
The University of Manchester Research

Effective Function Merging in the SSA Form

DOI:
10.1145/3385412.3386030

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Rocha, R., Petoumenos, P., Wang, Z., Cole, M., & Leather, H. (2020). Effective Function Merging in the SSA
Form. In A. F. Donaldson, & E. Torlak (Eds.), Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2020) (pp. 854-868). (Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI)).
https://doi.org/10.1145/3385412.3386030
Published in:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2020)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1145/3385412.3386030
https://research.manchester.ac.uk/en/publications/90df1bdc-9903-420c-9ea3-5fdee8f48257
https://doi.org/10.1145/3385412.3386030

Effective Function Merging in the SSA Form
Rodrigo Rocha

University of Edinburgh, UK
r.rocha@ed.ac.uk

Pavlos Petoumenos
University of Manchester, UK

pavlos.petoumenos@manchester.ac.uk

Zheng Wang
University of Leeds, UK
z.wang5@leeds.ac.uk

Murray Cole
University of Edinburgh, UK

mic@inf.ed.ac.uk

Hugh Leather
University of Edinburgh, UK

hleather@inf.ed.ac.uk

Abstract
Function merging is an important optimization for reducing
code size. This technique eliminates redundant code across
functions by merging them into a single function. While
initially limited to identical or trivially similar functions,
the most recent approach can identify all merging oppor-
tunities in arbitrary pairs of functions. However, this ap-
proach has a serious limitation which prevents it from reach-
ing its full potential. Because it cannot handle phi-nodes,
the state-of-the-art applies register demotion to eliminate
them before applying its core algorithm. While a superfi-
cially minor workaround, this has a three-fold negative ef-
fect: by artificially lengthening the instruction sequences
to be aligned, it hinders the identification of mergeable in-
struction; it prevents a vast number of functions from being
profitably merged; it increases compilation overheads, both
in terms of compile-time and memory usage.
We present SalSSA, a novel approach that fully supports

the SSA form, removing any need for register demotion.
By doing so, we notably increase the number of profitably
merged functions. We implement SalSSA in LLVM and apply
it to the SPEC 2006 and 2017 suites. Experimental results
show that our approach delivers on average, 7.9% to 9.7% re-
duction on the final size of the compiled code. This translates
to around 2× more code size reduction over the state-of-the-
art. Moreover, as a result of aligning shorter sequences of
instructions and reducing the number of wasteful merge op-
erations, our new approach incurs an average compile-time
overhead of only 5%, 3× less than the state-of-the-art, while
also reducing memory usage by over 2×.

CCS Concepts: • Software and its engineering → Com-
pilers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386030

Keywords: Code Size Reduction, Function Merging, LTO.

ACM Reference Format:
Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2020. Effective Function Merging in the SSA
Form. In Proceedings of the 41st ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation (PLDI
’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3385412.3386030

1 Introduction
The embedded systemmarket is rapidly growing and branch-
ing out, from cars and airplanes to autonomous robots and
smart cities. Embedded systems need to perform increasingly
complex jobs with the support of large libraries and deep
software stacks that must run on inexpensive and resource-
constrained devices. These two aims are conflicting, particu-
larly so for permanent storage and memory which already
represent a significant chunk of the system area and cost.

Despite the importance of keeping code size small, compil-
ers still make little effort to reduce it. Even when optimizing
for size, their efforts are limited to disabling performance op-
timizations which increase size, using more compact instruc-
tions sets, and basic redundancy elimination [3, 6]. Because
of that, to avoid the expensive costs of extra storage and
memory, the developers of these embedded systems have to
manually find ways to shrink their code, which is also costly
and undesirable.

One optimization that can potentially reduce code size is
function merging. Its task is to find similarities in functions
and replace them with a single function that combines the
functionality of the original functions while eliminating re-
dundant code. At a high level, the way this works is that code
specific to only one input function is added to the merged
function but made conditional to a function identifier, while
code found in both input functions is added only once and
executed regardless of the function identifier.

Prior function merging methods were limited to identical
or isomorphic functions, but a recent work has generalized
functionmerging to any arbitrary pair of functions. The state-
of-the-art (FMSA) [28] first represents functions as nothing
more than linear sequences of instructions and labels. Then
it applies a sequence alignment algorithm, developed for
bioinformatics, to discover the optimal way to create pairs

https://doi.org/10.1145/3385412.3386030
https://doi.org/10.1145/3385412.3386030

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

of mergeable instructions from the two input sequences.
Finally, it generates the merged function where aligned pairs
of matching instructions are merged to a single instruction,
while non-matching instructions are simply copied into the
merged function.

While representing a leap forward, experiments show that
FMSA fails to reduce code size in some cases where it would
be intuitively expected to work. Even when handling similar
functions that should be profitably merged, this algorithm
may fail spectacularly, producing a merged function larger
than the combined input functions.

Closer inspection reveals that the problem stems from the
inability of this approach to handle phi-nodes. In SSA, phi-
nodes merge the assignments of a single variable that arrive
from different control flow paths. As such, they are closely
tied to how control and data flow across basic blocks and can-
not be merged without examining their control flow context.
FMSA generates code directly from the aligned sequences,
where control flow information has been lost, merging in-
structions blindly with little to no consideration for their
context, so it cannot handle phi-nodes. It overcomes this hur-
dle by applying register demotion, which replaces phi-nodes
with stack variables. This works but only by artificially in-
creasing the size of the input functions, often by twice or
more their original size, the exact opposite of what function
merging tries to achieve. A final post-merging step of regis-
ter promotion is supposed to reverse this code bloating but
it often fails, leading to unprofitable merged functions.

Our idea is to keep the one thing that works well in FMSA,
the idea of using sequence alignment on functions, and build
around it a new function merging methodology that can
handle directly control and data flow with no need for regis-
ter demotion. Our proposed approach, SalSSA, achieves this
with a new code generator for aligned functions. Instead of
translating the alignment directly into a merged function,
our approach generates code from the input control-flow
graphs, using the alignment only to specify pairs of match-
ing labels and instructions. The generator then produces code
top-down, starting with the control flow graph of the merged
function, then populating with instructions, arguments and
labels, and finally with phi-nodes which maintain the correct
flow of data. SalSSA is carefully designed to produce correct
but, still, succinct code. A final post-generator stage applies
a novel optimization, phi-node coalescing, that eliminates
superfluous phi-nodes and select instructions, reducing even
further the code size.
SalSSA produces functions much smaller than those pro-

duced by FMSA. Inmany cases, it produces profitable merged
functions where FMSA fails. On average, it reduces about
twice as much code as their approach, 11.4% to 14.5% com-
pared to 5.6% to 6.2% depending on the function merging
configuration. On top of that, the compile-time overhead is
much lower. Sequence alignment has a quadratic relationship
with function size, while the overhead of code generation

Reg2Mem

Linearization

Alignment

CodeGen

Mem2Reg

Simplification

Input
Functions

Pre-Processing

Clean-up
Process

Core
Algorithm

Figure 1. The sequence of operations applied by the state-
of-the-art function merging. The core algorithm is composed
only of Linearization, Alignment, and CodeGen, but register
demotion (Reg2Mem) is necessary as a preprocessing step be-
cause CodeGen cannot handle phi-nodes. Register promotion
(Mem2Reg) and Simplification are not required but improve
the quality of the generated code. Our work introduces a
more powerful CodeGen component that removes the need
for register demotion.

and later optimization passes is proportional to function size.
By avoiding register demotion, we keep input function se-
quences smaller andwe produce smaller functions, leading to
an average compilation overhead of 5%, 3× less than FMSA,
and an overhead in no case more than 55%, compared to
the maximum overhead of 314% for FMSA. Similarly, SalSSA
uses half the amount of memory required on average by
FMSA during compilation.

With this paper, we make the following contributions:
• The first approach that fully supports the SSA form
when merging functions through sequence alignment.

• A novel optimization called phi-node coalescing that
reduces the number of phi-nodes and selections in
merged functions.

• SalSSA achieves about twice as much code size reduc-
tion than the state of the art with significantly lower
compilation time overheads.

2 Background
Figure 1 depicts the workflow of FMSA [28]. The state-of-
the-art function merging is capable of merging any pair of
functions. Its core merging algorithm first transforms each
function into a linear sequence of labels and instructions.
Then a sequence alignment algorithm searches for the opti-
mal way to align two input sequences based on their match-
ing subsequences, effectively identifying the mergeable code.
The final step uses the resulting aligned sequence to directly
generate code. Matching subsequences are merged into a
single copy, avoiding redundancy. Non-matching segments
are copied as-is into the merged function but have their
execution conditioned by a function identifier.

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

F1 F2

%x1 = call start(%n)

L1

L2

br L4

%x3 = call body(%x1)

L4
%x5 = phi [%x3,L2],[%x4,L3]

%x2 = cmp lt %x1, 0

%x6 = call end(%x5)

 Mergeable Non-Mergeable

br %x2, L2, L3

L3

br L4

%x4 = call other(%x1)

ret %x6

%v1 = call start(%n)

L1

L2

br %v3, L3, L4

%v3 = cmp ne %v2, 0

br L2

%v2 = phi [%v1,L1],[%v4,L3]

L3

br L2

%v4 = call body(%v2)

L4
%v5 = call end(%v2)
ret %v5

Figure 2.Original input functions to be merged, before regis-
ter demotion. These simplified functions highlight a problem
commonly seen in real programs.

While this is all that is needed to do function merging in
theory, FMSA adds an important extra preprocessing step:
register demotion. Because its code generator cannot handle
phi-nodes, it needs to apply register demotion and replace
phi-nodes with memory operations in the stack. After code
generation, register promotion is performed to transform
stack operations back into phi-nodes, when this is possible.

The reason for FMSA to apply register demotion is clear -
while phi-nodes are strongly coupled with the control flow,
memory operations are much easier to handle as the code can
be generated directly from the aligned sequences. However,
as we will show in the next section, register demotion has a
negative impact on both the quality of merged code and the
overhead of function merging.

3 Motivating Example
As a motivation example, consider the pair of input functions
shown in Figure 2. While they are artificial, they highlight
and isolate a problem that frequently appears in real pro-
grams, as we discuss later in Figure 5. These two functions
have enough similarity to be profitably merged. A human
expert could even replace them with the function shown in
Figure 3, reducing the number of instructions by about 20%.

However, before aligning and automaticallymerging them,
FMSA has to apply register demotion, as shown in Figure 4.
Phi-nodes are removed and memory operations are created
to propagate values across basic block boundaries. The se-
quence alignment algorithm then identifies the matching
pairs of instructions (connected green marks), keeping the
rest unaligned (in red).

The problem arises when merging some of the generated
memory operations. To reverse the effect of register demo-
tion, FMSA applies register promotion on the merged code,
replacing the memory operations back with phi-nodes. This
is mandatory in FMSA in order for merged functions to be

%w1 = call start(%n)

L1

br %fid==1, L2, L3

L2

br %w3, L4, L6

%w3 = cmp ne %w2, 0

%w2 = phi [%w1,L1],[%v4,L3]

L4

br %fid==1, L2, L6

%w5 = phi [%w2,L2],[%w1,L3]

%w6 = call body(%w5)

L6
%w8 = phi [%w2,L2],[%w6,L4],[%w7,L5]
%w9 = call end(%w8)
ret %w9

L5

br L4

%w7 = call other(%w1)

L3
%w4 = cmp lt %w1, 0

br %w4, L4, L5

T

F

F T

Figure 3. Desired merged function that can be produced by
an expert. An extra argument called %fid is used to select
between the two functions. This represents a gain of about
20% in the total number of instructions.

profitable, given that register demotions artificially increases
the size of the functions being merged. However, in order to
be promotable, a stack location must be always used directly
as the immediate argument of the operations that access the
location. Unfortunately, merging these instructions tend to
prohibit register promotion, which results in unprofitable
merge operations.

In our example, we see in Figure 4 that some of the merge-
able memory operations use different locations. One such
case is the highlighted pair of store instructions. To maintain
the semantics of the two functions after merging, the target
address of the merged store will have to be selected based
on the function identifier, either addr2 or addr3. Because
the merged store instruction will not use the stack address
directly, but instead a selected address, this prevents register
promotion from eliminating these memory operations.
This failure to remove temporarily inserted stack opera-

tions has knock-on effects beyond the few extra instructions
left in the merged code. The additional memory accesses
and the select statements controlling their target locations
prohibit parts of the post-merge cleanup and later optimiza-
tion passes. In our example, while the two original input
functions had nine and ten instructions each, the merged
function ends up with a total of 50 instructions, significantly
larger than the two input functions put together.

This kind of undesired scenario is likely to happen when
merging two distinct functions after register demotion sim-
ply due to the sheer number of memory operations it creates.
Figure 5 shows the average normalized size, before and after
register demotion, across all functions in each program from
the SPEC CPU2006 benchmark suite. Size refers to the num-
ber of LLVM IR instructions. On average, register demotion

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

 Mergeable

Non-Mergeable

%x1 = call start(%n)

L1

L2

br L4

%x3 = call body(%t2)

%x2 = cmp lt %t1, 0

br %x2, L2, L3

L3

br L4

%x4 = call other(%t4)

%v1 = call start(%n)

L1

L2

br %v3, L3, L4

%v3 = cmp ne %t3, 0

br L2

L3

br L2

%v4 = call body(%t4)

L4

%addr1 = alloca i32
%addr2 = alloca i32
%addr3 = alloca i32
%addr4 = alloca i32

store %v1, %addr3
%t1 = load %addr3
store %t1, %addr4

%t2 = load %addr4
store %t2 %addr2
%t3 = load %addr2

%t4 = load %addr2

store %v4, %addr1
%t5 = load %addr1
store %t5, %addr4

%v5 = call end(%t6)
ret %v5

%t6 = load %addr4

%addr1 = alloca i32
%addr2 = alloca i32
%addr3 = alloca i32
%addr4 = alloca i32

store %v1, %addr3
%t1 = load %addr3

%t2 = load %addr3

store %x3, %addr2
%t3 = load %addr2
store %t3, %addr4

%t4 = load %addr3

store %x4, %addr1
%t4 = load %addr1
store %t4, %addr4

L4

%x6 = call end(%t5)
ret %x6

%t5 = load %addr4

F1 F2

P
r
e
v
e
n
t
s

P
r
o
m
o
t
i
o
n

Figure 4.Aligned example functions after register demotion.
The functions double in size after demotion, slowing down
alignment. Merging some of the generated stack accesses will
prevent eliminating them later through register promotion.

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
li

ze
d

 S
iz

e 1.73

G
M

e
a
n

Figure 5. Average normalized function size, before and after
register demotion, across all functions in each program from
the SPEC 2006 benchmark suite. Register demotion increases
function size by almost 75% on average.

increases function size by almost 75%, often by twice or more
their original size. Even if FMSA fails to eliminate only a
small portion of these extra instructions, the negative impact
on the profitability of merging will be significant.
Even for cases where the merge operation is profitable,

register demotion remains a problem. Demotion artificially
lengthens the functions to be aligned which in turns exacer-
bates the compile-time overheads associated with function

merging. In our example, the combined size of the two in-
put functions more than doubles, from 14 instructions in
Figure 2 to 29 instructions in Figure 4. This increase is in
line with what we have seen in SPEC CPU2006, including
functions with many thousands of instructions. Regardless
of whether register promotion will eventually remove the
extra instructions or not, the alignment algorithm itself will
have to process sequences twice as long. Since the memory
usage and running time of the algorithm is quadratic in the
sequence length, register demotion slows it down approxi-
mately by a factor of four. For applications with large func-
tions after register demotion, the compile-time and memory
usage overheads become prohibitive.
This shows that a new solution is needed to effectively

merge functions in the SSA form. Register demotion makes
function merging less profitable, even stopping similar func-
tions frommerging altogether, and often leads to undesirable
compilation overheads. In the rest of the paper, we show that
register demotion is not required for function merging and
that we can directly handle phi-nodes, leading to more prof-
itably merged functions.

4 Our Approach
Properly handling phi-nodes requires a radical redesign in
the code generator. The existing code generator produces
code directly from the aligned sequence, with each instruc-
tion pair treated almost in isolation without considering any
control flow context. Merging phi-nodes cannot work with
this approach because phi-nodes are only understood in their
control flow context.

Roadmap. In the rest of this section, we describe SalSSA,
our novel approach for merging functions through sequence
alignment with full support for the SSA form. By remov-
ing the need for preprocessing the input functions and per-
forming register demoting, our approach is able to merge
functions better and faster. Instead of translating the aligned
functions directly to merged code, the SalSSA follows a top-
down approach centered on the CFGs of the input functions.
It iterates over the input CFGs, constructing the CFG of the
merged function, interweaving matching and non-matching
instructions (Section 4.1). Afterwards, all edges and operands
are resolved, including appropriately assigning the incoming
values to all phi-nodes (Section 4.2). SalSSA is designed to
preserve all properties of SSA form via the standard SSA con-
struction algorithm (Sections 4.3). Finally, SalSSA integrates
a novel optimization with the SSA construction algorithm,
called phi-node coalescing, producing even smaller merged
functions (Section 4.4).

Working examples. Figure 6 shows how the functions
from our motivating example align without register demo-
tion. Here, phi-nodes are not aligned, similarly to how FMSA

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

F1 F2

%x1 = call start(%n)

L1

L2

br L4

%x3 = call body(%x1)

L4
%x5 = phi [%x3,L2],[%x4,L3]

%x2 = cmp lt %x1, 0

%x6 = call end(%x5)

br %x2, L2, L3

L3

br L4

%x4 = call other(%x1)

ret %x6

%v1 = call start(%n)

L1

L2

br %v3, L3, L4

%v3 = cmp ne %v2, 0

br L2

%v2 = phi [%v1,L1],[%v4,L3]

L3

br L2

%v4 = call body(%v2)

L4
%v5 = call end(%v2)
ret %v5

 Mergeable

Non-Mergeable

Figure 6. Example functions aligned without register demo-
tion. Phi-nodes are excluded from alignment.

handles landing-pad instructions. We will use these as work-
ing examples to describe step by step how our new code
generator works in the next subsections.

4.1 Control-Flow Graph Generation
Our code generator starts by producing all the basic blocks
of the merged function. Each original block is broken into
smaller ones so that matching code is separated from non-
matching code and matching instructions and labels are
placed into their own basic blocks. Having one block per
matching instruction or label makes it easier to handle con-
trol flow and preserve the ordering of instructions from the
original functions by chaining these basic blocks as needed.
Blocks with instructions that come originally from the

same basic block (of either input function) are chained in
their original order with branches. We use either uncon-
ditional branches or conditional branches on the function
identifier depending on whether control flow out of this
code is different for the two input functions. Because we
have one basic block per pair of matching instructions/la-
bels, this tends to generate some artificial branches, most of
them are unconditional, but can be simplified in later stages.
Figure 7 shows the generated CFG. At this point, the

only instructions that actually have their operands assigned
are the branches inserted to chain instructions originating
from the same input basic block. These branches have no
corresponding instruction in the input functions. All other
operands and edges, depicted in blue in Figure 7, will be
resolved later, during operand assignment.

4.1.1 Phi-Node Generation. Our code generator treats
phi-nodes differently from other instructions. For all align-
ment and code generation purposes, SalSSA treats phi-nodes
as attached to their basic block’s label; that is, they are
aligned with their labels and are copied to the merged func-
tion with their labels. So, when creating a basic block for a

 %m1 = call start(%n)

L2

br L2

L1

br %fid==1, L11, L21

 br L2

L11

L21
%x2 = cmp slt %m1, 0

L12

%v3 = cmp ne %v2, 0

%v2 = phi [%m1,L11],[%m2,L5]

br L4

L3

 %m2 = call body(%v2|%m1)

L4

br L5

br L12|L6

L5

br L6

L22
%x4 = call other(%m1)

br L7

L6

 %m3 = call end(%v2|%x5)

L7

br L8

ret m3

L8

%x5 = phi [%m2,L5],[%x4,L22]
%x5 from F2

F2:L1

F2:L1

F2:L1F1:L1

F1:L1

F1:L1

F1:L2

F2:L2 F2:L3

F2:L2

F1:L3

F1:L3

F2:L2F1:L3

F1:L4

F1:L4

F1:L4

F2:L4

F2:L4

F2:L4

br %v3, L3, L6

br %x2, L3, L22

Figure 7. Merged CFG produced by SalSSA. Code cor-
responding to a single input basic block may be trans-
formed into a chain of blocks, separating matching and non-
matching code. The generator inserts conditional and uncon-
ditional branches to maintain the same order of instructions
from the input basic block. Operands and edges highlighted
in blue will be resolved by the operand assignment described
in Section 4.2.

label, we also generate the phi-nodes associated with it. For
a pair of matching labels, we copy all phi-nodes associated
with both labels. We have decided for this approach where
phi-nodes are tied to labels because phi-nodes describe pri-
marily how data flows into its corresponding basic block.
Figure 7 shows an example where phi-nodes are present in
basic blocks with both matching or non-matching labels. The
phi-node x5 is simply copied into the merged basic block
labeled L6.
Unlike other instructions, we do not merge phi-nodes

through sequence alignment. Instead, identical phi-nodes
are merged during the simplification process using existing
optimizations from LLVM.

4.1.2 Value Tracking. While generating the basic blocks
and instructions for the merged function, SalSSA keeps track
of two mappings that will be needed during operand assign-
ment. The first one, called value mapping, is responsible for

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

%m2 = call body(%v2|%m1)

%s = select %fid==1, %v2, %m1
%m2 = call body(%s)

Figure 8. Operand selection for the call instruction in L4
from Figure 7.Mismatching operands chosenwith aselect
instruction on the function identifier.

%s = select %fid==1, %a2, %b1
%y = add %m, %s

%y = add %m|%b1, %a2|%m

swap

Figure 9. Optimizing operand assignment for commutative
instructions. Example of a merged add instruction that can
have its operands reordered to allow merging the two uses
of %m, avoiding a select instruction.

mapping labels and instructions from the input functions
into their corresponding ones in the merged function. This
is essential for correctly mapping the operand values. The
second one, called block mapping, is a mapping of the basic
blocks in the opposite direction, as shown by the light gray
labels in Figure 7. It maps basic blocks in the merged func-
tion to a basic block in each input functions, whenever there
is a corresponding one. This block mapping will be needed
to map control flow when assigning the incoming values of
phi-nodes (see Section 4.2.3).

4.2 Operand Assignment
Once all instructions and basic blocks have been created, we
perform operand assignment in two phases. First, we assign
all label operands, essentially resolving the remaining edges
in the control flow graph (dashed blue edges in Figure 7).
With the control flow graph complete, we can then create
a dominator tree to help us assign the remaining operands
while also properly handling instruction domination.

Whenever the corresponding operands of merged instruc-
tions are different, we need away to select the correct operand
based on the function identifier. Section 4.2.1 describes how
we perform label selection. In all other cases, we simply use
a select instruction, as shown in Figure 8.
When assigning operands to commutative instructions,

we also perform operand reordering to maximize the num-
ber of matching operands and reduce the need for select
instructions. Figure 9 shows an example of a commutative
instruction where an operand selection can be avoided by re-
ordering operands. This property of commutative operations
has been exploited before by other optimizations [26–28].

4.2.1 Label Selection. In LLVM, labels are used exclu-
sively to represent control flow.More specifically, label operands

br L12|L6

br %fid==1, L12, L6

Lsel

br Lsel

L5

L12 L6

Figure 10. Label selection for mismatched terminator in-
struction operands Lf1 and Lf2 corresponding to labels of
two different basic blocks. We handle control flow in a new
basic block, Lsel with a conditional branch on the function
identifier targeting the two labels. We use the label of the
new block as the merged terminator operand.

(a) Rule for conditional branches
with swapped label operands.

(b) The truth table of the xor
operation.

Figure 11. Optimizing label assignment for conditional
branches. Example of a merged br instruction that can have
its label operands reordered, trading two label selections by
one xor operation.

are used by terminator instructions, where they specify the
destination basic block of a control flow transfer, or to repre-
sent incoming control flow in a phi-node instruction.

Whenever assigning the operands of a merged terminator
instruction, if there is a label mismatch between the two in-
put functions, we need a way to select between the two labels
depending on the executed function. We do so by creating a
new basic block with a conditional branch on the function
identifier to each one of the mapped labels. Then we use the
new block’s label as the operand of the merged terminator
instruction. Figure 10 illustrates a CFG that handles label
selection for a merged terminator instruction.

Figure 11 shows a special case where we can also perform
operand reordering on conditional branches that follow a
specific pattern. When merging two conditional branches
with matching label operands, except for their order, instead
of creating two label selections, we can simply apply an
xor operation on the condition and the function identifier,
swaping the label operands for the true-value of the function
identifier. As shown in Figure 11b, the xor operation flips
the value of the condition for the true-value of the function
identifier, preserving the semantic of the conditional branch.
This optimization adds the cost of one xor operation to avoid
the cost of two label selections, which are implemented with
branch instructions as shown in Figure 10.

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

br Ldst

invoke F(...), Lc, Lpad

Lsrc

Ldst

Lpad
landingpad ...Lc

invoke F(...), Lc, Ldst

Figure 12. Landing blocks are added after operand assign-
ment and are assigned to invoke instructions as operands.

4.2.2 Landing Blocks. Mostmodern compilers, including
GCC and LLVM, implement the zero-cost Itanium ABI for
exception handling [11], which is known as the landing-pad
model. This model has two main components: (1) invoke
instructions that have two successors, one that continues
when the call succeeds as per normal, and another, usually
called the landing pad, in case the call raises an exception,
either by a throw or the unwinding of a throw; (2) landing-
pad instructions that encode which action is taken when an
exception is raised. A landing pad must be the immediate
successor of an invoke instruction in its unwinding path. The
code generator must ensure that this model is preserved.
Our new code generator delays the creation of landing-

pad instruction until the phase of operand assignment. Once
we have concluded the remapping of all label operands of an
invoke instruction, regardless of whether they are merged
or non-merged code, we create an intermediate basic block
with the appropriate landing-pad instruction. Thenwe assign
the label of this landing block as the operand of the invoke
instruction, as shown in Figure 12.

4.2.3 Phi-Node’s Incoming Values. There are two dis-
tinct cases for phi-nodes: being associated with a matching or
with a non-matching label. In both cases, phi-nodes are only
copied from their input functions and they are not merged.
So each phi-node in the merged function should capture the
incoming flows present in the corresponding phi-node of
their input function. For matching labels, each phi-node in
the merged function will have additional incoming flows
specific to the other input function but these flows should
have undefined values.
To assign the incoming values of a phi-node, SalSSA iter-

ates over all predecessors of its parent basic block and uses
the block mapping to discover each predecessor’s correspond-
ing basic block in the input function. If such a basic block is
found, then SalSSA obtains the incoming value associated
with that predecessor from the value mapping. Otherwise,
an undefined value, which by construction should never be
actually used, is associated with that predecessor.

L4
%s = select %fid==1, %v2, %m1
%m2 = call body(%s)

L21

L12
%v2 = ...

L3
br L4

(a) Example where the dominance property is violated.

L4
%s = select %fid==1, %vm, %m1
%m2 = call body(%s)

L21

L12
%v2 = ...

L3

br L4

%vm = phi [%v2,L12],[undef,L21]

(b) The dominance property is restored by placing phi-nodes where
needed.

Figure 13. Example of how SalSSA uses the standard SSA
construction algorithm to guarantee the dominance property
of the SSA form.

4.3 Preserving the Dominance Property
The code transformation process described so far could vio-
late the dominance property of the SSA form. This property
states that each use of a value must be dominated by its defi-
nition. For example, an instruction (or basic block) dominates
another if and only if every path from the entry of the func-
tion to the latter goes through the former. Figure 13a gives
one example extracted from Figure 7 where the dominance
property is violated during code transformation. For this
example, the dominance property is violated because %v2
is defined in block L12 and used in block L4, but the former
does not dominate the latter since there is a alternative path
through L21.

SalSSA is designed to preserve the dominance property to
conform with the SSA form. It achieves this using a two-step
approach. It first adds a pseudo-definition at the entry block
of the function where names are defined and initialized with
an undefined value. This guarantees that every register name
will be defined on basic blocks from both functions. Then,
SalSSA applies the standard SSA construction algorithm [9,
10], which guarantees both the dominance and the single-
reaching definition properties of the SSA form. We note
that our implementation uses the standard SSA construction
algorithm provided by LLVM for register promotion. This
algorithm guarantees that names have a single definition by
placing extra phi-nodes where needed so that instructions

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

Lmerged

%s = select %fid==1, %vm, %xm
... = ... %s

Lf2Lf1
%v = ... %x = ...

%vm = phi [%v,Lf1],[undef,Lf2]
%xm = phi [undef,Lf1],[%x,Lf2]

(a) Phi-node placement without coalescing.

Lmerged

... = ... %s

Lf2Lf1
%v = ... %x = ...

%s = phi [%v,Lf1],[%x,Lf2]

(b) Phi-node placement with coalescing.

Figure 14. Phi-node coalescing reduces the number of phi-
nodes and selections.

can be renamed appropriately. Figure 13b shows how the
property violation in Figure 13a can be corrected using this
strategy.

4.4 Phi-Node Coalescing
The approach described in Section 4.3 guarantees the cor-
rectness of the SSA form but generates extra phi-nodes and
registers which increase register pressure and might lead
to more spill code. In this section, we describe a novel opti-
mization technique, phi-node coalescing, that SalSSA uses to
lower register pressure.
Figure 14 illustrates such an optimization opportunity.

SalSSA is merging an instruction with different arguments,
so it needs to select the right one based on the function
identifier. The two arguments though, v and x, have dis-
joint definitions, i.e. they have non-merged definitions from
different input functions. Using the standard SSA construc-
tion algorithm would result in the sub-optimal code shown
in Figure 14a. This code inserts two trivial phi-nodes to se-
lect, again, v or x based on the executed function. SalSSA
optimizes this code by coalescing both phi-nodes into a sin-
gle one and removing the selection statement. As shown in
Figure 14b, the optimized version has a smaller number of
instructions and phi-nodes.
This transformation is valid because a value definition

that is exclusive to a function will never be used when exe-
cuting the other function. Figure 15 shows another example
illustrating that even disjoint definitions that have no user in-
structions in common can be coalesced, reducing the number
of phi-nodes.

Since SalSSA is aware of which basic blocks are exclusive
to each function, it can choose a pair of disjoint definitions

Lmerged

Lf11
%v = ...

Lf21
%x = ...

%vm = phi [%v,Lf1],[undef,Lf2]
%xm = phi [undef,Lf1],[%x,Lf2]

Lf22
... = ... %xm

Lf12
... = ... %vm

... = select %fid==1, %vm, 0

... = select %fid==1, 0, %xm
br %fid==1, Lf12, Lf22

(a) Phi-node placement without coalescing.

Lmerged

Lf11
%v = ...

Lf21
%x = ...

Lf22
... = ... %vx

Lf12
... = ... %vx

%vx = phi [%v,Lf1],[%x,Lf2]
... = select %fid==1, %vx, 0
... = select %fid==1, 0, %vx
br %fid==1, Lf12, Lf22

(b) Phi-node placement with coalescing.

Figure 15. Reducing the number of phi-nodes by coalescing
disjoint definitions with no user instructions in common.

for coalescing. Given a pair of disjoint definitions, SalSSA
assigns the same name for both of them before applying the
SSA reconstruction. SalSSA coalesces the set of definitions
that violate the dominance property. Two definitions can
be paired for coalescing if they are disjoint and have the
same type. The optimization pairs disjoint definitions that
maximize their live range overlap since the goal is to avoid
having register names live longer than they should, reducing
register pressure.
Formally, the heuristic implemented in our phi-node co-

alescing can be described as follows. Given a set S1 × S2
of disjoint definitions that violate the dominance property,
the optimization chooses pairs (d1,d2) ∈ S1 × S2 that max-
imize the intersection UB(d1) ∩UB(d2), where UB(d) is the
set {Block(u) : u ∈ Users(d)}.
Phi-node coalescing allows SalSSA to produce smaller

merged functions and reduce code size. Consequently, it also
enables more functions to be profitably merged.

5 Evaluation
In this section, we compare SalSSA against the state-of-the-
art algorithm of function merging by sequence alignment,
FMSA [28]. We first present the code size reduction on the

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

.c

.c

.c

...
opt

...

FE
FE

FE

opt

opt

link optFM BE .o

 Function
Merging

LTO

IR

} Back
End

Front
End

...
Object
ELF
File

Source
Files

SalSSA/FMSA

Figure 16. Compilation pipeline used for the evaluation.
Both SalSSA and FMSA are applied in LTO mode.

final object file. We then evaluate the compilation overhead
and impact on program performance.

5.1 Experimental Setup
Most of our experiments directly compare SalSSA against
FMSA [28]. We use the same compilation pipeline as our
prior work [28], depicted in Figure 16. Both function merging
optimizations are implemented in LLVM version 11.
Our approach uses the same fingerprint-based ranking

mechanism as FMSA to decide which functions to attempt to
merge. This strategy uses a configurable exploration thresh-
old, t , to control how many different functions to attempt
to merge with each function before selecting the most prof-
itable merge or give up. A larger exploration threshold (t) is
likely to lead to better code size reduction, but comes at the
cost of longer compile time. Like FMSA, we also use three
different exploration thresholds where t = {1, 5, 10}.

We evaluated SalSSA and FMSA on all C/C++ benchmarks
of the SPEC CPU benchmark suite [30], both the 2006 and
2017 versions, targeting the Intel x86 architecture, and on
the MiBench embedded benchmark suite targeting the ARM
Thumb architecture. We run all experiments on a dedicated
server with a quad-core Intel Xeon CPU E5-2650, 64 GiB of
RAM, running Ubuntu 18.04.3 LTS. To minimize the effect
of measurement noise, compilation and runtime overhead
experiments were repeated 5 times.

5.2 Evaluation on SPEC CPU
Figures 17 reports the code size reduction on linked objects
over the LLVM link-time optimizer (LTO). SalSSA signifi-
cantly improves FMSA. With the lowest exploration thresh-
old, SalSSA on average reduces the compiled code size by
9.3% and 7.9% on SPEC CPU2006 and CPU2017 respectively.
These translate to nearly twice or above as much as FMSA,
which achieves a 3.8% and 4.1% reduction on SPEC CPU2006
and CPU2017 respectively. The highest reductions are seen
for 447.dealII and 510.parset_r, over 40% reduc-
tion. They are mainly due to the heavy use of template
functions which leads to multiple similar functions. Other
C++ programs display similar behavior, where SalSSA also
achieves good code size reduction. SalSSA also gives re-
markable code size reduction in many C programs, such as
456.hmmer, 462.libquantum, and 482.sphinx3.

SalSSA outperforms FMSA for multiple benchmarks. The
more pronounced cases are for 444.namd, 456.hmmer,
462.libquantum, 447.dealII, and 482.sphinx3
from SPECCPU2006, aswell as508.namd_r,619.lbm_s,
644.leela_s and657.xz_s from SPECCPU2017. These
benchmarks were heavily affected by register demotion, as
illustrated in Figure 5 for SPEC CPU2006. Similar to our mo-
tivating example in Section 3, when two non-identical func-
tions have stack operations for nearly half of their instruc-
tions, misalignments become likely; these misalignments
prohibit eliminating the merged stack operation through
register promotion. This issue reduces the profit gained by
FMSA. In some cases, like 619.lbm_s and 625.x264_s,
the profitability cost model can fail, resulting in sufficient
false positives to cause code bloating. We will discuss this
further in the next section.

5.3 Evaluation on MiBench
To evaluate the effectiveness of SalSSA on embedded systems,
we apply it to theMiBench embedded benchmark suite on the
ARM Thumb architecture. We note that by having function
merging implemented at the IR level, our approach can be
equally applied to any target architecture supported by the
compiler.
The MiBench suite is a collection of short C programs,

each one composed of a small number of functions. When
optimizing programs with a small number of functions, func-
tion merging optimizations will have fewer opportunities to
find pairs of profitably merged functions. For example, the
qsort program in MiBench has only two functions; as a
result, neither FMSA nor SalSSA is able to merge them. As
shown in Table 1, the same happens for other programs in
the MiBench suite.
Figure 18 shows that SalSSA improves significantly over

FMSA, achieving a geo-mean reduction of 1.4% to 1.6%, about
twice as much as FMSA. This improvement comes from
SalSSA’s capability of generating better-merged functions,
which leads to a larger number of profitable merge opera-
tions, as confirmed by Table 1.
Because FMSA requires register demotion to be applied

to all functions before it can even attempt to merge them,
FMSA ends up changing all functions even if no profitable
merge operation is found. Figure 18 shows the effect of this
preprocessing phase (denoted as FMSA Residue), which is
obtained by running FMSA but not committing any merge
operation. This FMSA Residue is the reasonwhy FMSA some-
times has a non-zero code-size reduction (e.g., adpcm_c,
FFT, patricia) despite not merging any functions. Since
FMSA Residue might have an impact on the heuristics of
later optimizations and code generation, its impact is almost
random, sometimes being positive or negative on code-size.
The impact of FMSA Residue is more noticeable in small pro-
grams, such as those found in MiBench, while in SPEC2006
it increases code size by only 0.02%, on average. To fix the

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk

GMean
0

10

20

30

40

R
e
d

u
ct

io
n

 (
%

)

3
.8 3
.9 3
.9

9
.3 9
.7

9
.5

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

Intel x86

(a) Results on SPEC CPU 2006.

508.namd_r

510.parest_
r

511.povray_r

526.blender_r

600.perlb
ench_s

602.gcc_s

605.m
cf_s

619.lb
m_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsje
ng_s

638.im
agick_s

641.le
ela_s

644.nab_s

657.xz_s

GMean

10

0

10

20

30

40

R
e
d

u
ct

io
n

 (
%

)

4
.1 4
.4 4
.4 7

.9 8
.8 9
.2

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

Intel x86

(b) Results on SPEC CPU 2017.

Figure 17. Linked object size reduction over LLVM LTO when performing function merging with SalSSA or FMSA on SPEC
CPU 2006 (a) and 2007 (b). Each approach was evaluated using three different exploration thresholds. On SPEC CPU2006,
SalSSA reduces code size by 9.3% to 9.7% on average, almost twice as much as FMSA. On SPEC CPU2017, SalSSA reduces code
size by 7.9% to 9.2% on average, more than twice as much as FMSA.

issue highlighted by FMSA Residue, we would need to add
an extra bookkeeping step of cloning all original functions
so that we can rollback if they are not profitably merged. Fix-
ing that would only increase unnecessarily the optimization
complexity, but SalSSA offers a better solution where only
merged functions are affected.
An interesting case is observed with both cjpeg and

djpeg. Although SalSSA, with exploration threshold t = 1,
increases code size, it is merging a superset of the pairs of
functions merged by FMSA with t = 1. If we limit SalSSA
to merge exactly the same pairs merged by FMSA, it ends
up with about the same or slightly better results than FMSA.
This suggests that the marginal code-size increase observed
with SalSSA is a result of false positives from the profitabil-
ity cost model, i.e., it allows unprofitable merge operations
to be committed. Since cjpeg and djpeg share most of
their code base, we can indeed confirm that a subset of the
pairs of functions merged by SalSSA, for both benchmarks,
should have been classified as unprofitable as merging them
increases the code size. However, with higher exploration
thresholds, namely, t = 5 and t = 10, SalSSA surpasses
FMSA in code-size reduction, although it still includes all
pairs merged with the exploration threshold t = 1.

Figure 19 shows a breakdown for each merge operation
performed by SalSSA, with exploration threshold t = 1, on
the djpeg benchmark. We measured the impact of each
merge operation, in isolation, to the size of the final object
file. Although each one of these merge operations have a
very small contribution to the final code size, the profitability
cost model failed enough to result in an overall code increase
of about 0.3%.
Both SalSSA and FMSA use the same profitability cost

model. The limitations observed on cjpeg and djpeg also
appear in SPEC2017with FMSA. This stems from the fact that
several transformations will still be applied to the code dur-
ing late optimizations and the back end, and these changes
are not captured by the profitability cost model.

5.4 Further Analysis
We also provide a breakdown showing the impact of phi-
node coalescing on code size. Figure 20 shows the impact
of our phi-node coalescing optimization technique (see Sec-
tion 4.4). This diagram compares SalSSA to a variant without
phi-node coalescing (SalSSA-NoPC) and FMSA. On average,
this technique gives an additional 1.2% on code size reduction.

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

CRC32
FFT

adpcm_c

adpcm_d

basic
math

bitc
ount

blowfis
h_d

blowfis
h_e

cjpeg

dijk
str

a
djpeg

ghosts
crip

t
gsm

isp
ell

patri
cia pgp

qsort

rijn
dael

rsy
nth sha

str
ingsearch

susan

typeset

GMean
0
1
2
3
4
5
6
7
8

R
e
d

u
ct

io
n

 (
%

)

0
.10.8

1
.4

1
.5

1
.6

FMSA Residue FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

ARM Thumb

Figure 18. The percentual reduction in size of the linked object files, targeting the ARM architecture. We evaluate SalSSA or
FMSA over the LLVM LTO on the MiBench embedded benchmark suite. Each approach was evaluated using three different
exploration thresholds. SalSSA achieves a geo-mean reduction of 1.4% to 1.6%, about twice as much as FMSA.

Table 1. Number and size of functions present in each
MiBench benchmark just before function merging, as well
as number of merge operations applied by each technique.

Benchmarks #Fns Min/Avg/Max Size FMSA[t=1] SalSSA[t=1]

CRC32 4 8/23.75/37 0 0
FFT 7 6/45.43/131 0 0
adpcm_c 3 35/68.33/93 0 0
adpcm_d 3 35/68.33/93 0 0
basicmath 5 4/60/204 0 0
bitcount 19 4/20.58/56 3 3
blowfish_d 8 1/231.38/790 0 1
blowfish_e 8 1/231.38/790 0 1
cjpeg 322 1/92.76/1198 7 26
dijkstra 6 2/31.5/83 0 0
djpeg 310 1/91.31/1198 10 28
ghostscript 3452 1/50.36/3749 211 327
gsm 69 1/92.42/696 6 9
ispell 84 1/97.08/1004 3 8
patricia 5 1/73.6/160 0 0
pgp 310 1/80.39/1706 8 19
qsort 2 11/45.5/80 0 0
rijndael 7 45/444.14/1182 1 1
rsynth 47 1/83.89/716 1 2
sha 7 12/49.71/147 0 1
stringsearch 10 3/41/81 1 1
susan 19 15/275.21/1153 1 2
typeset 362 1/327.61/11744 27 53

0.4

0.2

0.0

0.2

R
e
d

u
ct

io
n

 (
%

)

Figure 19. A breakdown of SalSSA[t = 1] on the djpeg
benchmark. The actual contribution to the final code size for
each merge operation deemed profitable by the cost model.

For444.namd, it enables an extra 7% reduction on the code
size, demonstrating the great advantage of the technique.

Figure 21 provides further insight into the gains of SalSSA.
The figure shows the total number of profitable merging at-
tempts for the lowest exploration threshold. While FMSA has
only 9,271 profitable merge operations, SalSSA has 12,224,

an increase of 31% on the number of profitable merges. Much
of the improvement we observe in code size reduction comes
from producing profitable merged functions where FMSA
fails to gain any profit, not just from increasing the profit.

5.5 Memory Usage
Because the sequence alignment algorithm [24, 28] (used by
FMSA and SalSSA) has a quadratic space complexity over
the length of the sequences, the difference in the size of the
functions caused by register demotion translates directly to
the differences in memory usage.

Figure 22 shows the peak memory usage across the SPEC
CPU2006 suite. To isolate the impact of other compilation
passes, we measure the memory usage only when running
the function merging optimization. As expected, avoiding
register demotion has the added benefit of lowering the mem-
ory footprint of the compilation pass. On average, SalSSA
uses half the amount of memory required by FMSA. The
improvements on memory usage shown in this Figure 22
directly reflects the difference shown in Figure 5.
Both FMSA and SalSSA starts merging from the largest

to the smallest functions. For the 403.gcc benchmark, the
first pair of functions considered for a merging is the pair
recog_16 and recog_26 that originally contains 20,688
and 16,043 instructions, respectively, but after register demo-
tion grow to 36,508 and 28,899. This pair of extremely large
functions is responsible for the peak in memory usage when
optimizing this benchmark. FMSA uses a total of 6.5 GB of
memory while SalSSA is able to reduce it down to 2.4 GB. A
total of 2.7× reduction on peak memory usage. Although this
is the most critical benchmark in terms of absolute numbers,
a similar trend appears in most of the other benchmarks. By
reducing the memory overhead of compilation, SalSSA thus
can target a larger codebase over FMSA.

5.6 Compilation Time Overhead
Figure 24 shows the normalized compile-time for the entire
compilation process on SPEC CPU2006. The min-max bar

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

G
M

e
a
n

0

10

20

30

R
e
d

u
ct

io
n

 (
%

)

3
.8 8

.1 9
.3

SalSSA-NoPC [t=1]FMSA [t=1] SalSSA [t=1]

Intel x86

Figure 20. Evaluation of the impact of phi-node coalescing on the size of the final object file. SalSSA-NoPC, which includes
phi-node coalescing, has a measurable benefit over the alternative without phi-node coalescing (SalSSA-NoPC). When enabled,
phi-node coalescing achieves up to 7% of code size reduction on top of SalSSA-NoPC.

0

200

400

600

800

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

#
 M

e
rg

e
 O

p
e
ra

ti
o
n

s

2975 3648

1
7

5
2

8
9

6 1
2

5
9

3

929

1 6

4
3

5 5
3

3

2
6 4
5

5 2
4

1
5

5 2
4

4

1
9

2 2
7

6

4
4 9

4

1
1 1
6

4339 5577

9 1
5 5
0 1

0
1 2

2
7 3

2
9

0 2 4 1
5 2
4 6
9

FMSA

SalSSA
5

0 9
5

G
M

e
a
n

Figure 21. Total number of profitable merge attempts for
SalSSA and FMSA on 19 SPEC CPU2006 benchmarks. For
both cases, we used the lowest exploration threshold (t=1).
SalSSA achieves 31% more profitable merge operations.

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

G
M

e
a
n0

200

400

600

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

1
5

3
.5

9
4

.8

FMSA [t=1] SalSSA [t=1]
6.5 GB

2.4 GB

Figure 22. Peak memory usage during compilation time on
the SPEC CPU2006 benchmark. On average, SalSSA requires
less than half the memory used by FMSA.

in the diagram gives the 95% confidence interval across dif-
ferent compile-time measurements of a benchmark. SalSSA
incurs modest compile-time overhead with an average 5%
increase in the compile-time when using the lowest explo-
ration threshold (t = 1). This represents a 3x reduction in the
compile-time overhead compared to the 14% overhead from
FMSA with the same exploration threshold. When using the

4
0
0
.p
e
rl
b
e
n
ch

4
0
1
.b
zi
p
2

4
0
3
.g
cc

4
2
9
.m

cf

4
3
3
.m

il
c

4
4
4
.n
a
m
d

4
4
5
.g
o
b
m
k

4
4
7
.d
e
a
lI
I

4
5
0
.s
o
p
le
x

4
5
3
.p
o
vr
a
y

4
5
6
.h
m
m
e
r

4
5
8
.s
je
n
g

4
6
2
.l
ib
q
u
a
n
tu
m

4
6
4
.h
2
6
4
re
f

4
7
0
.l
b
m

4
7
1
.o
m
n
e
tp
p

4
7
3
.a
st
a
r

4
8
2
.s
p
h
in
x3

4
8
3
.x
a
la
n
cb
m
k0

2

4

6

8

10

S
p
e
e
d
u
p

3
.1
6

1
.6
8

Alignment

Code-Gen

G
M
e
a
n

Figure 23. Speedup over the accumulated time spent on both
sequence alignment and code generation. SalSSA produces
significantly less overhead than the state-of-the-art FMSA.

largest exploration threshold (t = 10), we observe a 3.7x re-
duction in the compile-time overhead. The improvement is
due to not only less time spent performing the optimization
itself but also less work for the remaining compilation pro-
cess since we reduce the size of the produced code. We also
observe similar overhead improvement on SPEC CPU2017.

Figure 23 shows the speedups obtained by SalSSA for the
sequence alignment and the code generator. These two stages
of function merging benefit most from our techniques. As
suggested earlier, both stages are accelerated because the
compiler has shorter sequences to operate on under SalSSA
over FMSA. The results given in Figure 23 and Figure 5 follow
a very similar trend. These confirm our intuition described
earlier in Section 3.

Since the sequence alignment algorithm is also quadratic
in time over the length of the sequences, we get a quadratic
speedup by avoiding register demotion with SalSSA. Code
generation is linear on the size of the functions resulting in
proportional speedups in compile-time. For a couple of cases,
however, the pressure put on the clean-up phase can negate
those gains.

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

1

2

3

4

N
o
rm

a
li

ze
d

 T
im

e

1
4

%
4

4
% 6
6

%
% 1
2

%
1

8
%

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

5

GMean

Figure 24. End-to-end compile-time for SalSSA and FMSA for three different exploration thresholds and 19 different SPEC
CPU2006 benchmark. Compile-time is normalized to that of the baseline with no function merging. SalSSA reduces the
overhead of function merging by 3× to 3.7× on average.

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

0.7

0.8

0.9

1.0

1.1

1.2

N
o
rm

a
li

ze
d

 R
u

n
ti

m
e

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk

2
% 2
% 2
%

4
% 3
% 4
%

GMean

Figure 25. Comparison between the runtime impact from FMSA and SalSSA. Our approach increases the runtime overhead
because it merges more functions. For most benchmarks, the overhead is small. For the rest, profiling-directed merging would
eliminate the overhead.

5.7 Performance Overhead
The primary goal of function merging is to reduce code size.
Nevertheless, it is also important to keep the impact on the
program runtime as low as possible. Figure 25 shows the
normalized execution time, where the min-max bar shows
the 95% confidence interval across different runs. Overall,
SalSSA has an average overhead of about 4% on programs’
runtime. For most benchmarks, there is no statistically sig-
nificant difference between the baseline and the optimized
binary. For the rest, profiling information could be used to
avoid adding overhead when mergeable code is in the most
frequently executed code path.

6 Related Work
Compiler-based code size reduction is certainly not a new
research topic. Prior work achieves this by either replac-
ing the target code with a smaller, semantically-equivalent
code [22, 32], or removing or combining redundant code [5–
7, 12, 15, 18, 21]. Our work falls into the latter category.

6.1 Function Merging
Link-time code optimizers like [1, 19, 31]merge text-identical
functions at the bit level. However, such solutions are platform-
specific and need to be adapted for each object code format
and hardware architecture. However, GCC and LLVM [2, 20]
also provide an optimization for merging identical functions
at the IR level and hence is agnostic to the target hardware.
Unfortunately, they can only merge fully identical functions

PLDI ’20, June 15–20, 2020, London, UK Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather

with at most type mismatches that can be losslessly cast to
the same format. The work presented by von Koch et al. [14]
advanced this simple merging strategy by exploiting the
CFG isomorphism of two functions. However, it requires
two mergeable functions to have identical CFGs and func-
tion types, where the two functions can only differ between
correspoding instructions, specifically, in their opcodes or
the number and types of the input operands. The state-of-
the-art technique, FMSA [28], lifts most of the restrictions
imposed by prior techniques [2, 14, 20]. Although achiev-
ing impressive results, it does not directly handle phi-nodes
which are fundamental to the SSA form. Instead, it applies
register demotion to replace all such nodes with memory
operations, in an attempt to simplify the code generation
processes. As we have shown in this paper, such a strategy
comes at the cost of poor merge results, larger memory foot-
print and longer compilation time. Our work avoids this
pitfall with a new code generator capable of handling phi-
nodes properly and completely bypassing register demotion.
This leads to better code reduction performance and faster
compilation time over the state-of-the-art.

Procedural abstraction [13, 21] and function merging are
two different but complementary code optimization tech-
niques. Procedural abstraction extracts identical code seg-
ments to separate functions and replaces the original code
segment with a function call. Procedural abstraction typically
only works on single basic blocks or single-entry, single-exit
code regions, which are text identical. By contrast, function
merging works on whole functions and does not necessarily
require the functions to be fully identical.

In a broader context, code similarity detection is a heavily
studied field. It has been used for a wide range of tasks in-
cluding GPU code optimization [8], code maintenance [23,
23, 33] and software development tasks like code clone detec-
tion [29]. Unlike many of these tasks where a certain degree
of approximation may be acceptable, function merging re-
quires a precise analysis of code similarity. To this end, we
use the same sequence alignment technique proposed in the
state-of-the-art [28].

6.2 Phi-Node Coalescing
Some work in the literature also uses the term “phi coa-
lescing” but in the context of register allocation. For exam-
ple, the C2 compiler implements “phi coalescing” as part of
its aggressive-coalescing optimization s performed during
register allocation [16, 17]. In this context, “phi coalescing”
refers to a transformation where the input values of a single
phi-node are coalesced into the same register, avoiding un-
necessary copies [16, 25]. While our work builds upon the
past foundations of register allocation and coalescing [4, 25],
phi-node coalescing in this paper refers to coalesce different
phi-nodes into one. Our goal is to reduce the total number of
phi-nodes after merging two functions. This is different from

prior work that aims to use a single register to represent a
phi-node after register allocation [16, 17].

7 Conclusion
We have presented SalSSA, a novel compiler-based function
merging technique with full support for the SSA form. Unlike
the previous state-of-the-art, which has to apply register
demotion to eliminate the commonly used phi-nodes in SSA,
SalSSA directly processes phi-nodes using a more powerful
code generator. As a result, SalSSA avoids the code bloating
problem introduced by register demotion and increases the
chances of generating profitable merged functions. We have
implemented SalSSA in LLVM and evaluated it on the SPEC
CPU2006 and CPU2017 benchmark suites. SalSSA delivers
on average 9.5% code reduction for the lowest exploration
threshold. Compared to the previous function merging state-
of-the-art, SalSSA achieves 2×more reduction on binary size
with 3× less compile-time overhead and less than half the
amount of memory required by it.
For future work, we plan to investigate the application

of phi-node coalescing outside function merging. In order
to avoid code size degradation, we also plan to improve the
compiler’s built-in static cost model for code size estima-
tion. As a future work, we can also analyze the interaction
between function merging and other optimizations such as
inlining, outlining, and code splitting. Finally, we also plan
to incorporate instruction reordering into function merging
to maximize the number of matches between the functions
regardless of the original code layout.

Acknowledgment
This work has been supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) un-
der grants EP/L01503X/1 (CDT in Pervasive Parallelism),
EP/P003915/1 (SUMMER) and EP/M01567X/1 (SANDeRs).
This work was supported by the Royal Academy of Engi-
neering under the Research Fellowship scheme.

References
[1] [n.d.]. Microsoft Visual Studio. Identical COMDAT Folding.

https://msdn.microsoft.com/en-us/library/bxwfs976.aspx.
[2] [n.d.]. The LLVM Compiler Infrastructure. MergeFunctions pass, how

it works. http://llvm.org/docs/MergeFunctions.html.
[3] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. 1997. Value

Numbering. Software: Practice and Experience 27, 6 (1997), 701–724.
[4] Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy,

Timothy S. Oberg, and Steven W. Reeves. 2002. Fast Copy Coalescing
and Live-Range Identification. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation
(Berlin, Germany) (PLDI ’02). Association for Computing Machinery,
New York, NY, USA, 25–32.

[5] Wen Ke Chen, Bengu Li, and Rajiv Gupta. 2003. Code Compaction
of Matching Single-Entry Multiple-Exit Regions. In Static Analysis,
Radhia Cousot (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
401–417.

Effective Function Merging in the SSA Form PLDI ’20, June 15–20, 2020, London, UK

[6] John Cocke. 1970. Global Common Subexpression Elimination. In
Proceedings of a Symposium on Compiler Optimization. ACM, New
York, NY, USA, 20–24.

[7] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999.
Optimizing for Reduced Code Space Using Genetic Algorithms. In Pro-
ceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers,
and Tools for Embedded Systems (Atlanta, Georgia, USA) (LCTES ’99).
ACM, New York, NY, USA, 1–9.

[8] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. 2011. Di-
vergence Analysis and Optimizations. In 2011 International Conference
on Parallel Architectures and Compilation Techniques. 320–329.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
1989. An Efficient Method of Computing Static Single Assignment
Form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Austin, Texas, USA) (POPL
’89). ACM, New York, NY, USA, 25–35.

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13, 4 (Oct. 1991), 451–490.

[11] Christophe de Dinechin. 2000. C++ Exception Handling. IEEE Concur-
rency 8, 4 (Oct. 2000), 72–79.

[12] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter.
2000. Compiler Techniques for Code Compaction. ACMTrans. Program.
Lang. Syst. 22, 2 (March 2000), 378–415.

[13] A. Dreweke, M. Worlein, I. Fischer, D. Schell, T. Meinl, and M.
Philippsen. 2007. Graph-Based Procedural Abstraction. In International
Symposium on Code Generation and Optimization (CGO’07). 259–270.

[14] Tobias J.K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and
Anshuman Dasgupta. 2014. Exploiting Function Similarity for Code
Size Reduction. In Proceedings of the 2014 SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES ’14).
ACM, New York, NY, USA, 85–94.

[15] Jens Ernst, William Evans, Christopher W. Fraser, Todd A. Proebsting,
and Steven Lucco. 1997. Code Compression. In Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation (PLDI ’97). ACM, New York, NY, USA, 358–365.

[16] Java OpenJDK. [n.d.]. The C2 Register Allocator.
https://wiki.openjdk.java.net/display/HotSpot/The+C2+Register+Allocator.
Page visited on 2020 and last modified on Apr 15, 2013.

[17] Java OpenJDK. [n.d.]. C2 Register Allocator Notes.
https://wiki.openjdk.java.net/display/HotSpot/C2+Register+Allocator+Notes.
Page visited on 2020 and last modified on Apr 9, 2009.

[18] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial Dead
Code Elimination. In Proceedings of the ACM SIGPLAN 1994 Confer-
ence on Programming Language Design and Implementation (Orlando,
Florida, USA) (PLDI ’94). ACM, New York, NY, USA, 147–158.

[19] Doug Kwan, Jing Yu, and B. Janakiraman. 2012. Google’s C/C++
toolchain for smart handheld devices. In Proceedings of Technical Pro-
gram of 2012 VLSI Technology, System and Application. 1–4.

[20] Martin Liška. 2014. Optimizing large applications. arXiv preprint
arXiv:1403.6997 (2014).

[21] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. 2004. Code
factoring in GCC. In Proceedings of the 2004 GCC Developers’ Summit.
79–84.

[22] HenryMassalin. 1987. Superoptimizer: A Look at the Smallest Program.
In Proceedings of the Second International Conference on Architectual
Support for Programming Languages and Operating Systems (ASPLOS
II). IEEE Computer Society Press, Los Alamitos, CA, USA, 122–126.

[23] Webb Miller and Eugene W. Myers. 1985. A file comparison program.
Software: Practice and Experience 15, 11 (1985), 1025–1040.

[24] Saul B. Needleman and Christian D. Wunsch. 1970. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology 48, 3 (1970), 443 – 453.

[25] FernandoMagnoQuintão Pereira and Jens Palsberg. 2009. SSA Elimina-
tion after Register Allocation. In Compiler Construction, Oege de Moor
and Michael I. Schwartzbach (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 158–173.

[26] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luís F. W.
Góes, and Timothy Mattson. 2019. Super-Node SLP: Optimized Vector-
ization for Code Sequences Containing Operators and Their Inverse
Elements. In Proceedings of the 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO 2019). IEEE Press,
Piscataway, NJ, USA, 206–216.

[27] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luís F. W. Góes. 2018.
Look-ahead SLP: Auto-vectorization in the Presence of Commutative
Operations. In Proceedings of the 2018 International Symposium on Code
Generation and Optimization (Vienna, Austria) (CGO 2018). ACM, New
York, NY, USA, 163–174.

[28] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function Merging by Sequence Alignment.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2019). IEEE Press, Piscataway, NJ,
USA, 149–163.

[29] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. 2016.
SourcererCC: Scaling Code Clone Detection to Big-Code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE).
1157–1168.

[30] SPEC. 2014. Standard Performance Evaluation Corp Benchmarks.
http://www.spec.org.

[31] Sriraman Tallam, Cary Coutant, Ian Lance Taylor, Xinliang David Li,
and Chris Demetriou. 2010. Safe ICF: Pointer Safe and Unwinding
Aware Identical Code Folding in Gold. In GCC Developers Summit.

[32] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson.
1982. Using Peephole Optimization on Intermediate Code. ACM Trans.
Program. Lang. Syst. 4, 1 (Jan. 1982), 21–36.

[33] Wuu Yang. 1991. Identifying syntactic differences between two pro-
grams. Software: Practice and Experience 21, 7 (1991), 739–755.

	Abstract
	1 Introduction
	2 Background
	3 Motivating Example
	4 Our Approach
	4.1 Control-Flow Graph Generation
	4.2 Operand Assignment
	4.3 Preserving the Dominance Property
	4.4 Phi-Node Coalescing

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation on SPEC CPU
	5.3 Evaluation on MiBench
	5.4 Further Analysis
	5.5 Memory Usage
	5.6 Compilation Time Overhead
	5.7 Performance Overhead

	6 Related Work
	6.1 Function Merging
	6.2 Phi-Node Coalescing

	7 Conclusion
	References

