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ABSTRACT 

Identification of interactions of drugs and proteins is an essential 

step in the early stages of drug discovery and in finding new drug 

uses. Traditional experimental identification and validation of 

these interactions are still time-consuming, expensive, and do not 

have a high success rate. To improve this identification process, 

development of computational methods to predict and rank likely 

drug-target interactions (DTI) with minimum error rate would be 

of great help. In this work, we propose a computational method 

for (Drug-Target interaction prediction using Graph Embedding 

and graph Mining), DTiGEM. DTiGEM models identify novel 

DTIs as a link prediction problem in a heterogeneous graph 

constructed by integrating three networks, namely: drug-drug 

similarity, target-target similarity, and known DTIs. DTiGEM 

combines different techniques, including graph embeddings (e.g., 

node2vec), graph mining (e.g., path scores between drugs and 

targets), and machine learning (e.g., different classifiers). 

DTiGEM achieves improvement in the prediction performance 

compared to other state-of-the-art methods for computational 

prediction of DTIs on four benchmark datasets in terms of area 

under precision-recall curve (AUPR). Specifically, we 

demonstrate that based on the average AUPR score across all 

benchmark datasets, DTiGEM achieves the highest average 

AUPR value (0.831), thus reducing the prediction error by 22.4% 

relative to the second-best performing method in the comparison. 

CCS Concepts 

•Computing Methodologies ➝ Supervised learning by 

classification 

Keywords 

Drug discovery; Drug-target interaction prediction; Machine 
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1. INTRODUCTION 
Drug target interactions (DTIs) prediction is a useful step in drug 

discovery as well as the prediction of drugs with the same or 

multiple targets that could cause conflicts between medication or 

adverse drug reactions [1], [2]. Traditional experimental 

approaches for identifying DTIs are still time- consuming, 

expensive, and have low success rates [3]. Therefore, in the last 

10 years, research towards developing computational methods for 

DTIs prediction has received much attention. These computational 

methods can significantly reduce the time and costs, as well as 

improve the drug discovery efficiency in comparison with the 

experimental approaches. 

In this work, we propose a computational method DTiGEM 

(Drug-Target interaction prediction using Graph Embedding and 

graph Mining) for DTIs prediction.  DTiGEM combines 

similarity-based as well as feature-based techniques. It uses graph 

embedding, graph-mining, and ML. We evaluate the performance 

by comparison to six state-of-the-art DTIs predictions methods, 

using gold-standard benchmark datasets, and show that DTiGEM 

outperforms these methods. 

Here, the structure of this paper is as follow, we discuss the 

different computational methods that have been developed to 

predict DTIs in section 2. Datasets, data resources, and data 

descriptors are discussed in section 3. Section 4 formulates 

problem and describes the proposed method to predict DTIs. After 

that, the evaluation metrics and experimental settings are 

described in section 5. All results and comparison with state-of-
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the-art methods are discussed in section 6. Finally, section 7 

concludes the work. 

download a template from [2], and replace the content with your 

own material. 

2. BACKGROUND 
Recent studies to predict DTIs can be grouped into several 

categories mainly, network analysis-based methods [4]-[7], those 

based on artificial intelligence (AI) and machine learning (ML) 

[4]-[9], and those using deep learning (DL) [10]-[12]. Many 

comprehensive review articles summarized, analyzed, and 

compared these methods [13]-[18]. Some of these studies 

integrate two or more approaches to boost the computational 

prediction. 

ML-based methods could implement a feature-based approach [17] 

or similarity-based approach [19] or both [20]. In a feature-based 

approach, feature vectors generated by extracting different 

features from chemical descriptors of drugs and descriptors of 

targets are representative of known DTIs. One recent example of a 

feature-based method is cumulative feature subspace boosting for 

drug-target interaction prediction (CFSBoost) [21], which uses a 

simple and computationally low cost ensemble learning and 

boosting classification model for prediction of DTIs based on 

evolutionary and structurally derived features. Similarity-based 

ML approaches were built based on the “guilt-by-association” rule 

that indicates that similar drugs tend to interact with the same 

target and that a drug can interact with multiple similar targets. 

These approaches are used to infer DTIs as the link prediction 

problem in a graph. Many models have been developed based on 

this assumption, with proven efficacy [16]. For example, one 

method named self-training bipartite local mode (SELF-BLM) [22] 

performed k-medoids clustering using drug similarity and protein 

similarity to classify DTIs as positive, negative, or unknown. 

Then used a self-training SVM algorithm to identify potential 

interactions among unknown interactions. Introducing these 

different types of similarities lead to the development of methods 

that combine multiple similarity measures.  

Other recent studies of DTIs prediction that demonstrates their 

strength are network-based approaches [4], [6], [7], [23]. These 

works utilize heterogeneous graph and then extract features using 

different graph-mining techniques. DASPfind [6] finds the simple 

paths between each source node (drug) and target node (protein) 

of particular lengths as inferred from a graph. This graph is 

constructed using known DTIs, drug-drug similarities, and target-

target similarities. Then it ranks DTIs based on specific scores and 

rank predicted DTIs. In finding the top 1% of DTIs, DASPfind 

outperforms other methods. Although network-based and 

topology-based DTIs methods proved their strength, these 

methods are incapable of computing the topological similarities 

between nodes of the biological graph. They also cannot be scaled 

to a large graph. Thus, DL methods, which offer a solution for 

generating features of vertices automatically in a large network 

were considered for DTIs prediction. 

Using a DL based approach is a new trend in the computational 

prediction of DTIs [10], [24], [25]. The advantage of DL is 

evident for large-scale data, including data represented as a 

network. Any heterogeneous network topology has abundant 

interactions between biomedical entities, and similarity-based 

methods use this network to predict DTIs based on the diverse 

array of features for both drugs and their targets. For example, the 

DL based method, DeepWalk [10], implements short random 

walks on a heterogeneous network created from biomedically 

linked datasets. Each of these random walks produces sentences 

subsequently processed by word2vec. This topology-based 

DeepWalk report better performance than other methods that use 

topology-based similarities such as (Jaccard, Simpson, Geometric, 

Cosine, Pearson Correlation Coefficient (PCC), and SimRank), as 

well as when using similarity measures derived from chemical 

structures or genomic sequences.  

Feature embedding and graph embedding can be a part of the DL 

process. Graph embedding and knowledge-graph mining 

techniques have been used in different studies for drug 

repositioning and DTI prediction [5], [26]-[28]. Graph embedding 

technique maps each node to a low-dimensional feature vector, 

tries to preserve the connection strengths between nodes and 

learns the distributed representation description for each node [29]. 

For example, DTINet [5] predicts novel DTIs from a 

heterogeneous graph and integrates drug-related information from 

the DrugBank dataset. It learns a low dimensional feature 

representation that captures the topological properties of each 

node in the graph and predicts the DTIs based on this feature 

representation. DTINet is reported to outperform other state-of-

the-art methods. 

Although these effective computational models for identification 

of DTIs have achieved significant improvements, there is still 

much room for improvement by developing different methods. In 

this study, we propose a computational method DTiGEM (Drug-

Target interaction prediction using Graph Embedding and graph 

Mining) for DTIs prediction.  DTiGEM combines similarity-based 

as well as feature-based techniques. It uses graph embedding, 

graph-mining, and ML. We evaluate the performance by 

comparison to six state-of-the-art DTIs predictions methods, using 

gold-standard benchmark datasets, and show that DTiGEM 

outperforms these methods. 

3. MATERIALS 

3.1 Benchmark Datasets 
We used four datasets collected and compiled by [30] which are 

commonly used as a benchmark datasets to evaluate DTI 

prediction methods. Each one of these four datasets represent one 

of the four major families of protein targets, namely enzyme (E), 

ion channel (IC), G-protein-coupled receptor (GPCR), and nuclear 

receptor (NR). Each dataset includes three types of information: 

Known DTIs, one drug-drug similarity type, and one target-target 

similarity type as described in the following subsection. Table 1 

provides basic statistics about these four benchmark datasets. The 

above-mentioned datasets are publicly available at: 

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. 

Table 1. Basic statistics of the Yamanishi_08 benchmark 

datasets 

Statistics NR GPCR IC Enzyme 

No. Of drugs 54 223 210 445 

No. Of targets 26 95 204 664 

Known DTIs 90 635 1476 2926 

Unknown DTIs 1314 20,550 41,364 292,554 
 

3.2 Data Description 

3.2.1 Drugs’ chemical data 
As mentioned in [30], chemical structures of drugs are collected 

from the KEGG database, specifically KEGG LIGAND and 

KEGG DRUG database [31]. Then similarity scores were 
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calculated for each pair of compounds using SIMCOMP [32]. The 

drug-drug similarity matrix was constructed and provided with the 

dataset. 

3.2.2 Targets’ genomic data 
In the DTIs prediction problem, we consider only proteins as drug 

targets.  As described in [30], the amino acid sequence of the 

proteins was collected from KEGG GENES database [31]. 

Sequence similarities were computed using the normalized Smith-

Waterman scores [33] for each pair of targets. The target-target 

similarity matrix was constructed and provided with the dataset. 

4. METHODS 

4.1 Problem Formulation 
Here we adopt a network-based method for DTIs prediction. 

Three subgraphs were used to construct a weighted heterogeneous 

graph G (V, E). These three subgraphs are Kdti (known DTIs), 

DDs (drug-drug similarities), and TTs (target-target similarities). 

The connections between these subgraphs are DDs - Kdti - TTs. 

This connected graph G has two types of nodes: drugs D = {d1, 

d2, ..., dn}, and targets T = {t1, t2, ..., tm}, and three types of edges 

which are: DDs edges, TTs edges, and Kdti edges between drug 

and target. Similarity scores represent the edge weights between 

similar types of nodes. The weights are in the range of (0 1]. The 

third type of edge is the interaction edges between drugs and 

targets where the weights are equal to 1. The aim is to find the 

missing edges between drugs and targets as a link prediction task. 

All possible drug-target pairs are constructed by generating 

negative samples between two nodes that have no edges 

connecting them. We generated features for each pair (drug, target) 

using different techniques, discussed later. If there is a known 

interaction for any pair of (drug, target), the class label y for this 

pair is equal to 1; otherwise the class label is equal to zero. The 

goal is to find novel DTI with high accuracy and low false-

positive rate. The problem depiction is shown in Figure 1.  

 

Figure 1. DTIs problem depiction 

The proposed method for DTIs prediction is focusing on ML. It 

combines similarity-based, feature-based, as well as graph-based 

methods. For similarity-based methods, two types of similarities 

between each pair of drugs and each pair of targets are calculated 

in different steps and used for the inference from graph-based on 

the assumption that similar drugs target similar proteins and 

similar proteins are targets of the same drug. For feature-based 

and graph-based methods, features extraction is done based on 

constructing a heterogeneous DTIs graph and then generating 

features by calculating different path scores between each (drug, 

target) pair. 

4.2 Graph Embedding Technique  
Graph embedding converts the graph data into a low dimensional 

space in which the graph structural information and graph 

properties are significantly preserved [34]. Several graph 

embedding techniques have been applied for random walk in 

heterogeneous graphs with proven efficacy [29]. One such 

technique is node2vec [35] which is an algorithmic framework 

that allows for scalable feature representation learning for 

heterogeneous graphs. It is a generalized version of DeepWalk 

[36]. The intuition to use node2vec is to find a mapping of each 

node to low d-dimensional vector space that preserves the level of 

node similarity based on neighboring nodes. Two classical search 

strategies are used to define the neighborhood of a given node for 

sampling: depth-first search (DFS) and breadth-first search (BFS). 

Two parameters control the different versions of searching in 

DeepWalk: return parameter, p and in-out parameter, q.  

Parameter p controls the likelihood of immediately revisiting a 

node in the walk, while q allows the search to differentiate 

between “inward” and “outward” nodes. There are other 

parameters used to control the walk toward different network 

exploration strategies, as shown in Table 2. More details about 

node2vec algorithm can be found in [35]. In this work, we applied 

node2vec technique on the full heterogeneous graph G that 

consists of the training part of known DTIs, DDs, and TTs. The 

use of node2vec model applied for this work is shown in Figure 2. 

 

Figure 2. Node2vec model for DTIs network 

Grid search are performed to utilize and obtain an optimized set of 

hyper-parameters. Parameters p and q were tested with values 

{0.25, 0.5, 1, 2, 4}, dimension d for values {16, 32, 64, 128}, 

where walk-length took range based on the size of the graph. 

Table 2. Node2vec parameters description 

Parameter Description Default value 

dimension Number of features 128 

Walk-length Length of walk per source 80 

num-walk Number of walks per source 10 

p Return hyperparameter 1 

q In-out hyperparameter 1 

worker Number of parallel workers 8 
 

After applying node2vec on the graph G and obtaining a feature 

representation vector of each node as shown in Figure 2, a cosine 

similarity is calculated between each pair of drugs and between 

each pair of targets producing  matrices  Md  (DDs matrix of size n 

x n where n is the number of drugs), and  Mt (target-target 

similarity matrix of size m x m, where m is the number of targets). 

The obtained similarity range is [-1 1], because of the existence of 

negative values of features for some nodes. For this reason, a min-

max normalization is applied to both matrices to adjust the range 

to [0 1]. The benefit of these two steps is the following: First, by 

applying node2vec on the complete DTIs graph, we obtain feature 

representation that preserve local neighborhoods of each node (for 
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drugs or for targets) in a low dimensional space. This means, we 

capture a meaningful proximity information (e.g., relational and 

structural) between nodes in the graph. Second, by calculating 

cosine similarity between feature vectors of each drug pair (or 

target pair), we improve modeling the similarity between nodes 

that carry a lot of information. Another advantage of cosine 

similarity is that even if the two similar nodes are not close based 

on the Euclidean distance, their feature vectors could still have a 

small angle between them, indicating their high similarity. 

Formulating new graph with these new similarities is expected to 

result in a better representation of the graph instead of using 

chemical structure similarity of drugs or amino-acid sequence 

similarity of proteins. 

4.3 Graph Mining Technique for Drug-target 

Path Scores 
The drug-drug cosine similarity matrix and target-target cosine 

similarity matrix is used to construct a new heterogeneous graph 

G augmented with the training part of DTIs. Path Score is 

calculated for each simple path starting from the source node (i.e., 

drug) and ending with the target node (i.e., target protein) for each 

(drug, target) pair using DASPfind path score as introduced in a 

previous study [6] and based on the following formula: 

 

         (1) 

where P = {p1, p2, …., pn} is the set of paths that connect drugi to 

targetj. All paths between each drug and target are going through 

six path structures Ch = {C1, C2, C3, C4, C5, C6}, and the path 

scores are calculated for all six path structures. The path length is 

limited to 3 (i.e., path-length = 2 or 3). These path structures with 

length = 2 are C1:D-D-T and C2:D-T-T, and with length = 3 are 

C3:D-D-D-T, C4:D-T-T-T, C5:D-D-T-T, and C6:D-T-D-T, defined 

in previous works [4]. The set of paths between a pair of drugi and 

targetj is denoted by Rijh. We calculated the Path score by 

multiplying the edge weight score for each path structure, where w 

is the edge weight as follows: 

                  (2) 

The sum features of path score, as well as the max feature of the 

path score, are defined in equation 3 and 4 respectively. 

   (3) 

   (4) 

Thus, the 12 features are generated for each (drug, target) pair 

representing maximum path scores as well as sum of the path 

scores for each path structure described above. The feature vectors 

constructed using these 12 features are then fed into the DTI 

prediction model.  

4.4 Sampling Imbalanced Datasets 
The datasets we use are imbalanced, with the negative samples 

being much larger than the positive ones. To compensate for this, 

we applied different resampling techniques [37] and then chose 

the one that contributes to the best classification performance. In 

the processing step, we performed resampling on the training data 

only. It adjusts the data to be balanced. Random oversampling is 

applied to oversample the minority class (the positive known DTIs 

in our case) bringing them to the same number as the major class 

(unknown DTIs) as shown in Figure 3. 

 

Figure 3. Oversampling the minority class of the training data. 

4.5 DTIs Predictive Model 
Supervised ML model is used to predict DTIs based on using 

random forest (RF) classifier. RF classifiers have been shown 

their efficiency in predictions applied to large datasets. By using 

an RF classifier, data do not need to be transformed or rescaled. 

Furthermore, the RF classifier is fast because of parallelism of 

information processing and it is more robust against the 

overfitting as well as outliers. We tested different RF parameters 

to obtain the best performance on the training data. Examples of 

these parameters are the number of trees, the maximum depth of 

the trees, the number of features to consider when looking for the 

best split, the minimum number of samples required to split an 

internal node, the function to measure the quality of a split, and 

others. The input to this classifier is the feature vector of several 

path scores that are explained previously for each drug and target 

pair (di, tj), and the outputs are the predicted labels showing if 

there is an interaction or not for each (di, tj) pair. 
 

4.6 The DTiGEM Framework 
Figure 4 shows all steps that are applied to obtain the final feature 

vector (indicated by FV in the Figure 4) for each pair of drug and 

target (di, tj). These feature vectors are then fed into the RF 

classifier and output the predicted labels. 

 

Figure 4. DTiGEM method framework. 
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5. EVALUATION 

5.1 Evaluation Metrics 
We calculated recall (also called: true positive rate or sensitivity) 

and precision (also called positive predictive value) as shown in 

Equations (5) and (6), respectively, to obtain the area under the 

precision-recall curve (AUPR) [38], [39]. TP, FN, FP are true-

positive predictions, false-negative predictions, and false-positive 

predictions, respectively. 

                         (5) 

                             (6) 

The precision-recall curve is determined based on different 

precision and recall values at different cut-offs, and then the area 

under this curve is calculated. AUPR is used to evaluate the 

performance of the prediction in the case of highly imbalanced 

data. It provides a proper assessment of how all the predicted 

scores of true interactions separate from predicted scores of true 

unknown interactions. Hence, we chose AUPR to be the 

significant assessment metric in our study and for comparison 

with the other methods. 

5.2 Experiment Settings 
In the validation step, we partitioned each dataset into 10 subsets 

to implement 10-folds cross-validation (CV). We used nine 

subsets to train the model, and one subset to test the prediction of 

this model. The process is repeated 10 times using a different 

subset as the test set. We restricted each fold of the data samples 

to include both positive and negative samples in training and 

testing partitions in a stratified fashion. We report performance 

results for each fold, and the average of the 10 reported results as 

the average performance.  

6. RESULTS 

6.1 Performance Comparison with the 

Existing Methods 
For evaluation, we compared the performance of our method with 

the ML-based and graph-based state-of-art methods such as 

Multiple kernels learning algorithm (KRONRLS-MKL) [40] 

(indicated by (MKL) in Table 3 and in Figure 5), Neighborhood 

Regularized Logistic Matrix Factorization (NRLMF) [41], Dual 

Network Integrated Logistic Matrix Factorization (DNILMF) [42], 

Regularized Least Squares with Weighted Nearest Neighbor 

(RLS-WNN) [13], [43], Identification of Drug Target Interaction 

using Evolutionary and Structural Features with Boosting (iDTIs- 

ESBoost) [8], and Advance Local Drug-target Interaction 

(ALADIN) [44].  

The KRONRLS-MKL [40] method used Kronecker regularized 

least-squares approaches to integrate information from different 

similarity types. This study demonstrated that utilizing different 

measures of similarity between drugs and targets improved the 

performance of DTIs prediction. Subsequently, the regularized 

least-squares approach was combined with weighted nearest 

neighbor to develop the RLS-WNN method [13], [43]] that uses 

bipartite local model (BLM) and compute network similarity in 

the form of gaussian interaction profile (GIP) kernels [45]. 

Adding the WNN preprocessing step reinforced the learning 

process. In the same year, [44] developed the ALADIN method, 

which extends the bipartite local model (BLM) [46], [47] work by 

integrating a hubness-aware regression technique coupled with 

enhanced drug-drug and target-target similarities. It also builds a 

projection-based ensemble. This method outperformed different 

versions of BLM. The NRLMF [41] differs from these methods as 

it models DTI probability using regularized logistic matrix 

factorization. This method produces two latent vectors, one 

representing the properties of the drugs and the other representing 

the properties of the targets. Subsequently, logistic matrix 

factorization was used to develop the DNILMF [42] method that 

applied a non-linear similarity fusion technique based on the 

similarity network fusion method (SNF). This method integrated 

different similarity measures and then used this final combined 

measure.  

We also compared the performance of our method to iDTIs- 

ESBoost) [43], a model for DTI prediction that uses evolutionary 

and structural features and applies a novel technique of data 

balancing and boosting.  

To have a fair comparison of our method with the previously 

introduced methods, all methods are tested using the same 

datasets and under the same conditions which are: Random split 

of drug and target pairs using 10-fold CV. Our method shows high 

performance and it outperforms other state-of-the-art methods. 

Table 3 shows the AUPR values for all methods used in 

comparison, the average AUPR score for each method over the 

four benchmark datasets, and the average ranking position for 

each method on each dataset (the lower ranking position, the 

better is the method). The best results in each row are in bold 

underlined font, while the second-best results are bold. DTiGEM 

achieves the best individual AUPR results for each dataset. 

Moreover, we demonstrate that based on the average AUPR score 

for all datasets, DTiGEM achieves the highest average AUPR 

value (0.831). This reduces the error by 22.4% relative to NRLMF, 

which is the second-best performing method. Moreover, overall, 

DTiGEM achieves the best ranking position (which is 1) over all 

datasets. Also, based on the prediction results on the IC and E 

datasets, the achieved better results could be attributed to the 

larger sizes of these datasets that help in prediction. 

Figure 5 parts (a, b, c, and d) show the performance for our 

method and the six state-of-the-art methods applying to NR, 

GPCR, IC, and Enzyme datasets, respectively. Our method, 

DTiGEM, outperforms other methods on all datasets but has very 

close performance to iDTIs-EBoost method on NR dataset. 

However, iDTIs-EBoost shows low performance on other datasets 

and the high result on NR dataset may be misleading since the 

results of NR dataset are not stable (as Figure 5 shows) due to its 

excessively small size. 
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Table 3. The AUPR and ranking scores for all comparison methods 

Dataset 
AUPR of each method 

MKL DINLMF NRLMF RLS-WNN iDTIs_EBoost ALADIN DTiGEM 

NR 0.51 0.66 0.72 0.73 0.79 0.59 0.795 

GPCR 0.67 0.70 0.707 0.727 0.50 0.68 0.733 

IC 0.86 0.87 0.88 0.856 0.50 0.87 0.892 

Enzyme 0.87 0.89 0.871 0.849 0.68 0.83 0.905 

Average AUPR 0.728 0.78 0.793 0.791 0.493 0.743 0.831 

Average Ranking 6 3 2 4 7 5 1 

 

 

Figure 5. Comparison results of DTiGEM with other methods 

in terms of AUPR for four datasets. 

a) NR, b) GPCR, c) IC, d) Enzyme 

 

7. DISCUSSION AND CONCLUSION 
We present a computational method for DTI prediction that 

integrates different techniques including DL for feature 

representation to get benefit from the network topology features, 

graph-mining to extract more features including path scores for 

different path structure, and ML for classification. The DL is used 

in node2vec graph embedding technique to generate each node 

feature vector in a low dimensional space that captures the 

topology similarity of the neighborhood community. Compared to 

other state-of-the-art methods used in the comparison, our method 

achieved the best results. 

Our method can further be improved by adding more features, 

using different embeddings, and filtering the graph edges when 

computing the path scores using better thresholds. We intend 

using our method to address a new related problem; predicting the 

binding affinity between drugs and their target proteins as a 

regression problem. Furthermore, using DL methods could 

improve feature extraction and classification. 
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