skip to main content
10.1145/3385959.3418446acmconferencesArticle/Chapter ViewAbstractPublication PagessuiConference Proceedingsconference-collections
research-article

RayGraphy: Aerial Volumetric Graphics Rendered Using Lasers in Fog

Published:30 October 2020Publication History

ABSTRACT

We present RayGraphy display technology that renders volumetric graphics by superimposing the trajectories of lights in indoor space filled with fog. Since the traditional FogScreen approach requires the shaping of a thin layer of fog, it can only show two-dimensional images in a narrow range that is close to the fog-emitting nozzle. Although a method that renders volumetric graphics with plasma generated using high-power laser was also proposed, its operation in a public space is considered quite dangerous. The proposed system mainly comprises dozens of laser projectors circularly arranged in a fog-filled space, and renders volumetric graphics in a fog by superimposing weak laser beams from the projectors. Compared to the conventional methods, this system employing weak laser beams and the non-shaped innocuous fog is more scalable and safer. We aim to construct a new spatial augmented reality platform where computer-generated images can be drawn directly in the real world. We implement a prototype that consists of 32 laser projectors and a fog machine. Moreover, we evaluate and discuss the system performance and characteristics in experiments.

Skip Supplemental Material Section

Supplemental Material

a11-yamada-supplement.mp4

mp4

32.8 MB

References

  1. 1977. Star Wars Episode 4: A New Hope | Lucasfilm.Com. https://www.lucasfilm.com/productions/episode-iv/.Google ScholarGoogle Scholar
  2. 1994. The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/.Google ScholarGoogle Scholar
  3. 2001. EyeVision. https://www.ri.cmu.edu/project/eyevision/.Google ScholarGoogle Scholar
  4. 2014. IEC 60825-1:2014 | IEC Webstore. https://webstore.iec.ch/publication/3587.Google ScholarGoogle Scholar
  5. 2014. Kimchi and Chips. https://www.kimchiandchips.com/works/#lightbarrier.Google ScholarGoogle Scholar
  6. 2016. Intel® Shooting Star™ System. https://www.intel.com/content/www/us/en/technology-innovation/shooting-star-system.html.Google ScholarGoogle Scholar
  7. 2016. Light of Birth | Art. https://www.w0w.co.jp/art/light_of_birth.Google ScholarGoogle Scholar
  8. 2016. Light Sculpture - Line. https://www.teamlab.art/concept/lightsculpture-line/.Google ScholarGoogle Scholar
  9. 2017. Online User’s Guide for the Python Mie Scattering Package (PyMieScatt) — PyMieScatt 1.7.5 Documentation. https://pymiescatt.readthedocs.io/en/latest/.Google ScholarGoogle Scholar
  10. Peter C. Barnum, Srinivasa G. Narasimhan, and Takeo Kanade. 2010. A Multi-Layered Display with Water Drops. ACM Transactions on Graphics 29, 4 (July 2010), 1–7. https://doi.org/10.1145/1778765.1778813Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T.P. Caudell and D.W. Mizell. 1992. Augmented Reality: An Application of Heads-up Display Technology to Manual Manufacturing Processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences. IEEE, Kauai, HI, USA, 659–669 vol.2. https://doi.org/10.1109/HICSS.1992.183317Google ScholarGoogle ScholarCross RefCross Ref
  12. Elizabeth Downing, Lambertus Hesselink, John Ralston, and Roger Macfarlane. 1996. A Three-Color, Solid-State, Three-Dimensional Display. Science 273, 5279 (Aug. 1996), 1185–1189. https://doi.org/10.1126/science.273.5279.1185Google ScholarGoogle ScholarCross RefCross Ref
  13. Antonio Gomes, Calvin Rubens, Sean Braley, and Roel Vertegaal. 2016. BitDrones: Towards Using 3D Nanocopter Displays as Interactive Self-Levitating Programmable Matter. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, San Jose California USA, 770–780. https://doi.org/10.1145/2858036.2858519Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hironobu Gotoda. 2010. A Multilayer Liquid Crystal Display for Autostereoscopic 3D Viewing. In Stereoscopic Displays and Applications XXI, Vol. 7524. International Society for Optics and Photonics, 75240P. https://doi.org/10.1117/12.840286Google ScholarGoogle Scholar
  15. E. Huber and M. Frost. 1998. Light Scattering by Small Particles. Journal of Water Supply: Research and Technology-Aqua 47, 2 (March 1998), 87–94. https://doi.org/10.2166/aqua.1998.14Google ScholarGoogle ScholarCross RefCross Ref
  16. Katsuhisa Ito, Hiroyuki Yanagisawa, Hiroki Kikuchi, Hisao Sakurai, Izushi Kobayashi, Hiroaki Yasunaga, Hidenori Mori, Kazutatsu Tokuyama, Hirotaka Ishikawa, and Kengo Hayasaka. 2010. 360-Degree Autostereoscopic Display. In ACM SIGGRAPH 2010 Emerging Technologies on - SIGGRAPH ’10. ACM Press, Los Angeles, California, 1–1. https://doi.org/10.1145/1836821.1836822Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Frederic E. Ives. 1903. Parallax Stereogram and Process of Making Same.Google ScholarGoogle Scholar
  18. Satoshi Iwaki, Hiroshi Morimasa, Toshiro Noritsugu, and Minoru Kobayashi. 2011. Contactless Manipulation of an Object on a Plane Surface Using Multiple Air Jets. In 2011 IEEE International Conference on Robotics and Automation. 3257–3262. https://doi.org/10.1109/ICRA.2011.5979879Google ScholarGoogle ScholarCross RefCross Ref
  19. Andrew Jones, Ian McDowall, Hideshi Yamada, Mark Bolas, and Paul Debevec. 2007. Rendering for an Interactive 360° Light Field Display. ACM Transactions on Graphics 26, 3 (July 2007), 40. https://doi.org/10.1145/1276377.1276427Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hidei Kimura, Taro Uchiyama, and Hiroyuki Yoshikawa. 2006. Laser Produced 3D Display in the Air. In ACM SIGGRAPH 2006 Emerging Technologies on - SIGGRAPH ’06. ACM Press, Boston, Massachusetts, 20. https://doi.org/10.1145/1179133.1179154Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Takahiro Kusabuka and Shinichiro Eitoku. 2019. Lucciola: Presenting Aerial Images by Generating a Fog Screenat Any Point in the Same 3D Space as a User. In SIGGRAPH Asia 2019 Posters. ACM, Brisbane QLD Australia, 1–2. https://doi.org/10.1145/3355056.3364566Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Miu-Ling Lam, Bin Chen, and Yaozhung Huang. 2015. A Novel Volumetric Display Using Fog Emitter Matrix. In 2015 IEEE International Conference on Robotics and Automation (ICRA). 4452–4457. https://doi.org/10.1109/ICRA.2015.7139815Google ScholarGoogle ScholarCross RefCross Ref
  23. Miu-Ling Lam, Bin Chen, Kit-Yung Lam, and Yaozhun Huang. 2014. 3D Fog Display Using Parallel Linear Motion Platforms. In 2014 International Conference on Virtual Systems Multimedia (VSMM). 234–237. https://doi.org/10.1109/VSMM.2014.7136689Google ScholarGoogle ScholarCross RefCross Ref
  24. Cha Lee, Stephen DiVerdi, and Tobias Höllerer. 2007. An Immaterial Depth-Fused 3D Display. In Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology(VRST ’07). Association for Computing Machinery, Newport Beach, California, 191–198. https://doi.org/10.1145/1315184.1315221Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jinha Lee, Rehmi Post, and Hiroshi Ishii. 2011. ZeroN: Mid-Air Tangible Interaction Enabled by Computer Controlled Magnetic Levitation. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology - UIST ’11. ACM Press, Santa Barbara, California, USA, 327. https://doi.org/10.1145/2047196.2047239Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. MG. LIPPMANN. 1908. Epreuves Reversibles Donnant La Sensation Du Relief. J.de Phys 7(1908), 821–825. https://doi.org/10.1051/jphystap:019080070082100Google ScholarGoogle Scholar
  27. Damien Loterie, Paul Delrot, and Christophe Moser. 2020. High-Resolution Tomographic Volumetric Additive Manufacturing. Nature Communications 11, 1 (Feb. 2020), 852. https://doi.org/10.1038/s41467-020-14630-4Google ScholarGoogle ScholarCross RefCross Ref
  28. Motohiro Makiguchi, Daisuke Sakamoto, Hideaki Takada, Kengo Honda, and Tetsuo Ono. 2019. Interactive 360-Degree Glasses-Free Tabletop 3D Display. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, New Orleans LA USA, 625–637. https://doi.org/10.1145/3332165.3347948Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Diego Martinez Plasencia, Edward Joyce, and Sriram Subramanian. 2014. MisTable: Reach-through Personal Screens for Tabletops. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’14). Association for Computing Machinery, Toronto, Ontario, Canada, 3493–3502. https://doi.org/10.1145/2556288.2557325Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rafael Morales, Asier Marzo, Sriram Subramanian, and Diego Martínez. 2019. LeviProps: Animating Levitated Optimized Fabric Structures Using Holographic Acoustic Tweezers. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, New Orleans LA USA, 651–661. https://doi.org/10.1145/3332165.3347882Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tomoharu Nakamura, Tomoya Yano, Kohki Watanabe, Yui Ishii, Hideki Ono, Ippei Tambata, Nobuki Furue, and Yuji Nakahata. 2019. 360-Degree Transparent Holographic Screen Display. In ACM SIGGRAPH 2019 Emerging Technologies. ACM, Los Angeles California, 1–2. https://doi.org/10.1145/3305367.3327974Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yoichi Ochiai, Takayuki Hoshi, and Jun Rekimoto. 2014. Pixie Dust: Graphics Generated by Levitated and Animated Objects in Computational Acoustic-Potential Field. ACM Transactions on Graphics 33, 4 (July 2014), 1–13. https://doi.org/10.1145/2601097.2601118Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yoichi Ochiai, Kota Kumagai, Takayuki Hoshi, Jun Rekimoto, Satoshi Hasegawa, and Yoshio Hayasaki. 2016. Fairy Lights in Femtoseconds: Aerial and Volumetric Graphics Rendered by Focused Femtosecond Laser Combined with Computational Holographic Fields. ACM Transactions on Graphics 35, 2 (May 2016), 1–14. https://doi.org/10.1145/2850414Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ismo Rakkolainen and Karri Palovuori. 2002. Walk-Thru Screen. In Projection Displays VIII, Vol. 4657. International Society for Optics and Photonics, 17–22. https://doi.org/10.1117/12.463792Google ScholarGoogle Scholar
  35. Jun Rekimoto and Katashi Nagao. 1995. The World through the Computer: Computer Augmented Interaction with Real World Environments. In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology - UIST ’95. ACM Press, Pittsburgh, Pennsylvania, United States, 29–36. https://doi.org/10.1145/215585.215639Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Hideo Saito, Hidei Kimura, Satoru Shimada, Takeshi Naemura, Jun Kayahara, Songkran Jarusirisawad, Vincent Nozick, Hiroyo Ishikawa, Toshiyuki Murakami, Jun Aoki, Akira Asano, Tatsumi Kimura, Masayuki Kakehata, Fumio Sasaki, Hidehiko Yashiro, Masahiko Mori, Kenji Torizuka, and Kouta Ino. 2008. Laser-Plasma Scanning 3D Display for Putting Digital Contents in Free Space. In Stereoscopic Displays and Applications XIX, Vol. 6803. International Society for Optics and Photonics, 680309. https://doi.org/10.1117/12.768068Google ScholarGoogle Scholar
  37. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross. 2018. A Photophoretic-Trap Volumetric Display. Nature 553, 7689 (Jan. 2018), 486–490. https://doi.org/10.1038/nature25176Google ScholarGoogle ScholarCross RefCross Ref
  38. Ivan E. Sutherland. 1968. A Head-Mounted Three Dimensional Display. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I(AFIPS ’68 (Fall, Part I)). Association for Computing Machinery, San Francisco, California, 757–764. https://doi.org/10.1145/1476589.1476686Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ippei Suzuki, Shuntarou Yoshimitsu, Keisuke Kawahara, Nobutaka Ito, Atushi Shinoda, Akira Ishii, Takatoshi Yoshida, and Yoichi Ochiai. 2016. Gushed Diffusers: Fast-Moving, Floating, and Lightweight Midair Display. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology - UIST ’16 Adjunct. ACM Press, Tokyo, Japan, 69–70. https://doi.org/10.1145/2984751.2985706Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yutaka Tokuda, Kunihiro Nishimura, Yasuhiro Suzuki, Tomohiro Tanikawa, and Michitaka Hirose. 2010. Vortex Ring Based Display. In 2010 16th International Conference on Virtual Systems and Multimedia. 51–54. https://doi.org/10.1109/VSMM.2010.5665968Google ScholarGoogle Scholar
  41. Yuki Uno, Hao Qiu, Toru Sai, Shunta Iguchi, Yota Mizutani, Takayuki Hoshi, Yoshihiro Kawahara, Yasuaki Kakehi, and Makoto Takamiya. 2018. Luciola: A Millimeter-Scale Light-Emitting Particle Moving in Mid-Air Based On Acoustic Levitation and Wireless Powering. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4 (Jan. 2018), 1–17. https://doi.org/10.1145/3161182Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ernst Heinrich Weber. 1834. De pulsu, resorptione, auditu et tactu: Annotationes anatomicae et physiologicae, auctore. University of California Libraries.Google ScholarGoogle Scholar
  43. Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, and Ramesh Raskar. 2012. Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting. ACM Transactions on Graphics 31, 4 (Aug. 2012), 1–11. https://doi.org/10.1145/2185520.2185576Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Asuka Yagi, Masataka Imura, Yoshihiro Kuroda, and Osamu Oshiro. 2011. 360-Degree Fog Projection Interactive Display. In SIGGRAPH Asia 2011 Emerging Technologies(SA ’11). Association for Computing Machinery, Hong Kong, China, 1. https://doi.org/10.1145/2073370.2073388Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wataru Yamada, Kazuhiro Yamada, Hiroyuki Manabe, and Daizo Ikeda. 2017. iSphere: Self-Luminous Spherical Drone Display. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM, Québec City QC Canada, 635–643. https://doi.org/10.1145/3126594.3126631Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SUI '20: Proceedings of the 2020 ACM Symposium on Spatial User Interaction
    October 2020
    188 pages
    ISBN:9781450379434
    DOI:10.1145/3385959

    Copyright © 2020 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 30 October 2020

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate86of279submissions,31%

    Upcoming Conference

    SUI '24
    ACM Symposium on Spatial User Interaction
    October 7 - 8, 2024
    Trier , Germany

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format