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ABSTRACT
Deep neural networks are often not robust to semantically-irrelevant
changes in the input. In this work we address the issue of robust-
ness of state-of-the-art deep convolutional neural networks (CNNs)
against commonly occurring distortions in the input such as pho-
tometric changes, or the addition of blur and noise. These changes
in the input are often accounted for during training in the form
of data augmentation. We have two major contributions: First, we
propose a new regularization loss called feature-map augmentation
(FMA) loss which can be used during finetuning to make a model
robust to several distortions in the input. Second, we propose a new
combined augmentations (CA) finetuning strategy, that results in
a single model that is robust to several augmentation types at the
same time in a data-efficient manner. We use the CA strategy to
improve an existing state-of-the-art method called stability train-
ing (ST). Using CA, on an image classification task with distorted
images, we achieve an accuracy improvement of on average 8.94%
with FMA and 8.86%with ST absolute on CIFAR-10 and 8.04%with
FMA and 8.27% with ST absolute on ImageNet, compared to 1.98%
and 2.12%, respectively, with the well known data augmentation
method, while keeping the clean baseline performance.

KEYWORDS
neural networks, robustness, data augmentation, safety, fine-tuning,
convolutional neural networks

1 INTRODUCTION
Over the past few years deep neural networks (DNNs) have shown
impressive performance on a variety of computer vision tasks such
as image classification [15, 20, 22], object detection [13, 14, 23],
semantic segmentation [6, 21, 29, 33], etc. However, recent works
have demonstrated that these state-of-the-art networks are not
robust to small changes in the input [2, 4, 5, 9, 10, 16, 24]. These
small changes in the input, also called distortions, can be of various
types, e.g., photometric changes (brightness, saturation, etc.) [31]
or noise (Gaussian, salt and pepper (SAP) noise, etc.) [11]. In the
real world, deviations from the training set distribution are to be
expected. For instance, varying light conditions might affect the
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Figure 1: Examples of two commonly occurring distortions
leading to misclassifications. Top row (from left): Example
of clean image from CIFAR-10 correctly classified as dog,
gets misclassified as deer when the brightness is increased.
Our proposed feature map augmentation (FMA) loss over-
comes this misclassification providing dog again. Bottom
row (from left): Similar example from ImageNet of a butter-
fly image falsely classified as a tick when the augmentation
type is salt and pepper (SAP) noise. The FMA loss overcomes
this mistake.

contrast and brightness of an image. Blurring of images might occur
due a to shaky camera, bad weather conditions such as fog, rain,
or simply incorrect camera settings (higher ISO, low shutter speed,
etc.). Such changes in the input might lead to a wrong output of
the model, as shown in Figure 1. In order to safely deploy neural
networks in safety-critical situations such as autonomous cars or
in bio-medical applications, it is vital to ensure high accuracy on
the original task as well as high robustness of the output to small
changes of the input.

Since there can be many different types of deviations arising
due to many different reasons, it is quite challenging to train truly
robust models that are invariant to all possible input changes. Tra-
ditionally, data augmentation is performed in order to overcome
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this challenge [30]. This means that augmented images are added
into the training set and the model is finetuned on this extended
training set while keeping the original loss. However, there seems
to be no clear understanding on how effective this approach truly
is. It also suffers from the obvious downside of increased computa-
tional expense as the size of the dataset increases proportionally to
the number of augmentations. Azulay et al. [2] also show that data
augmentation merely leads to an increased invariance to augmenta-
tion types only for images that look very similar to typical training
set images. This leads us to the question: "Can we improve on data
augmentation and come up with a better way to ensure robustness of
convolutional neural networks to commonly occurring image corrup-
tion types without the downside of increased computational expense?"
We aim to answer this question in the scope of this paper.

For this, we propose a novel feature map augmentation (FMA)
loss as well as a new combined augmentation (CA) training strategy
that aims at increasing robustness of convolutional neural networks
to a pre-defined set of commonly occurring augmentation types in a
data-efficient manner. Our method outperforms data augmentation
by a large margin over a range of augmentation types on two
different classification datasets, namely ImageNet [20] and CIFAR-
10 [1], while maintaining its original task performance. We test
our approach over five different augmentation types as shown in
Table 1. In summary, our contributions are as follows:

(1) We propose an additional feature map augmentation (FMA)
loss term that aims at making any given pre-trained con-
volutional neural network (CNN) model robust to a pre-
determined set of input distortions using only a few subse-
quent epochs of finetuning.

(2) For training a model with multiple augmentation types at
the same time, we propose a new data-efficient combined
augmentation (CA) training strategy and use this to addi-
tionally improve on an existing state-of-the-art method for
robust training.

(3) Finally, we demonstrate that when compared to data aug-
mentation, our finetuned model is significantly more robust to
multiple augmentation types at the same time and also keeps
its original classification accuracy.

2 RELATEDWORK
This section highlights existing work on data augmentation, other
robustness enhancement techniques in general, and stability train-
ing in particular.

2.1 Data augmentation
Data augmentation is common practice in neural network training
where training samples are augmented with different augmentation
types and the network is trained on this extended data set [18,
28]. Although it helps increase generalization, the computational
complexity also increases. For the sake of this paper, we term this
method as augmentation training (AT). Several approaches have
been proposed to selecting clever augmentation policies such as
Autoaugment [8], AugMix [17], Randaugment [7] etc., however
most of these approaches tend to add additional computational
overhead of searching for an effective augmentation strategy. More
so, while these approaches tend to increase generalization, they are

Table 1: Augmentation parameters 𝝓𝑛 that lead to a roughly
10% absolute drop in validation performance for the VGG-16
baselinemodel trained on CIFAR-10 and ImageNet datasets.

Augmentation Parameters 𝝓𝑛

C
IF
A
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Brightness+ Δ = 0.39
Brightness− Δ = −0.36
Saturation+ 𝛼 = 6.0
Saturation− 𝛼 = 0.0
Gaussian noise 𝜇 = 0.0, 𝜎 = 0.075
Gaussian blurring 𝑠 = 3.0, 𝜇 = 0.0, 𝜎 = 0.675
Additive SAP noise 𝑝 = 0.025, 𝑞 = 0.5, 𝜌 = 0.5

Im
ag

eN
et

Brightness+ Δ = 0.43
Brightness− Δ = −0.32
Saturation+ 𝛼 = 4.0
Saturation− 𝛼 = 0.2
Gaussian noise 𝜇 = 0.0, 𝜎 = 0.08
Gaussian blurring 𝑠 = 3.0, 𝜇 = 0.0, 𝜎 = 1.175
Additive SAP noise 𝑝 = 0.01, 𝑞 = 0.7, 𝜌 = 0.7

not particularly efficient in improving robustness to a held out set
of augmentations. In contrast, we aim at improving robustness of
an already well trained model, given a set of pre-defined relevant
augmentations.

2.2 Robustness enhancements
In order to improve classifier stability, Vasiljevi et al. [27] finetuned
on blurred images. To generalize to other blurs, they found that
it is not enough to finetune on one type of blur to generalize to
other blur types. On the other hand, Rosza et al. [25] proposed a
simple training technique called batch-adjusted network gradients
(BANG) that does not need any additional training data to improve
robustness. They propose a slight variation of batch normalization
by balancing weight updates which inherently increases robustness
in general by smoothing the decision boundaries. However, their
approach is not self-adaptive to other models and tasks. Geihros
et al. [12] proposed Stylized ImageNet, where clean images were
converted to different styles/textures, such as canvas paints and
the model was trained on these stylized images in addition to clean
images. In order to evaluate corruption robustness, Hendrycks et
al. [16] proposed a public benchmark of 15 corruption types at 5
different severities on CIFAR-10 and ImageNet dataset, however,
this dataset is only meant to be tested for methods that do not
explicitly train on the same augmentations. For this reason, we do
not use their benchmark for evaluation of our results.

2.3 Stability training (ST)
Zheng et al. [32] introduced an additional regularization loss which
penalizes the prediction difference of the softmax output of clean
and perturbed images. Additionally, they propsoed to train only
on images augmented with Gaussian Noise (GN) as a means of
improving robustness in a general manner to many augmentation
types. However, on re-implementation of their method, we could
not confirm this to be true: We noticed that training with GN only
helped improve robustness to GN and other noise types such as
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J = J0(x;θ) + γJFMA(x, x̃;θ)

new total loss (4)

Cross-entropy
loss (5)
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Figure 2: Finetuning with new total loss, including feature
map augmentation (FMA) loss. A CNN model pre-trained
using the original task loss 𝐽0 (5) can be finetuned using
the loss 𝐽 (4) including the new regularization loss called
feature map augmentation (FMA) loss 𝐽FMA (6). The FMA
loss is computed by a self-supervised regularization of dif-
ferences of feature activationmaps of all layers to clean and
augmented image pairs. The hyper-parameter𝛾 controls the
trade-off between clean and augmented accuracy.

salt and pepper, with a corresponding robustness decrease in other
augmentation types. Hence, to improve further on ST [32] and con-
ventional data augmentation (AT) [30], we propose a new combined
augmentation (CA) training strategy which will be discussed later.

3 FEATURE MAP AUGMENTATION (FMA)
LOSS & TRAINING STRATEGY

In this section, we first describe the intuition behind the idea of
the feature map augmentation (FMA) loss. We then present details
of our method and show how this can be used to stabilize feature
embeddings.

3.1 Intuition
In an ideal world, a CNN should respond similarly to a clean and
an augmented image as long as the semantic content of the images
remains the same, i.e., the network is expected to be augmentation-
invariant. Therefore, we would hope that the feature activation
map of individual layers should also remain the same, given a clean
and its corresponding augmented input. If not, we can assume
that the filters corresponding to the deviations in feature maps
are sensitive to augmentations. In consequence, we will propose

a new feature map augmentation (FMA) loss which regularizes
the normalized difference in feature maps between a clean and an
augmented image. We expect that this would increase the model
robustness as the robustness objective is now made explicit and the
model is optimized towards achieving this goal.

3.2 Robustness Objective
In this section we define our robustness objective that we optimize
for. First, however, we define some mathematical notation.

LetA = {𝐴1, . . . , 𝐴𝑛, . . . , 𝐴𝑁 } be a set of 𝑁 augmentation types,
as also shown in Table 1. We define 𝒙 ∈ G𝐻×𝑊 ×𝐶 as an image of
datasetX withG = [0, 1] being the set of gray values, image height
𝐻 , image width𝑊 , and number of color channels𝐶 . The image 𝒙 is
fed into a neural network𝔉(𝒙;𝜽 ) having the network parameters
𝜽 . The neural network𝔉(𝒙;𝜽 ) consists of several layers ℓ ∈ L =

{1, 2, . . . , 𝐿}, each having an output feature map𝒇ℓ (·) ∈ R𝐻ℓ×𝑊ℓ×𝐶ℓ

≥0
(assuming a ReLU activation function) with the height 𝐻ℓ , width
𝑊ℓ and number of feature maps 𝐶ℓ , and R≥0 = {𝑥 ∈ R | 𝑥 ≥ 0}.

Given this notation, we can write the overall computation of the
neural network𝔉(𝒙;𝜽 ) as follows:

𝑦 = 𝔉(𝒙;𝜽 ) = 𝑜 (𝒇𝐿 (𝒇𝐿−1 (. . . (𝒇2 (𝒇1 (𝒙)))))) (1)

where 𝒇ℓ denotes the feature map tensor of layer ℓ , where ℓ ∈ L,
and 𝑜 (·) denoting the output layer providing a scalar prediction.
For each augmentation type𝐴𝑛 , we can compute the corresponding
augmented image as follows:

𝒙 = 𝜹𝑛 (𝒙) ∈ G𝐻×𝑊 ×𝐶 , (2)

where 𝜹𝑛 (·) is the augmentation function with specific parameters
(see Table 1) 𝝓𝑛 ∈ 𝝓 = {𝝓1, . . . , 𝝓𝑁 }, corresponding to the augmen-
tation type 𝐴𝑛 ∈ A. Irrespectively of the applied augmentation
type, function 𝜹𝑛 (·) always performs clipping of each pixel to en-
force 𝜹𝑛 (·) ∈ G𝐻×𝑊 ×𝐶 . This allows handling zero-mean noise as
well. In order to make our model robust to all the augmentations,
we want to ensure that the feature maps are similar for both clean as
well as distorted images for all the augmentations. The robustness
objective is therefore,

∀(𝒙, 𝒙) : 𝒇ℓ (𝒙) ≈ 𝒇ℓ (𝒙), ℓ ∈ L (3)

with 𝒙 as in (2). Given an existing training objective 𝐽0 on the
original task (e.g., classification), an input image 𝒙 and a perturbed
copy 𝒙 , we can implement the new total loss 𝐽 for finetuning with
the robustness objective (3) as:

𝐽 (𝒙, 𝒙;𝜽 ) = 𝐽0 (𝒙;𝜽 ) + 𝛾 𝐽FMA (𝒙, 𝒙;𝜽 ), (4)

where 𝛾 controls the strength of the regularization term 𝐽FMA. In
terms of classification, the 𝐽0 term can be a standard cross-entropy
loss

𝐽0 (𝒙;𝜽 ) = −
∑︁
𝑗 ∈J

𝑦 𝑗 log 𝑃 (𝑦 𝑗 |𝒙;𝜽 ), (5)

where the index 𝑗 ∈ J runs over the number of classes and 𝑦 𝑗 ∈
{0, 1} is a binary indicator being 1 if the predicted class label 𝑗 is
the correct classification and 0 otherwise. The new loss term in (4)
can then be defined as

𝐽FMA (𝒙, 𝒙;𝜽 ) = 1

|𝐿 |
∑︁
ℓ∈L

1

𝜅ℓ

�����
�����𝒇ℓ (𝒙) − 𝒇ℓ (𝒙)

𝒇ℓ (𝒙)

�����
�����2, (6)
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Figure 3: Qualitative visualization of augmentation types as introduced in Table 1. ’+’ and ’−’ here denote increase and decrease,
respectively. Combined+means all augmentations applied at the same time except Brightness− and Saturation−. Combined−
on the other handmeans all augmentations applied at the same time, except Brightness+ and Saturation+. Each augmentation
leads to a drop of 10% absolute performance on the validation set, except Saturation+/− and Combined+/−. Top row: CIFAR-10
clean and augmented example image. Bottom row: ImageNet clean and augmented example image.

where | | · | |2 denotes the squared 𝐿2 norm, and 𝒇ℓ (𝒙) is the mean of
all entries in the respective featuremap tensor. Here,𝜅ℓ = 𝐻ℓ ×𝑊ℓ ×𝐶ℓ

corresponds to the dimension of the feature map in layer ℓ .

3.3 Finetuning with FMA
We now demonstrate our two-stage training approach using the
new FMA loss (6) as part of the total loss (4) in finetuning. An
overview is also shown in Figure 2.

3.3.1 Baseline model training. We train a baseline model on the
original task using clean images and their labels. This could be, for
example, on a cross-entropy loss (5) for a classification task.

3.3.2 Compute augmentation parameters. Next, we need a mecha-
nism to compute the strength of the augmentations that we want to
make our model robust against. For the sake of simplicity, and fair
comparison at the end, we choose these parameters such that the
performance of the model on the augmented validation set drops by
roughly 10% absolute. Once this is attained, the parameters 𝝓𝑛 for
𝜹𝑛 (·) are frozen. We list these parameters in Table 1 and visualize
their qualitative influence in Figure 3.

3.3.3 Robustness finetuning with FMA loss. Now, we augment the
clean images with several distortions at once (performing final
clipping)

𝒙 = 𝜹𝑛 (𝜹𝑛−1 . . . (𝜹1 (𝒙)), (7)

where the index𝑛 ∈ N runs over the number of augmentation types.
Lastly, we finetune the baseline model of stage 1 on the new total
loss function as defined in (4). Here, the labels for the augmented
images are not needed as only the feature map activations are
compared for computing the new FMA loss term as defined in (6).
The hyperparameter 𝛾 is computed using grid search as in [3].

4 IMPLEMENTATION DETAILS
In this section, we first present implementation relevant details such
as augmentation types, the network and datasets used with corre-
sponding hyperparameters and then introduce our novel combined
augmentation (CA) training strategy.

4.1 Network and Dataset
Our experiments are performed for the image classification task
on two well-known datasets, namely CIFAR-10 [1] and a subset of
ImageNet [20]. The CIFAR-10 dataset consists of 50, 000 training
images and 10, 000 test samples being 32 × 32 color images sorted
in 10 classes. The ImageNet dataset (ILSVRC 2012) on the other
hand consists of a total of 1.2 million training images and 50, 000
validation and 150, 000 test samples being 224 × 224 color images
sorted in 1000 classes. For the sake of computational ease, we con-
sider a subset of 200 randomly chosen classes from the ImageNet
dataset instead. This reduces the number of images to 240, 000
training images and 10, 000 test images, thereby accelerating our
experiments significantly. For both of these datasets, we consider
a standard VGG-16 [26] model pre-trained on ImageNet weights
(downloaded from the official tf-slim repository1). The model
is adapted to both the datasets in terms of its input and output
dimensions, and is trained using stochastic gradient descent with
momentum optimizer for an additional 40 epochs with varying
learning rates 𝜂0 = (10−2, 10−4, 10−6) for (20, 10, 10) epochs, re-
spectively. With this configuration, we achieve a baseline accuracy
of 89.82% and 79.77% on the validation set of the CIFAR-10 and
the ImageNet dataset, respectively. We use these baseline models
for all our experiments.

4.2 Augmentation Types and Parameters
In this section, we explain the augmentation types (see Tables 1)
considered in this work and a few implementation details. Remem-
ber that pixel-wise clipping is finally performed in each of the
augmentation functions 𝜹𝑛 (·) in (2). We also introduce combina-
tions of these augmentations that are used for later experiments.
Combinations of augmentations always follow (7) with additional
final pixel-wise clipping.

4.2.1 Photometric augmentation types. Distortions of this class
changes occur mainly due to variations in lighting conditions. We
consider two such changes, namely brightness, and saturation.
Brightness (B) can be changed by adding or subtracting a constant

1https://github.com/tensorflow/models/tree/master/research/slim#Pretrained
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Table 2: Accuracy values for individual augmentations both in training (IA strategy) and test (Section 5.1) on the CIFAR-10
validation set. For each augmentation type, a baseline model is finetuned with three different methods, i.e., augmentation
training (AT), stability training (ST), or by our new FMA-based total loss (6). The evaluation is performed on both clean and
augmented validation sets for the same augmentation type that it was finetuned for. ACC1 and ACC2 refer to accuracy of a
model evaluated on the clean validation set before and after robust training, respectively. Similarly, �ACC1 and �ACC2 refer to
the accuracy of a model evaluated on the augmented validation set before and after robust training, respectively.

Accuracy Training Augmentation Type 𝐴𝑛 Average
Method B+ B- GB GN SAP S+ S− Improvement

C
le
an

ACC1 89.82% 89.82% 89.82% 89.82% 89.82% 89.82% 89.82% ACC2 −ACC1

ACC2

AT 90.35% 90.26% 90.00% 89.32% 89.51% 90.06% 90.17% 0.13%
ST 90.58% 90.32% 90.56% 89.79% 89.94% 91.40% 90.76% 0.65%
FMA 90.20% 90.33% 90.23% 88.83% 89.00% 90.47% 89.43% −0.03%

A
ug

m
en

te
d �ACC1 80.13% 80.13% 81.06% 81.17% 80.73% 80.47% 84.03% �ACC2 − �ACC1�ACC2

AT 87.80% 86.04% 89.17% 87.70% 86.79% 87.90% 87.42% 6.44%
ST 88.50% 86.97% 89.39% 88.29% 87.80% 88.67% 87.93% 7.11%
FMA 88.69% 87.47% 89.32% 88.16% 87.54% 89.37% 88.47% 7.32%

Δ to each of the RGB channels. Saturation (S) changes can be imple-
mented by multiplying the image’s saturation in the hue, saturation
and luminance (HSL) representation by a factor 𝛼 .

4.2.2 Noise and blurring augmentation types. Gaussian noise (GN)
can occur due to sensor noise by poor illumination and/or high
temperature, etc. Additive salt-and-pepper noise (SAP) can occur due
to bit errors in image transmission [16]. Gaussian blurring (GB) can
occur due to out-of-focus images or incorrect camera configuration.
For implementation, the Gaussian noise is zero-mean with standard
deviation 𝜎 . In contrast to this, additive salt-and-pepper noise adds
a binary noise with strength ±𝜌 to the image, where the probability
of the noise is given by 𝑝 and the salt-to-pepper ratio by 𝑞. For
the Gaussian blur, a zero-mean Gaussian kernel of size 𝑠 × 𝑠 with
standard deviation 𝜎 is convoluted over the image 𝒙 .

4.3 Training Strategies
We employ two training strategies for our experiments that are
discussed next.

4.3.1 Individual augmentation (IA) training strategy. Individual aug-
mentation refers to the strategy of augmenting each image with
only a single augmentation type one at a time. Hence, multiple
augmentation types would mean multiple copies of the original
image, each augmented with a different augmentation type. This
increases the size of the dataset proportionally to the number of
augmentation types considered. The strength of the augmentations
is chosen such that the validation accuracy drops by roughly 10%.

4.3.2 Combined augmentation (CA) training strategy. As the num-
ber of augmentation types increases, so does the dataset size. Train-
ing on this extended data set can involve high computational cost. In
order to be data-efficient, we propose an alternate approach called
CA training strategy. In contrast to IA, this means augmenting the
same image with multiple augmentation types all at once. Hence, as
the number of augmentation types increases, the dataset size does
not explode, and hence being more efficient. However, a naive com-
bination of all augmentations at once can be counter-effective as

some augmentation types (such as increase/decrease of brightness)
can cancel each other out. We term such augmentations asmutually
inverse augmentations. In order to counter the inverse effect, we
propose to create two sets of such augmentations following (7).
We describe this in more detail now. However, before doing so, we
define a few notations.

Consider the set of all individual augmentations denoted by
A = {B+,B−, S+, S−,GN, SAP,GB}where ’+’ and ’−’ indicate an
increase and decrease, respectively. Assuming the set of non-inverse
augmentations defined as A ′ = {GN, SAP,GB}, we can reason-
ably group the inverse augmentations as "Combined+", containing
{B+, S+} ∪ A ′, and "Combined−", containing {B−, S−} ∪ A ′.
Given such a grouping, during training, we simply alternate be-
tween Combined+ and Combined− every epoch, such that both the
inverse augmentations do not cancel each other out in this way.
One could also alternate images every batch, however from our
experiments, this led to sub-optimal results. Lastly, if we increase
the number of epochs between the altering augmentation sets, this
would lead to catastrophic forgetting [19].

5 EXPERIMENTS AND RESULTS
The experiments in this section are split into two parts. The first
part deals with testing our method against individual augmenta-
tions 𝒙 as defined in (2) and comparing our method with existing
state-of-the-art robustness methods. Themodel is trained on an aug-
mentation type, say 𝐴1 and then tested on the same augmentation
type during evaluation. The second part deals with evaluating the
effectiveness of our combined augmentation (CA) training strategy
on different methods. The aim is to investigate if training using CA
helps improve robustness on individual augmentations separately.

5.1 Training With Individual Augmentations
As a first experiment, we investigate the increase in robustness of
our model finetuned to seven individual augmentations (as shown
in Table 1) separately. We test our method with existing state-of-
the-art robustness methods, namely augmentation training (AT)
and stability training (ST) and show results in Table 2. For the

5



Table 3: Accuracy values for models finetuned with combined augmentations (AT/CA, ST/CA and FMA/CA) by using multiple
augmentations simultaneously. The baseline model, as well as the three models after finetuning, are then evaluated with
individual augmentations separately, as well as with clean images on the validation set. The strength of augmentations used
in the combined training approach is such that most augmentation types individually lead to a performance drop of roughly
10%. Therefore, when applied together, the combined accuracy drop is much more severe than 10%.

CIFAR-10 validation set ImageNet validation set
Baseline AT/CA ST/CA FMA/CA Baseline AT/CA ST/CA FMA/CA

Clean 89.82% 88.14% 89.91% 88.97% 79.77% 78.14% 81.01% 81.19%
Brightness+ (B+) 80.13% 75.92% 82.32% 82.23% 69.72% 64.89% 73.66% 70.00%
Brightness− (B−) 80.13% 74.40% 81.14% 81.84% 68.91% 65.12% 70.18% 70.77%
Gaussian blur (GB) 81.06% 80.31% 83.71% 85.02% 70.59% 68.24% 70.72% 71.75%
Gaussian noise (GN) 81.17% 87.34% 86.53% 86.94% 70.81% 75.34% 74.03% 75.44%

Additive SAP noise (SAP) 80.73% 86.94% 85.72% 86.58% 72.32% 78.02% 75.90% 76.99%
Saturation+ (S+) 80.47% 73.71% 84.38% 83.74% 67.30% 64.25% 68.63% 66.98%
Saturation− (S−) 84.03% 82.03% 84.44% 83.70% 64.15% 61.53% 66.87% 69.61%

Combined+ 44.22% 54.62% 74.08% 73.50% 18.46% 33.83% 58.06% 54.93%
Combined− 29.87% 48.10% 67.98% 68.59% 13.47% 27.43% 39.15% 38.27%

Average improvement — 1.98% 8.86% 8.94% — 2.12% 8.27% 8.04%

sake of computational ease, we only test this on the CIFAR-10
dataset. For each method, 30 epochs of finetuning is performed.
The baseline model has a validation accuracy of 89.82%. On top of
this baselinemodel, we run in 21 additional finetunings (considering
seven augmentation types, with three different training methods
each). For each augmentation type, the strength of the augmentation
is chosen such that the performance drop of 10% on the validation
set is attained, except in the case of Saturation−. This is because
the saturation can be reduced only up to minimum 𝛼 = 0 and this
leads to a validation accuracy of 84.03% instead of 80%.

5.1.1 Effect on clean data. From the results shown in Table 2, all
the three methods are either very close to the baseline performance
or marginally better (ACC2 − ACC1 ≳ 0). We attribute this to
the original loss 𝐽0 (5) which is retained in all the three methods.
However, surprisingly, we observe that AT does not lead to the best
results on clean data, despite using the loss 𝐽0 (5) at all times.

5.1.2 Effect on augmented data. Let �ACC1, �ACC2 denote the accu-
racy of the model evaluated on the augmented validation set before
and after robust training, respectively. We analyze next the per-
formance improvement on augmented data (�ACC2 − �ACC1). We
observe that with the new FMA loss, we obtain the best results with
an average improvement of 7.32% absolute over all augmentation
types, in comparison to 7.11% and 6.44% for ST and AT, respectively.
These results indicate that our model is actually more robust to the
augmentations that it was trained for. Interestingly, we managed to
recover about 7% of the augmented accuracy back with our method,
keeping in mind that we started with about 10% drop in augmented
validation performance, while keeping the clean accuracy.

5.2 Training With Multiple Augmentations
The second set of experiments investigates the combined augmenta-
tion (CA) training strategy (Section 4.3). We find this very interest-
ing, as we aim at having one model at the end of the training, which
is robust to multiple augmentations at the same time, while keeping

its original task performance. We test this on both CIFAR-10 and
ImageNet validation sets. We investigate all three methods (AT, ST,
and FMA) trained with CA, dubbed as AT/CA, ST/CA and FMA/CA,
respectively. Although we could also test AT trained with IA train-
ing strategy as well, but we skip this as training our model with an
8x times dataset is computationally very expensive. We estimate a
training time of 50 days for fine-tuning the baseline model for 30
epochs on the ImageNet subset dataset with these 7+1=8 augmen-
tation types on a single Nvidia GeForce GTX 1080Ti GPU. This
time is reduced to 6 days for AT/CA. Hence, in total, we perform
six finetunings (three methods: FMA/CA, ST/CA and AT/CA for
models trained on two datasets: CIFAR-10, and ImageNet). We first
evaluate the improvement in augmented accuracies for all 6 final
models quantitatively in Table 3. Then, we also visualize the same
improvement in augmented accuracies at each step of training for
FMA/CA in Figure 4.

5.2.1 Effect on clean data and combined augmentations. From Ta-
ble 3, we first observe that the clean performance is more or less
recovered with all the three methods. Surprisingly however, as also
noticed from the previous experiment, AT fails to attain the best
results on clean in comparison to ST and FMA on both datasets.
We then compare models trained on the CIFAR-10 dataset and ob-
serve that the FMA and ST models when evaluated on Combined+,
Combined− have an impressive average absolute improvement of
about 34%. On the other hand, the model trained using AT achieves
an average improvement of about 14%. Similarly, on the ImageNet
dataset, we achieve an average improvement of about 31% for FMA
and ST compared to about 15% for AT.

5.2.2 Effect on individual augmentations. Next, we investigate the
robustness improved on each augmentation type separately, even
though during training, combined augmentations were used on
individual images with CA. Absolute accuracies are reported in
Table 3 for all three methods AT, ST and FMA trained using CA. We
notice that both FMA and ST methods help increasing augmented
accuracies for majority of the augmentations. On the other hand,
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Figure 4: Accuracy during finetuning of our FMA/CA model evaluated on individual augmentations (Table 1) independently.
Results are shown for two datasets, CIFAR-10 and ImageNet.

on both datasets, AT performs worse than the baseline model on
all augmentation types, except on GN and additive SAP noise. The
augmented accuracy gain with AT on GN, and SAP noise is mainly
due to the fact that in our CA training strategy, GN and SAP noise
are seen in every epoch (see Section 4.3). As expected, the gain in
augmented performance on mutually inverse augmentations such
as B+/− and S+/− is relatively lower for all the three methods. On
the CIFAR-10 dataset, FMA performs better than ST with an aver-
age improvement of 8.94%, compared to 8.85%. On the ImageNet
dataset, however, ST performs better than FMA with an average
improvement of 8.27% compared to 8.04%, respectively. On the
other hand, AT only improves by an average of 1.98% and 2.12%
on the CIFAR-10 and ImageNet dataset, respectively. These results
clearly show the effectiveness of our CA training strategy in terms
of increasing robustness to multiple augmentations simultaneously
while being data-efficient.

Lastly, we observe the improvement of individual augmentation
performance as training progresses for our FMA loss model in
Figure 4. We report highest improvement in the set of non-inverse
augmentations A ′ such as GN, additive SAP noise and GB and
relatively lower improvement in the set of inverse augmentations.
This is primarily because the non-inverse augmentations are seen
more often due to the training strategy itself when compared to the
inverse augmentations such as B+/− and S+/−. The performance
on clean data is also more or less recovered.

6 CONCLUSION
In this work, we proposed a new feature map augmentation (FMA)
loss which can be used to efficiently stabilize a CNN to a variety
of commonly known input distortions. We also introduced a new
combined augmentation (CA) training strategy, which can be used
to gain robustness to multiple augmentations at once in a data-
efficient manner. Using CA, we further improved an existing state-
of-the-art method called stability training (ST) [32]. In the end, for
both CIFAR-10 and ImageNet datasets, we attained a single model
each, which have an average augmented accuracy improvement of
8.94% and 8.04% absolute, respectively, while retaining original task

performance. In comparison, conventional data augmentation only
achieves 1.98% and 2.12%, respectively. These results indicate that
clever combinations of data augmentations, together with additional
robustness-focused loss functions, can help improve robustness in a
data-efficient manner towards a held-out set of relevant corruptions.
This is significantly better than conventional data augmentation.

As a scope of future work, it would be interesting to find under-
lying similarities between several augmentation types and study
their generalization abilities. Based on these clever augmentation
sub-sets, FMA loss can be applied on top to attain robust models
that also generalize well to unseen augmentations.
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