
78

LabVIEW

JEFFREY KODOSKY∗, National Instruments, USA

Shepherd: Crista Lopes, University of California, Irvine, USA

LabVIEW™ is unusual among programming languages in that we did not intend to create a new language but
rather to develop a tool for non-programmer scientists and engineers to assist them in automating their test
and measurement systems.

Prior experience creating software for controlling instruments led us to the perspective that the software
ought to be modeled as a hierarchy of "virtual instruments". The lowest level virtual instruments were simply
reflections of the individual physical instruments they controlled. Higher level virtual instruments combined
lower level ones to deliver more complex measurements. A frequency response virtual instrument could be
implemented using a voltmeter and a sine-wave generator inside a loop that stepped through a frequency
range. This was mostly an abstract concept at the time because it was hard to imagine how an existing
language or tool could provide the rich yet intuitive experience of using a real instrument.

Inspired by the first Macintosh computer, we quickly realized the graphical user interface would be a
natural way to interact with a virtual instrument, but it also sparked our imaginations about using graphics
for creating software at a higher level of abstraction.

The February 1982 issue of IEEE Computer was devoted to data-flow models of computation, and it
convinced us that graphical data-flow diagrams needed to be part of the solution. The major difficulty we saw,
however, was the need to use cycles in the data-flow diagram to represent loops. Cycles increased complexity
and made diagrams hard to understand and even harder to create.

This concern led to a major innovation in creating LabVIEW: merging structured programming concepts
with data-flow. We represented control-flow structures as boxes in a data-flow diagram. We knew how to
reason about loops, so we could introduce them as first class elements of the graphical representation rather
than being constructed from lower-level elements. A box could encapsulate the semantics of the iterative
behavior; it could clearly separate the body of the loop (the diagram inside the box) from the code before and
after the loop (the diagram outside the box); and, its boundary could hold iteration state information.

Those fundamental concepts of "graphical", "structured" and "data-flow" enabled us to propose a software
product. We staffed up a small skunkworks team to implement it. We called it LabVIEW. It was to be an
engineer’s tool for automating measurement systems. At first, we were reluctant to admit that we had created
a graphical programming language. When we finally did, we nicknamed it G, for Graphical language, so we
could talk about the language as distinct from the integrated development environment (IDE), LabVIEW. In
practice, almost everyone refers to both the language and the IDE as LabVIEW.

Without intending to do so, we created a programming language radically different from those that
came before, pioneering techniques of graphically creating and viewing code, eliminating manual memory
management without adding garbage collection overhead, and anticipating the massively parallel systems of
the modern era. LabVIEW continues to evolve and thrive after more than 30 years.
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1 INTRODUCTION

The history of LabVIEW™
1 is unusual for programming languages because the goal of the project

was not to create a new language. Our goal was to develop a tool to assist non-programmer scientists,
engineers, and technicians to automate their test and measurement systems. The state-of-the-art
had progressed to the point where most instruments, e.g., voltmeters, function generators, etc.,
were easily connected to computers using standard interfaces, but developing the software for
controlling the instruments in the measurement system remained challenging.
Our slogan became "to do for test and measurement what the spreadsheet did for financial

analysis." Spreadsheet programs allowed financial analysts to quickly and easily create custom
programs for modeling various "what-if" scenarios without training to be professional programmers.
In similar fashion, our tool would enable scientists and engineers to quickly and easily create custom
programs for their test and measurement systems, without needing to enlist the aid of programmers.

In the first section we describe the influences and ideas which ultimately lead to the creation of
LabVIEW. When version 1.0 was released as a product, we billed it as a "non-programming" way to
create test and measurement software, even though internally we knew it consisted of a rigorous

1LabVIEW™ is a trademark of National Instruments
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and well-defined programming language. Internally, we distinguished the language, "G", from the
editor and integrated development environment (IDE), LabVIEW, but for a long time we did not
make the distinction externally because we were more interested in promoting its usability as a
tool, rather than promoting the computer science behind the language.
When we do specifically talk about the language we refer to it as a "graphical, structured

data-flow" language, and this is the description we use in this paper.

• Graphical means that it is represented as a 2-dimensional diagram consisting of nodes and
interconnecting wires, rather than as text.

• Structured refers to the use of boxes, called structure nodes, to represent various control
structures, e.g., loops and conditional execution. Structure nodes have a diagram inside the
box and they control whether and when to execute this inner diagram. The inner diagram
executes with the same semantics as a diagram outside the box. Structure nodes can be nested
just as control structures in text-based languages can be.

• Data-flow indicates the semantics of the language. The G diagram represents a data-flow
model where nodes perform computations based on their input values. When they complete
they propagate their output values along the wires to downstream nodes. A node executes
when all of its inputs are available. The data-flow model is particularly simple: the diagram
is an acyclic graph where each wire carries a single value. There is no queuing or buffering.
In recent years, the model has expanded to support higher-level abstractions (described in
later sections). From the outside, structure nodes behave as any other node behaves: all
inputs musts be present before the node executes, and all outputs are produced when the
node completes. On the inside, a structure node contains one or more (sub-)diagrams. The
structure node chooses when to execute a sub-diagram, but the sub-diagram operates with
the same data-flow semantics as everywhere else. By using structures, the G language can
represent iteration while keeping the data-flow graph acyclic and the node firing rule simple
and uniform. We believe that the resulting diagrams are thus much easier to construct and
analyze while retaining or exceeding the expressive power of other languages.

LabVIEW continues to evolve since its introduction in 1986. Many improvements are basically
completing the capabilities implied by the original language and environment, but there are also
important advances in the language itself. Part of the success of LabVIEW is attributable to its focus
on test and measurement applications, and the concomitant close integration with I/O hardware
and precision timing. Unifying the representation of functional behavior with I/O configuration
and timing and distributed execution across CPUs and FPGAs is a strength of LabVIEW as well as
a fertile area for additional research.

Organization: This paper is organized into five major sections in a mostly chronological order. For
a description of just the semantics of the language itself, read sections 3 and 5. Section 2 covers the
background and motivation for starting the project, the original goals, and the inspirations leading
to the conception of LabVIEW. It also covers the skunk-works development and implementation
of version 1, as well as the reaction from the early users, and an assessment of the abilities and
limitations of both the language and the environment at that time. Section 3 is a detailed description
of the operational semantics of LabVIEW/G as it existed in version 1. Section 4 continues the history
by describing the motivations and goals for version 2, the development efforts and delays, and the
response from users. The section contains a brief history of the major milestones of subsequent
versions as development continued over the years. Section 5 is a description of the semantics
of the language features introduced in version 2 and later versions. Section 6 discusses ongoing
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research and possible future directions for LabVIEW. The paper ends with a retrospective section
and summary section.

Sources: For the most part, I have relied on personal recollection to recount the history of LabVIEW.
Ever since LabVIEW was introduced, I have been asked many times about how I came up with
the idea for it, so I have had a lot of practice telling the story to individuals, groups, in interviews
and at internal conferences, in more or less detail, depending on the stamina of the listeners. I
did keep a notebook which shows the early journey to the concept as well as a few more years of
questions and ideas, after which I kept notes and diagrams in documents on my computer. Many of
these are in formats no longer readable with modern programs, but can still be read on working
older machines. Two developers from the start, Rob and Steve, still work with me so they were able
to corroborate my memories and provide additional details. The most comprehensive account of
the history is in Gary Johnson’s book [Johnson and Jennings 2001]. It derives from interviews he
conducted with me and other developers in the early 90s. Over the years, we explained, re-visited,
and defended design decisions repeatedly, and this is reflected in various internal design documents.
As a result, the history of LabVIEW has remained vivid in my memory.

The Austin History Center interviewed me in 1997 about the origin of National Instruments and
LabVIEW. I have a rough transcript of the interview but not the edited one.

2 HISTORY - PART 1: ORIGIN OF LABVIEW

2.1 Background

National Instruments was founded in 1976 by James Truchard, William Nowlin and Jeffrey Kodosky,
the author of this paper. Jim took on the role of CEO. At the time of founding, we were all employees
of Applied Research Laboratories (ARL) of the University of Texas at Austin (UT) working on various
underwater acoustics projects for the US Navy. That work culminated with our implementation of a
large automated test system, FQM-12 [Truchard and Ashby 1978], designed to test any underwater
transducer. Tests involved measuring short high-powered pulses (the pings you hear in submarine
movies), beam-patterns showing directional sensitivity, response versus frequency, and so on. It
was necessary to build custom interfaces between the computer (PDP-11), various instruments
(waveform generator, attenuator, power amplifier, oscilloscope, A/D converters), a relay panel,
and a motor for rotating a transducer or transducer array. My responsibility was to design and
implement the software to control the devices, run the tests, and produce the reports. The work
was completed in three years with the help of a small team.

I had begun working part-time at ARL in 1973 while a graduate student in physics. I had had
experience programming in Fortran and Basic, though I didn’t have a particular interest in computer
science. My first job at ARL involved writing a variety of programs for a PDP-8, and the hands-on
experience with that machine piqued my interest. Later, our group at ARL acquired a PDP-11 and I
became very proficient programming it in assembly and then using C when we acquired a copy
of Unix. I studied the operating system using John Lions’ source code and commentary books. I
became intrigued enough to take a graduate course in operating systems. Shortly afterwards, I was
exposed to LISP and became so fascinated with it that I switched my degree program from physics
to computer science. And just for fun, I wrote a LISP interpreter for the PDP-11 and submitted it to
DECUS, the Digital Equipment Corporation Users’ Society.
In the early 1970’s the Hewlett-Packard (HP) company invented the General Purpose Interface

Bus (GPIB) and subsequently submitted it to the IEEE, where it became the IEEE-488 standard [IEEE
1988]. This bus on a cable enabled HP to connect as many as 14 instruments to one of their "pro-
grammable calculators" facilitating the building of automated test systems. By the mid 1970’s more
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instrument manufacturers were embracing the GPIB standard. Jim, Bill, and I saw an opportunity
to start a company building a GPIB interface for the PDP-11. We continued working full-time at
ARL until 1980 to complete the FQM-12 while "moonlighting" to build National Instruments.

2.2 Motivation

Manufacturers must test their products before shipping them to ensure they are working properly,
so there is typically a test station at the end of an assembly line where each product is subject to
various tests and measurements. The extra expense of this activity is a strong incentive to automate
it, and the introduction of the GPIB made than much more practical.
By the early 1980’s National Instruments was a successful company building GPIB interfaces,

driver software, and related products for a variety of mini and microcomputers. In order to continue
the growth that we were enjoying, we realized we needed to expand the scope of our business. We
considered many options, from building custom instruments, to creating software for generating
engineering graphs, to building single-board computers.
In the end, we decided it would be best to focus on the next level challenge in constructing

automated test and measurement systems, namely writing the software, because that was most
synergistic with our existing business. The GPIB enabled our customers to easily connect their
instruments to their computer, but it still proved challenging to create and maintain the software
that controlled the instruments and acquired the necessary measurements.

Most of the test and measurement programs of the time were custom programs written in BASIC
or C by the engineers or technicians in the manufacturers’ test departments. Many test engineers
used an IBM PC with a few bench-top instruments and a program written in BASIC. A simple
system for testing an amplifier might have a programmable function generator to provide a signal
to the amplifier, an oscilloscope to view the output waveform, and a digital multimeter to read
the output amplitude. A program to automate the testing would start out simple enough: output
GPIB commands to set the function generator to produce a sine wave of a particular frequency and
amplitude, output GPIB commands to set the range of the multimeter and then read the amplifier’s
output amplitude; repeat these operations for successive frequencies or amplitudes in order to
characterize the amplifier response or linearity.
Over time, the test program would grow in complexity and obscurity as more options were

added, and more error conditions were detected and handled, and various interactive user inputs
were added in order to pause and resume, set configuration parameters, and so on. When a new test
engineer eventually took over, the typical process would be to toss the old unmaintainable program
and start from scratch writing a new test program. More sophisticated test scenarios involved a rack
of instruments and a rack mounted minicomputer programmed in C. A test engineer often needed
the support of a team of computer programmers to implement test programs. But the requirements
from the test engineer could conflict with the design principles of the programmers. Software
modularity could often be at odds with the performance needs of the test engineer.

We started National Instruments by building GPIB interfaces to more easily connect instruments
with mini and micro computers. But by helping GPIB become more widely adopted we were also
helping to exacerbate the software problem we now sought to address.

Jim decided that I should move to a small office near UT for easy access to the libraries and away
from the corporate office, so that I could remove myself from the daily activities and focus on this
new initiative. While it wasn’t clear where to start, we did have a couple of examples that could
serve as comparison benchmarks.

The first was the Asyst DOS-based software product. Asyst combined the FORTH language with
libraries and tools targeted to the scientist and engineer. While the combination integrated multiple
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components for the benefit of the user, it didn’t seem to address the fundamental programming
issue, as we understood it.
The second, and more inspiring, example for us was the electronic spreadsheet. Paper spread-

sheets had been used forever in financial reportingÐthe concept was natural and ingrained even if
preparation could be tedious and error prone. Electronic spreadsheets eliminated the disadvantages.
Calculation was automatic and fastÐchanging a value would propagate throughout the spreadsheet
and show the result instantly. A financial analyst could quickly do "what-if" calculations to see how
results depended on interest rate, for instance, without having to enlist a team of programmers to
write a custom program. The computation and analysis were completely under the control of the
domain expert.
We defined our goal: create a domain-specific tool usable by scientists and engineers which

would dramatically improve their ability to build automated test and measurement systems. We
captured that in the phrase "to do for scientists and engineers what the spreadsheet did for financial
analysts". It was motivating, and it defined the scale of impact we sought, but it wasn’t a roadmap
for what to do.

2.3 Conception

To help brainstorm on the topic, I asked a friend from college days to join me as a consultant for
NI: John "Jack" MacCrisken. Jack and I graduated from Rensselaer Polytechnic Institute (RPI) in
1970 with BS degrees in Physics. I continued with graduate study in Physics and Computer Science
at the University of Texas at Austin without completing a degree, while Jack continued by getting
an MS in Computer Science and Electrical Engineering at Stanford. He had a lot more experience
with large software applications, so I hoped his insights would prove helpful.

One of the first things Jack and I did was to visit half-a-dozen customers to learn more specifics
about their test software development and maintenance processes. What we learned basically
validated our understanding of the issues. When pressed for thoughts on how to improve their
situation, they invariably suggested incremental improvements to their libraries and tools. There
were no breakthrough ideas for dramatic improvements.

Jack and I continued to meet for several days every few weeks. Jim would join us for part of
the time to vet our latest ideas and offer suggestions and encouragement. For completeness we
considered creating measurement-specific libraries, and even using a spreadsheet itself as a means
for describing a test program. While simple scenarios were manageable, more complex test and
measurement scenarios were not. Existing programming approaches sufficed for simple scenarios
and there was nothing compelling about solving the simple applications in yet another way. We
wanted our tool to handle the complex scenarios.

Many of the interesting test scenarios were stimulus-response measurements: a stimulus signal
is applied to a device and the output signal is measured. The measurement is repeated with a
varying stimulus to generate plots of gain versus frequency, or output versus input amplitude,
or amplitude versus direction, and so on. From these and other examples, we concluded that
representing looping/iterative behavior was a key aspect of any solution we would propose.
I recalled an idea from my experience with the FQM-12 software. Both operator-level shipyard

mechanics as well as designer-level acoustics engineers and acoustics researchers used that system.
At the highest level, the system was highly constrained, allowing only designated measurements to
be made based on the model number of the transducer being tested. But acoustics engineers and
researchers could access the system at lower levels to run more varied and complex tests using
more detailed control of parameters and instruments. These levels of access formed a hierarchy of
software interfaces to the instrumentation, and therefore I thought of the FQM-12 software as a
hierarchy of "virtual" instruments.
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There was discussion in the academic literature about virtual instruments, but the focus seemed
to be on object models with inheritance, where an instrument class could be specialized to a more
limited subclass. At the time we felt that using object-oriented programming techniques would
require more expertise of our customers rather than less. It was hard to imagine how existing
languages could provide as rich and intuitive experience as using a physical instrument and even
harder to imagine a reasonable experience for constructing a higher-level virtual instrument by
composing simpler ones.
Then came the summer of 1984. My brother-in-law sat me down in front of his Macintosh

computer, showed me how to use the mouse and openedMacPaint. It was a revelation. I immediately
went out and bought a Mac (prior to that time I had not been interested in personal computers
because, as a Unix brat, I wanted larger memory and disk space, and more horsepower to run larger
programs). I was convinced the Mac represented the future of human-computer interfacing.
The Mac’s graphics provided an obvious way for software instruments to reflect the physical

instruments we worked with. The virtual controls on the computer screen could be just like the
controls on an instrument, except more flexible. Now it was clear that a virtual instrument should
have a graphical interface on the computer screen. When I played with MacPaint I never opened
the manualÐI discovered how to use it by trial and error. It turns out most engineers learn how to
use physical instruments the same wayÐskip the manual and try making measurements until you
get it right. With such a rich interface using mouse gestures and a menu bar, the possibilities for
learning by experiment were enormous and should even be fun.
My enthusiasm for the Mac graphical user interface was tempered by the fact that writing

a program that had the capability and responsiveness to support such an interface was vastly
more difficult than writing a test and measurement program. Still, a graphical user interface (GUI)
was too good to ignore so we started to brainstorm how we might make implementing test and
measurement programs with GUIs much simpler.
After a couple months of study that wasn’t very promising, I had the naiveté to suggest that

maybe I could come up with a way to use the graphics to construct a general program easilyÐin
other words, to program graphically. Jack endorsed the idea. Jim was dubious but agreed to let us
take a few months to investigate. We all knew there were graphical notations for programs (the
GPIB is defined in terms of state diagrams), but whether we could come up with one that would be
easier to use than just writing C code was the big unknown.

Jack and I looked at a variety of diagram types and at Jim’s suggestion even worked out in some
detail what a flow-charting approach might look like. We also evaluated programming using only
state diagrams. Neither approach helped. We had known about data-flow diagrams, but it wasn’t
until we came across the February issue of IEEE Computer that we took an in-depth look. The
entire issue was devoted to data-flow programming, including data-flow machines [Gajski et al.
1982].

Data-flow diagrams were very appealing. They were easy to understand and constructÐuntil
the program needed a loop. Programs that needed iteration had to resort to cycles in the data-flow
graph, and that’s when things got much more complicated. As if to emphasize that point, one article
[Davis and Keller 1982] featured a full-page, relatively simple diagram with a cycle implementing
Newton’s method for finding a zero of a function. It had a bug in it! Entering and exiting the cycle
was remarkably easy to mess up. A program requiring nested loops would be a big challenge to
understand, let alone construct correctly.

While we investigated multiple other types of diagrams, I kept coming back to data-flow because
of its elegance and simplicity. But I was frustrated with the need for cycles to represent iteration,
as iteration is an important part of most test and measurement programs. I was stuck, but I didn’t
want to give up. I resorted to sketching random ways to represent the concept of a loopÐtwo
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kinds of loops, one for sweeping a stimulus through a fixed range, and another for tuning until a
parameter was within some limit. A favorite sketch was a box with a control panel to govern the
iterating behavior, though I didn’t know what to make of it.

Somewhere along the line, it dawned on me that a box in a data-flow diagram could represent a
loop. Inside the box is the body of the loopÐa standard data-flow diagram which would execute
repeatedly. From the outside the box would appear to be just like any other node. Iteration would
be represented without the need for cycles. There would be no way to confuse the body of the loop
with any other part of the diagram (unlike a diagram with cycles). In computer science we know
very well how to reason about loops, so why shouldn’t a loop be a first-class data-flow language
element?
A cyclic data-flow diagram is hard to read, first because wires run in all directions, and second

because it requires special nodes that can execute without having data on all their inputs and
that can complete without providing data on all their outputs. Using a box to represent a loop
means that all nodes would have a simple and uniform firing rule: all inputs must be present before
executing, and all outputs are produced upon completion. And wires could all flow in one direction:
from the start of the program to the end.
The box representing a loop could have a special terminal on the outside for specifying the

number of iterations. Alternatively, it could have a special terminal on the inside for indicating the
iteration just completed is the last one. After all iterations complete, then the loop itself completes.
One other item is needed to complete the picture. A cycle in data-flow not only effects the

transfer of control to re-execute the nodes in the cycle, it also transfers a datum from the end of
one iteration to the beginning of the next. This can be accomplished in the box notation by creating
a pair of terminals on the left and right edges of the box. We called the pair of terminals a shift
register. When one iteration provides a value to the right-side terminal, that value will appear on
the left side terminal at the start of the next iteration. Such a construction is effectively an implicit
cycle, but it is bound to the box and highly constrained. It is impossible to mess up creating such
an implicit cycle because there is no place to connect to it except at the shift register terminals.
It was a small step to see that other control structures we are familiar with from traditional

programming languages, e.g., if statements and switch statements, can also be represented as boxes
in a data-flow diagram. In these cases, however, the structure contains multiple distinct internal
diagrams; the structure selects one to execute based on the value supplied to a special terminal on
the outside of the box.

Data-flow diagrams are inherently parallel. The parallelismwas intriguing to us but not important
for the measurement programs we wanted to write. However, it is necessary to properly order both
commands to instruments and other I/O operations, so we needed one final control structure to
force serialization when needed. The sequence structure contained multiple sub-diagrams; each
was executed when the previous one completed. We thought such a structure would be more
convenient than creating dummy data-flow connections to control execution order.

Once Jack and I had the basic elements of our structured data-flow representation I decided to try
it out on some of our engineers. I created a diagram to represent our prototypical stimulus-response
test and asked if they understood what was going on. Did they think they could construct such a
diagram using something like a paint program? I was disappointed and disheartened seeing them
struggle to understand. I thought my boxes would make it so much easier!

After stewing about it for a week, I thought maybe my boxes were too nondescript, so I created
more stylized graphics: a pad of paper for a For Loop, a rounded rectangle with an arrow head for
a (Do-)While Loop, and, at Jim’s suggestion, a film strip for the Sequence structure. The only one
that remained a nondescript patterned box was the Case Select structure because I couldn’t think
of anything more distinct (and I still can’t today).
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Fig. 1. Original data-flow control structures

The small rectangle on the border of a structure where a Signal crosses is called a Tunnel. A Tunnel holds

onto a set of Terminals, one that connects to the outside, and one per sub-diagram which connects on the

inside. A thin line represents a scalar value while a thicker wire represents an array. A solid line represents a

numeric type while a dotted line represents a Boolean type. A For-Loop will optionally index an array at an

input Tunnel and accumulate an array at an output Tunnel. At the start of the next loop iteration, the value

on the right side of a shift register is shifted to the top left and the left values are shifted down one.

The result astonished me. A simple change in the graphics (which was still only in black and
white) had a dramatic effect on the engineers: they were much more interested and excited by the
diagrams and could easily imagine constructing similar ones.
Figure 1 was created using LabVIEW 1 and shows the elements of the structured data-flow

representation as it stood then.
We were excited about the representation. Although we knew we were creating a new program-

ming language, we never talked about it as such for fear of provoking adverse reactions within the
rest of the R&D organization: why were we creating yet another language when we were supposed
to be creating a tool analogous to the spreadsheet? Our rationalization was that the representation
was simple enough that even non-programmers would be able to use it effectively.

A fair question to ask is why we thought the flexibility of a programming language was needed,
as opposed to a forms-based configuration environment with common measurement patterns
predefined. One reason came from my previous programming experienceÐwhen automating mea-
surement hardware, I always found some complication requiring adjustments to timing or data
formatting. Providing sufficient capability in a configuration environment to satisfy all possible
needs results in so much fine-grained configuration that it effectively creates a language anyway.
Another reason came from observing the futility of trying to standardize instrumentsÐcore func-
tions could be standardized, but there were so many useful variations and optimizations that a
complete standard was infeasible. The final reason came from basic engineeringÐit is possible to
build higher-level fixed patterns on top of a flexible base, so we should build the flexible base first.
With the programming question resolved, we proceeded to flesh out the remainder of the

virtual instrument (VI) concept. The GUI controls and indicators on the "front panel" of the VI
had corresponding terminals on the "block diagram" that were the sources and sinks for data,
respectively. The front panel of a VI corresponded to the front panel of a real instrument while the
block diagram of the VI corresponded to the internal circuitry of the instrument. From a computer
science perspective, we viewed the panel as a procedure declaration while the diagram was the
procedure implementation.
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Fig. 2. Data structure diagram

The Self-Ref Node is an invisible node created to hold on to the source and destination terminals of a diagram.

A Node owns terminals while a Signal has a list of references to Node Terminals, where the first in the list

is the source terminal. The graphical path of a Signal is called a Wire although Signal and Wire are often

used interchangeably. (The solid line represents a 1-to-n owning relationship and the dashed line represents a

1-to-1 reference relationship).

We needed a way to compose VIs so that we could build an application as a hierarchy of VIs. We
introduced the concept of an icon to graphically represent a VI. Every VI had an associated icon
and "connector pane", the latter being a collection of input and output terminals on the perimeter of
the icon corresponding to the controls and indicators, respectively, on the panel. VI Alpha can call
VI Beta by placing Beta’s icon in Alpha’s diagram and connecting wiresÐthe icon in the diagram
represents a "sub-VI call".

At this point we had a concept, and the next step was to turn it into a software architecture. Jack
suggested we create a data structure diagram to represent the main elements of the system and
how they related to each other. An example of a data structure diagram, drawn in MacPaint, is
shown in Figure 2.
Each box in the figure represents a data structure and lines represent ownership of other data

structures. A solid line meant one or more, a dashed line meant reference-to rather than ownership.
We grouped the different kinds of Nodes inside a larger box to show they had related properties,
e.g., ownership of a set of terminals. Though we didn’t know it at the time, we were effectively
representing single inheritance via enclosure.
With this data structure diagram, we then talked through the various transactions we could

imagine doing on an instance of a VI hierarchy using an editor, e.g., adding a new node to a diagram,
moving a node, connecting two terminals with a wire, and so on. This process helped us identify
individual data items that were needed in the various data structures, e.g., bounding rectangles for
nodes, paths for wires, etc.
We also talked through how execution would work. We imagined a brute-force token-passing

mechanism, the interesting parts being the behavior of the structures and calling a subVI. When a
shared subVI is called concurrently from two parallel branches, it is necessary to serialize access to
it.

2.4 Implementation

Once we had convinced ourselves we had a reasonable data structure architecture and plausible
sketches for algorithms that operated on the data structures then we were ready to build a product.
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The initial plan was to develop a prototype for the Macintosh to prove the concept, and then
develop the shipping version on the IBM PC where we expected the majority of the market was.
We decided we would develop the software on the Macintosh so we could become intimately

familiar with the machine.
In the summer of 1985, in order to not disturb the day-to-day operations of the company, we

established the development effort in a one-room, 850-square-foot, windowless office that we
found near the UT Austin campus. It was the perfect size and location for our skunkworks project.
We purchased several Macintosh machines and immediately voided the warranties by having
Hyperdrive hard disks installedÐit would have been impossible to do any development on a Mac
without one.

Over the next year nine people joined me on the development team:

• Jeff Parker, a new UT CS graduate was the first person to join me;
• Rob Dye, a UT CS masters student who started as a summer intern;
• Cathie Wier, already at NI working on GPIB drivers, joined the team and continued to pursue
a UT CS graduate degree;

• Lynda Pape, a UT CS undergraduate student who started as a summer intern;
• Eduardo (Lalo) Perez, a UT EE graduate who eventually used LabVIEW in his PhD dissertation
on image processing;

• Paul Ponville, a MS CS graduate from University of Louisiana, Lafayette, and the only person
who actually studied the data-flow model of computation as a student;

• Steve Rogers, a recent UT CS graduate already at NI working on real-time GPIB drivers,
joined the team;

• Ken Rozendal, a UT CS graduate student working part time; and
• Rosy Mehrotra, a new UT CS graduate.

We had a rudimentary network to share a Corvus disk which contained the master copy of the
source code. There was no source code control, so we had a physical semaphore: a Tupperware
bowl, the possession of which designated the developer who had exclusive access to the master
copy for merging changes.
We were designing a highly interactive application while at the same time discovering how

to program the Macintosh with its object-oriented toolbox. We were naïve enough to believe we
would be successful, and passionate enough to vigorously debate the intricacies of the user interface
and user experience. We endorsed the WYSIWYG (what-you-see-is-what-you-get) perspective
(meaning in our context that a diagram computed what it appeared to compute), and we focused
on ease-of-use because we believed that our users’ time was more valuable than our own.

Screen real estate was very limited, and we struggled to make diagrams understandable without
using space on lots of text labelling. Consistent use of recognizable glyphs was one technique, and
more dynamic use of screen area was another. For example, overlaying the frames of a sequence
structure and the cases of a case structure saved a lot of screen space at the cost of not being able
to see all the code at once. The disadvantage of not being able to see two cases of a case structure
simultaneously was at least partially offset by being able to see each case in the context of the
surrounding diagram.

Aesthetics played an important role in our debates. Early on, we decided that wewould implement
Manhattan-style wiring even though it wasmore difficult than point-to-point (diagonal) connections.
Manhattan-style appeared neater because it didn’t have the pixelation of slanted lines, it worked
better when a wire split to two or more destinations, and it fit tighter when routing a path in a
compact diagram. We wanted to minimize extraneous "noise" in diagrams so we decided not to have
any arrows at wire destinations but rely on the natural tendency to layout structured data-flow
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from left to right. We opted to have a simple gap where wires crossed, and no gap where they
connected (years later we added the option to draw dots at the junctions to further distinguish
them from crossings; it is widely used, though some users still consider the dots to be too much
noise).
We were building an interpretive system, so we never made a clear distinction between the

language and the editing and execution environment. As the user interacts with the editor, LabVIEW
creates an internal parse tree that it then renders on the screen. That same parse tree data structure
is used by the interpreter to execute the diagram (today it is input to the compiler).

We knew users would want printed diagrams for documentation purposes, so we implemented
printing capability. However, we didn’t think paper was a good way to view diagrams. We believed
the editing environment provided a much better and more interactive way to navigate and explore
diagrams. In modern terms, we were recommending a browser-like experience as opposed to a
book-like experience.

In any event, we never considered parsing a printed diagram, or a diagram created with a paint
program, to be a worthwhile effort. A G diagram exists internally as a parse tree by virtue of its
interactive construction, so there is no need for any parsing.
We thought about trying to ensure a diagram was always syntactically correct as it was being

edited, much like syntax-directed editors of the time, but we quickly realized it would not be
convenient for a user. So, we decided to provide immediate feedback whenever an error was
detected and prevent the VI from executing until the errors were corrected. After every edit
operation, such as adding or deleting a node or wire, a fast type-propagation algorithm is run
to determine the direction and type of all signals and to verify there are no cycles (which would
deadlock execution).
The summary indication of an error was a "broken run arrow" preventing the VI from being

executed. In addition, many errors were also indicated by a "broken wire". If data of the wrong
type was wired to a node, that wire would be broken, i.e., drawn with a distinctive dashed pattern.
Creating a cycle in the diagram would break all the wires in the cycle. Deleting a node would
leave previously connected wires dangling, so-called "loose ends," which were also considered to
be errors and drawn broken.

One day we invited Rob’s thesis advisor, Dr. JC Browne, to see an early prototype of part of the
system. We had been discussing how we should think about text strings versus arrays of characters,
so we asked his opinion. He suggested that strings could be a fundamental data type, not an array of
characters. It was immediately obvious that was the right answer. We could have explicit conversion
between string and array if we wanted to, but we wouldn’t confuse the user by defining strings as
arrays. That discussion also reinforced our commitment to strong typing.

Each developer on the team specialized in one aspect of the project but typically collaborated on
all of it. Our excitement level grew as the project began to take shape. We felt like we were on a
mission and we pushed ourselves to the limit. We worked long hours, sometimes all night, to reach
each milestone.

By late October 1985 enough core capabilities were operational that we decided to set a goal of
being able to demonstrate to the rest of the company at least rudimentary functionality in all areas,
from editing to execution to instrument I/O. Up until this time, the rest of the company had only
the vaguest notion of what our skunkworks group was doing. On the afternoon of October 31st,
we had our first demonstration of the fledgling product. It was a big success, even though we had
to reboot our machines multiple times during the demos, and no one machine had all the pieces
integrated. We began a tradition that day, and for many years afterwards we demonstrated new
features to the rest of the company on Halloween.
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As we became more proficient using the graphics toolbox on the Mac, and got more of the editing
subsystem working, it became clear that it was not going to be possible to build a comparable
program on the IBM PC until it also had a sufficiently rich windowing and graphics environment,
and it wasn’t clear if or when that would happen. Steve Jobs had been fired from Apple, making
the future of the Mac uncertain. After a long discussion, Jim and I decided we should continue with
the project and release a product on the Mac and see what happened. This was not enthusiastically
received by our sales department, who felt it would be impossible to sell a Mac-based product in
our market, but Jim convinced them it would be worth a try.
In the early stages of development, Jim learned that software had recently been deemed to be

patentable by the US courts. He felt we ought to protect our investment by applying for a patent
[Kodosky et al. 1994]. To improve the chances of getting it approved, Jim sketched some circuit
diagrams that showed how hardware could implement the behavior of our structured data-flow
diagrams. I thought it was a nice touch but perhaps superfluous. However, a little over a decade
later those circuit diagrams would be the inspiration for another development effort: LabVIEW for
FPGA (field programmable gate array).
In early 1986, we learned the April issue of Electronic Design would dedicate its front cover

to announcing our product. It was still unnamed, so we needed to come up with a name by the
magazine’s deadline. Ron Wolfe, the marketing leader for our project, called a crash meeting where
we listed as many possibilities as we could think of, and eventually came up with LabVIEW. It is an
acronym for Laboratory Virtual Instrumentation Engineering Workbench.
We thought we were close to finishing, but we were way too optimistic. The more testing that

we did, the more bugs that we found. We started beta testing way too early. Getting more people to
help test really swamped us with support and more debugging. There was a lot of wasted effort
since everyone was reporting the same issues. We ended up extending the beta test period several
times throughout the summer of 1986.

We faced other issues during development as well. As our code continued to grow in size, we hit
limitations in the tools we were using, specifically, the MegaMax C compiler. Our code overflowed
symbol tables and linker buffers. We visited the company several times so that they could make
special versions tuned for compiling our code. Just as our program was getting large enough to
hit the memory limits of the Mac itself, the Mac Plus was introduced sporting a full megabyte of
memory. We were saved.

We had other timely fortuities too. We were avid readers of MacTech and MacTutor and almost
every issue had example code showing how to implement a cool new feature, such as floating
windows and popup menus. Popup menus violated the Mac UI guidelines, but they were just what
we needed to keep our pulldown menus from becoming too unwieldy.

Our performance target was to be about as fast as interpreted Basic, and with a couple of iterations
on the implementation of the execution subsystem, we approached that on most computations and
I/O. However, on some operations, particularly array operations, LabVIEW was much slower. One
benchmark, a "Sieve of Eratosthenes" example, took a few seconds in Basic but did not complete
after executing 8 hours in LabVIEW. Clearly, we had to do something about this.

The execution subsystem implemented a straightforward, but literal, interpretation of the data-
flow diagram: allocating, copying, and deallocating a data token for each wire. Consider the Array
Element Replace node: it had inputs for array, element, and index; it produced an output array
the same as the input array but with the value at index replaced by the input element. The node
allocated an output array, copied the input array over and replaced the value at index. Then it
de-allocated the input array. If this node were inside a loop passing the updated array to the next
iteration via a shift register, the array would again get copied, resulting in two copies every iteration.
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Fig. 3. About LabVIEW Screen

Bitmap images of the LabVIEW 1 developers included in the About LabVIEW screen.

We did what we could to minimize this overhead, but the sieve benchmark was still far off the
mark. It would not be until we invented the "in-place" algorithm in version 1.2 (see section 4.1) that
we would finally conquer this benchmark.

We finally shipped LabVIEW 1.0 at the end of October 1986, a full year after the first demo
version. We were so excited about releasing it, we actually made the first batch of disks ourselves.
We stayed late to box up the disks with the documentation and ship the boxes since the shipping
department had gone home already.
Figure 3 shows the "About LabVIEW" screen image containing bitmap pictures of the original

LabVIEW developers. We thought that would be an appropriately graphical way to sign our work.

2.5 Customer Reaction

LabVIEW 1 had a painful lack of editing features, only minimal I/O and computational capability, and
it was slow. But it really was accessible to engineers and scientists who weren’t skilled programmers.
It inspired them to do projects they otherwise would not have attempted. They saw LabVIEW
as a tool they could use to get a project done by themselves, without having to get a team of
programmers to help them.
The problem with this situation was that the people we were targeting, those writing Basic

programs to control a few bench-top instruments, ignored LabVIEW. They were content to continue
their current practice. In their place we had a wide variety of people attempting a broad range of
applications from specialized measurements, to laboratory automation and control, to simulation,
to clinical research, and on and on. And they all needed much more performance and more memory.

Customers enjoyed interacting with the GUI. The "direct manipulation" of objects on the screen
was like a game, and there was a rush of immediate gratification when a button click executed the
diagram. On the other hand, there was no undo capability in LabVIEWÐan accidental delete meant
completely reconstructing what was deleted. Nor was there any ability to "stretch" wires. Once a
node was wired, users could not move it. To make space on the diagram to insert a forgotten node,
users had to unwire all downstream nodes, move them, and then rewire them. This made editing
diagrams tedious and error prone.

In spite of the limitations, customers were persistent and largely successful using LabVIEW. Our
early users were Macintosh enthusiasts, so they were tolerant of our efforts on the Mac and they
were inclined to persevere in order to highlight the value of the Mac.

One customer reported that it took 20 minutes to load his application, but it wasn’t a problem
because he would start loading it when he got to work and then go get a cup of coffee and visit
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with colleagues. When he returned to his desk, it was ready to go. He also reported that each edit
he made took several minutes to respond with the "immediate feedback" updating the diagram,
but again, he was able to work around that by multiplexing with other activity. We surmised his
application was at the edge of feasibility, but we were still embarrassed and dismayed by the slow
performance. Sometime later we were able to see the VIs he created. We were further dismayed by
how convoluted his diagrams were. Yet he was still happy because, he said, he was able to conduct
his research and publish his results in half the time it took previously. His experience motivated and
inspired usÐwith more effort we could have an even larger impact on researchers’ productivity.
Early adopters of LabVIEW included researchers and engineers at Lawrence Livermore Labs,

Hughes Aircraft, Dupont, NASA, Lockheed, National Magnet Lab, and others. The flexibility of
LabVIEW, the integration of the measurement I/O, and the autonomy the researchers had in evolving
their experiments, were the oft-cited reasons for their adoption of LabVIEW.
Of course, there were other customers who were not successful using LabVIEW. The typical

reasons were insufficient performance and insufficient memory. While we were able to make
incremental improvements in a couple minor releases after version 1, it wouldn’t be until a larger
machine was introduced and we were able to create a compiler that those issues were resolved (see
section 4).

There were two language related topics that made an impression on us, one frustrating and the
other challenging. The frustrating onewas seeing the extra difficulty people with prior programming
experience had in learning LabVIEW. They seemed to be so oriented to sequential programming
they had a hard time grasping how to design a program using data-flow. The most egregious
example we saw was a VI containing a single sequence structure with dozens of frames, each
corresponding to a statement in a sequential program. It was disheartening, particularly when
accompanied by a comment that LabVIEW was hard to use.
The challenging topic concerned the inherent parallelism of data-flow. It was easy to create a

diagram with multiple loops executing concurrently, but we didn’t have a feasible mechanism for
communicating between the loops. None of the prototypical test and measurement examples we
explored while designing LabVIEW needed such a capability, so we didn’t think it was necessary
for version 1. That is, until we encountered a customer application where the most natural solution
was multiple concurrent loops exchanging data asynchronously. We lost that customer, but we did
come up with a clever way to solve the problem (see section 3.6). However, an elegant solution
eluded us for 20 years until 2016 (see section 5.4).

3 INFORMAL OPERATIONAL SEMANTICS OF G IN LABVIEW 1

There have been multiple attempts to come up with a formal semantics of the language, but nothing
seems to be more understandable and useful than the following somewhat casual description.
This is what we understood in 1985 and has remained the same ever since (with minor extra
flexibility introduced later). Simplified versions were described and presented in many places (e.g.,
the LabVIEW user manual and [Kodosky et al. 1991]) but a comprehensive detailed document was
never produced, not even internally.

For convenience, all the examples in this section are drawn using a modern version of LabVIEW
(2018), but they are converted to black and white to approximate the appearance in version 1.
They contain only nodes that were available in LabVIEW 1 although the original icons were not as
polished as they are now. The one exception is the comparison node. In LabVIEW 1 it had three
boolean outputs: >, =, <. In later versions of LabVIEW the comparison was split into three separate
nodes, each with a single boolean output, and that is the form comparisons take in these examples.

The core features are described in detail in this section, while section 5 summarizes the additional
language features included in subsequent versions of LabVIEW.
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3.1 Basic Data Flow

A diagram contains a set of source terminals, a set of destination terminals, a set of nodes, and a
set of signals (aka wires) which connect terminals to form an acyclic graph.
A node has a set of input terminals and a set of output terminals. The terminals can be located

on the top, left, bottom and right edges. By convention, node inputs are usually on the left edge
and outputs on the right edge so data flows from left to right.

A diagram executes by placing a data token on each of its connected source terminals and then
allowing the tokens to propagate along the signal to the destination terminal(s) that are either
node input terminals or diagram destination terminals. A signal has exactly one source terminal
but it may have more than one destination terminalÐfan-out is allowed, but not fan-in. If there
are multiple destination terminals the data token is replicated as necessary to create one for each
destination.
Whenever a node has received a data token on each connected input terminal it can begin to

execute (input terminals that are not connected have a default data token created for them). When
a node finishes executing it creates a data token for each connected output terminal. Those tokens
propagate along the signals as described earlier. Nodes that have no inputs may begin executing as
soon as the diagram begins.

A diagram finishes executing when all its nodes have finished and all data tokens have propagated
to all connected destination terminals of the diagram. Figure 4 illustrates multiple stages of the
execution of a simple diagram.

Fig. 4. Data Flow Example

Left: At the start of diagram execution, tokens are placed on each of the diagram’s source terminals. The

values of the data tokens come from the constant or the associated front panel control named "angle". Center:

The second node has executed, propagated its output, and two other nodes are ready to execute (and could

execute concurrently). Right: The last node executed and propagated its output to the destination terminal,

the front panel indicator, "tan(angle)", so the diagram has completed.

This much is simple traditional data-flow and is easy to understand. Data flows by-value: a node
sees only the values on its inputs, nothing about how those values were calculated. When a diagram
completes, every node has executed exactly once, and every signal has taken a single data token
from its source terminal and propagated it to its destination terminal(s)Ðno queuing occurs.
Nodes can be functional, where output values depend only on input values, or they can be

non-functional and have side-effects, such as file I/O nodes, a random number node, and timing
nodes. Multiple nodes may execute concurrently, so if they have side-effects it may be necessary to
create an artificial data dependency between them to ensure proper behavior.
While it is obvious from the description so far, it is still worth pointing out that there are no

traditional variables in data-flow. A signal is an anonymous variable that is assigned once and
cannot be referenced anywhere except by the nodes it is connected to. As a result, there are no
naming or scoping issues to deal with.

3.2 Data Types

Data types are represented by controls and indicators of various styles on the front panel of a
virtual instrument (VI), described in section 3.5. LabVIEW 1 supported these data types:
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• A Boolean, a true-or-false value, was represented as a toggle switch, push button, slide switch,
or LED display.

• A number was represented by a text display, a slide, a knob, a meter, or a strip-chart (showing
historical values).

• A string was simply a text box.
• A cluster, a collection of data types similar to a C-language "struct", was a box on the panel
containing one or more other data type displays.

• An array was a box on the panel containing an element data type display and showing an
index display as part of the box. An array of numbers or points could be displayed as a 2D
plot on a graph display.

All these types, including clusters and arrays, are passed by value. The array value contains its
size as well as the element data.

For readability, each data type uses a different wire pattern when drawing the signal connections
on the diagram. Numbers use a solid line, Booleans a dotted line, strings a squiggly line, and clusters
a tiny railroad track pattern. An array uses the same pattern as its element data type but increases
the thickness of the wire proportional to the dimensionality of the array.

LabVIEW 1 made no distinction between integer and floating-point numbers. All numbers were
stored as IEEE-754 extended-precision floating-point which made it possible to store an integer as a
denormalized float. A floating-point number was rounded when an integer was required, as for the
index input of the Array Index node or for the loop count. An integer operation on a denormalized
float did an integer operation, while a floating-point operation automatically interpreted and
converted a denormalized float into a normal float as part of its operation.

3.3 Primitive Nodes

The G language contains built-in nodes, called primitive nodes, for fundamental operations on the
built-in data types. These include Boolean logic, math, and string manipulation. Primitives exist to
bundle data elements together in a cluster or unbundle a cluster into its component data elements.
There are also array primitives for building and indexing arrays, replacing an element of an array,
etc.

There are no nodes for memory allocation or deallocation operations. That happens automatically
with the creation and consumption of data tokens during execution.

Beyond the fundamental data type operations, LabVIEW 1 also included nodes with side-effects,
such as a random number generator, tick count, and delay nodes, plus nodes for I/O to files, serial
ports, GPIB instruments, and interactive dialog boxes.

3.4 Structures

Structure nodes provide the control-flow that makes the language easy to use. From the outside,
each structure node behaves like any other node: all connected input terminals must have data
tokens before the structure can begin to execute, and when it finishes executing it produces a data
token on each connected output terminal.
A structure’s sub-diagram executes like any other diagram. The structure is responsible for

transferring the structure’s input terminal data tokens to the sub-diagram source terminals, and for
transferring the sub-diagram destination terminal data tokens to the structure output terminals. A
structure’s terminals are often referred to as tunnels since they connect on the outside as well as
the inside. If an input is not used inside a structure, i.e., the tunnel is not connected on the inside,
the input token is simply discarded (though it still must be propagated to the structure for it to
execute).
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3.4.1 Case Structure. Execution of the case structure is easiest to describe. The selector is a special
input terminal on the left edge of the case structure to which a Boolean or a number may be
connected (or a string in later versions of LabVIEW). For a Boolean selector, the case structure has
two sub-diagrams, or cases, labeled false and true. For a numeric selector, the structure has two or
more sub-diagrams labeled with the values that the sub-diagrams should handle. Figure 5 shows an
example of a numeric case structure with two cases.
When the case structure executes, it executes exactly one sub-diagramÐthe value of the data

token supplied to the selector chooses which. Once the sub-diagram is chosen, the tokens on the
case structure inputs are transferred to the sub-diagram source terminals and the sub-diagram
begins to execute. When the sub-diagram finishes, its destination terminal data tokens are moved
to the case structure output terminals and the structure finishes.

All sub-diagrams are essentially functions with the same "arity": all structure inputs are available
to every sub-diagram (although not every sub-diagram needs to use every input), and each sub-
diagram must produce a data token for each output.

Fig. 5. Case Structure Example

Left: sub-diagram 0 is displayed showing the calculation of the area and perimeter for a rectangle. Right:

sub-diagram 1 is displayed showing the calculation for a right triangle. Only one of the sub-diagrams is

executed, depending on the value of the selector (special input terminal with [?] glyph).

The case structure has become much more flexible since the original implementation, e.g.,
introducing a default case and adding ranges, as described in Section 3.4.1.

3.4.2 Sequence Structure. The sequence structure is another multi-sub-diagram structure, with
sub-diagrams, or frames, labeled 0 to n. It always executes all of its sub-diagrams in order, beginning
with 0 and ending with n, at which time the structure itself completes. Sequence inputs may be
used in any sub-diagram, but outputs must be assigned in exactly one sub-diagram.

A sequence structure is often used to control the execution order of nodes that have side-effects
but don’t have explicit data dependencies. The example in figure 6 shows a typical way of measuring
the execution time of some operation.

Use a sequence local to pass a value calculated in one sub-diagram to subsequent sub-diagrams.
A sequence local is a small box attached to the inside of the sequence structure. It may be assigned
(as a sub-diagram destination terminal) in only one sub-diagram and may be read (as a sub-diagram
source terminal) in following sub-diagrams, but not in any prior sub-diagrams (it can’t be read
before it is assigned).
Even though outputs are computed in earlier sub-diagrams, none are propagated outside the

sequence structure until the sequence itself completes, at which time all outputs are propagated.
The sequence structure was intended for ordering operations that had side-effects but no data

dependency. And the sequence local was a workable but somewhat awkward means for propagating
data from one frame to another. We failed to foresee how badly both constructions would be
abused! The sequence structure became a hack for users (typically with conventional programming
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Fig. 6. Sequence Structure Examples Top Left: sub-diagram 0 is displayed showing a call to get the current

time. Top Center: sub-diagram 1 is displayed showing the input array being sorted. Top Right: sub-diagram 2

is displayed showing another call to get the current time; after the sequence completes the elapsed time for

the sort is computed. Bottom: the same computation is shown rewritten using a sequence local.

experience) who didn’t bother to think in terms of data-flow and instead put a "program statement"
in each frame to effectively create a sequential language.

3.4.3 For Loop Structure. A for loop structure has a single sub-diagram and a special terminal
fixed at the upper left corner called the loop count (a small box with N inside). The for loop also has
a special terminal called the loop iteration (a small box with i inside) confined to the sub-diagram.
The loop iteration is a diagram source terminal of type integer and has the value 0 on the first
iteration of the loop, i.e., the first execution of the sub-diagram; it is incremented for each successive
iteration. The for loop structure completes after the sub-diagram executes N times, so it matches
the common construction in C: for(i=0; i<N; i++){ ... }.

The outputs of the sub-diagram may be configured in one of two ways: either to accumulate an
array of results from every iteration or to output the value from the final iteration.

Similarly, the inputs of the sub-diagram may be configured to index an array or to pass the entire
array into each iteration. When an input array is being indexed it is not necessary to wire anything
to loop countÐit is set implicitly by the size of the array. If multiple input arrays are indexed, the
value of loop count is the minimum of the array sizes. Finally, if a value is also directly wired to
loop count, it is used along with the array sizes in computing the minimum.
Figure 7 shows examples of "auto-indexing" input and output tunnels. It also shows some

equivalent constructions without auto-indexing.
If a two-dimensional array is passed into a for loop, the outer dimension will be indexed

and successive one-dimensional arrays will be passed into the sub-diagram. Similarly, if a one-
dimensional array is passed to an output tunnel, it will be accumulated into a two-dimensional
array.
Each iteration, or execution of the sub-diagram, must complete before the next one can begin.

This makes it a simple matter to time side-effects as shown in figure 8. The timer runs concurrently
with the beep function and delays the start of the next iteration.

Another construction available on a loop structure is called a shift register. A shift register is a
collection of tunnels: one on the right edge of the loop and one or more stacked together on the
left edge of the loop. The left edge tunnels are initialized at the start of the loop. Thereafter, before
the start of each subsequent iteration, the shift register is "shifted": the values on the left side are
shifted down to the next lower tunnel and the value on the right side is moved over to the top left
tunnel.

Figure 9 shows the simplest shift register. Shifting simply moves the value on the right tunnel to
the left tunnel.
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Fig. 7. For Loop Structure Examples

Top Left: The for loop executes its sub-diagram 12 times, and on each iteration a random number is computed.

The random numbers are accumulated into an array at the output tunnel. Note the thicker wire outside the

for loop indicating an array. Top Center: The for loop executes its sub-diagram 8 times accumulating an

output array of the values 0 through 7. The upper output tunnel is configured to just output its last value,

7. Top Right: The for loop executes its sub-diagram once for each element of the input array because the

input tunnel is configured to index its array. In this case there is no need to wire a value to loop count. Note

the different wire pattern for a boolean value. Bottom Left: Equivalent to the top left example without using

output auto-indexing. Bottom Right: Equivalent to the top right example without using input auto-indexing.

Fig. 8. For Loop Structure Timing Example

The for loop makes 3 beeps two seconds apart (the metronome primitive waits until the next multiple of

2000 ms, i.e., until the next even second on the clock). If the beep itself takes longer than 2 seconds to play,

the iteration will not complete until the beep finishes.

Fig. 9. For Loop Structure Shift Register Example

The for loop sums the elements of an array. The left side is initialized to zero. At the end of the first iteration

the right side has the value of the first element of the array. Before the start of the second iteration the right

side value is moved to the left side. The second iteration adds the value of the second element of the array so

the right side then contains the sum of the first two elements. When the last iteration completes the right

side contains the sum of all the array elements. (Note: if the array is empty the sum will be 0).

The left side of a shift register may be expanded to have multiple tunnels. Shifting occurs by
moving the values on the left tunnels down one tunnel and then moving the value on the right
tunnel to the top left tunnel.
Figure 10 shows a loop that calculates Fibonacci numbers. At the start the left tunnels are

initialized to 0 and 1. The result of the add is 1 and is placed in the right tunnel. Before the start of
the second iteration the top left value, 0, is moved to the bottom and the right value, 1, is moved to
the top left so that the left side now contains 1 and 0. The add again results in the value 1 and is
placed in the right tunnel. Before the start of the third iteration the top left value, 1, is moved to
the bottom and the right value, 1, is moved to the top left so that the left side now contains 1 and 1.
The add results in a 2 for the right tunnel. Before the start of the fourth iteration, the shift causes
the left side to contain 2 and 1, and the add produces a 3.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 78. Publication date: June 2020.



78:22 Jeffrey Kodosky

Fig. 10. For Loop Structure Shift Register Example

The for loop uses a shift register to iteratively calculate the n-th Fibonacci number. The left image shows

values from the first iteration and the next 3 images show values on the next 3 iterations. At the start the left

tunnels are initialized to 0 and 1. The result of the add is 1 and is placed in the right tunnel. Before the start

of the second iteration the top left value, 0, is moved to the bottom and the right value, 1, is moved to the top

left so that the left side contains 1 and 0 for the second iteration. The result of the add is again 1 and that is

placed in the right tunnel. Before the start of the third iteration the top left value, 1, is moved to the bottom

and the right value, 1, is moved to the top so that the left side contains 1 and 1 for the third iteration. The add

results in 2 for the right tunnel. Before the start of the fourth iteration, the shift causes the left side to contain

2 and 1, and the add produces a 3. (Note: the behavior of the shift register for n == 0 ensures fib(0) is 0).

It is possible for a for loop to execute zero iterations, e.g., if 0 is wired to loop count or an
indexed input array is an empty array. In this case the values for all the output tunnels are the
defaults for the data type of the tunnel: empty array, 0 for numeric scalar, false for Boolean, and so
on. Shift registers carry their values acrossÐif the loop executes zero iterations, the initial value of
the top-left tunnel is copied over to the right tunnel and becomes the output value.

3.4.4 While Loop Structure. A while loop structure has a single sub-diagram. It also has two
special terminals confined to the sub-diagram, loop iteration and loop condition. Loop iteration is a
diagram source terminal and has the same behavior as in the for loop structure. Loop condition is
a diagram destination terminal of type Boolean. If true is passed to it, then the while loop will
iterate and execute the sub-diagram again. If false is passed to loop condition, then the while
loop will complete and propagate all its outputs. Figure 11 shows a simple example of a while loop.

The same tunnel and shift register options that exist on for loops also exist on while loops. By
default, array input tunnels on a while loop are configured to be non-auto-indexing, although they
can be changed to auto-indexing. However, the while loop is not limited by the array size. If an
input array is indexed beyond its size the value used for those iterations is the default for the array
element data type, e.g., 0 for a numeric element.
Shift registers work exactly the same way as on a for loop.

Fig. 11. Figure 11. While Loop Structure Example

Compute how many steps are needed to reduce n to 1 using the calculation ni+1 = {
ni
2 if ni even , 3ni +

1 if ni odd }. It is an open mathematical question whether this loop terminates for all values of n > 1.

The while loop structure always executes its sub-diagram at least once, so it matches the C
construction: do { ... } while( ... ).
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3.5 Virtual Instruments (VIs)

A software module in LabVIEW/G is called a virtual instrument (VI). It consists of a diagram, a
panel, and an icon/connector. The diagram is sometimes called a block diagram to indicate it is the
top-level diagram of the VI, as opposed to a (sub-)diagram inside a structure node. The panel is
often called the front panel, in analogy to a physical instrument, and as a reminder of the associated
interactive capability for unit testing and debugging, for instance.
In traditional programming language terms, the diagram is the implementation of a function

while the panel and connector together define the formal parameters in the function prototype,
the connector basically giving the order of arguments and the panel defining names and types.
The icon serves as a graphical version of the function name. Each VI is usually stored on disk in a
separate file, but groups of VIs can be stored in a library file (LLB).

Figure 12 shows the relationships among a VI’s panel, diagram, and icon/connector. The inputs
and outputs of a VI are the controls and indicators, respectively, which appear on the panel, and
which are individually associated with a terminal location on the VI’s connector. Furthermore, each
control and indicator on the panel has an associated source and destination terminal on the VI’s
diagram. These associations are not represented graphically, but gestures in the environment make
it easy to create, edit and inspect the associations. Controls and indicators usually have unique
names and visible labels to make identifying the associated diagram terminal easier.

Fig. 12. Virtual Instrument Components

A Virtual Instrument (VI) consists of a panel with controls and indicators, a diagram containing source and

destination terminals associated with the controls and indicators, and an icon with an underlying connector

pane showing the terminal locations corresponding to the controls and indicators. When an icon is used in

another diagram, it represents a call to the VI.

When the icon of a VI appears as a node in a diagram it represents a call to the VI and is sometimes
referred to as a subVI node. The VI being called is often referred to as a subVI since it is being
called as a subroutine from the calling diagram. The icon and connector are graphically colocated,
with the icon on top (although the connector can be shown on top in the editing environment, if
desired). Signals on the caller diagram connect to the connector’s terminals, thereby passing data
into and out of the subVI.
Figure 13 shows one VI calling another as a subVI. It is not necessary to connect all the inputs

and outputs of a subVI. At execution time, unconnected inputs are supplied with a default value
defined by the subVI. Unconnected outputs simply discard the output data token returned by the
subVI. (Later LabVIEW versions introduced the concept of required inputsÐit is an error to leave
them unwired).

It is not necessary to have every control and indicator associated with a terminal on the connector.
Some controls and indicators can exist solely for use when executing a VI interactively, as opposed
to executing it as a subVI.
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Fig. 13. Calling a SubVI

A VI’s Icon/Connector used in a diagram represents a call to the VI, i.e., as a subVI or subroutine of the

higher-level diagram.

A subVI may be called from multiple callers, potentially executing concurrently. The subVI’s
configuration determines what happens. A VI may be configured to be reentrant or serially reusable
(non-reentrant) when used as a subVI. In the former case, each caller effectively executes its own
temporary copy of the VI, so multiple copies may execute concurrently. In the latter case, callers
of the subVI are serialized so that the VI executes on behalf of one caller at a time. This is useful
when the VI has side-effects such as file I/O or measurement I/O.

A VI’s icon may appear in its own diagram, in which case it represents a recursive call to itself. A
recursive VI must be re-entrant, of course. It should be noted that while reentrancy and recursion
were part of the original language specification, reentrant subVIs were not implemented until
version 2, and recursion was not implemented until much later (2009).

3.6 Executing VIs

Loading a VI file in the LabVIEW environment opens its panel in a new window. All the subVIs are
also loaded, although none of their panels is opened. The environment provides multiple ways of
navigating to the panels and diagrams of subVIs.

Any VI may be executed interactively from its panel window by clicking the run button (located
along with other buttons in the window frame). While it is running, a VI may be terminated early
by clicking the abort button. Commonly, a user will use the mouse and keyboard to enter values
into the controls on the panel, click the run button, and then observe the updated values on the
panel’s indicators as the VI executes.
The runtime engine in LabVIEW has always attempted to faithfully exhibit the parallelism in

the language. For instance, when multiple loops are executing concurrently, the execution of the
nodes on their sub-diagrams will be non-deterministically interleaved. This was originally done
via cooperative multitasking and today by using many threads on multicore processors.

An application in LabVIEW typically consists of a hierarchy of VIs, i.e., a top-level VI and a
collection of subVIs. The top-level VI is often designed to be controlled interactively as it executes,
and as such, it is commonly designed as a continuous loop, relying on the operator to stop it when
desired (often by clicking a Boolean button whose terminal is connected to the loop condition
terminal). The controls and indicators on the top-level panel are not associatedwith any terminals on
the connector since the top-level VI is not used as a subVI. Furthermore, the source and destination
terminals associated with the controls and indicators are located inside the loop. This makes the
controls and indicators responsive since they are read and updated on each iteration of the loop.

Figure 14 shows a simple top-level VI modeling a sine wave generator. Each iteration of the loop
reads the controls, so they are responsive during execution. When a false value is read from the
"on" control, the loop will end, completing the execution of the VI. The strip-chart is an example
of an indicator whose associated diagram destination terminal accepts a numeric scalar, but the
indicator has an internal circular buffer so that it can display the recent history on a graph.
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Fig. 14. Top Level VI

A top-level VI is often designed to be interactively operated. It typically contains an infinite loop which reads

and updates the panel controls and indicators. Here a sine wave is generated and displayed on a strip-chart

Indicator until the user clicks the "on" toggle switch control to its off indication. A slide control adjusts the

amplitude, and another adjusts the frequency of the sine wave as it is generated (sliding from high to low

frequency in this image).

The fact that every VI has a panel means that regardless of where it is used in a hierarchy every
VI can be executed interactively. This facilitates unit testing as well as debugging.

3.7 Uninitialized Shift Registers

The original specification required the left-side of a shift register to be wired on the outside of the
loop in order to initialize it. It was a fortuitous accident to discover there was a benefit of leaving it
unwired or uninitialized.
When the loop begins to execute the value of the left side of an uninitialized shift register is

whatever it was the last time the loop finished executing. An uninitialized shift register behaves
like a static variable in C. It is initialized to the default value (zero, false, empty, etc.) when the VI is
loaded but thereafter it retains the value last written to it.
Using an uninitialized shift register in a serially reusable subVI allows the subVI to hold onto

state data between executions, and so it can be used to transfer data between concurrent loops
as they are executing. Figure 15 shows a stateful subVI which models a global variable. One loop
writes to it, while another loop reads from it. A slightly more complicated stateful subVI can model
a queue or a stack or other data structure.

Fig. 15. Stateful SubVI

Left: A VI with two concurrent loops, one writing to a stateful subVI, and the other reading from it. Right: The

serially reusable stateful subVI showing its use of an uninitialized shift register to hold on to state information

between (serialized) calls from each loop. The subVI loop executes only once per subVI call (because false is

wired to the loop condition terminal); the only reason the loop is needed is to hold onto the shift register.
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A serially reusable stateful subVI is an interesting construction. The subVI is the interface to the
state data it contains. The data is protected because the subVI allows access to it by only one caller
at a time. In this respect it resembles a monitor in Concurrent Pascal [Hansen 1975].

3.8 Data Logging and Retrieval

After a VI executes, it is possible to take a snapshot of the data on the VI’s controls and indicators
and store it with the VI. The panel effectively defines a relation, and the data stored is a database
recording the executions of the VI. This is not necessarily a useful feature for all VIs but for those
that are top-level tests of a device-under-test (DUT), this database provides a simple way to record
test results.

Using the File menu, a user canmanually take a snapshot, or configure the VI to automatically take
a snapshot each time it completes. Also using the File menu, previously recorded data may be viewed
on the panel. A special variant of the subVI node can be used on the diagram to programmatically
retrieve recorded data.
The original implementation suffered from many shortcomings, not the least of which being

an edit to the panel potentially making all the recorded data irretrievable. The data snapshots
were stored in the same file as the VI itself which resulted in another set of issues. Some fixes and
improvements were made in later versions of LabVIEW but the idea never gained much traction
and there was no investment to further develop the idea.

4 HISTORY - PART 2: BEYOND LABVIEW 1

After LabVIEW 1 shipped, for a time, our development efforts continued much the same as during
the beta test period: customer support, bug fixes, and some incremental improvements. But we
faced a crucial decision.

Our target market was test engineers automating a few bench-top instruments, but most seemed
to ignore LabVIEW, either because LabVIEW was too different or because the Mac was considered
too much of a toy. On the other hand, scientists, engineers, and researchers in a wide variety of
fields were intrigued with LabVIEW, seeing it as a way they could accelerate their workÐbut they
needed LabVIEW to handle larger applications and deliver higher performance.
We had to decide if we should keep our original focus on the test bench or expand the scope

of our efforts to embrace the broader market we were seeing. We chose the latter, even though it
meant redoubling our development efforts.
LabVIEW was the largest project we had done at NI and represented a huge R&D investment,

but now, before there was any return on that investment, we were committing to an even larger
investment. We would increase the size of the team and start development on LabVIEW version 2,
and it would contain a compiler to provide performance comparable to a C compiler.

After LabVIEW 1 was released, Jack and I attended several conferences of the IEEE Symposium
on Visual Languages, but it wasn’t until 1991 that we had the opportunity to present our work on
LabVIEW [Kodosky et al. 1991].

4.1 LabVIEW 2

The LabVIEW 1 execution system was a literal implementation of data-flow, which was fine for
most I/O and computation, but which caused excessive data copying, as discussed earlier.

A compiler would be useless unless we could figure out how to reduce the copying. For example,
when a signal forks to multiple destination terminals, instead of copying the data, all destinations
could reference the same immutable data at the source terminal. A destination node would have to
copy the data only if it needed to read the input and create a modified copy as a new immutable
source on its output signal. Placing the copy responsibility on nodes, rather than signals, could
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reduce copying. This strategy would be a new implementation of our data-flow, but the semantics
of the language would remain unchanged.
In the Array Element Replace (AEltRep) example described in section 2, if it were possible to

determine that the input was the sole active reference to the upstream array, then the output could
become the active reference to it and alter the array data, rather than making a copy. If the input
was not the sole active reference, but the other references were read-only operations and they
could be scheduled to complete before the AEltRep node, then at the point the AEltRep node was
scheduled, the input would be the sole active reference as before.
We called the generalization of this concept the "in-place" algorithm. Jack and I spent weeks

exploring how the idea could work through a hierarchy of structure nodes and subVIs, in the
presence of concurrent execution, and what the scheduling implications would be.
We never considered pushing the copy problem back into the user’s realm. Users were excited

about using LabVIEW because it let them escape the great bane of traditional programming: memory
management. We believed we had to do whatever it took to retain that language feature.

When we convinced ourselves we had explored all the cases, Jack and I spent a weekend filling
whiteboards with example diagrams, annotated with blue dots and yellow arrows, explaining a
progressive local algorithm for determining "inplaceness" and scheduling dependencies.
Monday morning, Steve and Jeff P. began to implement the algorithm, fixing mistakes and

refining further as necessary. The first version of the algorithm shipped in LabVIEW 1.2 and gave
us the confidence that we could eventually achieve our compiler performance target.
The in-place algorithm was, and still is, one of the most complicated aspects of LabVIEW. One

reason is that, rather than a general algorithm with a few special cases, it is more like a large
collection of special cases that rhyme in a general way. The algorithm continues to evolve and
improve to this day. In 2009, Dr. Ken Kennedy and some of his students at Rice University confirmed
for us that our local incremental algorithm compared favorably with a global optimization algorithm.
While our algorithm dealt with more complex data types, their analysis provided insights that led
to further improvements [Abu-Mahmeed et al. 2009].

During the development of the in-place algorithm and the G compiler, Apple introduced the Mac
II, an open machine with NuBus slots, which allowed National Instruments to develop a line of data
acquisition (DAQ) cards. The new machines also had large color monitors, higher performance,
and much more memory.

Larger memory meant users could make larger programs, which then showed up a host of other
limitations in LabVIEW. Basically, the whole architecture of the product broke down with these
larger programs. The inability to move an icon once it was wired, an editing nuisance in small
programs, became a severe obstacle in the creation of larger programs.

It was clear that LabVIEW 2 not only had to eliminate the performance problem by incorporating
a compiler but also had to eliminate the myriad limitations in the editor, loader, linker, and so on,
by undergoing a complete rewrite with a new larger-scope architecture.
IBM PCs were still limited to 16-bit applications and still didn’t have the necessary graphics

capability. So, we forged ahead on the Mac. The development team grew, but our culture remained
the same, with the same level of excitement, enthusiasm and passionate debate. But now, our
arguments were informed by data: abundant application examples and user feedback.

The hardest part of developing version 2 was stopping. We came back from every trade show and
customer visit with a huge list of requirements and suggestions, many of which were so valuable
across the board that we had to get them into LabVIEW 2. At the same time, there was mounting
pressure from ourselves, the rest of the company, and the customers, to release this new version. We
also didn’t help matters by demonstrating new features as soon as they appeared to workÐthere is
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an incredible amount of work between the first working case and a fully functional robust feature.
Release or keep building? The anxiety level on the team soared.

We set a target completion date in early 1989 and marketing developed a campaign to coincide
with the release. We blew past that date, and the campaign had to be scrapped. When the product
finally shipped in January 1990, marketing had to create a whole new campaign to reflect the latest
LabVIEW appearance and functionality.

In order to generate efficient code, we felt it was necessary to expose a family of numeric types,
the usual signed and unsigned integers of various sizes and floating point numbers of various
precisions, but whether all this added complexity helped our users was dubious. From a usability
perspective, it was clear the built-in primitive functions had to be polymorphic, but creating
polymorphic subVIs was beyond our ability at the time (see section 5.3). The polymorphism of
primitives extended beyond just numeric type, e.g., Add could add a scalar to an array, a point (pair
of numbers) to an array of points, two arrays element by element, and so on.

We were very proud to have preserved the IDE user experience from version 1. There was richer
feedback during editing, and the compiler was almost completely hidden. The user could still edit,
then click the run button, and experience only about a 1-second delay before the VI started to
execute. VIs are compiled individually, and automatically prior to saving, so most of the time there
is only a single VI to compile when the run button is clicked.
The performance of the compiler itself was important because we didn’t want to introduce a

big delay into the edit-run cycle users had relied on for rapid prototyping and debugging of their
measurement applications. The performance of the generated code was also important, but we
deemed it acceptable if it was within a factor of 2 or so of the comparable C code.
We observed that a VI, with its panel and diagram, was a potent construction, and we reused

it in multiple situations. Even when only a portion of its capability was needed, it was still more
efficient to reuse the VI construction than to create specialized code. We made the panel of subVIs
part of the run-time environment to let users create dialog boxes. We used a special internal VI as
the clipboard, able to host items from the panel and from the diagram. We used a panel-only VI as
the custom control editor and a diagram-only VI to display the hierarchy of all VIs in memory.
VIs are created and edited within the LabVIEW IDE, but customers need to deploy complete

applications on other machines without an IDE, so with LabVIEW 2 we added functionality to build
executable files.

4.2 Porting to Windows

Being restricted thus far to the Macintosh platform was very fortunate. It gave us the opportunity
to develop and refine LabVIEW, incorporating 6 years of user experience and feedback, while our
competitors ignored us.

Shortly after we released LabVIEW 2, Microsoft releasedWindows 3.1, which was still just a 16-bit
OS but it could run on a 32-bit capable 386 processor. Appendix E of their documentation described
a mechanism by which a 32-bit application could run under 16-bit Windows. Here was the hook we
needed to get LabVIEW to run on a PC. The mechanism involved writing and debugging thousands
of lines of assembly code with no tools to help other than hex dumps. It was like programming
back in the mid-1970’s but we persisted.

LabVIEW was written in C, so, theoretically, it should compile on a different machine, but there
were enough gratuitous differences between the Mac and PC compilers that major editing would be
required. More significantly, there were major differences in the operating system calls and graphics
toolboxes, not just in the APIs but in their fundamental architectures, so major re-architecting of
the LabVIEW code would be necessary. Finally, since LabVIEW now contained a compiler, it would
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be necessary to write another code generator to target the x86 instruction set in addition to the
one targeting 68000.
There were two routes we could have taken to get LabVIEW to the PC. One was to create a

copy of the source code and modify it as necessary to port it to the PC, resulting in two different
sets of source code that would have to be maintained. The other was to make LabVIEW portable
by splitting the code into a platform specific piece and a platform independent piece. This latter
approach would be more complicated, but the result would be more valuable and more maintainable.
We took the long view and chose the harder path.

Because the tools for developing 32-bit applications on the PC were so poor at the time, we
decided that it would actually save time by targeting three platforms as we re-architected LabVIEW:
Mac, PC, and SUN. This would also give us greater confidence that the resulting architecture really
was portable across multiple platforms.

As we developed this portable version we would test and debug on the Mac and the SUN first
where the tools were good, and then we would test on the PC. This flushed out bugs in the platform
independent portion of the code, giving us a reasonable chance it would just work on the PC.
Once again, development took much longer than anticipated, but this time we came up with a

clever compromise. Rather than wait until the software was completely polished on all platforms,
we decided to accelerate the productization of the PC version and release it ahead of the other two
platformsÐeven if it wasn’t as fully featured as planned. We reasoned that it would take new users
on the PC version a few months to reach the sophistication and expectations of the Mac users,
giving us more time to complete all the features. So, in the summer of 1992 we released LabVIEW
for the PC to great fanfare, including 57 trade magazine front covers to announce it. We called
it version 2.5 because we were reserving the number 3 for the fully complete and fully portable
LabVIEW that we would release on all three platforms.
It took another year before we finally completed the fully portable LabVIEW, version 3. We

were so thorough in our efforts to make it portable that it was possible to move a VI file from one
platform to another without users doing any conversion. In fact, our binary VI files were more
portable than simple text files with their maddening end-of-line character differences.

Platform independence caused us to extend the language: we added a path data type in order to
have a platform independent way of specifying a location in the file system.

Other major features added in this release included debugging probes for wires, type definitions
(a panel-only VI which defined not only data type but also appearance), enumerations, and SI units
as an extension of the type system for numerics. There was also a way to create subVIs which were
polymorphic with respect to units.

Gary W. Johnson of Lawrence Livermore National Labs was an avid LabVIEW user since version
1. He became the first to write a book on LabVIEW [Johnson and Jennings 2001]. Gary’s book not
only describes LabVIEW and how to use it effectively, it includes a wealth of information about
how to make good electrical measurements, and many in-depth examples. Since that time, many
other books have been written about LabVIEW and its use in different applications [Chugani et al.
1998; Paton 1999; Travis 2000].

4.3 The Unique Concerns of a Graphical Language

Creating a graphical language editor is far more complex than a text language editor. Selecting
and moving nodes and wires on a 2-D canvas requires much more code than selecting and moving
text. The added complexity applies to every aspect of the language. "Adding a keyword" becomes
"implementing a graphical UI, with affordances, menus, and dialogs."

Users expected many more features than we had actually implemented. For a long time, it seemed
like LabVIEW releases were just catching up to user expectations. New versions improved the
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editor, enhanced controls and indicators, improved the compiler and runtime engine, expanded our
standard libraries, and of course, fixed bugs.

Our graphical language came with pros and cons. One of its positives is in parallel programming.
LabVIEW 5 implemented multithreading and the seamless support of multiprocessor machines.
With a dual processor machine, we were now able to deliver the true parallel execution that was
expressed in the block diagram. Customers could get an automatic performance improvement by
using a multiprocessor machine without making any changes to their programs. A few years later,
we would advance the compiler again to compile directly for FPGA, something most languages still
cannot do today.

One of the language’s negatives is diff: the ability to compare two versions of source and integrate
changes. LabVIEW 5 introduced a diff tool to compare two VIs, or two versions of the same VI, and
see the differences displayed graphically. Diffing two graphs is considerably harder than diffing
text. Merge is more difficult stillÐsomething LabVIEW could not do until version 8.0 in 2005, and
automerging changelists still remains unimplemented in 2018.
These are just a sample of the issues unique to a graphical language. We try to follow industry

practices and use off-the-shelf tools, but regularly we find we have to invent our own solutions.

4.4 Customer Feedback

LabVIEW was an expensive and unique product when it was introduced and many potential
customers were even unfamiliar with the Macintosh mouse and graphical user interface. They
would need to see demonstrations of LabVIEW and have some hands on experience with it and
the Mac before purchasing. Consequently, our sales and marketing people learned to be proficient
at demonstrating the Mac and LabVIEW, conducting seminars and teaching about usage and
capabilities in training sessions. All of our sales and marketing people were engineers, so they
often enjoyed this opportunity. In fact, many field sales people would help customers with their
current projects when they made their recurring sales visits. There were also application engineers
who provided telephone support as well as example code when necessary. These early customer
interactions led to lots of high quality feedback for the LabVIEW developers.
In addition to the sales and marketing interactions, developers also had opportunities to visit

customers, conduct demonstrations at various trade shows, and assist presenting training classes.
Informal user groups began to form in the early 90s, so National Instruments started to hold an
annual conference. This was an efficient and exciting way for LabVIEW developers, as well as the
rest of R&D, to meet with lots of customers, and for customers to share their experiences with each
other.
Over the years, all these activities have grown and proliferated. Applications Engineering has

expanded to include specialists with many years of experience, not only with LabVIEW but with our
I/O products as well. Another level of support exists with Systems Engineering. Theses are engineers
with domain expertise in various fields from mechanical to electronic, to RF measurements, who
can help customers in various industries, and who can create proof-of-concept applications in
pre-sales situations. There are now over 1000 Alliance Partners2 who use LabVIEW and our I/O
products to create custom measurement systems for customers in many different industries.
Nowadays, in addition to user groups such as the LAVA user group3, there are many online

discussion forums, most prominently the NI LabVIEW forum4. An interactive Idea Exchange5

helps developers at NI prioritize the many feature requests that are suggested. There are many

2https://www.ni.com/en-us/alliance.html
3https://lavag.org/
4https://forums.ni.com
5https://forums.ni.com/t5/LabVIEW-Idea-Exchange/idb-p/labviewideas
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LabVIEW Champions6 who contribute their knowledge and experience answering questions and
posting examples in the forums. LabVIEW users can demonstrate proficiency at multiple levels, the
highest being Certified LabVIEW Architect (CLA)7, for which there are multiple conferences per
year worldwide. A recently established and noteworthy venue is GDevCon8. Most of these internal
and external LabVIEW users are not shy about sharing their impressions, expectations, and ideas
with our developers.

Perhaps the feedback that had themost significant impact on the evolution of LabVIEW came from
users at the Ecole polytechnique fédérale de Lausanne (EPFL), a research institute and university in
Lausanne, Switzerland. They ran a lab teaching control theory and applications, an iconic example
being the balancing of an inverted pendulum. For these applications they needed to have real-time
deterministic execution, and they urged us to make a real-time version of LabVIEW. In fact, they had
reverse-engineered some parts of LabVIEW and our I/O drivers in order to achieve deterministic
control using LabVIEW 2 on the Mac! We were astounded by their accomplishment but there wasn’t
any practical way for us to do something similar in the product in the near term. It took another 5+
years for us to develop real-time LabVIEW and the I/O hardware to support it (see section 4.6).

4.5 Major Language Developments Through 2004

At any given time, many changes and additions were in development. When it was time to release
a new version, those features that were deemed ready-for-prime-time were enabled. Sometimes we
allowed select users to turn on disabled features so that they could experiment with them and give
us feedback on further development. As a result, it isn’t always exactly clear which version a new
feature should be ascribed to, so the description that follows is an approximation.
In the LabVIEW 4 timeframe, I succumbed to customer pressure and added something I have

regretted ever since: globals. LabVIEW already had a mechanism for persisting data and allowing
access from multiple locations, namely, a serially reusable stateful subVI. It automatically provided
protected access to the data and could model a global or a queue or a stack or any other data
structure. But it took effort to create such a VI for each use case.
Users clamored for an easier way to create a simple global, so I reused the VI construction,

defining a global-type VI containing an unused diagram but whose panel controls were globally
accessible from a special type of node. Of course, the node had to implement another mutex
mechanism since it directly read or wrote a control’s data. So, we paid for my folly with more code
and more complexity. It was definitely easier to create a global, but as anyone could have guessed,
it was overused and abused and it led to lots of support headaches ever since.
LabVIEW 5, released in 1998, was one of those major milestone releases. On the editor front,

it delivered on the long awaited and most-requested feature: undo. We coyly demo’d it in the
middle of another VI example we were constructing on stage at our annual user-group meeting
and convention (now known as NIWeek, but dubbed back then by Dr. Baroth at JPL as "LabVIEW
Woodstock"). The demonstrator "accidentally" deleted a section of the diagram, but nonchalantly
hit undo, and continued with his example. The whole room erupted into thunderous applause and
cheering.
Since the early 90s, customers expressed interest and excitement in using Apple events, a

communication mechanism of the Open Scripting Architecture (OSA)9, to have another application
cause the execution of VIs in LabVIEW. Starting with LabVIEW 2, we built a number of APIs to

6https://forums.ni.com/t5/LabVIEW-Champions/ct-p/7029
7http://sine.ni.com/nips/cds/view/p/lang/en/nid/13477
8https://www.gdevcon.com/
9https://developer.apple.com/library/archive/documentation/LanguagesUtilities/Conceptual/
MacAutomationScriptingGuide/HowMacScriptingWorks.html
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find and execute VIs in response to Apple events and other messages, including programmatically
from within a VI. By LabVIEW 5, we were able to consolidate these ad hoc mechanisms into a more
native one. LabVIEW 5 introduced the VI reference datatype and the ability to call a VI through
its reference. A VI reference was strongly typed and it could model a first order or higher order
function. Most uses of VI references are just first order functions, but they enable much more
dynamic behavior including selecting, loading and executing a VI at runtime.
With the increased use of networking around this time, the need for distributed test and mea-

surement systems arose, and we needed a way to connect distributed LabVIEW instances. The
VIServer infrastructure was introduced, which allowed one LabVIEW instance to talk over the
network to another and allowed VIs to make remote calls to VIs on other machines.
LabVIEW 5 was a significant advance in multiple dimensions. It garnered 82 trade magazine

front covers announcing its arrival.
Until this point, LabVIEW supported purely data-driven programming. To be responsive to a UI

event, such as the movement of a slide control on the VI panel, a diagram would have to poll the
value of the control in a loop. In order to not consume too much processor time, the polling loop
would typically include a Wait node. As a result, event-driven elements of test and measurement
systems were tedious and difficult to build. This led us to introduce the event structure in LabVIEW
6, which makes it much easier to create applications that responded to a variety of front panel
activities as well as other, user-defined events, essentially supporting an event-driven programming
paradigm embedded within data-flow. The event structure works well, but I’m still disappointed
that we haven’t been able to devise a data-flow representation of the source of events and their
queuing.
Soon after VI references were added, we began to extend the VIServer by introducing strictly

typed references to other objects in LabVIEW such as panels, controls and indicators, diagrams,
nodes and structures, terminals, and wires. This enabled a VI to programmatically inspect, and
ultimately modify, another VI. This capability wasn’t added in response to any specific customer
feedback, we just decided it could be a useful capability, though just for internal use. LISP was an
early influence for us and because data and programs were both s-expressions, it was easy for a
program to create another program. It was intriguing to give LabVIEW a similar capability, which
we dubbed scripting. Scripting remained a hidden feature until 2010.

State machines are convenient for describing the behavior of certain parts of an application,
e.g., communications protocols and user interactions. Since the beginning, customers had been
implementing state machines by using a case structure inside a while loop. Each case contained
the code for a corresponding state, including the code to determine the next state. The index of the
next state is output from each case and wired to a shift register so it can be used to index the case
structure on the next iteration of the loop. While this is a fine implementation strategy, there is no
direct representation of the state diagram itself. A user would typically draw the state diagram on
paper and then implement it in a VI diagram. Sometime later when a modification was needed,
usually after the paper was lost, the user would have to reconstruct the state diagram from the
implementation, modify the state diagram, and then modify the implementation.
We introduced an add-on package with LabVIEW 6 to address this. The State Diagram Editor

(SDE) toolkit is used for designing and editing state diagrams in a separate window while enforcing
consistency with the LabVIEW diagram implementation by using the VI Server scripting capability.
The state diagram is saved as part of the VI, and the separate editing window can be reopened to
edit it when necessary.
The SDE toolkit never achieved widespread adoption, although there was a small group of

customers who valued it. A state diagram is essentially an elaborate control structure with its own
graphical representation, which is somewhat orthogonal to the data-flow diagram, so integrating
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the two is challenging. While we have had some ideas on how to improve the SDE, we have not
invested further effort to do so yet.

By this time in LabVIEW history, there were many customers with teams of developers building
large applications consisting of multiple thousands of VIs. These customers needed ways to ensure
consistency among their developers. They had their style guidelines and conventions, but they
needed automated ways to make sure they were followed. We obliged by introducing the VI
Analyzer toolkit in LabVIEW 7, a G-based framework that enables users to create VIs which can
inspect other VIs (by internally using the VI Server scripting infrastructure) to verify that proper
conventions are followed, e.g., names and colors of controls, etc. Equivalent to StyleCop for C#, the
VI Analyzer was pluggable by users with custom analysis even in its first release.

Engineers who had experience with simulation diagrams complained about the excessive wiring
when using a shift register as compared to the [1/z] node they were familiar with. So, it was a simple
matter to introduce the feedback node as a convenient alternative to a shift register. However, it
does precisely what we sought to avoid when we designed the shift register: it creates a cycle in
the data-flow graph and requires a special node firing rule: unlike every other node in LabVIEW, a
feedback node propagates its output before it receives its input. While the feedback node can be a
more compact representation, its unusual behavior currently restricts where it can be used (e.g., it
cannot be in a subVI connected to an output because there is no concept of a subVI propagating one
of its outputs before executing). The feedback node has the potential to undermine the advantages
of LabVIEW’s data-flow if it is abused, particularly if we expand the domain where it can be used.
So far, that hasn’t happened.

4.6 LabVIEW RealTime

Our goal with LabVIEW was to simplify the programming of test and measurement applications
which typically involved controlling instruments to generate a stimulus signal and measure a
response signal, as described earlier (section 2.2). Very soon after the introduction of LabVIEW,
however, we heard from some customers that LabVIEW’s graphical data-flow was applicable to
control applications as well. In these applications, a measurement is made and compared to a
desired value, and then an output is generated to reduce the difference when the next measurement
is made. A key characteristic of control applications is the need to execute deterministically and
in real-time so that the system remains stable. While we had had experience with some real-time
operating systems, we were not very knowledgeable about control systems. One customer at the
Ecole polytechnique fédérale de Lausanne (EPFL) in Lausanne, Switzerland, went so far as to
demonstrate a real-time control application using LabVIEW 2 running on the Macintosh OS, even
though that was not a real-time OS. They implemented a clever interrupt service routine to achieve
the determinism, but we weren’t able to figure out how we could incorporate something like that
into LabVIEW so we weren’t able to help.

However, in the LabVIEW 4 timeframe, we initiated a skunkworks project to make a deterministic
real-time version of LabVIEW. The goal was to extract the execution framework from LabVIEW and
have it run on a small real-time kernel on an embedded processor while optionally communicating
with a host processor. A VI’s compiled code would be deployed to the embedded processor while
its panel would remain in the IDE on the host.
When the host was connected to the embedded processor, it would be possible to operate the

panel as well as view and debug the diagram of any downloaded VI. However, the host could be
disconnected, allowing the application to run deterministically and unsupervised. It could continue
to run even if the host OS crashed.

We built a special data acquisition card with a PC chip set on it and enough memory to host an
OS, the LabVIEW Runtime engine, and a reasonably sized application. Not long after LabVIEW 5
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shipped, we released LabVIEW RealTime along with NI’s first intelligent data acquisition hardware.
It successfully delivered real-time deterministic performance with loop times in the millisecond
region. In the LabVIEW 7 timeframe a variation of the while loop structure was introduced: the
timed loop. The timed loop is a while loop tied to a hardware clock, which enables precise
scheduling of time-critical loops under LabVIEW RealTime (see section 5.2.2).

4.7 LabVIEW FPGA

I heard about FPGAs from our hardware designers who were using them in our data acquisition
products. The idea of a software-defined circuit was intriguing, and I recalled the circuit diagrams
Jim included in the original LabVIEW patent application. I set up some joint brainstorming sessions
with the hardware designers to explore the idea of compiling a VI diagram to an FPGA. We figured
out VHDL constructions that would implement the behavior of structure nodes and basic data-flow.
I wrote the first code to generate VHDL from a VI and the others handled the process of getting it
compiled and deployed to the FPGA.

By 1997, we had made enough progress that we were able to demonstrate the first barely working
prototype at NIWeek. It was clear that a lot more work would be needed to make a product, but
the concept was viable. Six years later we released LabVIEW FPGA along with our first user-
programmable FPGA-based data acquisition board. Users did not have to know VHDL in order to
create a diagram that ran on an FPGA. They could achieve deterministic performance with loop
times in the microsecond region.

4.8 The Modern LabVIEW Versions: 2005 to the Present

The LabVIEW team tripled in size leading up to the release of version 8. The new team members
had worked together on other projects and brought their prior perspectives with them, instead of
adapting to the perspectives and philosophies of the existing LabVIEW team. The culture shifted
and curtailed the vision of what was possible with LabVIEW.

A large amount of code was added from other code bases which did not leverage existing code or
follow its design strategy. As a result, it severely bloated the LabVIEW code and greatly reduced the
stability of the editor. LabVIEW 8 was released in 2005 but it took several 8.x versions over the next
few years to return to a semblance of the reliability and stability we had enjoyed with LabVIEW 7.

LabVIEW 8.6 was the last version to use the X.Y numbering scheme. Thereafter, versions were re-
leased on an annual basis and labeled with the year: what would have been version 9.0 conveniently
became LabVIEW 2009.

LabVIEW 8 represents the transition to modern LabVIEW. It introduced a much-needed project
feature to handle the growing scale of applications. The project window could organize and manage
the hundreds or thousands of VIs in a large application, along with the required I/O hardware
resources.

New editor features included find and replace, which did the graphical equivalent of the epony-
mous text editor commands; and Quick Drop, a fast way to select nodes using the keyboard instead
of navigating through palettes with the mouse. The merge ability mentioned earlier, was introduced
at this time.
On the language front, new structures were added: disable and conditional disable structures

can "comment out" code and conditionally compile code based on the deployment target; the
in-place element structure not only provides a powerful hint to the compiler, but it also helps
understandability in much the same way that the C construction: A[2*i+1] += <expr>; is much
easier to understand than A[2*i+1] = <expr> + A[2*i+1];.

On the compiler front, code was optimized by constant-folding, and memory usage was reduced
by lazily allocating re-entrant VI data-spaces as needed rather than statically preallocating them.
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Also on the language front, new datatypes were added: 64-bit integer, matrix, fixed-point. The
most significant addition here, however, was LabVIEW Classes. In keeping with G’s data-flow, all
objects are passed by-value. Classes are discussed in more detail in section 5.1.7.
Recursion was always part of the language definition, but it hadn’t been implemented in the

run-time engine, so if a user tried to place a VI’s icon inside its own diagram LabVIEW reported it
as an error. Recursion was finally implemented as a feature in LabVIEW 2009. That release also
contained the parallel for (parfor) loop, an extension to the for loop which allowed iterations to
run concurrently under certain conditions.

In 2010, scripting was finally exposed as a supported feature. Users could now build sophisticated
tools and frameworks to automate more of their development and deployment work. Why did we
wait so long to expose scripting? The short answer is that we were worried it might become a
support nightmare. Scripting is complicated because one has to learn about LabVIEW’s internal
object architecture, and then the programs one makes with scripting are far removed from the
typical test and measurement programs. In retrospect, our concerns were unfounded. There were
no excessive support issues with scripting. Those customers who needed it had the skills to use it,
and conversely, those who didn’t also didn’t find scripting to be an appealing feature.
The original compiler in LabVIEW 2 generated machine code for the 68K processor. When

LabVIEW was ported to Windows and Unix, the code generator incorporated a layer of abstraction
which allowed it to generate code for x86 and Sparc as well (other processors were added later but
none resulted in commercially successful releases of LabVIEW). Over multiple versions of LabVIEW,
we developed a new compiler with a more formal intermediate representation that could support
optimizing transformations. This new compiler used LLVM for code generation. Both compilers
were delivered with LabVIEW for several releases. First, the legacy compiler was the default, then
the new one was default, and finally the new one was the only one shipped.

We maintained an annual release schedule for LabVIEW so that we would have new features and
capabilities to announce at our annual NIWeek conference. Each release included many incremental
but useful improvements to the environment, as well as some language additions. However, one of
them, called data value references (DVRs), is about as contrary to by-value data-flow as one can
imagine: a buffer is allocated and passed around by reference. The user has to keep track of the
allocations and deallocations in order to avoid leaking memory, although LabVIEW is at least able
to prevent access to a deallocated buffer. Using DVRs can achieve higher runtime performance in
some situations, but they may end up being abused as much as globals and lead to as many support
issues.

The LabVIEW environment has a Tools menuwhich includes items that invoke various operations
such as re-compiling a directory of VIs, configuring source code control, and launching the library
manager, among other things. The Tools menu is populated at LabVIEW launch time from a
directory of VIs which are the programs that implement these operations. For a long time it was
possible for customers to create a custom application and add it to the Tools menu. When scripting
was exposed, it greatly expanded the capabilities of the operations customers could add to the
LabVIEW environment. However, it was in 2015 when we made a step-function advancement in
the ability to extend the LabVIEW environment.
In the LabVIEW editor, the attributes of various items (controls, nodes, wires, etc.) can be

interactively configured through right-click popup menus. These popup menus also contain various
shortcut operations, e.g., popup on a node’s input terminal to create and wire up a constant. In
LabVIEW 2015, we introduced popup menu plugins. A popup menu plugin is simply a VI which
adds an item to a context-sensitive popup menu and uses scripting to implement the action. The
LabVIEW editor has a built-in wire popup menu item to insert a node. A node popup plugin was
created to do the inverse. The plugin was faster to develop than making changes to the LabVIEW
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IDE source code and could be accomplished by a knowledgeable user as opposed to an internal
developer. We are not able to address all the suggestions customers make for improving the editing
experience, but now it is possible for scripting-savvy users to do this themselves in G. The plugin
mechanism performs very well (it isn’t even necessary to relaunch LabVIEW when modifying a
plugin) so most of the time there is no point to moving the operation internal to the IDE.
It is possible to create diagrams that have concurrent loops which communicate, but since

the beginning, I have been dissatisfied with LabVIEW’s available techniques for doing this. The
communication could be accomplished using a shared stateful subVI, or a shared queue reference
with one loop enqueuing and the other dequeuing, or even with global variables, but in each case,
there is no obvious graphical depiction of the communication. This gnawed at me for 20 years
before I began to experiment with an idea, and it took another 10 years to actually implement
it, but in LabVIEW 2016 we introduced channels (or channel wires as some prefer to call it). The
concept seems obvious in retrospect, so I am still puzzled why it took so long.
Channels use a uniquely styled line, distinct from the usual wires in a diagram, to show the

connection from the writer inside one loop directly to the reader inside the other loop. Internally,
they employ a shared reference to a stateful subVI which can implement a stream (single-writer
single-reader queue), a tag (multiple-writer multiple-reader datum), or a messenger (multiple-writer
multiple-reader queue). I consider channels to be the most significant addition to the representation
of data-flow in G since LabVIEW 1.

As of this writing, channels are still in the early phase of adoption, but they hold the promise of
greatly improving the understandability of applications composed of communicating concurrent
loops. I expected, perhaps naively, that the rate of adoption would be faster, but a couple of factors
may be slowing it down. New users probably didn’t notice channels because it is only now that
we are beginning to teach about them in the LabVIEW training classes. Existing users know, and
are comfortable using, the previous techniques so the increased data-flow visibility afforded by
channels is not compelling enough to switch over. To be fair, there is a level of flexibility that can
be achieved using queue references which is not yet available for channels, and some users need
that. On the other hand, that flexibility may also further obscure the actual communications taking
place (e.g., when a queue reference is stored in some data structure and used later).
When we were preparing the documentation on channels, we did an experiment to evaluate it.

We conducted two classes, one with university students new to LabVIEW and another with students
who had a couple years experience. The new students picked up the concept easily and completed
the example problems with minimal assistance. The experienced students struggled a little more. It
seems they had internalized the LabVIEW data-flow model too well: if two nodes are connected by
a line, it means there is a scheduling dependency and the second node can begin only when the
first completes. Even though channels are distinctively drawn (a pipe-like appearance as opposed
to a wire), the experienced user’s first reaction is probably to interpret a channel connection as
causing a scheduling dependency. In fact, it is just the opposite; and furthermore, connecting two
nodes with a wire and a channel is typically an error: the former implies a schedule dependency
while the latter implies the nodes are concurrent.

A final interesting note regarding channels is that remarkably little change was needed in the
internals of LabVIEW, primarily the type propagation algorithm to account for the lack of schedule
dependency, and the compiler where a simple transformation is applied at the start converting the
channel to a static VI reference. All the rest is done external to the IDE. A channel itself is defined
by a stateful VI, so in addition to the standard ones we supply, a user can define their own channel
with custom semantics. A popup menu plugin does the actual work of creating a channel instance:
popup on a terminal to create a channel endpoint. The menu plugin VI scripts an instance of the
desired channel specialized to the datatype of the terminal.
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We always considered an advantage for G to be strongly typed. However, that can be tedious
when one has to create multiple VIs to do the same operation on different data types. We had several
efforts over the years to create generic VIs, where allowable types and type relations between
inputs were defined, but these efforts got bogged down and were shelved. We took a different
approach in LabVIEW 2017 when we introduced another language enhancement called malleable
VIs (file extension .vim instead of .vi). A malleable VI is similar to a regular VI except that when
called from a diagram it is actually inlined and adapts to whatever datatypes it is connected to.
Malleable VIs use a "duck typing" approach: any input types are acceptable as long as they don’t
result in a type-propagation error when the vim is inlined. This avoids the complication of defining
an algebra for input type relationships, but the challenge remains for how to reflect an internal
type-propagation error at the inputs of the vim.

In conjunction with the vim, we introduced a new structure in G, the type specialization structure
(TSS), which is particularly useful within a malleable VI. The TSS is a multi-sub-diagram structure
similar to a case structure except there is no selector terminal. Instead, during type-propagation
of an inlined malleable VI, each TSS sub-diagram is propagated in turn and the first one to pass
without error is accepted as the sub-diagram that will be compiled and executed in the place of the
whole TSS. An ongoing research topic is exploring how we could make a recursive vim so that it
could work with an arbitrarily nested datatype.
Portions of the LabVIEW code base have been refactored and rewritten multiple times since

the major rewrite of LabVIEW 2, but much of it has aged and become harder to maintain. The
front panel graphics has become noticeably dated, so in the 2010 timeframe, a new project was
undertaken. Originally, it was an effort to update the LabVIEW GUI to a more modern appearance,
but it morphed into a complete rewrite of LabVIEW to update the internal architecture as well.
Dubbed "LabVIEW NXG", it is a new editor for the same G language. In keeping with tradition, it is
taking much longer than expectedÐversion 1 of NXG shipped in 2017 and version 2 in 2018, but it
will be several more versions before it includes most of the capability of the previous code base.

5 INFORMAL SEMANTICS OF LABVIEW/G FEATURES BEYOND VERSION 1

The semantics of G’s data flow and the core programming structures have remained the same,
except for some additional options and increased flexibility. More data types and more programming
structures have been added to the language as well. The semantics of the new features is described
briefly in this section. The most significant addition to the graphical representation of the language
is the channel described in section 5.4.

5.1 Data Types

More data types are now available, and as before, they are defined by a control or indicator on a
VI’s panel. More display options are available as well, though they do not affect the data type. On
the diagram, wire patterns use color to help distinguish data types of signals.

5.1.1 Numeric Data Types. The original numeric data type has been replaced by a set of numeric
data types: signed and unsigned integers of 8, 16, 32 and 64 bit size; floating point numbers of single,
double, and extended precision; complex floating point numbers of single, double, and extended
precision; fixed-point numbers; and high precision timestamps for absolute or relative time.

There are typical rules for "widening" numeric types, e.g., adding an integer and a floating point
number produces a floating point output, but there are also other places where a conversion is
done, e.g., the data type of a case structure output tunnel will compute the widest type from each
sub-diagram. Wherever such a conversion takes place a small red "coercion dot" is drawn at the
edge of the terminal where the signal connects.
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Unsigned integer data types can have an associated list of unique strings turning it into an
enumeration. An enumeration acts like an unsigned integer in most places but some operations can
use its boundedness or the associated strings to beneficial effect, e.g., an enum wired to a selector
will cause the cases of the case structure to be labeled with the enum strings.

Floating point and complex data types can have an associated unit. A double precision numeric
control with a display unit of foot-pounds (ft lb) will create a data type of double precision meter-
kilogram (dbl m kg) since meter-kilogram is the SI base unit corresponding to foot-pound. The
conversion to and from display unit and base unit is handled by the control/indicator, so that the
internal data type is always in terms of SI base units. The built-in nodes compute types using the
usual rules, e.g., multiply (dbl m/s) and (dbl kg s) will produce an output type (dbl m kg). There is
an easy way to create a subVI which is polymorphic with respect to input units, but that is beyond
the scope of this paper.

5.1.2 String and Related Data Types. The string data type is the same but there are more display
options available. A related data type has been added, called path. A path is a platform-independent
restricted syntax string for specifying the location of a file in a file system. Another related data
type has been added, called picture. A picture is a restricted syntax binary string for specifying
drawing commands to create an image in a picture indicator on the panel.

5.1.3 Typedef Data Types. A typedef is a wrapper around a type and it functions like a typedef
in C. It is implemented as a special type of VI (stored in a file with .ctl extension instead of the
usual .vi extension) which has an empty diagram and a single control on its panel. A typedef can
be placed on a VI panel as a control or indicator, just like any other, and it operates the same as the
control without the typedef wrapper. A typedef can also be placed on a VI diagram as a constant,
and again, it operates the same as the constant without the typedef wrapper. A typedef can be
used inside a cluster, an array, and another typedef. If the definition of a typedef changes, all the
instances in all VIs are updated.

5.1.4 Variant Data Type. A variant is a generic type which can hold any type and value. A variant
can be used inside a cluster, an array, and another variant. A special node is used to convert a
variant to a specific type and retrieve its value. If the specific type doesn’t match what is in the
variant, the node returns an error.

5.1.5 Waveform Data Types. The waveform data type is a cluster of a timestamp starting time
(t0), a double precision float period (dt), and a one dimensional array of numbers (Y), where the
number can be integer, floating point or complex. It is a built-in type in order to encode additional
attributes and support custom computational behavior.

5.1.6 Reference Data Types. Reference data types, often called refnums, are integer-sized, strongly
typed, "cookies’ that are used to refer to a wide variety of objects that are difficult or impossible
to treat "by value". These include: refnums for operating system objects such as files and TCP
sockets; refnums for I/O session objects imported into LabVIEW by plugins; Data Value Refnums
(DVRs) for data structures that are accessible only from within a critical section (defined by the
InPlace Element structure); refnums for shared queues, explicit synchronization objects such as
occurrences, notifiers, semaphores and rendezvous, as well as built-in and user-defined events;
LabVIEW object refnums that refer to the elements of the LabVIEW environment, VIs, panels and
diagrams through a rich introspection and program generation API (see section 5.5 on Scripting);
refnums for interoperation with objects defined by other languages such as .NET; and more.
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5.1.7 LabVIEW Class Data Type. A LabVIEW class (lvclass) is defined by a private opaque cluster
containing the member data, a collection of VIs implementing the methods of the class, and an
optional parent class. Figure 16 shows a list of VIs that comprise an lvclass.

Fig. 16. Class VIs

Left: Expanded list of VIs comprising lvclasses Graphic and Circle. Center, Right: The panels of the .ctl files

(similar to a typedef VI described in section 4.1.3) defining the clusters of member data of the Graphic and

Circle lvclasses. The remaining VIs are the various methods which operate on the class data.

An object is passed on a wire by-value, and can be thought of as simply a by-value cluster of
data (the lvclass member data). However, only the member functions of the class are allowed to
access the elements of the cluster. When an object wire forks, there are two independent objects.
An object on a wire may be upcast to travel on a parent wire without losing its actual type, so it
can be downcast later. The implementation of classes in LabVIEW has two notable differences from
other languages.
First, LabVIEW supports automatic version mutation for serialized objects. When an object is

flattened to a string (either binary or XML), LabVIEW embeds the class name and version number
in the string. When the string is unflattened, the information in the class specifies how to mutate
from any old version to the latest version. What is most interesting is that the mutation code can
be completely auto-generated. In a text language, the compiler has no knowledge of the before-
and after-states of the classÐit only knows the fields as they stand at the moment of compilation.
But G is edited inside the LabVIEW editor. Every time a user reorders fields, renames a field,
deletes/adds/replaces a field, the editor sees that edit. By recording the user’s edits and cancelling
out any opposite edits (such as adding then deleting a field), the compiler can generate an optimal
mapping from any old cluster layout to the new cluster layout. Users are able to write objects to
disk or send them across the network and not run into many of the versioning problems that plague
other object systems. Not every mutation difficulty is prevented, but many of the hardest ones are.

Second, LabVIEW supports automatic downcasting after method calls. It is perfectly legitimate
for a child wire to connect to an input terminal of type parentÐthat child object will be upcast
to its parent, the same as assigning a child variable to a parent variable in other languages. The
problem comes at the output: if the subVI is written to take a parent as an input, it almost certainly
returns a parent as the output. But most operations on objects do not change their run-time type.
The G compiler analyzes subVI diagrams and recognizes when all the modifying operations on
a block diagram change only the value of the object, not its type. If the type is preserved all the
way from input to output, that means on the caller diagram, if a user passes in a child, the output
terminal can be reduced to a child automatically, without any runtime checking to make sure that
is legal. This innovation saves users from having to put a downcast node after every method call to
the parent class, which otherwise would be an odious burden (both the runtime overhead of type
checking and the user annoyance of having to include such nodes).
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5.2 Structures

The core structures, for and while loops, case and sequence structures work as they did originally,
but they have additional features for more flexibility. New structures have been added to make
more programming patterns feasible.

5.2.1 Case Structure. The case structure still executes a single case based on the selector value but
it is much more flexible than originally designed. String is now an allowed type for the selector, as
is an enumeration. Cases may be labeled by one or more values or ranges. All case labels must be
non-overlapping, and if collectively they do not span the entire range of the selector datatype then
there must be a default case. Every case must produce a value for every output tunnel, but now an
output tunnel can be configured to supply a default value (0, false, empty, etc.) if it is not wired in a
particular case.

5.2.2 Loop Structures. Loop structures iterate as originally designed but additional features improve
convenience and performance.

The while loop condition terminal can be configured to stop on true or stop on false. A for loop
can have a condition terminal as well. If a for loop stops early, output tunnels accumulating arrays
will produce shorter arrays. Loop output tunnels may be configured to concatenate successive
array values rather than accumulating into a higher dimensional array. Loop output tunnels may
also be configured to have an extra Boolean terminal. If false is supplied to this terminal the data
propagating to the tunnel in that iteration will be ignored. See Figure 17 for examples.

Fig. 17. For Loop Conditional Terminal and Conditional Tunnel Examples Left: The for loop stops early if

name matches an element of the roster array. The bottom output tunnel is configured to output the last value,

which will be true if a match is found. The top output tunnel is configured the same and will be the index of

the match if one is found. If roster is an empty array the boolean output is false indicating no match was

found. Right: the output tunnel will accumulate only those values which are greater than or equal to 18.

The for loop can be configured to execute iterations in parallel, in which case it is referred to as
a parallel for (parfor) loop. An extra terminal is used to specify the number of concurrent workers
to use, which by default is equal to the number of processors on the computer.

The timed loop is a while loop, decorated with extra terminals on the left and right sides, which
provide options for precisely timing when diagram iterations begin, as well as defining priority
and processor affinity for code within the loop.
The single cycle timed loop (SCTL) is a specialization of a timed loop designed for high perfor-

mance on an FPGA. The sub-diagram must execute every clock cycle. Static timing analysis at
compile time verifies that the sub-diagram execution time is no more than a clock period. Shift
registers on an SCTL map directly to flip-flops enabled by the stop condition of the loop. Combina-
torial logic, flip flops, and static timing analysis are the fundamental building blocks of synchronous
digital logic design and so FPGA applications built with the single cycle timed loop have very low
implementation overhead.

5.2.3 Sequence Structure. Viewing one frame at a time can be tedious, especially if sequence locals
are used, so the flat sequence structure was created where each frame appears side-by-side and
they execute from left to right. It is easy to switch between stacked and flat appearance, but the
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semantics are slightly different. The flat sequence behaves more like a set of single frame sequence
structures because outputs from earlier frames get propagated when the frame finishes rather than
when the entire structure finishes.

The timed sequence structure is a flat sequence structure, decorated with extra terminals on the
left and right sides, so the start time of each frame can be specified.

5.2.4 Event Structure. The event structure is a multi-sub-diagram structure which responds to an
event by executing the sub-diagram corresponding to that event. Events include value changes to
controls, mouse gestures, key presses, panel window changes, VI state changes, other LabVIEW
IDE actions, and timeout waiting for an event. The event structure is usually placed inside a while
loop so it can be used to process a stream of events in the order in which they occurred. The event
structure also has provisions for dynamically configuring to respond to user defined events.

5.2.5 Disable Structure. The diagram disable structure is a multi-sub-diagram structure where
exactly one sub-diagram is enabled while the others are disabled. A typical use is to âĂĲcomment
outâĂİ code, e.g., a section of diagram which may have broken wires and other errors, so that the
remainder of the diagram can be tested before fixing the broken part.

The conditional disable structure is a multi-sub-diagram structure where exactly one sub-diagram
is enabled based on a symbol available during compile. A typical use is to conditionally compile
code, e.g., a section of diagram which has multiple versions depending on the target to which it is
deployed.

5.2.6 In-Place Element Structure. The in-place element structure not only gives a strong memory-
allocation hint to the compiler but it can also improve understandability of a diagram by making
the intent of the designer clearer. The in-place element structure is used to take a data aggregate
apart, operate on a component, and put it back together. This can be done without the in-place
element structure, of course, but it may not be as clear what is happening and the compiler may
not always recognize the pattern, resulting in an unnecessary data copy.

5.2.7 Type Specialization Structure. The type specialization structure (TSS) is a multi-sub-diagram
structure where only one sub-diagram is compiled and executed. The sub-diagram chosen is the
first one to complete type-propagation without any errors. The TSS is typically used in a malleable
VI (see section 5.3.1), so multiple instances of it may end up in different locations with different
data types connected to it.

5.3 Nodes

Many built-in nodes are polymorphic. For instance, Add can add an integer to a float, or a number
to an array of numbers, or a number to a cluster of numbers, or two arrays of numbers element by
element, and so on.

Comparison functions are also polymorphic. When comparing arrays and clusters they may be
configured to compare the aggregates as a whole, or the individual elements.
A global is a special node that is statically linked to a global VI (stored in a .ctl file). It can be

configured to write or to read a control on the panel of the global VI, and does so atomically. A
local is a special node which refers to a control on the front panel of its VI. It is effectively a global
which is scoped to the VI containing it.

A feedback node is a special object that is similar to a free-standing shift register. Technically, it
is not a node because it propagates its output before it receives its input. It creates an explicit cycle
in the data-flow graph, a cycle which the shift register was designed to eliminate. In certain cases,
the use of a feedback node can make a diagram easier to understand. Figure 33 shows an example
of an infinite impulse response filter which benefits slightly from using a feedback node.
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Fig. 18. Infinite Impulse Response Filter Using a Feedback Node

Top: An IIR filter using a feedback node closely resembles the typical textbook representation shown to the

right. Bottom: The same filter using a shift register.

A property node is a growable node used to read and write attributes of an object by-reference.
An invoke node is used to call a method of an object by-reference. Property and invoke nodes are
often used to adjust the appearance of a control on the front panel of a VI.

A formula node contains text-based code which can be a more convenient or recognizable way
to represent some calculations.

An occurrence node is a built-in primitive for synchronizing diagrams. It behaves like a semaphore.
The output is a reference (refnum) which may be passed to multiple locations to wait for the
occurrence to fire, and at least one location which fires it. When the occurrence fires, all the waiters
are woken up.

5.3.1 Polymorphic SubVIs. The Split Array node divides a 1D array into two pieces. If you often
want to split an array into three pieces, however, it isn’t possible to create a VI to do that because
unlike built-in nodes, VIs are not polymorphic. You would need a VI to split an array of floats into
three pieces and another to split an array of doubles, and another for 16-bit integers, etc. A polyVI
is a wrapper VI which can contain several statically typed versions of a VI, where the appropriate
one is automatically selected at edit time based on the input data types. A malleable VI (a VI with
file extension .vim) is a more recent and simpler way to accomplish even more polymorphism. A
malleable VI adapts to whatever types are presented at a call and inlines the resulting instance.
The instance is good if no errors occur when propagating the adapted types in the malleable VI
diagram.

5.4 Channels

A channel (or channel wire) is a graphical depiction of a data-flow connection from a writer to a
reader, but one which does not impose the scheduling dependency of a conventional data-flow
wire. A channel has a distinctive representation to easily distinguish it from conventional LabVIEW
wires.

There are three primary kinds of channels: stream, tag, and messenger. A stream channel
implements a queue with a single writer and a single reader. A tag channel implements a shared
variable with multiple writers and multiple readers. A messenger channel implements a queue
with multiple writers and multiple readers: elements will be non-deterministically merged from
the multiple writers, and non-deterministically distributed to the multiple readers. Other channels
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exist as well: lossy stream, accumulator tag, etc., and since all of the channel kinds are implemented
using G, it is possible to define more kinds with more elaborate semantics.

Access to a channel is via a write endpoint, which has an element input and a channel output, and
a read endpoint, which has a channel input and an element output. Endpoints also have additional
inputs and outputs, e.g., for timeout, status, etc.

Figure 19 shows a producer loop connected to a consumer loop using a stream channel. On each
iteration of the producer loop, the write endpoint enqueues a value in the stream channel. If the
channel is full, the write endpoint blocks, thus stalling the producer loop, until space becomes
available. On each iteration of the consumer loop, the read endpoint dequeues a value from the
stream channel. If the channel is empty, the read endpoint blocks, thus stalling the consumer loop,
until a value becomes available.
The Boolean input to the write endpoint indicates whether the element being enqueued is the

last one: if so, the producer loop finishes (the channel will ignore any attempt to write to a stream
after the last element was written). The Boolean output from the read endpoint indicates whether
the element just dequeued is the last one: if so, the consumer loop finishes (the channel will ignore
any attempt to read from a stream after the last element was read).

Fig. 19. Stream Channel Example

Left: The while loop, labeled producer, calls the write endpoint of the stream channel each iteration to

enqueue a new value. When the stop button is pressed the channel is notified that the last element has been

written and the producer loop finishes. Right: The while loop, labeled consumer, calls the read endpoint of

the stream channel to dequeue the next value. When the read endpoint reports that the last element has

been dequeued the consumer loop finishes.

If two loops are connected by a channel as well as a conventional wire, it is often an errorÐthe
latter wire causes one loop to be scheduled after the other, while the former channel implies they
run concurrently.

5.5 Scripting

The VI scripting subsystem provides the ability to programmatically inspect and manipulate items
on the front panel and block diagram of a VI. VI scripting is useful for LabVIEW programmers
who want to add their own features to the IDE through hooks in existing features like Quick Drop
Keyboard Shortcuts (since 2009) and Right-Click Menu Plugins (since 2015).

Scripting is also useful for code inspection, where developers may write their own tests to analyze
code for adherence to style guidelines, or to detect coding patterns that may cause unexpected
behavior or inefficient memory usage. The VI Analyzer (introduced in version 7) provides a
framework for a LabVIEW programmer to run these kinds of tests on his codebase.

5.6 Projects and Libraries

The Project window uses a tree control to organize the VIs and other resources contained within
the project as shown in figure 20. The project contains all the programmable targets associated
with the application, such as desktop computer, real-time embedded processor, and FPGA. VIs
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placed within a target will be syntax-checked for appropriateness on the target. For example, if a
VI that contains a File Write node, that VI will be broken when moved to an FPGA target.

Hardware resources associated with the project, such as DAQmx channels, FPGA I/O modules,
etc., appear in the project window as well. There are several different ways to "build" a distributable
component from VIs in a project, e.g., EXE, DLL, Zip file, etc. All of these build types are managed
as build specifications within the project window.

The project window organizes an application as a whole, but groups of VIs can also be organized
into a library. For historical reasons, several types of libraries exist. The simplest one has the .llb
extension and is basically a Zip file containing the VIs. The library with extension .lvlib provides
namespacing and scoping, and it may contain any type of file, not just LabVIEW files. The library
with extension .ppl is similar, but it is optimized for packaging code as a distributable component.

The LabVIEW application builder creates an executable file (.exe) from a collection of VIs.
However, in order to run the executable file, the LabVIEW Run-Time Engine (RTE) must be installed.
The RTE provides support for executing VIs, but none of the editing capability of the LabVIEW IDE.

Fig. 20. Project Window

The project window is a tree control showing VIs, libraries, classes, programmable targets, hardware resources,

and other items which comprise the project.

5.7 Simulation Diagram

The control & simulation loop can be used to simulate and deploy dynamic system models and
control system models. These models may be described by either ordinary differential equations
(ODEs) or difference equations. The models may be linear, or they may have nonlinearities. The
control & simulation loop is a version of the timed loop. Both loops can iterate deterministically
according to a specified period and priority. Wires connecting blocks within the Control & Simu-
lation Loop include arrows that show the direction of the data-flow, and the background of the
diagram is a pale yellow to indicate that the diagram semantics is not exactly the same as for G.
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The control & simulation loop executes the simulation diagram according to the ODE solver you
choose for continuous-time systems or you can choose "Discrete States Only" for discrete-time
systems. Like other loops and structures, you can use tunnels to pass data in and out of the control
& simulation loop.

5.8 State Diagram

The typical implementation of a state machine has a case structure inside a while loop. A shift
register holds the current state. The current state is wired to the selector of the case structure. An
output tunnel of the case structure supplies the next state to the shift register. Each case contains
whatever computation is appropriate for the corresponding state, as well as logic to determine
what the next state ought to be.

The state diagram editor (SDE) is a separate window which facilitates the construction of a state
machine. Editing states and transitions in the SDE automatically scripts the corresponding changes
to the case structure and the next-state indexing. In fact, the case structure and next-state indexing
are not directly editable in G. They are locked by the SDE so they always remain consistent with
the state diagram representation.

6 RESEARCH AND FUTURE DIRECTIONS

6.1 Structures

There are many hardware devices featuring an embedded processor running a real-time OS, and an
FPGA, so it is not uncommon for users to design distributed applications with portions running on
the host computer, on the real-time OS, and on the FPGA. The LabVIEW project window has made
it possible to do this, but it could be much easier. The target structure is designed to do just that.
Target structures can be added to a diagram indicating the deployment of software onto multiple
programmable targets as shown in figure 21. The sub-diagram inside a target structure is compiled
for a specific target CPU or FPGA, deployed to it, and executed. The infrastructure for doing all
this is part of the target structure rather than being exposed in text form in the project tree.

It is clear that the target structure will need to be nestable, e.g., to represent a soft-core processor
within an FPGA, but what isn’t clear yet is whether and how a target structure will nest within
other G structures. Early work is focusing on statically defined targets, but it will be important to
figure out how to dynamically assign them at run-time. It will also be important to determine how
to disconnect and reconnect to a target in a controlled fashion, as well as how to recover from the
failure of a target.
There are other structures which have been described internally in more or less detail, but not

yet implemented. A generate structure is similar to a parallel for loop except that it is designed for
compile-time replication of its sub-diagram, and would find particular utility for FPGA targets.
A race structure is a multi-sub-diagram structure where all sub-diagrams begin executing

concurrently. The first diagram to finish causes the others to abort. The outputs of the race structure
are the outputs of the diagram that finished first. The non-determinism of the race structure is
by design. A timeout capability can easily be added to any activity by placing the activity in one
sub-diagram of a race structure and a timer in another.
A closure structure is essentially an anonymous subVI. The output of the closure structure is a

reference to this subVI which can be called from one or more locations.

6.2 Time

Time is an important aspect of measurement systems. Control of the temporal behavior of software
execution in early versions of LabVIEW relied on various delay nodes. With the introduction of the
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Fig. 21. Target Structure Example

This diagram depicts a sensor-fusion application spanning across a CPU and an FPGA. The diagram within

the blue box on the left is compiled and deployed to the FPGA. The timed loop on right runs on the processor.

The compiler maps the interconnecting tag channel to a hardware register accessible to both the FPGA and

the processor (a stream channel would map to a DMA FIFO).

timed loop and its support for multiple clock sources, execution priorities and processor affinity,
much more precise software scheduling became possible, particularly when running on a real-time
operating system. But this focus on software scheduling is superfluous. What really matters is the
precise timing relationships among the I/O events.

Today, this is accomplished by careful configuration of the timing subsystem of the I/O hardware,
and then setting up the software timing to match, as shown in figure 22.

Fig. 22. Timed Loop Data Acquisition

The timing of the data acquisition hardware is done with the DAQmx Config nodes at left and the timed loop

is configured to match. When execution of the diagram reaches the DAQmx Start node (green arrow glyph)

the I/O hardware is triggered.

An alternative approach would be to directly time the I/O by using time events, as shown in
figure 23. In this approach a "future time event" is passed to the Analog Input node. Internally, this
node waits until real time catches up to the future time event and then takes the sample. The future
time event is updated in the loopÐthe timing information is co-located with the I/O making the
diagram easier to understand.
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Fig. 23. Directly Timed Data Acquisition

The timing of the data acquisition hardware is done with a future-time event. On the first iteration of the

while loop, the Analog Input (AI) node waits until start time to take the first sample; on the second

iteration it waits until start time + period. The Analog Output node is scheduled to output its value 10

microseconds after the Analog Input sample is taken.

6.3 Abstraction

The design of a measurement system application often begins with a high-level whiteboard sketch
showing the major components and the connections between them. The sketch is an abstraction
of the system and can be a good overview for explaining the system to new people. When the
application is fully implemented, it may consist of many files with lots of code, but there is no way
to bridge to the sketch.
If there were a way to capture the sketch as a formal high-level abstraction of the system, and

refine it to a working implementation, capturing the intermediate-level abstractions along the way,
that could have a major impact on the design process. A rich development environment would be
like a "Google Maps" editorÐit would have the ability to semantically zoom out to higher levels of
abstraction or zoom in to lower levels and all the way down to the implementation code. Making
an edit at one level would generate an obligation to make corresponding edits at lower and higher
levels, though some of the obligations could be fulfilled automatically.

Figure 24 shows an example of a measurement system at two levels of abstraction. In addition to
showing the software, the diagrams show depictions of the hardware connected to the measurement
system. The depictions could simply be pictorial elements or they could be nodes containing
simulations, allowing the application to run in a simulated mode.
An editing environment supporting design at multiple levels of abstraction is still a nebulous

concept, but LabVIEW’s graphical data-flow language seems to make it a feasible prospect.

7 RETROSPECT

7.1 Principles

During the implementation of LabVIEW version 2 (compiler) and version 3 (Windows port) we
identified some principles we wanted our process to adhere to.

An early one is "innovate first, then provide backward compatibility", where backward compati-
bility is the ability to load and run a VI in a later version of LabVIEW. This reflected our belief that
major compromises to the internal architecture for the sake of compatibility would constrain and
ultimately prevent future innovation. We also felt that if we were sufficiently innovative, then our
users would forgive occasional incomplete backward compatibility.
Another principle is to preserve the core integrity of G. We felt that if the data-flow behavior

(node firing-rules) were changed, then the foundation of LabVIEW would be destroyed. The core
has been preserved, but over the years some new capabilities have been added that in some cases
make diagrams harder to understand. There have always been nodes with side-effects, e.g., those
that do I/O, but the introduction of globals and references circumvented data-flow, sometimes
with deleterious effects. The introduction of the feedback node added the complexity of cycles
in the diagram, and a modified firing-rule, though its use appears to be sufficiently confined that
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Fig. 24. High Level and Intermediate Level Abstract Diagrams

Top: A diagram showing a measurement application at a high abstraction level. Abstract nodes (with blue

borders) for signal generation, acquisition and calculation are shown. Black wires show abstract connections,

including connections to hardware avatars. Bottom: The application at an intermediate abstraction level. Two

of the high level abstract nodes are expanded to show the next level of refinement. Inside, some of the nodes

are concrete implementations (primitives or subVIs) and others are abstract.

understandability doesn’t suffer. The introduction of channel wires adds cycles in the diagram, but
those cycles replace sections of the code where cycles had implicitly existed through the use of
references, so channels actually improve diagram readability.
Another principle is to "make difficult tasks possible before making simple tasks trivial". We

felt it was more valuable to a user to extend the scope of what he could do with LabVIEW than to
further simplify something he can already do. This principle can expand our market but may also
cause some user annoyance.

Over the years, more parts of the LabVIEW IDE were written using G, e.g., the navigation window
in version 7.1 and the new icon editor in version 2009. We referred to this as "eating our own
dogfood" and believed more was better. If we could benefit from higher productivity using G to
write parts of LabVIEW, that would be good. If the resulting performance was not as high as desired,
we could rewrite in C++, or we could invest in improving the G compiler. The latter course would
benefit us as well as all other users. Furthermore, parts written in G could be released independently
of LabVIEW itself, and those parts could be customized or extended by savvy users. Dogfooding
continues to be used in new releases of LabVIEW.

7.2 Impressions

LabVIEW is used mostly in test, measurement, and control applications employing measurement
instruments, analog-to-digital (A/D), digital-to-analog (D/A), and digital I/O hardware [Czerwinski
and Oddershede 2011; Jamal and Wenzel 1995; Morris and Langari 2016; Wang et al. 2012; Wrobel
et al. 2016]. LabVIEW’s popularity is certainly due in part to its tight integration with the driver
software that interfaces to the I/O hardware, and the breadth of hardware products that work with
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LabVIEW. The wide range of libraries including vision, motion, control, simulation, analysis, signal
processing, and communication also contributes to the popularity.
There are also innate characteristics of LabVIEW that drive its popularity. The one most often

mentioned by users is the fast development cycle. No boilerplate is needed to get startedÐthe
empty VI executes (doing nothing). It is easy to incrementally add to its panel and diagram, and
periodically run it during development to check its operation. This fosters early detection of bugs,
resulting in a more efficient development process.

There are many anecdotal reports of productivity gains using LabVIEW compared to languages
used previously. Users report gains of up to 10x, e.g., a project that would previously have taken a
year took about a month. The only side-by-side comparison I’m aware of is a project at the NASA
Jet Propulsion Laboratory (JPL), which had a team of C programmers and a team of LabVIEW
programmers implement the same application. It was difficult for them to get an accurate comparison
because the C team didn’t finish, but their estimate was roughly a factor of 15 times faster for the
LabVIEW team [Wells and Baroth 1992].
Many users cite the ease with which they can troubleshoot their systems, including hardware

configuration and cabling issues. It is easy to add a strip-chart indicator to a panel, connect it to a
signal of interest, and observe it as the application runs to see if it behaves as expected.

One published study compared LabVIEWdiagrams to text code and found benefits to the graphical
representation in several regards including debugging [Whitley et al. 2006].

An applied mathematician reported using a strip-chart to monitor the convergence of a numerical
algorithm he was developing. Based on the behavior he observed he was able to improve his
algorithm so that it converged much quicker.

Another frequent user comment is that LabVIEW is accessible and fun to use. Users are inspired
to attempt projects they wouldn’t have in the past, and then to their surprise (and their supervisor’s)
they succeed quicker than expected. Some users claim LabVIEW is a useful tool masquerading as a
video game.

From my own perspective, I also find LabVIEW enjoyable to use. I am reasonably proficient
using a variety of programming languages, but I find thinking in terms of data-flow to be more
insightful, especially when designing parallel and distributed applications. And I find programming
graphically to be helpful too. If I am unable to make a diagram look neat it is often because I haven’t
designed the algorithm well.

As mentioned before, I consider my biggest blunder to be the introduction of global variables. A
tightly scoped global is much better represented as a tag channel. And a serially reusable stateful
subVI is a much better implementation in all other cases because it is more flexible, can sometimes
be more efficient (e.g., for global arrays), and the slight extra effort to create it can keep it from
being abused.
I find designing algorithms with by-value data-flow to be safer and easier, so I have regretted

seeing the proliferation of references in G, particularly the data-value-reference. In contrast, I feel
particularly proud of the introduction of channels. A common use case for references, communica-
tion among concurrent loops, can now be done with channels, a new additional representation of
by-value data-flow.

7.3 Reasons for Success

Why has LabVIEW achieved the success it has as a visual language? This is a question I have been
asked occasionally but I don’t have a satisfying answer. Part of the reason is that while I have
learned about various diagram types (state diagrams, flow charts, signal flow graphs, data flow
diagrams, etc.), I never studied or even used another visual language, although I have seen some
example screen images.
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I thought, perhaps naively or arrogantly, that LabVIEW was a good idea with a great deal of
potential, and it would be a better use of my time to expand its scope and capabilities than to
investigate other visual languages. I suppose I still suffer from the same prejudice even today.

One visual language that has been very successful and has seen wide adoption is Simulink from
Mathworks. It is a domain specific language for simulation and modeling based on signal flow
graphs, a notation that has been in use by control and simulation experts since analog computer
days. Simulink is very good at what it does, but it is not a general programming language.
Two other visual languages that I am aware of and which have had a measure of success are

VEE and Prograph. Both are based on data flow, although VEE has extra execution provisions.
VEE was designed primarily to help users easily create applications using Hewlett-Packard

instruments. It appears to do that well and enjoys a loyal following, however, it may not be general
enough to be attractive to more users.
Prograph is the most interesting case to me. It was designed by computer science researchers

so it has the concepts and rigor of a traditional programming language, but they are expressed
graphically. Why has it not enjoyed greater success?
I think there are both cosmetic reasons and pragmatic reasons, and comparison with LabVIEW

may offer some insight.
LabVIEW fully embraces graphics: functions have icons and users are encouraged to design

their own icons for functions (VIs) they create. Icons allow diagrams to express a lot yet still be
compact. It takes time to create an icon, but an elegant and distinctive icon is easy to recognize and
distinguish from others.

Prograph is only partly graphical: functions are nondescript text boxes and very little is discernible
at a glance without reading the text. Since the text can be lengthy, the boxes are short and wide.
In order to more effectively use the vertical dimension, data flows top to bottom, but even still,
diagrams cannot be very compact. And there may be a cognitive penalty in having to read the text
left to right while following the data flow top to bottom.
LabVIEW uses a stylized box to represent a loop. As a result the body of the loop is visible in

the context of the rest of the diagram. In Prograph, the body of a loop is only visible in a separate
window. That means more windows must be open to see a program, and the inability to see the
body of a loop in the enclosing context adds a cognitive burden.
Perhaps the most significant issue is the difference in perspectives taken by LabVIEW and

Prograph. LabVIEW is an engineering tool containing a graphical programming language, G. It is
designed to appeal to scientists and engineers who are building measurement and control systems,
so it is tightly integrated with drivers that connect to a variety of hardware devices for physical
I/O. LabVIEW can be thought of as a CAD tool, a CAD tool which generates revenue to sustain its
continued development, including the continued development of the G language.

Prograph is a graphical programming language designed to compete with text-based languages.
The target customer is a programmer. But most programmers actually enjoy text-based program-
ming. They are comfortable with the syntactical complexity of a text language and they feel most
productive with fingers on the keyboard. Convincing them to switch to a graphical language is
almost impossible. Even programmers who work in a test and measurement area, and who could
benefit most, ignore LabVIEW in droves. How much harder it must be for Prograph to gain traction.

Designing a graphical language is a small part of the total effort. The largest part is building the
environment for editing the language. Editing a diagram is vastly more complex than editing text.
Same for diff and merge. Lots of free or low-cost tools exist for managing text, but the corresponding
tools for diagrams often have to be developed from scratch, requiring substantial funding.
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In the end, maybe the limited success of Prograph and other visual languages is due to insufficient
funding, and the difficulty of generating revenue by competing against low cost text languages in
doing the same jobs.

8 SUMMARY

LabVIEW is a tool for implementing automated measurement and control systems. Its core graphical
language, G, was originally designed to be a "non-programming" way to construct the software for
such systems, but as it evolved, it has become recognized as a productive general programming
language.
The breadth of applications users have built with LabVIEW is extraordinary: from programs

testing medical devices [VI Engineering Inc. 2009; Weisberg 2007] to programs controlling medical
devices [Stevens 2008; Wiltberger 2007]; from monitoring large generators [de Carvalho 2018] to
controlling a 3-D printer [Schacht 2018]; from semiconductor testing [Fordor 2017; Schwarz 2018]
to controlling the beam line at the CERN Large Hadron Collider [Losito 2008; Losito and Masi
2008].

These applications benefit from the productivity of LabVIEW, the tight integration with hardware
I/O and timing, and the performance available with LabVIEW FPGA. The success our users achieve,
and their enthusiasm for LabVIEW, are powerful motivators for us to continue our research and
development.

We anticipate extending the language with features found in other languages (e.g., interfaces and
closures) as well as programming constructs not typically found elsewhere (e.g., non-deterministic
race structure and target structure). We also anticipate inventing additional representations that
obviate the need for using references in some cases (e.g., channels).
Another major area of focus for us will be representing aspects of measurement systems that

go beyond the scope of other languages. In particular, we have a keen interest in graphically
representing time and time-driven I/O, as well as I/O configuration, in the language. We also
believe our graphical representation lends itself well to representing a system at multiple levels of
abstraction with the ability to "semantically zoom" between levels.

Graphically depicting programs, especially distributed parallel programs, makes it much easier
to understand them. And if the graphical depiction is the program, that makes it much easier to
construct as well.
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