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Abstract

Machine learning systems based on deep neural net-
works (DNNs) have gained mainstream adoption in many
applications. Recently, however, DNNs are shown to be vul-
nerable to adversarial example attacks with slight pertur-
bations on the inputs. Existing defense mechanisms against
such attacks try to improve the overall robustness of the sys-
tem, but they do not differentiate different targeted attacks
even though the corresponding impacts may vary signifi-
cantly. To tackle this problem, we propose a novel config-
urable defense mechanism in this work, wherein we are able
to flexibly tune the robustness of the system against different
targeted attacks to satisfy application requirements. This
is achieved by refining the DNN loss function with an at-
tack sensitive matrix to represent the impacts of different
targeted attacks. Experimental results on CIFAR-10 and
GTSRB data sets demonstrate the efficacy of the proposed
solution.

1. Introduction
Deep neural networks (DNNs) has become the founda-

tion technique for many safety and security critical artificial
intelligence (AI) applications such as autonomous driving,
medical imaging and biometric authentication [25, 20, 8].
No doubt to say, reliability and safety consideration is the
biggest concern for these sensitive applications, and it is im-
perative to mitigate any possible threats.

One of the main threats all DNNs face is adversarial ex-
amples (AEs), which are carefully crafted adversarial in-
puts to deceive the model to make a wrong decision. Due
to the severeness of this problem, there has been a large
body of research on AE attacks [22, 5, 17, 2, 16] and de-
fenses [10, 23, 18, 19] from both academia and industry.

However, as pointed out in [11], existing defense tech-
niques can only defend against limited types of attacks un-
der restricted settings. It is very difficult to have a universal
solution to defend against all possible adversarial example
attacks, especially considering the fact that we are only able
to explore a small set of data domains in the deep learning

training phase while the remaining large unexplored space
could be exploited by attackers. In practice, the impacts of
different misclassifications caused by adversarial example
attacks may vary significantly. Considering a medical im-
age diagnostic system, missing a life threatening disease is
usually regarded by a patient as much more severe than a
false positive diagnosis. Thus, it is imperative to take the
impacts of different adversarial example attacks into con-
sideration and develop a configurable defense mechanisms
to satisfy the unique requirements of different applications,
which has not be explored in the literature.

In this paper, our idea is to refine the loss function of the
DNNs by adding a new term, called attack sensitive matrix,
to perceive the costs of different targeted attacks. Then, by
adjusting the attack sensitive matrix in the loss function, we
are able to manipulate the defense strength for different tar-
geted attacks, thereby effectively increasing the attack effort
for those high-cost attacks. To the best of our knowledge,
this is the first configurable defense mechanism against tar-
geted AE attacks. The main contributions of this paper in-
clude:

• We propose a novel configurable defense method for
adversarial example attacks by refining the loss func-
tion of DNNs during training.

• We present two common defense objectives that can
be achieved by our configurable defense: one is to
increase the weighted average robustness; while the
other is to increase the lower bound robustness of the
system.

• We conduct the experiments on CIFAR-10 and GT-
SRB data sets and show that our solution can achieve
significant improvement compared to the state-of-the-
art defense methods under a range of attacks.

The remainder of this paper is organized as follows:
First, we introduce some preliminary knowledge, the re-
lated work and motivation in Section 2. Next, we detail
the proposed configurable defense mechanism by refining
the loss function in Section 3. After that, in Section 4, two
efficient algorithms are presented to achieve two common

1

ar
X

iv
:1

81
2.

02
73

7v
1 

 [
cs

.L
G

] 
 6

 D
ec

 2
01

8



defense objectives. Lastly, we show the experimental re-
sults in Section 5 and conclusions in Section 6.

2. Preliminaries and Motivation
2.1. Adversarial Example Attack

There are two kinds of adversarial example attacks: tar-
geted attacks [22, 17, 2, 3] and un-targeted attacks [16, 15,
7]. Targeted attacks try to make DNNs misclassify the in-
put from a correct source label to a targeted malicious label,
while the objective of un-targeted attacks is to fool DNNs
make mistakes, regardless of the targeted label. In this pa-
per, we focus on the configurable defense against the tar-
geted adversarial example attack, which can be formulated
as follows:

Ai,j : arg min
∆xij

F (xi + ∆xij) = j, i 6= j. (1)

Under the attack Ai,j , the DNN model F misclassifies the
sample xij from the source correct label i to the targeted
malicious label j. The objective of attackers is to find the
minimum perturbation vector ∆xij added on the input so
that xi is misclassified as j. For a classifier with n classes,
there are n ∗ (n − 1) kinds of targeted adversarial example
attacks, and each may cause different costs for system users.

The robustness under the adversarial example attack is
defined as the correct classification rate of adversarial ex-
amples, which measures the authenticity of the model under
attacks. The higher the correct classification rate, the more
robust the DNN model. The mathematical formulation of
the model robustness under the attack Ai,j is as follows:

Ri,j =
#(F (xi + ∆xij) = i)

#(xi + ∆xij)
, (2)

where the numerator denotes the number of adversarial ex-
amples generated under the targeted attackAi,j that can still
be correctly classified as i. The denominator represents the
total number of adversarial examples crafted under the at-
tack Ai,j .

2.2. Related Work

In the literature, there are two categories of defenses
against adversarial example attacks: one is to build de-
tection systems to recognize adversarial examples during
model usage [12, 24, 14], and the other tries to train more
robust models to successfully classify adversarial exam-
ples [22, 18]. For detecting adversarial examples, a certain
number of techniques have been explored, such as perform-
ing statistical tests [12] or training an additional model for
detection [14]. However, as adversarial examples are very
close to legitimate samples, it has been shown that many
detection methods can be bypassed by attackers easily [1].
For training a more robust model, defensive distillation [18]

Figure 1. Moving decision boundary to mitigate adversarial exam-
ples A′ and B′ would lead to the misclassification of C′.

first builds a classification model and smoothes its softmax
layer by dividing a constant, then trains a robust model with
the soft labels that are the outputs from the first one. Input
gradient regularization [19, 6] method targets to train a con-
tractive network, minimizing the model input gradients to-
wards the output predictions. Adversarial training [22, 13]
augments the original training set with crafted adversarial
examples. However, all the previous defenses attempt to
provide a universal solution, improving the model robust-
ness against all kinds of adversarial example attacks, which
is impossible [11].

2.3. Motivation

As the minimum distance from legitimate inputs of a
class to the decision boundary dictates the amount of per-
turbations required to generate the corresponding adversar-
ial examples. Moving the decision boundary of a classi-
fier to mitigate some threats would inevitably leads to some
other new threats. For example, in Figure 1, the classifier in
Figure 1(a) correctly classifies the adversarial example C ′,
while misclassifies adversarial examples A′ and B′. How-
ever, when moving the decision boundary as shown in Fig-
ure 1(b), the classifier will correctly classify adversarial ex-
amples A′ and B′, but misclassify C ′. Therefore, it is very
difficult, if not impossible, to have a universal solution to
defend against all possible adversarial example attacks.

In fact, the impacts of different adversarial example at-
tacks vary significantly in a particular machine learning sys-
tem. For example, considering a traffic sign classifier used
in self-driving cars, it will not cause a problem to mis-
classify a “yield” sign as a “stop” sign, but it may cause
severe traffic accidents for the opposite misclassification.
Therefore, a preferred defense mechanism should protect
the DNN model in such a manner that it is more difficult for
attackers to perturb a legitimate ’stop’ sign to be misclas-
sified as other road signs when compared to other possible
misclassifications. In other words, it is imperative to have a
configurable defense mechanism against adversarial exam-
ple attacks to satisfy the unique requirement in particular

2



machine learning applications.
Motivated by the above, in this paper, we propose to in-

vestigate the configurable defense mechanisms for satisfy-
ing the unique requirements of different applications, as a
universal solution is usually intractable.To the best of our
knowledge, this is the first work on configurable defense
against adversarial example attack, as detailed in the fol-
lowing sections.

3. The Proposed Method
The idea of our configurable defense is to devise a con-

figurable loss function that includes a matrix to perceive the
costs of different misclassifications caused by different ad-
versarial example attacks. In this section, we first intro-
duce the limitation of the cross entropy loss used in training
DNNs. Then, we propose our configurable loss functions
to mitigate its limitation. Lastly, we present the overflow
of our configurable defense, performing adversarial training
with the refined loss functions to achieve a robust model.

3.1. Limitation of Cross Entropy Loss

In the classification problems based on DNNs, the most
popular loss used is the cross entropy loss [4], which has
shown great success in achieving high classification accu-
racy. Assume there are n classes, the cross entropy loss for
one training sample is:

Lcross = −
n∑

i=1

yi ∗ log(ŷi), (3)

where yi is the i-th element in the one-hot encoded format
of the true label. If the sample is of i class, yi equals to
1, otherwise, it is zero. ŷi is the probability of class i pre-
dicted by the classifier. As a result, the cross entropy loss
for a sample is simplified as −yt ∗ log(ŷt), in which t is
the index of the true label for this sample. Based on this
fact, we observe that the cross entropy loss only cares about
the prediction accuracy for the true class, regardless of oth-
ers. Thus, it cannot consider the costs of misclassifications
caused by different adversarial example attacks.

3.2. Attack Sensitive Loss

To solve this problem, we propose a refined loss, called
attack sensitive loss, which incorporates all the prediction
probability of classes instead of only considering the pre-
diction probability of the true class. Then, we introduce
an attack sensitive matrix to the loss, which perceives the
costs of different targeted attacks for configuring the attack
strength. In this paper, we propose two formulations for the
attack sensitive loss.

The first one is defined as follows:

L1
sensitive =

n∑
i=1

(1− yi) ∗ ŷi ∗Mt,i, (4)

where (1−yi)∗ ŷi calculates the error magnitude of class i.
As training samples are labeled with one-hot format, when
a sample is not class i, then 1− yi equals to 1. But the clas-
sifier erroneously predicts this sample to class i with prob-
ability ŷi. The higher the ŷi, the larger the prediction error.
Mt,i is a value in the attack sensitive matrix M . It denotes
the costs of targeted attack At,i. The larger Mt,i, the larger
the loss caused byAt,i during training. Then the model will
become more robust against At,i attack after well trained.
In this way, our defense can configure the model robustness
against different adversarial example attacks by adjusting
the attack sensitive matrix M .

The second attack sensitive loss is slightly different from
the first one in the way of calculating the error magnitude.
It has the following format:

L2
sensitive =

n∑
i=1

(ŷi − ŷt) ∗Mt,i. (5)

The error magnitude of class i in this formulation is calcu-
lated as the gap between the predicted probability of class
i and the true class t, denoted as ŷi − ŷt. Apparently, the
larger the probability gap, the larger the error made by this
model. Then, we multiply the error magnitude with the cor-
responding attack sensitive value Mt,i. Similarly, we can
configure the attack sensitive matrix M to adjust the costs
caused by different misclassifications.

3.2.1 Loss Function Combination

As the cross entropy loss achieves good accuracy in training
DNNs and our attack sensitive loss can configure the model
robustness against different adversarial example attacks, we
combine these two loss functions together to achieve a good
tradeoff between the model classification accuracy and ro-
bustness. The combined loss function is formulated as fol-
lows:

Lconfigurable = Lcross + λ ∗ Lsensitive, (6)

where Lcross is the cross entropy loss, and Lsensitive is the
attack sensitive loss. λ is a parameter to balance the effects
of these two losses.

3.3. Overflow of Our Configurable Defense

The idea of the proposed configurable defense is to in-
troduce our loss functions into adversarial training method,
achieving different defense strength for satisfying the
unique requirements of different applications. The overflow
of our configurable defense is shown in Figure 2, where we
first determine the attack sensitive matrix based on the sys-
tem objective. Then we refine the loss functions of DNNs
by including the attack sensitive matrix as an important pa-
rameter to perceive costs of different targeted attacks. Fi-
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Figure 2. The procedure of our configurable defense.

nally, we train with the refined loss on the augmented train-
ing set and obtain the robust model satisfying the applica-
tion requirement.

The key challenge in our configurable defense is to as-
sign the attack sensitive matrix M properly. As too large
values in M will degrade the performance for legitimate
samples, while too small values in M will not bring a sat-
isfactory robustness improvement. To solve this challenge,
we propose algorithms to optimize the attack sensitive ma-
trix, achieving an appropriate robustness improvement un-
der different defense objectives. The details are demon-
strated in the following section.

4. Defense Objectives
In this section, we introduce two common defense ob-

jectives that can be achieved by the proposed configurable
mechanism: one is to increase the weighted average robust-
ness for systems, which concentrates more on some partic-
ular severe targeted attacks; while the other is to increase
the lower bound robustness of the system considering the
bottleneck security.

4.1. Increase Weighted Average Robustness

Many machine learning systems have robustness prefer-
ence, such as in disease diagnosis systems, the sick cases
should not be attacked to become healthy ones. As a re-
sult, the defense techniques should concentrate more on the
robustness against the high-cost targeted attacks, instead of
treating all attacks equally. Based on this analysis, we de-
fine the system robustness as the weighted average robust-
ness:

R =

n∑
i=1

n∑
j=1,j 6=i

Ri,j ∗Wi,j , (7)

where Ri,j is the robustness under the targeted attack Ai,j .
Wi,j is the weight or the cost of the successful attack Ai,j

specified by system users. The more important Ri,j in the
system robustness, the larger Wi,j .

As discussed earlier, increasing the values in the at-
tack sensitive matrix will increase the model robustness
against the corresponding targeted attacks, however it will
inevitably influence the classification rate of legitimate sam-
ples. In order to ensure the system usability, the accuracy of
legitimate samples should be constrained. Then we can in-
crease the system robustness whenever possible under this
constraint. Overall, we formulate the problem as follows:

arg max
M

R

s.t. Accu(legitimate) > ξ.
(8)

Our target is to find the appropriate attack sensitive matrix
M in our loss functions that can maximize the system ro-
bustness when the accuracy of legitimate samples is greater
than a given threshold ξ.

Algorithm 1: Increase Weighted Average Robustness.
Input: Training set ρ, validation set v, minimum

required accuracy ξ, weight WA(i,j)
, step ∆.

Output: Attack sensitive matrix M .
1 Initialize the attack sensitive matrix M with all 1s

except 0s in diagonal;
2 T ←Sort (i, j) according to Wi,j in descending order;
3 for ∀tk ∈ T do
4 terminate = false;
5 while terminate == false do
6 Train the model on ρ with the refined loss;
7 Accu← Evaluate the accuracy for v;
8 if Accu > ξ then
9 Mtk = Mtk + ∆;

10 end
11 else
12 terminate = true;
13 Mtk = Mtk −∆;
14 end
15 end
16 end
17 Return M .

However, finding the optimal attack sensitive matrix for
this problem is not easy, as the values in this matrix are not
constrained and the search space is infinite. Besides, there
are no signs, such as gradients for minimizing loss func-
tions, to guide us to update the matrix. To solve this prob-
lem, we propose a simple yet efficient greedy algorithm to
find an appropriate attack sensitive matrix. The intuition is
that increasing the value Mi,j will certainly increase the ro-
bustness against the targeted attack Ai,j when the model is
well trained with our refined loss. As a result, we first in-
crease the value ofMi,j that corresponds to the most serious
attack, which is the attack with the largest Wi,j defined by
users. When Mi,j is too large to violate the constraint, we
fix Mi,j and start to increase the value in M corresponding
to the second serious attack. This process is continued un-
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til we cannot increase any value in M under the accuracy
constraint.

The detailed process of finding an appropriate attack sen-
sitive matrix is shown in Algorithm 1, in which we first
initialize M . Then, in line 2, we sort the tuple (i, j) in
descending order according to the attack seriousness Wi,j

given by users and store the tuples in T . Next, the algo-
rithm traverses all positions in the attack sensitive matrix in
descending order of the attack seriousness. For each value
in M , we train the model with our new losses and evaluate
the accuracy of legitimate samples in line 6-7. If the con-
straint on the accuracy of legitimate samples is satisfied, the
element of M in position tk will be increased for a small
value ∆ in line 8-10. The process is continued until the
constraint is violated and then the flag of termination is set
and the last update of Mtk is restored.

4.2. Increase Lower Bound Robustness

Apart from increasing the weighted average robustness,
there are some cases where users care more about the
lower bound robustness. As the robustness under different
targeted attacks are extremely imbalanced in traditionally
trained models, some attacks are really easy to implement,
while some are quite difficult to succeed [17]. The lower
bound robustness is the bottleneck of the system security,
as a result, it is essential to improve the lower bound robust-
ness. In this paper, we formulate the problem as follows:

arg max
M

min(R)

s.t. Accu(legitimate) > ξ.
(9)

Our objective is to find the appropriate attack sensitive ma-
trix M that can maximize the lower bound robustness when
the accuracy of legitimate samples is greater than a given
threshold.

Similarly, we propose an efficient algorithm to solve this
problem. In previous sections, we know that increasing
Mi,j can improve the robustness under the target attack
Ai,j . Therefore, we can increase the element Ml in the
attack sensitive matrix corresponding to the lower bound
robustness until the constraint is violated. As the position
of Ml in M may change frequently between iterations, the
convergence speed may be degraded due to these kinds of
oscillations. Thus, we propose to increase a batch of ele-
ments in M corresponding to the lowest robustness simul-
taneously in each iteration.

The whole process is listed in Algorithm 2, where we
first initialize the attack sensitive matrix the same as in Al-
gorithm 1. Then in each iteration, we first train the model
with our refined loss functions and obtain the accuracy of
samples in the validation set in line 4-5. If the new accuracy
does not violate the constraint, we choose the t elements in
M corresponding to the t lowest robustness and increase

Algorithm 2: Increase lower bound robustness.
Input: Training set ρ, validation set v, minimum

required accuracy ξ, batch size t, step ∆.
Output: Attack sensitive matrix M .

1 Initialize the attack sensitive matrix M with all 1s
except 0s in diagonal;

2 terminate = false;
3 while terminate == false do
4 Train the model on ρ with the refined loss;
5 Accu← Evaluate the accuracy for v;
6 if Accu > ξ then
7 Add ∆ to t elements in M corresponding to

the lowest robustness;
8 end
9 else

10 terminate = true;
11 Minus ∆ from t elements in M corresponding

to the lowest robustness;
12 end
13 end
14 Return M .

them by a small value ∆. However, if the accuracy vio-
lates the constraint, we set the terminate flag to become true
and decrease ∆ from the t elements in M that have been
updated in the last iteration in line 10-11.

5. Experimental Results
In this section, we evaluate the effectiveness of our pro-

posed configurable defense from three aspects: the first one
is to evaluate the configurability of our refined loss func-
tions on the model robustness; the second is the perfor-
mance of the two proposed algorithms for different defense
objectives; the last one is to evaluate the performance of
our configurable defense on a practical problem (road sign
recognition system).

5.1. Experimental Setup

Datasets: Our experiments are performed on CIFAR-
10 [9] and GTSRB (German Traffic Sign Recognition
Benchmark) [21] data sets. The CIFAR-10 contains 60000
color images that represent 10 different natural objects.
Each image has the size of 32*32*3. The GTSRB data
set contains 50000 images representing 43 kinds of road
signs.The intensity values of pixels in all these images are
scaled to a real number in the range of [0, 1].

DNN Models: The model architectures for these
data sets are deep convolutional neural networks (CNNs).
They achieve 94.8% and 98.8% classification accuracy for
CIFAR-10 and GTSRB, respectively, which is comparable
to the state-of-the-art results.

Baselines: In the experiments, we compare the perfor-
mance of our configurable defense mechanism with three
state-of-the-art defenses:
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Figure 3. The impacts of the attack sensitive matrix on the model accuracy for adversarial examples and legitimate samples, where we set
λ = 1 in our losses.

• PGD-based Adversarial Training [13], it trains with
the training set augmented with adversarial examples
generated by PGD attack;

• Feature Squeezing [24], it improves the model robust-
ness by reducing the bit depth of inputs;

• Input Gradient Regularization [19], it optimizes the
model for more smooth input gradients based on the
predictions during training.

We use three state-of-the-art attacks, PGD [13],
IFGSM [10] and C&W [2], to evaluate the performance of
these defenses.

5.2. Configurability of Loss Functions

In this section, we evaluate the configurability of our re-
fined loss functions on the model robustness for a specific
targeted attack by adjusting the corresponding attack sensi-
tive value in M . In the experiments, we randomly choose
a value Mi,j to change, then we train models with our two
configurable losses by increasing Mi,j from 1 to 100. The
model robustness Ri,j is evaluated under IFGSM, C&W
and PGD attacks, respectively. We also evaluate the pre-
diction accuracy of legitimate samples without attacks when
training with our new losses. The results for CIFAR-10 data
set are shown in Figure 3. To better evaluate performance
of our configurable loss functions, we train the models with
two schemes: one in training without adversarial examples,
and the other is adversarial training (augmenting the train-
ing set with adversarial examples crafted by PGD).

Firstly, from the dotted lines in Figure 3(a), (b), (c),
we can see that our refined loss functions can improve the
model robustness even without adversarial training. The
model robustness Ri,j increases from about 5% to 18%
when Mi,j increases from 1 to 100. However, the accuracy
of legitimate samples degrades about 1.5%, as the dotted
lines in Figure 3(d) shows.

Secondly, from the solid lines in Figure 3(a), (b), (c),
with adversarial training, our losses are effective to increase
the model robustness Ri,j against the targeted attack by in-

creasing the corresponding value Mi,j . But when Mi,j in-
creases largely, the accuracy of legitimate samples degrades
about 3.2%. This indicates that increasing model robustness
would inevitably degrade the accuracy of legitimate sam-
ples. We need to consider this when achieving our defense
objectives.

Finally, we can observe that our second loss function per-
forms better than the first one, as its improvement of model
robustness is larger. We analyze this phenomenon that our
second loss uses the probability gap to denote the error mag-
nitude. In this way, the model trained with this loss tends to
learn the unique features in each class to increase the prob-
ability gap, and thus becomes more robust.

5.3. Defense Objective Evaluation

In this section, we evaluate the effectiveness of the al-
gorithms proposed for the two different defense objectives,
improving the weighted average robustness and the lower
bound robustness. As our second refined loss performs bet-
ter than the first one, these results are conducted by the sec-
ond loss function. To compare the performance of different
defense mechanisms, we control that the degradation of le-
gitimate sample accuracy is less than 1%. That is, we set ξ
to 93.8% for CIFAR-10.

5.3.1 Increase Weighted Average Robustness

We evaluate the effectiveness of our Algorithm 1 for im-
proving the weighted average robustness, compared with
the three baseline defense mechanisms. The weights ofRi,j

in R for each targeted attack are set as follows: we ran-
domly select 6 weights and set them to 0.4, 0.2, 0.08, 0.06,
0.04 and 0.02, respectively. Except for Wi,i = 0, the re-
maining weights are set as the same value, which is deter-
mined under the constraint that all weights are sum to 1. In
practice, the weights are set based on application require-
ments.

Table 1 shows the weighted average robustness achieved
by different defense methods under a range of attacks on
CIFAR-10. We can see that the Input Gradient Regulariza-
tion achieves the best weighted average robustness among
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PGD-based Adv. Train Input Gradient Regularization Feature Squeezing Our Configurable Defense
Train with PGD Adv. Train with Ensemble Adv.

IFGSM 63.4% 67.2% 63.7% 81.1% 90.8%
PGD 68.6% 63.6% 58.9% 86.5% 88.1%
C&W 55.4% 60.1% 52.1% 76.4% 84.3%

Table 1. The performance of our configurable defense compared with the state-of-the-art defenses for improving the weighted average
robustness R on CIFAR-10.

PGD-based Adv. Train Input Gradient Regularization Feature Squeezing Our Configurable Defense
Train with PGD Adv. Train with Ensemble Adv.

IFGSM 46.2% 53.5% 43.1% 63.7% 71.4%
PGD 44.6% 50.3% 42.8% 65.1% 66.2%
C&W 39.4% 44.7% 36.9% 56.3% 64.8%

Table 2. The performance of our configurable defense compared with the state-of-the-art defenses for improving the lower-bound robustness
min(R) on CIFAR-10.

the three baseline defenses under IFGSM and C&W attacks,
with robustness of 67.2% and 60.1%, respectively. For the
PGD attack, PGD-based Adversarial Train achieve the best
performance of 68.6%. This is commensurate with the pre-
vious discovery that adversarial training is not effective for
the attacks, based on which adversarial examples generated
are not included in the training set.

Our configurable defense can even improve this ben-
efit. When training with adversarial examples generated
by PGD, we get 81.1%, 86.5% and 76.4% weighted av-
erage robustness under IFGSM, PGD and C&W attacks,
respectively. And when we use the ensemble adversar-
ial training method (including adversarial examples crafted
by IFGSM, PGD and C&W), our configurable defense can
achieve 90.8% and 84.3% weighted average robustness un-
der IFGSM and C&W attacks, which is almost 35% im-
provement compared with the best results among the three
baselines. The reason of this significant improvement of our
defense is that we judiciously protect the model from severe
attacks instead of treating all of them equally as previous
methods do.

5.3.2 Increase Lower Bound Robustness

We evaluate the effectiveness of our Algorithm 2 for im-
proving the lower bound robustness, compared with the
three baseline defense mechanisms. Table 2 shows the
lower bound robustness achieved by different defense meth-
ods on CIFAR-10. The best performance among the three
baseline defenses is achieved by the Input Gradient Regu-
larization method. The lower bound robustness is 53.5%,
50.3% and 44.7% under IFGSM, PGD and C&W attacks,
respectively. However, compared with our configurable de-
fense, this improvement is not good enough. Our solution
with the PGD adversarial training and ensemble training
can achieve 22% and 30% improvement compared to the
best results obtained by the three baselines.

To conclude, our solution makes significant improve-
ment compared with previous defense methods for differ-
ent defense objectives with only little degradation on the
accuracy of legitimate samples. When a universal defense
solution is not available, it is essential to employ our con-
figurable defense mechanism to protect the model against
those severe attacks.

5.4. Case Study

To evaluate the effectiveness of our configurable defense
on practical problems, we implement a use case on traffic
road sign recognition system. We conduct the experiments
on the GTSRB data set. In a road sign recognition system,
the most important security guarantee is that the “Stop” sign
should not be classified as others. Thus, the defense ob-
jective in this system is to improve the model robustness
against the adversarial example attack from misclassifying
the “Stop” sign into other labels (AStop,Non−stop).

This problem can be solved using Algorithm 1, improv-
ing the weighted average robustness of the model, where
the weight of RStop,Non−stop in R should be the largest.
In this experiment, we set WStop,Non−stop=0.8 and the left
weights are set as the same value except for Wi,i. All the
weights are sum to 1. Therefore, in this setting, the adver-
sarial example attacks that cause misclassifying the “Stop”
sign to other “Non-stop” will incur the most serious impact.

Table 3 shows the weighted average robustness of dif-
ferent defense methods under the attack AStop,Non−stop.
The maximum degradation of legitimate sample accuracy
is 1%. We observe that the best robustness under IFGSM
attack among three baselines is achieved by Input Gradi-
ent Regularization, which is 61.2%. However, our config-
urable defense can even improve this benefit. We can cor-
rectly classify 80.7% and 87.8% adversarial examples on
the stop signs under IFGSM when using PGD based ad-
versarial training and ensemble training, respectively. The
results for PGD and C&W attacks are similar, that our con-
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Figure 4. Original sample and the corresponding adversarial examples crafted against defended models by different defenses under C&W
attack.

PGD-based Adv. Train Input Gradient Regularization Feature Squeezing Our Configurable Defense
Train with PGD Adv. Train with Ensemble Adv.

IFGSM 58.3% 61.2% 56.1% 80.7% 87.8%
PGD 63.8% 58.1% 53.4% 84.8% 86.2%
C&W 53.1% 56.3% 51.6% 76.8% 82.6%

Table 3. our configurable defense compared with the state-of-the art defenses under a range of attacks on GTSRB.

figurable defense can largely improve the robustness com-
pared with the best results achieved by the three baselines.

Figure 4 shows the adversarial examples crafted against
different defended models under the C&W attack. The first
image is the original sample, and the following three are
the adversarial examples crafted against models defended
with the three baseline methods. The final figure is the
adversarial example generated against the model defended
by our configurable defense. We can see that the perturba-
tions needed by our method are the largest compared with
the three baselines. This corresponds to the conclusions in
Table 3, that our configurable defense can improve system
robustness considering application requirements by largely
increasing the attack strength.

6. Conclusions
In this paper, we propose a configurable defense against

adversarial example attacks by refining loss functions dur-
ing training, adding a new term to perceive the cost of dif-
ferent target attacks. In this way, the model robustness can
be configured by adjusting the attack sensitive matrix in
our new losses. Moreover, we present two efficient algo-
rithms to achieve two different defense objectives: one is
to increase the weighted average robustness, and the other
is to increase the lower bound robustness. Experimental
results on CIFAR-10 and GTSRB data sets show that the
proposed mechanism can significantly achieve different de-
fense objectives when compared with the state-of-the-art
techniques.
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