x to an output value d. This translates into the
@acc_comb LLHD process in Figure 5n.

3.2.2 Sequential Processes. Sequential processes describe
state-keeping elements such as flip-flops and latches. A pro-
cess is sequential if at least some of its output signals are

only assigned under certain conditions. Synthesizers detect

these kinds of processes, usually requiring the designer to

adhere to a very strict pattern, and map them to the cor-
responding storage gate. Consider the always_ff process

in Figure 3d, which maps to the @acc_ff LLHD process in

Figure 5p. LLHD can capture register descriptions in the be-
havioral form (see Figure 5p) but also provides an explicit reg

instruction (see Figure 5k) to canonically represent registers,

which is inferred by lowering passes discussed in § 4.

3.2.3 Mixed Processes. SystemVerilog and VHDL allow
designers to mix combinational and sequential styles in one
process, but support for this is limited even in commercial
synthesizers. The desequentialization pass (§ 4.6) can help
split mixed processes into combinational and sequential parts
for higher compatibility with many synthesizers.

3.3 Generate Statements and Parameters

Many HDLs provide generate statements and parameters to al-
low for parametrized generation of hardware. LLHD does not
provide such constructs, but rather expects these statements
to be unrolled already by the compiler frontend (e.g., Moore).
The rationale is that HDL designs parametrized over con-
stants and types lead to significant changes in the generated
hardware that go beyond mere type or constant substitution.
For example, a parameter might cause the generate state-
ments in a design to unroll to a completely different circuit.
Capturing this flexibility in LLHD would require a significant
meta-programming layer to be added, which in our opinion
is best left to a higher-level language or IR.

3.4 Verification

Modern HDLs feature constructs to verify hardware designs.
SystemVerilog, for example, provides the assert, assume,
and require constructs. We propose to map these to LLHD
intrinsics such as 11hd. assert. A simulator may then choose
to emit error messages when the condition passed to such
an intrinsic is false. A formal verification tool, on the other
hand, can extract these intrinsics and set up a satisfiability
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Figure 4. Optimization and transformation passes on the
different IR levels of LLHD. See § 4 for a detailed description.

problem or perform bounded model checking [10]. Higher-
level constructs to describe Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL*) properties [13] shall be
mapped to intrinsics as well, such that a formal verification
tool can recover them from the IR. An interesting side-effect
of preserving these verification constructs as intrinsics is
that Field-Programmable Gate Array (FPGA) mappings of
an LLHD design may choose to implement the assertions
in hardware, to perform run-time checks of a circuit. These
features are not yet implemented in our research prototype,
and an LLHD-based verification tool is yet to be written.

4 Lowering to Structural LLHD

One of the key contributions of LLHD is a framework to
translate the high-level behavioural circuit descriptions of
an HDL into a lower-level structural description that can be
readily synthesized. Existing commercial and open-source
synthesizers all have redundant proprietary implementations
of this procedure; see Figure 1. With LLHD and language
frontends such as Moore, this translation can be performed
as a lowering pass on the IR directly, rather than individually
by each synthesizer. The general objective of this lowering
is to replace branches with branch-free code. In particular, it
consists of the following high-level steps:

e Reduce complexity of operations (§ 4.1)

e Move arithmetic out of basic blocks (ECM, § 4.2)

e Move drives out of basic blocks (TCM, § 4.3)

e Replace phi and control flow with mux (TCFE, § 4.4)
e Replace trivial processes with entities (PL, § 4.5)

o Identify flip-flops and latches (Deseq., § 4.6)

Consider the accumulator design in Figure 5, which is a typ-
ical example of Behavioural LLHD as it is generated from a
SystemVerilog source. Let us step through the transforma-
tions in Figure 4 to lower this example to Structural LLHD.
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entity Cacc (i1$ %clk, 1325 %x, 11% %en) -> (i32% %q) { @

:%zero = const 132 0
§%d = sig 132 %zero

entlty@acc()_>(){ ,,,,,,,,,,,,,,,,,,,,,,,,,,

: = prb i1$ %clk
i%qp = prb i32% %q

‘%q = sig 132 %zero
‘inst @acc_ff (i1$ %clk,
- b G

132$ Vd) -> (i32% %qQ)
) -
}

7c1k0 const time 1ns

wait %check for %clk

prb i1$ %clk %delay =

%clk® = prb i1$ %clk

—

icheck: ‘ol wait %check for %clk

%clkl = prb i1$ %clk i~icheck:

%chg = neq i1 %clk@, %clkl ig; %clkl = prb i1$ %clk @

%posedge = and i1 %chg, %clkl 352§ %dp = prb 132$% %d

br %posedge, %init, %event ‘@1 %chg = neq i1 %clko, %clkl [q)
ievent: :Zi %posedge = and i1 %chg, %clkl

%dp = prb i32% %d }EE‘ br Aposedge %init, %event

%delay = const time 1ns R event:

drv i32% %q, %dp after %delay 333 drv 132$ %q, %dp after /delay(a
beodndt i brokinit

proc @acc_comb (i32% %q, 132% %x, 11$ %en) -> (i32% %d) { @ . . .

‘entry ’entry

%qp = prb 132% %q o %ap
%enp = prb i1$ %en %Xp

prb i32$ %q
prb i32% %x @

Ly
%delay = const time 2ns ig} %enp = prb i1$ %en
drv i32$ %d, %qp after %delay i~: %sum = add i32 %gp, %xp
¢ br %enp, %final, %enabled §23 %delay = const time 2ns ;-E
‘enabled: Zi drv 1328 %d, %qp after %delay 3
%Xp = prb i32$% %x 38‘ br %enp, 7f1nal %enabled o
%sum = add 132 %qp, %xp :Zienabled: :
drv i32% %d, %sum after %delay}EEE drv i32% Vd %sum after 7de1ay
¢ br %final Eﬂi br %final
‘final: iz ifinal:

wait %entry for %q, %x, %en

wait %entry for %q, %x, %en

;;check

= renabled:

- > %xp = prb i32$ %x
Inline /1S §%enp = prb i1$ %en
(%sum = add 132 %qp, %xp
ireg i32% %q, %sum rise %clkp if %enpj

entity @acc_ff (.) -> (.) {

. %delay = const time Tns

%clkp = prb i1$ %clk ®

%dp = prb 132% %d

reg i32% %q, %dp rise /clkp
after 7delay :

const time 1ns
%clk® = prb i1$ %clk
wait %check for %clk

%clkl = prb i1$ %clk

%dp = prb 132% %d

%chg = neq i1 %clko, %clkl ‘2

%posedge = and i1 Achg, %clk1: 1

br Aposedge %aux, %event : ent1ty @acc_comb () -> () {
jevent: i %gp = prb 132 %q

br /aux %Xp = prb 132% %x
jaux: %enp = prb i1$ %en

drv i32% %q, %dp after %delay
if %posedge @
br %init

%sum = add 132 %qgp, %xp
%delay = const time 2ns
%dns = [132 %qgp, %sum]
%dn = mux 132 %dns, %enp

ientr : :
: ng = prb i32% %q i1 drv i32$ %d, %dn after %delay:
%xp = prb 132% %x :

%enp = prb i1$ %en -
%sum = add 132 %qgp, %xp ioientry:
%delay = const time 2ns i1 %gp = prb i32% %q
br %enp, %final, %enabled %Xp = prb 132% %x
%enp = prb i1$ %en

br /flnal ‘o %sum = add 132 %qp, %xp
final: a %delay = const time 2ns

%dn = phi 132 [%qp, %entryl],
[%sum, %enabled]

drv i32% %d, %dn after %delay:

wait %entry for %q, %x, %en

%dns = [132 %gp, %sum]

%dn = mux i32 %dns, %enp @
drv i32$ %d, %dn after %delay:
wait %entry for %q, %x, %en

Figure 5. An end-to-end example of how a simple accumulator design is lowered from Behavioural LLHD (left) to Structural
LLHD (right). See § 4 for a detailed description of the individual steps. The processes @acc_ff and @acc_comb are lowered to
entities through various transformations, and are eventually inlined into the @acc entity.

4.1 Basic Transformations

In a first step, we apply basic transformations such as Con-
stant Folding (CF), Dead Code Elimination (DCE), and Com-
mon Subexpression Elimination (CSE), which are equivalent
to their LLVM counterparts. Furthermore, Instruction Simpli-
fication (IS) is used as a peephole optimization to reduce short
instruction sequences to a simpler form, similar to LLVM’s
instruction combining. To facilitate later transformations, all
function calls are inlined and loops are unrolled at this point.
Where this is not possible, the process is rejected.

4.2 Early Code Motion (ECM)

ECM moves instructions “up” in the Control Flow Graph
(CFQG), to facilitate later control flow elimination. This is sim-
ilar to and subsumes Loop-Invariant Code Motion (LICM)
in LLVM in that code is hoisted into predecessor blocks,
but ECM does this in an eager fashion. The underlying mo-
tif of lowering to Structural LLHD is to eliminate control
flow, since that does not have an equivalent in hardware.
An essential step towards this is to eagerly move instruc-
tions into predecessor blocks as far as possible. As shown
in Figure 5a, this moves all constants into the entry block,
and arithmetic instructions to the earliest point where all
operands are available. Special care is required for prb as

in Figure 5b, which must not be moved across wait, as that
would imply a semantic change.

4.3 Temporal Code Motion (TCM)

The wait instructions naturally subdivide a process into
different Temporal Regions (TRs), i.e. sections of code that
execute during a fixed point in physical time. A key step
towards eliminating control flow is to move drv instructions
into a single exiting block for their respective TR. The condi-
tion under which the control flow reaches a drv instruction
before the move is added as an additional operand to the in-
struction. Let us elaborate in more detail by first introducing
the concept of TRs.

4.3.1 Temporal Region (TR). The capability of wait to
suspend execution mid-process until a later point in time
calls for novel techniques to reason about the synchronicity
of instructions. More specifically, we would like to know
if two instructions execute at the same instant of physical
time under all circumstances. Consider the %clk signal in
Figure 5q as an illustrative example: when we reach the neq
instruction, we would like to be able to reason that %c1ko
is an “old” sampling of %clk from before the wait, and that
%clk1 reflects the current state of %clk. Each basic block in
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LLHD has an associated TR. Multiple blocks may belong to
the same TR. The set of blocks in the same TR represents
the bounds within which prb and drv instructions may be
rearranged without changing the process behaviour. As an
intuition, TRs are assigned to individual blocks based on the
following rules:

1. If any predecessor has a wait terminator, or this is the
entry block, generate a new TR.

2. If all predecessors have the same TR, inherit that TR.

3. If they have distinct TRs, generate a new TR.

Note that as a result of rule 3, there is one unique entry
block for each TR where control transfers to from other
TRs. Figure 5ab shows the temporal regions assigned to the
individual blocks. Note that the flip-flop process @acc_ff
has two TRs, whereas the combinational process @acc_comb
has just one.

4.3.2 Single Exiting Block per TR. We would like each
TR to have a single exiting block. This is essential to have
a single point in the CFG to move drvs to such that they
are always executed in this TR. If TR A has multiple control
flow arcs leading to TR B, an additional intermediate block
is inserted in order to have a single arc from TR A to B. This
is always possible since as a result of rule 3 in § 4.3.1, all
branches to TR B target the same unique entry block. In
Figure 5b for example, blocks check and event both branch
to init, which is in a different TR. In this case an auxiliary
block is created as part of TCM, where check and event
branch to.

4.3.3 Moving Drive Instructions. As the main part of
TCM, drv instructions are moved into the single exiting block
of their TR. We first find the closest common dominator of
the exiting block and the instruction. If no such dominator
exists, the instruction is left untouched, which later causes
the lowering to reject the process. As a second step, we find
the sequence of branch decisions that cause control to flow
from the dominator to the drv instruction. This essentially
builds a chain of ands with the branch conditions “along
the way”, or their inverse, as operands. As the final third
step, the drv instruction is moved into the exiting block,
and the expression found in the second step is set as the
drv’s optional condition operand. In Figure 5c, control flow
only reaches the drv if the %posedge branch argument is
true. Consequently, %posedge is added as drive condition
in Figure 5d. In Figure 5e, control flow always reaches the
drvs, which are consequently moved into the existing single
exiting block final without adding a condition operand, as
in Figure 5f. Since both drvs target the same signal, they are
coalesced into one instruction, and selection of the driven
value is factored out into a phi instruction.

4.4 Total Control Flow Elimination (TCFE)

The goal now is to replace control flow with data flow, branches
with multiplexers. The previous transformations leave many
empty blocks behind. TCFE eliminates these blocks such
that only one block remains per TR. This is the case in Fig-
ure 5df, where only the init, check, and entry blocks re-
main. Furthermore, all phi instructions are replaced with
mux instructions, as shown in Figure 5g. The selector for the
mux instruction is found in the same way as the drv condition
in § 4.3.3. As a result, combinational processes (§ 3.2.1) now
consist of a single block and TR, and sequential processes
(§ 3.2.2) of two blocks and TRs. Processes for which neither
holds are rejected by the lowering.

4.5 Process Lowering (PL)

At this point, processes with a single block and a wait ter-
minator of the correct form are lowered to an entity. This
is done by removing the wait and moving all other instruc-
tions to an entity with the same signature. In order for this to
be equivalent, the wait must be sensitive to all prb’d signals.
See Figure 5h for an example where this is the case.

4.6 Desequentialization (Deseq.)

For the remaining processes we would like to identify if they
describe a sequential circuit such as a flip-flop or latch. HDLs
expect these to be inferred from signals that are only driven
under certain conditions, e.g., if a clock signal changed or a
gate signal is high. The TCM pass canonicalizes processes
into a form which makes this rather straightforward. We only
consider processes with two basic blocks and TRs, which
covers all relevant practical HDL inputs. In a first step, we
canonicalize the condition operand of each drv into its Dis-
junctive Normal Form (DNF). The DNF exists for all boolean
expressions, is trivially extended to eq and neq, and can re-
tain all non-canonicalizable instructions as opaque terms.
Each separate disjunctive term of the DNF identifies a sepa-
rate trigger for the flip-flop or latch. The drv in Figure 5d,
for example, has the canonical condition —%c1k@ A %clk1.In
a second step, we identify which terms of the condition are
sampled before the wait, and which are sampled after. This
is done based on the TR of the corresponding prb. The TR
of the wait is considered the “past”, and the TR of the drv is
considered the “present”. In a third step, we isolate terms T
which are sampled both in the past (Tj) and the present (T3),
and pattern match as follows:

e —Ty AT, is arising edge on T
e Ty A T, is a falling edge on T
o (=To ATh) V (Ty A —Ty) are either edges on T

All other terms are moved into the set of “trigger condi-
tions”. At this point, a separate entity is created which will
hold the identified sequential elements. In a final step, all
drvs, for which the above trigger identification was suc-
cessful, are mapped to an equivalent reg instruction. Each



trigger is added to the reg separately, together with the cor-
responding set of trigger conditions: edge terms are mapped
to corresponding rise, fall, or both edge triggers, and
all remaining terms to high or low level triggers. Further-
more, the entire DFG of the drv operands, namely driven
signal, value, delay, and condition, is added to the entity.
See Figure 5k. This procedure identifies and isolates edge-
and level-triggered sequential elements into an entity. The
remaining process is either empty and removed, lowered by
PL, or rejected.

4.7 Synthesizability

The class of “synthesizable” hardware descriptions and sub-
sets of HDLs is defined rather loosely. In practice, hardware
descriptions adhere to sufficiently strict coding guidelines
that enable the above transformations to occur.

5 Toolflow Integration

Languages such as SystemVerilog are too high-level to reli-
ably transport digital circuits through the design flow. This is
mainly due to the difficulty to consistently implement these
languages, as described in § 1. For example, designs are sim-
ulated and verified in their HDL description, by a simulator
or verification tool. A Logical Equivalence Checker (LEC) is
then used to verify that the design has been mapped correctly
from HDL to an equivalent netlist. Not only does this require
the LEC to fully implement the SystemVerilog standard as
well, it also only verifies that the synthesizer’s interpretation
of the HDL matches the LEC’s. However, it does not verify
whether the simulation and verification tool’s interpretation
matches the LEC’s. This is potentially disastrous given the
complexity of languages such as SystemVerilog.

LLHD provides a design representation that is much sim-
pler to implement consistently. Simulating and verifying
the LLHD mapping of a circuit rather than its original HDL
means converging to a single simple representation early in
the design flow. Synthesis tools and LECs running on this
reference LLHD mapping then ensure correct translation of
the circuit into a netlist. LLHD’s simplicity offers a much
smaller “surface for implementation errors”.

Many commercial tools already use a proprietary IR inter-
nally. These are generally accessible to the user, such that
a Structural LLHD description can be mapped directly to
such a tool’s IR. Where this is not possible, the description
may be mapped to a simple, structural Verilog equivalent to
be ingested by the tool. Ideally, vendors eventually support
direct input of LLHD, but this is not required.

We conclude that LLHD fits very well into existing com-
mercial tool flows. Its simplicity makes it a prime candidate
to harden the HDL-to-netlist verification chain. Furthermore,
its expressivity allows it to subsume other IRs, offering a plat-
form to transport designs between FIRRTL [14], RTLIL [30],
CorelR [19], and others.
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Table 2. Evaluation of the simulation performance of
LLHD. We compare the LLHD reference interpreter to a
JIT-accelerated LLHD simulator and to a commercial simu-
lator. The former two operate on unoptimized LLHD code
as emitted by the Moore frontend with the -00 flag. We list
the lines of code “LoC” and executed clock “cycles” to pro-
vide an indication for the design and simulation complexity.
Traces match between the two simulators for all designs. See
Section 6.1 for a detailed description.

Sim. Time [s]

Design LoC Cycles Int! JIT? Comm.?
Gray Enc./Dec. 17 126 M 9740 6.33 6.07
FIR Filter 20 5M 4430 1035 14.60
LFSR 30 10M 2350 14.53 14.10
Leading Zero C. 52 1M 11000 3.23 7.84
FIFO Queue 102 1M 1370 5.92 5.55
CDC (Gray) 108 1M 1380 8.72 6.45
CDC (strobe) 122 35M 1570 9.39 6.11
RR Arbiter 159 5M 49400 10.92 25.54
Stream Delayer 219 25M 477  4.28 4.99
RISC-V Core 3479 1M 24000 23.44 4.47

1 LLHD reference interpreter (LLHD-Sim), extrapolated;
2 JIT-accelerated simulator (LLHD-Blaze);
3 Commercial HDL simulator

Moreover, LLHD significantly lowers the hurdle for inno-
vation in the digital hardware design ecosystem. For instance,
a new HDL only needs to be lowered to LLHD to become
supported by all existing toolchains, High-level Synthesis
(HLS) compilers can generate LLHD as output, simulators
only have to parse the simple LLHD rather than complex
HDLs, and synthesizers can take Structural LLHD as their
input.

6 Evaluation

We have implemented the Moore compiler and LLHD as
a vertical research prototype. Moore covers enough of the
SystemVerilog standard to show merit on a non-trivial set
of open-source hardware designs: specifically, we consider
the designs listed in Table 2, which range from simple arith-
metic primitives, over First-In First-Out (FIFO) queues, Clock
Domain Crossings (CDCs), and data flow blocks, up to a
full RISC-V processor core [29]. The lines of SystemVerilog
code (“LoC”) in Table 2 provides a rough indication of the
respective hardware complexity. The designs are mapped
from SystemVerilog to Behavioural LLHD with the Moore
compiler, without any optimizations enabled.



LLHD: A Multi-level Intermediate Representation for Hardware Description Languages

Table 3. Comparison against other hardware-targeted inter-
mediate representations. Most other IRs are geared towards
synthesis and the resulting netlists. See Section 6.2 for a
detailed description.
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6.1 Circuit Simulation

In a first evaluation, we simulate the designs in Table 2
mapped to LLHD using LLHD-Sim, the LLHD reference inter-
preter, and LLHD-Blaze, a simulator leveraging just-in-time
(JIT) code generation. Both simulators support all levels
of the LLHD IR. LLHD-Sim is deliberately designed to be
the simplest possible simulator of the LLHD instruction set,
rather than the fastest. LLHD-Blaze is a first implementa-
tion of JIT compilation to show the potential of massively
accelerated simulation. For each of the designs, we compare
the execution time of a commercial SystemVerilog simulator
(“Comm.”) with our two approaches in Table 2. Simulations
were executed on an Intel Core i7-4770 CPU running at
3.4 GHz. Without JIT compilation, LLHD-Sim is slower than
its commercial counterpart, which trades initial optimization
overhead at startup for increased simulation performance.
Most importantly, however, the LLHD simulation trace is
equal to the one generated by the commercial simulator
for all designs. That is, even with a simple prototype imple-
mentation of Moore and LLHD, we can fully and correctly
represent a RISC-V processor in Behavioural LLHD.

JIT compilation provides an opportunity to massively ac-
celerate LLHD simulation. For this, we map LLHD to LLVM
IR and then use LLVM to optimize for execution on the simu-
lation machine. This makes LLHD-Blaze (“JIT”) competitive
with commercial simulators, even though the former is a pro-
totype whereas the latter have been optimized for decades.
In some cases, LLHD-Blaze is already up to 2.4X faster than
commercial simulators.

These benefits manifest themselves even on entirely un-
optimized LLHD code as it is emitted by Moore with the

-00 flag, comparable to Clang’s equivalent. We expect the
discrepancies between LLHD-Blaze and the commercial sim-
ulator to disappear as we add optimizations to the simulator
in the future. This will especially affect complex benchmarks
such as the RISC-V core, where the lack of code optimization
currently incurs significant overheads. Note that the lines
of SystemVerilog code and simulation cycles do not always
fully portray the complexity of a design: some SystemVerilog
constructs can produce significantly more LLHD code than
others, leading to significant differences in simulation time.

Much of the complexity and engineering effort of our work
lies in Moore, the HDL compiler frontend, which tackles
the extensive SystemVerilog standard. Further extensions
of Moore to implement additional SystemVerilog constructs
can vastly increase the scope of designs that can be mapped
to LLHD. Once a design is in LLHD, simulating it correctly
is trivial.

6.2 Comparison with other Hardware IRs

LLHD is not the first IR targeted at hardware design. How-
ever, to our knowledge it is the first multi-level IR capable of
capturing a design throughout the entire hardware design
flow, from simulation to synthesized netlist. Table 3 com-
pares the part of the design flow covered by LLHD and other
IRs. We observe that almost all other IRs support structural
descriptions of circuits and many IRs support representing
a synthesized netlist. This is due to the fact that most of
them were designed as synthesis IRs to capture and apply
transformations before and after synthesis. A notable ex-
ample is FIRRTL, which acts as an interface between the
Chisel [7] frontend and subsequent synthesis. As the only
other IR, FIRRTL defines multiple levels of abstraction to-
gether with transformations to lower designs from higher
to lower levels. pIR is designed to capture entire accelerator
architectures as structural description and caters more to an
HLS flow. RTLIL and LNAST both support the behavioural
description of circuits. RTLIL is geared towards simplify-
ing Verilog input to make it amenable for synthesis. LNAST
represents behavioural HDL code as language-agnostic Ab-
stract Syntax Tree (AST) and offers transformation passes.
As the only other IR, CorelR focuses on adding formal ver-
ification support to HDLs. No other IR is Turing-complete,
which is essential to represent arbitrary reference models
and verification constructs. FIRRTL provides limited support
for testbench constructs in the form of message logging and
clocking control.

LLHD covers all stages of the flow: Behavioural LLHD cap-
tures testbench, verification, and behavioural circuit descrip-
tions, to facilitate interfacing with HDLs; Structural LLHD
captures circuits structurally, to interface with synthesis and
low-level circuit analysis and transformation tools; and Net-
list LLHD represents the individual gates of a finalized circuit.
Hence LLHD is the only IR capable of representing the full



Table 4. Size efficiency of the human-readable text repre-
sentation, an estimate of a prospective bitcode, and the in-
memory data structures of LLHD. See § 6.3 for details.

sV LLHD [kB]
Design [kB] Text Bitcode! In-Mem.
Gray Enc./Dec. 3.0 119 3.6 41.8
FIR Filter 1.2 129 3.8 46.7
LFSR 24 4.9 1.8 18.4
Leading Zero C. 46 974 21.8 309.1
FIFO Queue 7.1 205 6.5 71.3
CDC (Gray) 85 381 12.5 129.5
CDC (strobe) 63 17.7 6.0 63.3
RR Arbiter 11.2 394 9.9 129.8
Stream Delayer 12.2 187 6.7 68.6
RISC-V Core 174.4 3494 93.6 1096.3

1 estimated

semantics of the SystemVerilog/VHDL input language for
the full hardware design flow.

6.3 Size Efficiency

An important aspect of a hardware IR is how efficiently it
captures a design in terms of memory used, both in on-disk
and in-memory representations. Table 4 shows the size in
kB occupied by the previously introduced designs.

For on-disk representations, we consider the SystemVer-
ilog HDL code as a baseline (first numeric column). First, we
observe that the unoptimized LLHD text (second column)
emitted by the Moore compiler using the -00 flag (equivalent
to the corresponding Clang/GCC flag) is significantly larger
than SystemVerilog. This is due to the fact that Moore tries to
keep code generation as simple as possible and emits numer-
ous redundant operations. Furthermore, many operations
which are implicit in SystemVerilog, for example, expression
type casts and value truncation/extension, require explicit
annotation in LLHD. Future optimizations can reduce re-
dundant operations and produce more compact instructions,
which we expect to be significantly smaller. Utilizing a bi-
nary “bitcode” representation (third column) instead can
greatly reduce the on-disk size of the design, such that com-
piled HDL input represented as LLHD unoptimized bitcode is
already comparable in size to the input source code. The bit-
code itself is not yet implemented. Sizes are estimated based
on a strategy similar to LLVM’s bitcode, considering tech-
niques such as run-length encoding for numbers, interning
of strings and types, compact encodings for frequently-used
primitive types and value references. This makes LLHD a
viable format to transport a design into the initial stages of
the design flow, such as testbenches and simulation, formal
verification, and synthesis.
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The in-memory size of an IR (last column of Table 4) is
even more important for transformation and optimization
passes. While there is no baseline for this, we observe that
even a full RISC-V core only requires 1 MB of memory. As the
in-memory complexity scales linearly with the complexity
of the design, we argue that representing even entire System
on Chip (SoC) designs with hundreds of CPU cores will be
feasible with tens of gigabytes of memory, which is fully
viable for today’s workstations.

7 Related Work

Intermediate representations are an established and very suc-
cessful concept both for representing imperative programs
and the design of hardware circuits. This work has been in
development over the past three years and predates efforts
such as MLIR [17], which aims at providing a unifying frame-
work for defining compiler IRs. The proposed concepts can
likely be expressed in MLIR.

7.1 Compiler Intermediate Representations

Since the early days of compilers and program optimiza-
tions it has been clear that in the process of translating a
computer program to machine code the program passes a va-
riety of different representations [22]. Machine-independent
internal program representations have been discussed as
early as 1979 in the PQCC project [9, 23] which introduced a
tree-structured common optimization language (TCOL) and
showed its use in an optimizing Ada compiler. Intermedi-
ate representations are standard in most compilers today.
Functional programming languages often use continuation-
passing style representations [25]. For imperative program-
ming languages, SSA-based intermediate representations [5,
12] have shown most successful, and are used in large com-
piler infrastructures such as LLVM [16], GCC [20], but also
research compilers such as Cetus [15]. While most SSA-based
compilers today use the concept of imperative branching
transitioning between sequences of instruction blocks, Click
and Cooper [11] removed this restriction by introducing the
sea-of-nodes concept of graph-based intermediate languages
where all freely floating instructions are only constrained by
explicit control and data dependences. This concept is used
in research compilers such as libfirm [8] or Google’s Turbo-
Fan JavaScript compiler.®> While the above approaches have
shown the benefit of, especially SSA-based, intermediate rep-
resentations the above concepts all aim for the generation
of executable software, but do not target hardware design.
Graph-based IRs certainly serve as inspiration to our Netlist
LLHD, but existing compilers use graph-based IRs mostly
for software compilation. Nevertheless, there are first efforts
to define intermediate representations for hardware designs,
which we will discuss in detail in the following sections.
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7.2 FIRRTL

FIRRTL [14] is the IR most closely related to LLHD known to
us. FIRRTL acts as an abstraction layer between the Chisel [7]
hardware generation framework and subsequent transfor-
mation passes and synthesis. FIRRTL’s semantics are closely
coupled to those of Chisel and focuses mainly on the synthe-
sis portion of the design flow. Notable exceptions are support
for certain testbench constructs (see Section 6.2). We identify
the following four fundamental differences between LLHD
and FIRRTL:

(1) FIRRTL’s fundamental data structure is an AST [18].
Nodes may be assigned multiple times and at different gran-
ularities, making identification of a value’s single producer
difficult. In contrast, algorithms operating on SSA forms
prevail in modern compilers, and most research on trans-
formations focuses on SSA. While low FIRRTL also requires
SSA form, algorithms requiring this form are precluded from
operating on all but the lowest level of abstraction.

(2) FIRRTL cannot represent testbench and simulation
constructs such as precise delays, events, and queues and
dynamic arrays, as well as arbitrary programs that stimulate
and check a circuit. These constructs are essential to fully
represent industry-standard HDLs such as SystemVerilog
and to transport designs written in such languages through
the full digital design flow.

(3) FIRRTL does not represent four- or nine-valued logic
as defined by IEEE 1364 and IEEE 1164, respectively. These
types of logic model the additional states of a physical signal
wire (beyond the fundamental 0 and 1) and captures concepts
such as driving strength and impedance. Industry-standard
hardware designs in SystemVerilog and VHDL rely on this
modeling capability to describe bidirectional signals, propa-
gate unknown values, identify driving conflicts, and describe
optimization opportunities during logic synthesis.

(4) FIRRTL has the concept of “three forms” but does not
clearly define their boundaries and to which parts of the
design flow they apply [14]. It merely states that low FIRRTL
maps directly to Verilog constructs with straightforward
semantics.

Overall we observe that LLHD is a superset of FIRRTL.
Since LLHD provides a Turing-complete modeling construct
for a circuit, and FIRRTL does not, any FIRRTL representation
can be translated into an equivalent LLHD representation,
but not vice-versa. And by the same reasoning, modern HDLs
such as SystemVerilog and VHDL cannot be fully mapped to
FIRRTL.

7.3 Verification IRs

CorelR [19] focuses on verification. It is designed to interact
with higher-level functional descriptions of a circuit, such as
Halide [21] or Verilog (via Yosys [30]), and represent these
within a formal verification infrastructure. Additional steps

allow designs to be mapped to Coarse-Grained Reconfig-
urable Arrays (CGRAs). CorelR is geared specifically towards
verification and deployment on FPGA-like devices, and as
such does not cater to a full chip design flow.

7.4 Synthesis IRs

Many IRs beside FIRRTL are engineered to interact with
hardware synthesizers. LNAST [28] targets the representa-
tion of the synthesizable parts of an HDL circuit description
in a language-agnostic AST. RTLIL [30] is part of the “Yosys”
open-source tool suite and focuses mainly on logic synthesis.
It cannot represent higher-level constructs such as aggregate
types or conditional assignment. pIR [24] is geared towards
HLS design flows and tries to capture entire accelerator archi-
tectures. These IRs are very specifically crafted to transport
designs into a synthesizer and focus solely on this part of
the flow.

7.5 Netlist IRs

IRs exist that aim at capturing the gate-level netlist of a
circuit. LGraph [27] is an open-source graph representation
of such a circuit, together with additional aspects of the
physical design flow such as cell libraries, timing and power
characteristics, and placement information. NetlistDB [6]
follows a similar goal. These IRs cater only to the very end
of the hardware design flow.

8 Conclusion

We showed with Moore and LLHD that a small and concise
multi-level intermediate representation can represent the
complex semantics of real-world VHDL and SystemVerilog
circuits throughout the complete hardware design process.
Thanks to a novel three-level IR, we present a hardware de-
sign language that is effective from simulation, over formal
verification, to synthesized netlists. We demonstrate the ef-
fectiveness of our design by outperforming commercial sim-
ulators on a variety of simulation tasks. We expect that our
concise and well-defined hardware design language, crafted
in the spirit of the most successful SSA-based compiler IRs,
both minimal and still expressive enough for real-world use
cases, will provide the foundation for an open hardware de-
sign stack that follows the impressive evolution of modern
compilers in recent years.
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