
17

Elementary Students’ Understanding of CS Terms

JESSICA VANDENBERG, Educational Psychology, North Carolina State University, Raleigh,

North Carolina, USA

JENNIFER TSAN, Computer Science, North Carolina State University, Raleigh, North Carolina, USA

DANIELLE BOULDEN, Learning Design and Technology, North Carolina State University, Raleigh,

North Carolina, USA

ZARIFA ZAKARIA, Educational Psychology, North Carolina State University, Raleigh,

North Carolina, USA

COLLIN LYNCH, Computer Science, North Carolina State University, Raleigh, North Carolina, USA

KRISTY ELIZABETH BOYER, Department of Computer & Information Science & Engineering,

University of Florida, Gainesville, Florida, USA

ERIC WIEBE, Science, Technology, Engineering, and Mathematics Education, North Carolina State

University, Raleigh, North Carolina, USA

The language and concepts used by curriculum designers are not always interpreted by children as designers
intended. This can be problematic when researchers use self-reported survey instruments in concert with
curricula, which often rely on the implicit belief that students’ understanding aligns with their own. We report
on our refinement of a validated survey to measure upper elementary students’ attitudes and perspectives
about computer science (CS), using an iterative, design-based research approach informed by educational and
psychological cognitive interview processes. We interviewed six groups of students over three iterations of
the instrument on their understanding of CS concepts and attitudes toward coding. Our findings indicated that
students could not explain the terms computer programs nor computer science as expected. Furthermore, they
struggled to understand how coding may support their learning in other domains. These results may guide
the development of appropriate CS-related survey instruments and curricular materials for K–6 students.

CCS Concepts: • Social and professional topics → Professional topics; Computing education; K-12

education; Student assessment;

This material is based upon work supported by the National Science Foundation under Grant No. DRL-1721160. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

Authors’ addresses: J. Vandenberg and Z. Zakaria, Educational Psychology, North Carolina State University, Friday In-

stitute for Educational Innovation, 1890 Main Campus Drive, Raleigh, North Carolina, 27606, USA; emails: {jvanden2,

zzakari}@ncsu.edu; J. Tsan and C. Lynch, Computer Science, North Carolina State University, Engineering Building II, 890

Oval Drive, Raleigh, North Carolina, 27606, USA; emails: {jtsan, clynch}@ncsu.edu; D. Boulden, Learning Design and Tech-

nology, North Carolina State University, Friday Institute for Educational Innovation, 1890 Main Campus Drive, Raleigh,

North Carolina, 27606, USA; email: dmboulde@ncsu.edu; K. E. Boyer, Department of Computer and Information Science

and Engineering, University of Florida, 432 Newell Drive, Gainesville, Florida, 32611, USA; email: keboyer@uf.edu; E.

Wiebe, Science, Technology, Engineering, and Mathematics Education, North Carolina State University, Friday Institute

for Educational Innovation, 1890 Main Campus Drive, Raleigh, North Carolina, 27606, USA; email: wiebe@ncsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1946-6226/2020/06-ART17 $15.00

https://doi.org/10.1145/3386364

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3386364
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3386364&domain=pdf&date_stamp=2020-06-16

17:2 J. Vandenberg et al.

Additional Key Words and Phrases: Cognitive interviewing, elementary, computer science, instrument devel-
opment

ACM Reference format:

Jessica Vandenberg, Jennifer Tsan, Danielle Boulden, Zarifa Zakaria, Collin Lynch, Kristy Elizabeth Boyer,
and Eric Wiebe. 2020. Elementary Students’ Understanding of CS Terms. ACM Trans. Comput. Educ. 20, 3,
Article 17 (June 2020), 19 pages.
https://doi.org/10.1145/3386364

1 INTRODUCTION

Researchers have found that negative stereotypes about computer science influence students’ de-
cisions to pursue or abandon a degree in the field [13, 25]. Holding a positive attitude towards
computer programming is likewise correlated with higher self-efficacy in programming [30]. Stu-
dents acquire their beliefs about topics from their first-hand experiences, from direct observation,
and from evaluating what others have told them [2]. These beliefs form the basis of their attitudes,
which in turn impart meaning to objects or activities [38].

With initiatives such as Hour of Code1 and communities like CS For All,2 students are now
being introduced to computer science concepts as early as elementary school. Indeed, the new K–
12 Computer Science Framework specifically emphasizes the need for young students to engage
in varied types of computing [3]. In light of this instructional push, researchers need to focus on
understanding elementary students’ beliefs, attitudes, and experiences in computer science. Nine-
to eleven-year-old students are within Piaget’s [31] concrete operational stage; the majority of
them should have the ability to think logically and to recognize and be able to share their unique
opinions of their beliefs regarding interventions such as these.

Many of the existing curricular interventions and associated survey items for elementary-age
students have been developed by domain experts who often contextualize their conceptual and
technical terminology at the adult level, which they in turn expect students to master. However,
children are not always comfortable with these terms, nor do they understand general concepts
like “programming” in the way that the curriculum designers intend. Many researchers use self-
report and attitudinal survey instruments with the implicit belief that the students’ understanding
of the terms and concepts matches their own. This mismatch may lead researchers to come to
incorrect conclusions as to what students’ experiences and attitudes are with regards to computer
science and to the efficacy of their interventions. A lack of familiarity with key terms that anchor
self-report items can lead to instability and an absence of consensus among students regarding the
meaning of a word or phrase. This disconnect can then result in unpredictable shifts in a student’s
understanding of a survey item (gamma shift) or how they scale their response to the item (beta
shift) pre- to post-intervention [12].

One way to access students’ beliefs is to ask them [36]. The cognitive interviewing process, as
detailed in Karabenick et al. [23], probes students on their understanding of what the item means
and which answer they would select, in addition to other related probes. Cognitive interviewing is
an iterative process in which findings from one phase necessitate refinement and further testing,
with instrument development being an outcome.

In this article, we assess the students’ attitudes toward and understanding of computer science
(CS) concepts through a series of cognitive interviews. As part of this process, we qualitatively
evaluated their responses to specific items, which then guided changes in the wording and number
of items. Our analyses indicate that fourth- and fifth-grade students broadly understand computer

1https://hourofcode.com/us.
2https://www.csforall.org/.

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

https://doi.org/10.1145/3386364
https://hourofcode.com/us
https://www.csforall.org/

Elementary Students’ Understanding of CS Terms 17:3

science as coding. They are most comfortable using coding to describe what they do, for example,
while making a game on Scratch3 or giving a robot like SpheroTM the right directions. Some stu-
dents in our survey were able to make clear delineations between writing/building code and debug-
ging, but many students struggled to connect coding to other subjects (i.e., science, mathematics,
engineering) studied in school. These findings can inform the development and design of survey
instruments as well as decisions on appropriate vocabulary to use to support elementary students
in learning computer science.

2 RELATED WORK

2.1 Cognitive Interviewing with Youth

Our current work is influenced by prior research on interviewing survey-takers about their in-
terpretation of survey items. Schwarz [37] notes that often adults struggle to comprehend the
meaning of an item and that context also influences self-reports of attitude. Cognitive interviews
to validate survey items are less common with children, despite important developmental differ-
ences in comprehension, understanding of abstract concepts, and working memory [49].

Cognitive interviewing as part of survey development increases the likelihood that self-report
survey items are valid [23]. Cognitive validity refers to how well a respondent’s thought processes
align with what the survey designer intended. In other words, the goal is to determine to what
extent the student thinks about and responds to the item as the designer intended. This is a layered,
multi-stage process; students must read and interpret the item, determine the intent and keep this
information in working memory, connect experiences from memory to the item’s intent, read and
interpret the answer choices, combine their inferred meaning with their own personal experiences,
and then finally select their answer choice [23]. Cognitive interviewing allows us to probe students
on their thinking during any part of that process.

Researchers interested in developing valid measures have utilized cognitive interviewing pro-
cesses with children and adolescents in a range of topic areas. Woolley et al. [49] interviewed third-
through fifth-grade students to validate a drug abuse prevention measure. Over the course of two
phases of interviews, they found that wording of several items required modification to reflect a
more concrete interpretation and that answer choices likewise needed to be more objective. Arthur
et al. [5] took a similar approach with high school students. They were cognitively interviewed
on substance abuse and risk-taking behaviors to develop an instrument assessing risk and protec-
tive factors affecting adolescents. The team had students think aloud during the entire interview
process, with final results indicating that almost 100 of the 350 possible items were unclear.

In a large European health study, the authors used cognitive interviews with children and ado-
lescents to develop condition-specific health-related measures. These measures were nested within
modules that often included multiple questionnaires focused on different aspects of the disease, the
emotional implications of the illness, and surveys were intended for both the patient and the care-
giver [6]. The results from this cross-national study indicated that the cognitive interview process
helped inform the researchers about the relevance, coherency, and appropriateness of the content
for each condition-specific health module. All of these studies highlight the need to carefully listen
to survey respondents and modify wording, sometimes several times, or outright eliminate items
to ensure that children and adolescents can read, understand, and answer survey items.

2.2 Affective Research in CS

Affective research in CS has sought to understand the diversity of issues impacting students’ in-
terest in CS and the field in general. This is of interest in part because students’ affect influences

3https://scratch.mit.edu/.

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

https://scratch.mit.edu/

17:4 J. Vandenberg et al.

their cognition and learning processes [7]. Study foci include students’ feelings of belongingness
within the field and the need to counteract stereotypes [25], students’ inaccurate preconceptions
[20] or misconceptions [19] about CS, and students’ range of positive and negative experiences
with CS classes [21]. A comprehensive literature review of affective computing indicated that stu-
dents readily recognize their own and others’ emotions [35].

One mechanism for assessing affect is self-report measures [18]. These self-reports give infor-
mation about how the student perceives his or her emotions at a given time and in response to
a task, event, or prompt. A dearth of existing validated affective instruments specific to CS has
meant that some researchers have used self-efficacy instruments contextualized in other disci-
plines, such as mathematics, as a proxy for measuring the impact of CS-related interventions (e.g.,
Reference [34]). To address this lack of appropriate CS-specific instruments, Tsai et al. [42] re-
cently developed a self-report instrument for measuring self-efficacy for computer programming.
Although they state the instrument can be used for students older than middle school, the valida-
tion was conducted with a sample of college students. A similar validation effort was done on a
self-efficacy scale in Turkish with secondary school students aged 12–14 [24].

Moving beyond just utilizing Likert-type self-report, Weintrop’s [45] work with high school
students in three different programming environments highlights the value of asking students
their perceptions of and experiences with programming. In his work, students typed open-ended
survey responses and spoken interview responses were analyzed in tandem as a way of detailing
students’ conceptions of programming and changes over the course of the study.

The work reviewed briefly above underscores the interest in how students perceived CS and
how those perceptions affected their work in CS. Our instrument development effort focuses on a
younger group of students, and although the published studies inform our work, they only provide
a starting point for how we should word future survey instruments for this population.

2.3 Sociocultural Theory

Children learn and develop when external—social and cultural—activities are internalized [44].
This process is nuanced, as the social and cultural activities that surround a child are highly var-
ied. Adults, be they parents, teachers, or members of the community, are gatekeepers of immense
amounts and diverse types of information. Students arrive at school, for example, with sociocul-
tural capital and their internalization of information is mediated by language and information
[9, 33]; children come to value and find differing meaning in activities by virtue of their early
experiences.

Some of those early experiences fail to equip the student with the language necessary to work
effectively in today’s classrooms. It becomes the work of the teacher to engage the students in the
discursive process of acquiring academic language [17]. In Vygotskian terms, students’ everyday
concepts need to transition to academic concepts—a pedagogical process termed metamessaging

by Forman and Larramendy-Joerns [16]. By using metamessages, teachers reword students’ state-
ments to align more appropriately with the terminology expected in the classroom. John-Steiner
and Mahn [22] warn that how and what students learn in out-of-school contexts and what they
are taught within school directly influences school learning; therefore, children’s early exposure
to information is exceedingly important. Given that CS has only recently emerged as a potential
academic topic, especially at the elementary level [14], it is possible that students’ perceptions of
this area of study and its associated language is likely to be very uneven and highly influenced by
out-of-school exposure.

Given our focus on students’ self-reports of their varying interests and experiences, our research
objective is to develop a survey instrument appropriate for diverse upper elementary students that
measures their attitudes and perspectives on CS.

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:5

Table 1. Cognitive Interviewing Probes

Standard Interviewer Probes
“Please read item number . . . out loud to me.”
“What does that mean?” or “What is that item asking you?”
“From these [Likert] responses, which would you pick as your answer?”
“Can you explain why you picked that answer?”

Table 2. Study 1 School-level Demographics

School Black White Latinx Other NSLP*
Atwell 36% 29% 33% 2% 98%
Ellis 6% 80% 5% 9% 6%

*NSLP denotes students eligible for Free and Reduced Lunch.

3 DATA AND METHODS

3.1 Cognitive Interviewing Process

Our cognitive interview process followed Karabenick et al.’s [23] interview probes (see Table 1).
During the interview, students were asked what the item meant, which answer they would select
(from strongly disagree to strongly agree on a five-point Likert scale), why that answer made sense
for them, and other relevant probes (e.g., “What is engineering?”). The interviewer was encouraged
to ask other germane questions emergent from the talk that would help the student express his
or her understanding of the item. The students were interviewed individually by trained graduate
researchers.

This protocol was used in three separate, iteratively linked studies used to both garner a better
grasp of students’ understanding of key computer science terms and also develop a set of refined
attitudinal survey items that displays a higher degree of stability of interpretation [gamma stabil-
ity; 12] across students of this age range. Below are the findings from these three studies.

3.2 Analysis

To assess students’ understanding of individual items, two coders rated the students’ responses
to the items and interviewer prompts. Students’ responses were listed verbatim and by item on a
series of spreadsheets. In this way, the coders could utilize Karabenick et al.’s [23] scoring method-
ology for assessing overall cognitive validity and the student responses were scored on a Likert-
scale from 0 to 4, indicating the coders’ assessment of the student’s level of understanding of the
individual item. Cognitive validity indicates the student’s conceptual understanding of the item as
determined by alignment in their verbal interpretation of what the item means, their explanation
for why they selected the answer they did, and the compatibility of their Likert response with
their explanation. The coders trained on a sample set of data, then independently completed their
ratings. Finally, where there was disagreement on the cognitive validity scores of the items, the
coders discussed and reached consensus. Items that students struggled to understand—as deter-
mined by the coders—were examined more closely for later modification in subsequent studies.
Additional details regarding analyses completed within each study appear below.

4 STUDY 1

4.1 Participants

Our participants were 33 upper elementary students (ages 9–11) in two different schools in the
southeastern United States. Table 2 presents demographic data on the schools and students that

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

17:6 J. Vandenberg et al.

participated in our study. The school names provided are pseudonyms to preserve anonymity.
Atwell School is a rural school with roughly equivalent percentages of African-American, Cau-
casian, and Hispanic/Latinx students. Ellis School is an urban charter school with 80% Caucasian
and roughly 5% each of African-American and Hispanic/Latinx students. All interviewed students
also participated in a large CS educational intervention study. In that study, the students were
participants in a seven-day computer science elective that implemented a coding curriculum that
the researchers designed. Students in Atwell were taught by the researchers, whereas students in
Ellis were taught by their technology teacher. There were 16 students interviewed at Atwell, 8 of
whom were girls; 17 students were interviewed at Ellis, 9 of whom were girls.

4.2 Methods

For our initial survey items, we modified items from a validated STEM attitudes instrument [S-
STEM; 43] to create a CS version for upper elementary students. More specifically, the nine original
items from the Technology and Engineering Attitudes sub-scale were used. These items covered
two psychological constructs: self-efficacy and outcome expectancy [47]. For example, the original
item “I like to imagine making new products” was modified to “I like to imagine making new com-
puter programs” for Study 1. In Study 1, graduate students read all of the items to the elementary
students, although the children were directed to follow along, and their responses to probes were
transcribed verbatim. The questions from this study are listed in Table 3 below.

4.3 Analysis

Three members of the research team engaged in thematic analysis [10]. These members represent
expertise in psychology, education, and computer science. The purpose of the thematic analysis
was to determine the themes that emerged from the students’ responses; in particular, if students
emphasized certain experiences or concepts or introduced an example as a way of describing their
perspective. After the interviews were transcribed, initial codes were determined, which were
collapsed into the themes noted below. This inductive process privileged students’ perspectives
and experiences, which drove changes in survey item wording. These themes were agreed upon
by consensus.

4.4 Findings

We conducted specific cognitive interviews on items 1, 8, and 9. These items were selected based
upon our need to determine students’ ability to understand computer programs as used initially in
Item 1, but also used in the majority of the remaining items. If the students struggled to compre-
hend the concept in this item, we surmised it would be problematic in other items and we resolved
to consider alternatives.

Regarding Item 8, we wished to ascertain to what extent students might consider STEM-based
courses as being supportive of one another. There is increased interest in developing strategies for
computational thinking (CT) integration into STEM subject areas [28], and this policy interest is
emerging in parallel with increased researcher interest (e.g., References [39, 46]). However, it is
unclear whether students are aware of these CS/CT and STEM connections. Thus, we need ques-
tions that specifically probe for this. Moreover, we reversed the wording of the items; originally
the student would have been primed to consider science or math first and then computer science
second. Our concern was that students might associate needing refined skills in those subject areas
to do well in computer science, so by privileging computer science, students may consider how
what they are currently doing may benefit their work in traditional classroom subjects.

Item 9 was of particular interest, as it was intended to assess self-efficacy and it utilized the
specific phrase computer science; we were interested to learn if elementary students understood

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:7

Table 3. Item Wording Changes

Original S-STEM Wording Study One Wording Final Study Three Wording
1. I like to imagine creating
new products

1. I like to imagine making
new computer programs

1. I would like to use coding
to make something new

2. If I learn engineering, then
I can improve things that
people use every day

2. If I learn coding, then I can
improve things that people
use every day

2. If I learn coding, then I can
improve things that people
use every day

3. I am good at building and
fixing things

3. I am good at building and
fixing computer program

3. I am good at building code

4. I am interested in what
makes machines work

4. I am interested in what
makes computer programs
work

4. I am good at fixing code

5. Designing products or
structures will be important
for my future work

5. Designing computer
programs will be important in
my future jobs

5. I am interested in what
makes computer programs
work

6. I am curious about how
electronics work

6. I am curious about how
computer programs work

6. Using code will be
important in my future jobs

7. I would like to use
creativity and innovation in
my future work

7. I want to be creative in my
future jobs

7. I want to use coding to be
more creative in my future
jobs

8. Knowing how to use math
and science together will
allow me to invent useful
things

8. Knowing how to use math
and science will help me to
create useful computer
programs

8. Knowing how to code
computer programs will help
me in math

9. I believe I can be successful
in a career in engineering

9. I believe I can be successful
in computer science and
programming

9. Knowing how to code
computer programs will help
me in engineering

10. Knowing how to code
computer programs will help
me in science

11. I believe I can be
successful in coding

this term. The purpose of the interview during Study 1 was to glean students’ interpretation of
the items. In other words, we needed to know to what extent we and the students had the same
understanding of these terms.

4.4.1 Item 1: I Like to Imagine Making New Computer Programs. Of the 33 students interviewed,
eight responded to the probe “What are computer programs?” in Item 1 by noting games or apps,
either directly (e.g., Facebook) or generally, “a program is something you play or do on a computer.”
Seven students shared coding examples or experiences. These responses included, “creations that
people can create through coding” and “a series of code, strands of code that when put into a com-
puter, the computer does it.” The team shifted phrasing as noted in Table 3. The logic behind the

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

17:8 J. Vandenberg et al.

rewording was that students might be prompted to connect coding with the creation of computer
programs by seeing the phrase coding new computer programs.

4.4.2 Item 3: I Am Good at Building and Fixing Computer Programs. Item 3 probed students on
their self-concept of ability in building and fixing code. Students in this study were only asked to
supply their answer—strongly disagree through strongly agree—to this item. Of the 33 students
queried, 4 students freely offered that they had different answers for each action. These students
considered them distinct processes or skills, thus, we opted to split this item into two as a result.

4.4.3 Item 8: Knowing How to Use Math and Science Will Help me to Create Useful Computer

Programs. Forty-two percent of students simply restated the item or responded in general terms
(i.e., “the basics of math and science will help me learn more”) when asked if math and science
would help them create useful computer programs. Seven students provided examples of the ways
they experienced, or could imagine, math helping in coding. Student responses included, “Math
are the variables, science. . . . I don’t know.” Only two expressed their connections to science as
“technology” and “physics.” To this end, the team determined to split the single item into different
items with math, engineering, and science. In this way, additional probes could clarify students’
understanding of the relationship of these subjects to CS.

4.4.4 Item 9: I Believe I Can be Successful in Computer Science and Programming. When
prompted to answer, “What is computer science?” students were fairly evenly distributed; 14 an-
swered “I don’t know,” whereas 10 answered by making programming or coding connections.
The remaining students made general statements about how computers work (i.e., “what makes
a computer work”) or statements focused on the word science (i.e., “science on computers, differ-
ent science, not normal science”). The team shifted wording on all items to only include coding.
Our thinking was that this term reflected processes the students most likely encountered, through
Hour of Code activities, for example.

4.5 Discussion

In summary, students struggled to understand computer programs and computer science, often con-
fusing these concepts with general computer usage and with specific applications like Facebook
and with computer games. As such, we determined that coding captured the essence of our in-
terests and that young students were more likely to be familiar with, and have an understanding
of, this word. Furthermore, our initial results indicated that approximately 75% of students did
not understand how math and science together were connected to coding. We therefore made
the decision to split the single item into three different items (math, science, and engineering).
This was done to reduce extraneous cognitive load [40], as students would have to consider math
and science individually, then together, and finally to consider how they may foster their use of
coding. The team added the third term—engineering—as a way to assess to what extent young
students understood what engineering is and how processes involved in this practice might align
with computer science. Last, despite the fact that only a few students expressed that building and
fixing code were distinct skills, we split the item into two. Our goal in doing so was twofold: one, to
reduce cognitive load as noted above; and two, to elicit more detailed information from students
by probing on the nuances between building code and debugging it. The changes to the items
that we made following Study 1 appear in Table 3. We must note that we dropped an item—“I am
curious about how computer programs work”—from Study 1, having found that students repeat-
edly asked the interviewer “didn’t I already answer that?” The wording was very similar between
two items (Items 4 and 6), so we opted to retain the one that appeared to be less confounding for
students.

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:9

Table 4. Study 2 School-level Demographics

School Black White Latinx Other NSLP*
Franklin 18% 55% 22% 5% 36%
Atwell 36% 29% 33% 2% 98%

*NSLP denotes students eligible for Free and Reduced Lunch.

5 STUDY 2

5.1 Participants

Our participants were 31 upper elementary students (ages 9–11) in two different schools in the
southeastern United States. Table 4 presents demographic data on the schools and students that
participated. The school names provided are pseudonyms to preserve anonymity. We returned to
Atwell School to conduct cognitive interviews. Again, Atwell is a rural school with roughly equiv-
alent percentages of African-American, Caucasian, and Hispanic/Latinx students. Franklin School
is a suburban school with over 50% Caucasian and approximately 20% each of African-American
and Hispanic/Latinx students. Students in Study 2 did not participate in any CS-specific interven-
tion, and the interviewed students at Atwell did not participate in our previous intervention nor in
earlier interviews. It was important for the development of appropriately worded items for us to
query students from diverse socio-demographic backgrounds. There were 22 students interviewed
at Franklin, 7 of whom were girls; 11 students were interviewed at Atwell, 6 of whom were girls.

5.2 Methods

In Study 2, the students read the items aloud, and the entire interview was audio recorded and
transcribed. The interviews took approximately 8 to 15 minutes. Over the course of the interviews,
the students were asked if any words were confusing or if they did not know the meaning of a word
or phrase. As in Study 1, due to time constraints in the classroom, a subset of items was chosen
for cognitive interviews. These items were chosen based on changes and findings from Study 1.
These will be discussed in detail below. The purposes of the interviews shifted from Study 1; here,
we were most interested in asking the students why they selected the answers they did. More
specifically, we wanted to see in what ways students’ chosen Likert-responses aligned with or
deviated from their open responses.

5.3 Analysis

Similar to Study 1, after all the interviews were completed and transcribed verbatim, we themat-
ically analyzed students’ responses [10] for five items. The first author generated initial codes by
reading through students’ responses and pulling out salient phrases or words. Other authors then
peer-checked [26] the initial codes and combined them to form themes. These themes were con-
tinuously checked against the data and to scan for patterns. Consensus was reached for all coding
decisions. Additionally, two members of the research team assessed the students’ responses for
cognitive validity, rating the students’ overall understanding of the item on a 0 to 4 Likert scale.
Given that the ratings should be considered ordinal and not continuous, we calculated polychoric
correlations [29] to assess rater agreement. The initial level of agreement ranged from 0.53 to 0.82.
For items for which there was disagreement, consensus was used to reach agreement.

5.4 Findings

5.4.1 Item 1: I Like to Imagine Coding New Computer Programs. The student responses to this
item broadly fell into four themes according to the word or phrase on which students focused.
Those who privileged liking responded by noting, “I just like to play around” and “I don’t like

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

17:10 J. Vandenberg et al.

technology like that.” Other students highlighted the phrase to imagine in their responses by stat-
ing, “I don’t imagine about computers. . . [imagine means] fake things and . . . different things that
might happen in the future.” A third group of students focused on coding and noted, “Because I
feel like when you’re coding, you’re in a whole different world and like you are in charge of what-
ever you’re coding and you do what you want to do,” and “Because, . . . I don’t think I’m going to
be a computer programmer, a coding person.” A final group—computer programs—spoke of “not
really [being] big on computer programming and stuff. I’m more an outdoors person” and “I like
to imagine coding new computer programs because new computer programs can help people. . .
like [they] can make things easier to access.”

5.4.2 Items 3 and 4: I Am Good at Building/fixing Code. Students were asked to respond to these
probes as individual items; however, their replies together highlight intriguing understandings of
how elementary students consider the process of working with code. One student, for example,
noted that she somewhat disagreed with being good at building code because “if I had to code by
myself I’d probably get halfway through and just stop because I’m too impatient”; however, she
stated she somewhat agreed with being good at fixing code because, “when someone messes up
in code, I can fix it.” Another student selected strongly agree for building code noting “we had to
make a game. . . and I had to find out how to make all of it.” He chose neither agree nor disagree for
fixing code and explained his selection by stating, “some of the time I can fix the code. . . [and]other
times, I keep looking and. . . I can’t fix it.” Students from Atwell School selected the disagree options
more often (approximately 64%) than the Franklin School students (approximately 18%). Many of
the Atwell students shared that they did not know what building nor fixing code meant and one
noted that their teacher “only taught doing it, not like fixing it.” Moreover, of the 31 students
queried on these split items, 15 offered different answers for each.

5.4.3 Item 9: Knowing How to Code Computer Programs will Help me in Engineering. The most
noticeable deviation in student responses to this item occurred between schools. Franklin School—
with its weekly digital technology class for every homeroom—had student explanations such as
“I feel like engineering has a lot to do with technology. And these days coding has a lot to do
with technology as well” and “Because engineering is almost the same thing as coding. Except
engineering is making the actual thing and coding is telling. . . that thing [what] to do.” Atwell
School—where there was more limited access to computers and technology-related activities—had
student responses such as “I don’t do engineering. We haven’t learned that yet” and “In engineer-
ing, you work on cars.” All students in Study 2 were asked to provide a definition for engineering.
Franklin School students’ definitions included: inventing and building, robots and technology, and
building cars. Over 50% of Atwell students offered a definition that included “fixing cars.”

5.4.4 Item 10: Knowing How to Code Computer Programs will Help me in Science. Students’
responses to this item fell into three major themes: science is technology, science is hands-on, and
general computer use. More specifically, science is technology students explained the following: “Sci-
ence involves a lot of technology. . . It’s like math, it’s like a lot of different things combined like
technology and math” and “Scientists have to code robots and that coding. . . means it’s telling it
what to do. Also, there’s different types of sciences [and] one of those types do stuff with elec-
tronics.” Science is hands-on responses included, “I mean science is like real life stuff and how to
make chemical reactions and stuff like that. And coding is how to work with computers and make
them work” and “Hm, ’cause I think of science as like putting different stuff together and testing
things and learning about rocks and minerals and stuff. I wouldn’t really use coding for science.
I’d rather mix stuff together, make new things, and go outside and study.” General computer use

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:11

responses included, “Coding can help people when it comes to learning how to do stuff, when it
comes to being online.”

5.5 Discussion

For item 1 (“I like to imagine coding new computer programs”) students did not focus on the termi-
nology and intent we expected. We concluded that the wording of the item was unclear; students
interpreted it in one of several ways rather than as a singular probe of whether they envisioned
themselves using code to develop something new. We did not anticipate the word “imagine” would
be problematic for the students as we conceptualized it to be an expression of interest. This high-
lighted the uncentered wording of the item and perhaps a vocabulary disconnect. Beers [8] sug-
gests that active and effective readers use context clues and their prior knowledge to monitor their
understanding of a text. Students concentrated on the concepts on which they could pull from ex-
perience or offer an appropriate response. The focus of some students on “coding” and others on
“computer programs” is also important to note. Further investigation is required to understand
whether the students in either category are able to connect both of those terms and whether they
understand each of these terms thoroughly. Because of the overall finding of uncentered wording,
the research team opted to reword the item entirely.

Modifying the original item 3 from a singular probe to two distinct items in Study 2 was appro-
priate, as approximately half of the students queried made distinctions between their self-concept
of ability in building versus fixing code. Our findings are consistent with previous work, which
concluded that debugging is a different set of skills than programming [1, 11, 41]. Our finding
highlights the fact that students’ actual and perceived abilities in this area should be considered
separately. As such, the research team felt comfortable with the wording of these items and keep-
ing them as distinct probes.

Item 9 appears to highlight disparities in schema development [27]. Overall, one group of stu-
dents had a more robust understanding of engineering as a practice and could better conceptualize
of how coding and engineering are synergistic skill sets and future occupations. In alignment with
sociocultural theory, students arrive at school with widely varying home and community experi-
ences and then receive additional distinct opportunities once there. Thus, schools and communi-
ties provide students access to both common and unique sources of culturally valued information,
artifacts, and resources [4, 33, 44]. Disparities may occur due to unequal access to the cultural
and technological resources because of inequitable funding structures or geographic limitations.
Children bring both differing vocabularies and understandings of words to school. Our results
highlight this; students from the suburban school (Franklin), in what is considered a “high-tech”
employment region, had more developed understandings and experiences from which to draw
and respond, whereas students from Atwell—situated in an under-resourced rural community—
likely had fewer such experiences and therefore were unable to make the relevant connections to
engineering as a diverse field of study.

Item 10 illustrates both the sociocultural context at play and a disconnect of educational policy
and practice from public understanding. Science is an expansive domain, with unclear bound-
aries, and often is misrepresented and misunderstood [15]. Efforts to bring science into the public
sphere—to make it interdisciplinary, more accessible, or immediately relevant—include the use of
engaging and timely socioscientific issues [SSI; 50] in classroom instruction. Student responses
appear to support the use of such pedagogical approaches in conjunction with a computer science
curriculum to help them move beyond stereotypical or superficial interdisciplinary connections
between science and coding.

In general, the term coding appeared multiple times throughout students’ responses when they
are talking about CS. Students’ past experiences in both formal and informal environments can

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

17:12 J. Vandenberg et al.

Table 5. Study 3 Demographics

Context Black White Latinx Other NSLP*
Summer Campǂ 31% 30% 13% 25% N/A
Harris School 20% 54% 16% 9% 28%

ǂDemographics are for participants, not for the entire camp.

*NSLP denotes students eligible for Free and Reduced Lunch.

contribute to the development of a conceptual understanding [32]. The fact that students’ under-
standing of computer science often revolved around how or if they could relate coding to CS would
be an outcome of previous experience in coding. Fundamental terms in computer science like this
can thus be utilized in formal instructions to help students with CS concept development and do-
main identification. The research team felt comfortable with the wording of items 9 and 10, as the
students were able to respond to the probes appropriately. However, we wished to gather more
qualitative data on how students perceived the connections between CS and these other subject
areas. Our hope was to begin to outline pedagogical implications based on students’ experiences.
To this end, we continued to query students on these items.

6 STUDY 3

6.1 Participants

Our participants were 32 elementary students (ages 8–11) in two different contexts in the south-
eastern United States. Table 5 presents demographic data on the contexts and students that par-
ticipated. The first context was a summer camp associated with the university and intended for
rising third- through fifth-grade students. The second context was a suburban school called Har-
ris. Harris’ student population is approximately 50% Caucasian, 20% African-American, and 15%
Hispanic/Latinx. Student participants at Harris were in fifth grade and were pulled from their com-
puter science class to participate in the interviews. The combination of the contexts and return rate
of consent forms resulted in this study being disproportionately male. There were 18 students in-
terviewed at the summer camp, 5 of whom were girls; 14 students were interviewed at Harris,
6 of whom were girls.

6.2 Methods

In Study 3, the students read the items aloud and the entire interview was audio recorded and
transcribed. The interviews took between 5 and 15 minutes. Over the course of the interviews, the
students were asked if any words were confusing or if they did not know the meaning of a word
or phrase; one interview was ended early by the interviewer, as the child was unable to describe
“coding.” As in the earlier studies, due to time constraints in the classroom and camp activities, a
subset of items was chosen for cognitive interviews. These items were chosen based on changes
and findings from Study 2. These will be discussed in detail below. The purposes of the interviews
shifted from Study 2; in the current study, we were most interested in eliciting from students how
they understood the wording of the item as well as why they selected the answers they did.

6.3 Analysis

Mirroring analyses from Study 1 and 2, once the interviews were transcribed verbatim, the first
two authors generated initial codes and collapsed them into themes, which were peer-checked
by others on the research team. Consensus was reached for all coding decisions. This thematic
analysis occurred for three items. Similar to Study 2, we calculated polychoric correlations [29] to

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:13

assess rater agreement. The initial level of agreement ranged from 0.54 to 0.80. For items for which
there was disagreement, consensus was used to reach agreement.

6.4 Findings

6.4.1 Item 1: I Like to Use Coding to Make Something New. The majority of the responses fell
into the theme of Item Reiteration (N=18). Responses that fell under this category include, “If you
would use coding and make something new out of it. . . ” Under Item Reiteration, we separated
responses under the subcategories Close Reiteration (N=9) and New (N=15). Those in the second
subcategory contained sentences that focused on the word “new.” An example of an answer that
contained both is, “It is asking me to use different types of coding to make something completely
new out of that coding. Like making a new program that can answer something that no one else
has really answered.” The first sentence in the response is a Close Reiteration and the second is a
deeper explanation that focuses on “new.”

Two other themes that emerged from the students’ answers related to this item were about the
Goal of Coding (N=9) and the students’ Attitudes Towards Coding (N=2). An example of a response
containing goals of coding is, “To make some kind of new program. So programming a game or
a. . . or something where kids can use that coding to learn how to code in Scratch.” The attitudes
towards coding include, “That you like coding” and “It means that if you really want to make
something, like a new invention or something, you can use coding to do it and that would be
pretty cool.”

The remaining responses were unlike those noted above. Some of them contained examples
of specific blocks (e.g., move blocks) that the students likely used in classes. Other interesting
responses were, “That um, I wanna like, try new things and [do them] through coding” and “It
means using coding, you can create something and that is. . . new in the sense that it’s coming from
you. . . ” We found these responses particularly interesting, because the students were focused on
trying new things, and the new things were their creation. The second quotation implies that the
student feels ownership over his/her creation.

6.4.2 Item 9: Knowing How to Code Computer Programs will Help me in Engineering. Students’
responses to this item fell into two large themes—Career and Item Reiteration. Career-based re-
sponses (N=11) included mentions such as, “It’s asking if coding, if you want to be an engineer, it
will help you with your job” and “Like [coding] will help you when you’re engineering stuff if you
become an engineer.” Item reiteration responses (N=14) were simply instances in which students
restated the item but did so by substituting their own words and/or by providing explanatory ex-
amples. Such examples include “I think it’s asking me, like, how. . . coding computer programs help
you in like, like, engineering . . . like how to build stuff. . . ” and “It is asking me if knowing how to
code the computer, create programs, or games, or websites, would help me in engineering when
I’m building something.”

Student responses also resulted in other themes, fewer in number, but worthy of note. These in-
cluded Math; Coding in Engineering; and Cars, Robots, and Technology. The math-based responses
included this statement: “Well code can help you learn math because you have to be able to use
math to code sometimes. And in engineering you have to use math.” Coding in Engineering re-
sponses included pronouncements such as, “How coding, if you know how to code you can know
how to engineer stuff” and “It is asking if computer programming will help in engineering for
people, and how it will maybe benefit them.” The last theme—Cars, Robots, and Technology—is
an aggregate of examples students offered for how they see coding directly applying to their
understanding of engineering. For example, “So if you’re engineering, . . . you would need um

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

17:14 J. Vandenberg et al.

code- coding ’cause sometimes you can make like any type of technology maybe. Anybody can
make like a hovering car, like a real-life hoverboard. Like you would need coding for that.”

6.4.3 Item 10: Knowing How to Code Computer Programs will Help me in Science. Students’
responses to item 10 fell into three themes, although the vast majority of students (N=22) reiterated
the item by rewording it and/or providing an example. Such Item Reiteration responses include,
“It’s asking me that in science, knowing how to code will be helpful” and “How code can help
you in science. . . and how you can use computer programs to help you understand what science
is better.” Of note, only two students mentioned Careers in their response to this item: “It’s asking
you if coding computer programs will do something if I like to do science. . . Because I am going to
have to use a lot of science when I grow up because I’m going to have multiple jobs, I think.” The
final theme is an aggregate of how students Connect Science to Coding. Three students explicitly
noted that they do not see how coding and science connect. One such response was “Because [in]
science you learn about volcanoes and how they work and I don’t think coding really involves
science.” The remaining responses in this theme show alignment between science and coding,
albeit in varied ways. For example, “Like, if you know how to code a computer, how it will help
you in science. . . Because, um, it has a little bit of science to it, and it also has like experimenting
in it to see what happens, and that’s kind of part of science.”

6.5 Discussion

For Item 1, over half the students queried offered item-reiteration responses. The majority of these
responses focused on the word “new” in the item. Because of the number of students that seemed
to understand the intent of the item, we believe that the wording of the item is appropriate for
upper elementary students. It is also important to note that under Goal of Coding, the majority
of the responses (N=7) contained sentences about games. The students that spoke about games
seemed to have trouble coming up with any other specific examples of new programs they can
create, “Like, to use coding, coding is a computer thing to use on a computer to make a game or
any, to make characters move or to create something.” This reflects the types of activities that
students associate with coding. To better help students understand that they can complete a wide
variety of tasks by coding, practitioners and researchers should focus on curricula and activities
that are more reflective of problems computer scientists solve.

Regarding item 9, just under half the students queried offered item-reiteration responses. How-
ever, many of the career-themed responses also restated the item in such a way that students
clearly understood the intent of the item, as we hoped. As such, we feel confident moving forward
with this item as worded. It is important to note that this item, more so than item 10 below, had
more career-themed responses. We posit that elementary students do not typically take classes in
engineering as they do in science or math and may not conceptualize it as being anything other
than an activity that occurs distally, as an adult.

Students’ responses to item 10 largely support our intent in writing the item. The students were
able to connect coding and science in ways that highlight how the skills learned through coding
could help their learning in science. It is important to note that students’ understanding of science
is varied; they offered definitions that ranged from “the learning of everything” and “think[ing]
of new stuff and new ways to help people” to the more specific topics within science such as
chemistry, planetary studies, force and motion, and the human body.

Across all three items, several responses are worth highlighting. One student suggested that
coding seemed more appropriate in an English language arts class: “[It’s] like learning new words
or fixing things I guess. Let’s say I was writing a summary and I wanted to fix some things, and
that is technically coding because I am fixing things that I messed up.”

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:15

Another student conflated cryptography and coding, noting at one point and in response to
item 1, “I guess to like, uncode an answer, and to use different codes to make like words. Or you
can do different things with codes.” In response to item 9, this student offered this: “It is asking me
to figure out a way to like engineer different, like, machines that can take in codes and decode them
or you can code one then decode it and code it again.” We fully recognize that cryptography is an
important topic under cybersecurity within computer science; that a student has conflated these
concepts underscores the need for the CS education community to more fully utilize appropriate
terminology within CS activities for young students.

Moreover, two students expressed the benefits of using coding as a planning and modeling tool
to help with the doing of science or engineering. One noted, “Engineering is one of those things
where you need the 3D model- modeling and you’ve got a lot of math involved in that.” The
other stated, “Well engineering is kind of like designing things and making things better, even just
making a new invention. And you can use coding to make it work on there before you actually
start it because if you actually start it and you don’t use coding then it will be hard to plan it out,
I guess. And if you don’t use coding or a plan to start it before you actually do it then if you make
mistakes you can’t fix it on the coding.”

7 FINAL DISCUSSION

Cognitive interviews are a potent tool for systematically investigating children’s self-reports with
an acceptable cognitive validity [49]. In the process of developing this instrument, we analyzed
multiple aspects of the students’ responses. These include the students’ self-concepts regarding
CS problem solving, their understanding of CS as a domain, perceptions of other related domains,
their understanding of CS-specific concepts like fixing/debugging, and the associated prompts as
well (i.e., “what is engineering?”). Overall, our findings reinforce the importance of revalidating
instruments when adapted to new foci or used with younger audiences. If we had simply taken the
S-STEM instrument, designed for middle-grade students with an engineering & technology focus,
and adopted it for elementary students with a CS focus without this cognitive interviewing process,
we would have likely had psychometrically problematic results. As an added benefit, our studies
provided important insights into children’s thinking around core CS concepts, thus informing both
curriculum development and pedagogical strategies.

Our findings support our view that prior experience and opportunities afforded to students
shaped their responses as much as their general developmental level. Piagetian theory supports
that children in the 9-to-11 age range can think about and solve problems that pertain to real, or
actual, objects [31]. This may well be why we saw some marked differences in responses between
the schools. Some students had actual experience with concepts about which they were probed,
whereas others had no such experiences. This lack of experience would have been too abstract
for this developmental phase. One immediate implication of this is the need to imbue elementary
curricula with terminology and experiences that connect with and transcend what the children
encounter in their own communities. Our findings are in alignment with both sociocultural theory
in general [33, 44] and social capital theory as applied to STEM areas [4]. At the policy level, our
findings reinforce stated concerns about the opportunity gap for youth with regards to exposure
and cultivating interest in high-value STEM career pathways [14].

It is important to reconsider and reword survey items when exploring specific domains. Our ex-
pert conceptions of appropriate language do not always correspond with young students’ under-
standings of terminology. For example, over the course of these studies, item 1 underwent several
important changes. The original S-STEM [43] Technology and Engineering wording was “I like
to imagine making new products.” The team considered “I like to imagine making new computer
products” to adhere as closely as possible to the original. This was rejected in favor of “I like to

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

17:16 J. Vandenberg et al.

imagine making new computer programs.” Still, students had difficulty with this wording, as they
could not isolate what computer programs were. In hopes of probing their thinking, we shifted
wording slightly to “I like to imagine coding new computer programs.” Students then grappled
unnecessarily with this item, as they did not focus on what we hoped: coding for creation. As
such, we shifted wording to “I would like to use coding to make something new.”

The language educators use with students is exceedingly powerful. Helping students broaden
the connections between their everyday and scientific language may prove influential. One such
example is in our use of “fixing” as a synonym for “debugging.” One student offered the following
explanation of fixing: “I can code and I think that fixing code is probably a little harder because
it includes understanding the code and then being able to change it and make it better, or fix
something that is wrong with it.” Students did not often share such profound understandings
of fixing/debugging. Care needs to be taken to ensure that students’ comprehension of essential
CS concepts straddles not only diverse socio-demographic school contexts but also from primary
to intermediate to secondary education levels. Some students’ domain understanding of subjects
such as engineering and science—and the processes involved in these subjects—are still blurry
to elementary students. Because these terms are so interconnected as well as important to 21st
century learning, curriculum writers and educators need to focus on how to make the domain-
specific terminology clear.

8 LIMITATIONS

Findings of these studies should be considered in the context of the following limitations: The first
is sample size and methodology. Cognitive interviewing is time-intensive in nature; therefore, we
opted to prioritize quality over quantity. As such, we purposefully selected contexts that reflected a
diverse array of student backgrounds to capture a range of student responses and experiences. The
second limitation is our decision to probe students on only a select number of items. This likely
could have been remedied by conducting the studies in a lab setting; however, we chose natural
learning environments to open the study to as many students as possible. The third limitation
is in reference to the socio-demographic variables we were able to collect; future work might
consider collecting more variables. Last, some of the student participants expressed that they had
never been interviewed, and others shared that they had never been asked questions about their
understanding of a statement. The cognitive interviewing process was new for all the students and
may have caused some discomfort for some who felt they needed to share a right answer with the
researchers.

9 CONCLUSIONS AND FUTURE WORK

Over the course of these three studies, we qualitatively analyzed students’ responses to the word-
ing of 13 items, resulting in a final set of 11 items deemed appropriate for upper elementary stu-
dents. We intend to distribute our survey to quantitatively validate the instrument. As such, we
anticipate this instrument being used to measure fourth- and fifth-grade students’ attitudes toward
CS, in particular before and after completing a relevant intervention.

There is still much to understand about how elementary students learn computer science. Be-
cause their perceptions of CS can affect their learning, it is important for researchers in the com-
puter science education community to study what those perceptions are, how they came to be that
way, and the importance of addressing any misconceptions in a manner that can broaden partic-
ipation in the field. Our results contribute to the CS literature by showing the varied ranges of
conceptions young students have regarding these concepts. As can be seen from their responses
to probes of their thinking, upper elementary students often have somewhat vague understand-
ings of core and essential vocabulary such as computer science and programming. Additionally,

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

Elementary Students’ Understanding of CS Terms 17:17

young students have diverse notions of how CS may connect with other subjects they learn. Our
results are also of pragmatic curricular interest, as they highlight voids in instruction regarding
not just key vocabulary, but perhaps of specific CS processes like debugging.

Students’ varied conceptions of how CS/CT and other STEM subjects might align is in agreement
with prior work on student conceptions of how STEM academic areas relate to each other and to
future career pathways [48]. These findings point to any number of potential interventions to be
implemented and studied. Of particular interest would be if students’ awareness changes after
participating in a researcher-led intervention specifically designed around CS/CT integration into
traditional STEM academics (e.g., science and mathematics).

The computer science education community may consider taking up research using this sys-
tematic approach to cognitive interviewing to ensure measures of young students’ attitudes and
perspectives are cognitively valid. There are several potential directions to consider. For example,
we may be interested in knowing to what extent the students self-regulate their learning—how and
if they plan, monitor, and evaluate—in a coding environment. Moreover, including an open-ended
prompt, allowing students to offer any final thoughts, may elicit rich information about which we
never thought to inquire. Finally, querying students on their attitudes toward collaborative coding
may indicate potential roadblocks and solutions to encourage students to work together on coding
activities. Cognitive interviewing is a powerful tool for researchers interested in developing more
stable and reliable instruments. Moreover, curriculum developers, who wish to create materials
that provide students with authentic learning experiences that help to bridge their existing under-
standing with new content, may find it helpful as well. As seen from these three studies, it was an
important tool to capture students’ understanding of CS language and processes.

ACKNOWLEDGMENTS

We thank the teachers and camp counselors who provided us time and space to conduct our in-
terviews, and the students who devoted their time and energy to provide thoughtful responses to
our questions.

REFERENCES

[1] M. Ahmadzadeh et al. 2005. Novice programmers: An analysis of patterns of debugging among novice computer

science students. Inroads 37, 3 (2005), 84–88.

[2] I. Ajzen and N. Gilbert Cote. 2008. Attitudes and the prediction of behavior. In Attitudes and Attitude Change, W. D.

Crano and R. Prislin (Eds.). Psychology Press, New York, NY, 289–311.

[3] J. Alano et al. 2018. K–12 Computer Science Framework. Retrieved from https://k12cs.org/.

[4] L. Archer et al. 2015. “Science capital”: A conceptual, methodological, and empirical argument for extending Bour-

dieusian notions of capital beyond the arts. J. Res. Sci. Teach. 52, 7 (2015), 922–948. DOI:10.1002/tea.21227

[5] M. W. Arthur et al. 2002. Measuring risk and protective factors for use, delinquency, and other adolescent problem

behaviors: The communities that care youth survey. Eval. Rev. 26, 6 (2002), 575–601. DOI:10.1177/019384102237850

[6] R. M. Baars et al. 2005. The European DISABKIDS project: Development of seven condition- specific modules to

measure health related quality of life in children and adolescents. Health Qual. Life Outc. 3, 1 (2005), 70. DOI:10.1186/

1477-7525-3-70

[7] R. S. Baker et al. 2010. Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–

affective states during interactions with three different computer-based learning environments. Int. J. Hum.-Comput.

Stud. 68, 4 (2010), 223–241.

[8] K. Beers. 2003. When kids can’t read, what teachers can do. Heinemann, Portsmouth, NH.

[9] P. Bourdieu. 2011. The forms of capital (1986). In Cultural Theory: An Anthology, I. Szeman and T. Kaposy (Eds.), John

Wiley, Chichester, UK, 241–258.

[10] V. Braun and V. Clarke. 2006. Using thematic analysis in psychology. Qualit. Res. Psychol. 3, 2 (2006), 77–101. DOI:10.

1191/1478088706qp063oa

[11] K. Brennan and M. Resnick. 2012. New frameworks for studying and assessing the development of computational

thinking. In Proceedings of the American Education Researcher Association Conference.

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

https://k12cs.org/
https://doi.org/10.1002/tea.21227
https://doi.org/10.1177/019384102237850
https://doi.org/10.1186/1477-7525-3-70
https://doi.org/10.1186/1477-7525-3-70
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa

17:18 J. Vandenberg et al.

[12] D. A. Brodersen and G. C. Thornton. 2011. An investigation of alpha, beta, and gamma change in developmental

assessment center participants. Perf. Improv. Quart. 24, 2 (2011), 25–48. DOI:10.1002/piq.20109

[13] L. Carter. 2006. Why students with an apparent aptitude for computer science don’t choose to major in computer

science. ACM SIGCSE Bull. 38, 1 (2006), 27–31.

[14] Code.org and CSTA. 2018. 2018 State of Computer Science Education: Code.org. Retrieved from https://advocacy.

code.org/.

[15] N. W. Feinstein. 2015. Education, communication, and science in the public sphere. J. Res. Sci. Teach. 52, 2 (2015),

145–163. DOI:10.1002/tea.21192

[16] E. A. Forman and J. Larreamendy-Joerns. 1998. Making explicit the implicit: Classroom explanations and conversa-

tional implicatures. Mind, Cult. Activ. 5, 2 (1998), 105–113. DOI:10.1207/s15327884mca0502_4

[17] P. Gibbons. 2013. Scaffolding Language, Scaffolding Learning: Teaching ESL Children in the Mainstream Classroom.

Heinemann, Portsmouth, NH.

[18] A. C. Graesser et al. 2006. Detection of emotions during learning with AutoTutor. In Proceedings of the 28th Annual

Meeting of the Cognitive Science Society. 285–290.

[19] S. Grover et al. 2014. Remedying misperceptions of computer science among middle school students. In Proceedings

of the 45th ACM Technical Symposium on Computer Science Education. ACM, 343–348. DOI:10.1145/2538862.2538934

[20] M. Hewner. 2013. Undergraduate conceptions of the field of computer science. In Proceedings of the 9th Annual Interna-

tional ACM Conference on International Computing Education Research. ACM, 107–114. DOI:10.1145/2493394.2493414

[21] M. Hewner and M. Guzdial. 2008. Attitudes about computing in postsecondary graduates. In Proceedings of the 4th

International Workshop on Computing Education Research. ACM, 71–78.

[22] V. John-Steiner and H. Mahn. 1996. Sociocultural approaches to learning and development: A Vygotskian framework.

Educ. Psychol. 31, 3–4 (1996), 191–206.

[23] S. A. Karabenick et al. 2007. Cognitive processing of self-report items in educational research: Do they think what

we mean? Educ. Psychol. 42, 3 (2007), 139–151.

[24] V. Kukul et al. 2017. Computer programming self-efficacy scale (CPSES) for secondary school students: Development,

validation and reliability. Educ. Technol.-Theor. Pract. 7, 1 (2017), 158–179.

[25] C. M. Lewis et al. 2016. I don’t code all day: Fitting in computer science when the stereotypes don’t fit. In Proceedings

of the ACM Conference on International Computing Education Research. ACM, 23–32. DOI:10.1145/2960310.2960332

[26] Y. S. Lincoln and E. G. Guba. 1985. Naturalistic Inquiry. Sage, Newbury Park, CA.

[27] M. B. McVee et al. (2005). Schema theory revisited. Rev. Educ. Res. 75, 4 (2005), 531–566.

[28] National Science Foundation. 2019. STEM + Computing K–12 Education (STEM+C). Retrieved from https://www.

nsf.gov/funding/pgm_summ.jsp?pims_id=505006.

[29] J. C. Nunnally. 1978. Psychometric Theory. McGraw-Hill, New York, NY.

[30] Ö. Özyurt and H. Özyurt. 2015. A study for determining computer programming students’ attitudes towards pro-

gramming and their programming self-efficacy. J. Theor. Pract. 11,1 (2015), 51–67.

[31] J. Piaget. 2002. Judgement and Reasoning in the Child. Routledge, London.

[32] A. L. Pines and L. H. West. 1986. Conceptual understanding and science learning: An interpretation of research within

a sources-of-knowledge framework. Sci. Educ. 70, 5 (1986), 583–604.

[33] P. R. Portes and J. A. Vadeboncoeur. 2003. Vygotsky’s educational theory in cultural context. In Mediation in Cognitive

Socialization: The Influence of Socioeconomic Status, A. Kozulin, B. Gindis, V. Ageyev, & S. Millier (Eds.). Cambridge

University Press, Cambridge, UK, 371–392.

[34] S. Psycharis and M. Kallia. 2017. The effects of computer programming on high school students’ reasoning skills and

mathematical self-efficacy and problem solving. Instruct. Sci. 45, 5 (2017), 583–602. DOI:10.1007/s11251-017-9421-5

[35] R. C. D. Reis et al. 2018. Affective states in computer-supported collaborative learning: Studying the past to drive the

future. Comput. Educ. 120 (2018), 29–50.

[36] N. C. Schaeffer and S. Presser. 2003. The science of asking questions. Ann. Rev. Sociol. 29, 1 (2003), 65–88. DOI:10.

1146/annurev.soc.29.110702.110112

[37] N. Schwarz. 1999. Self-reports: How the questions shape the answers. Amer. Psychol. 54, 2 (1999), 93.

[38] N. Schwarz. 2007. Attitude construction: Evaluation in context. Soc. Cog. 25, 5 (2007), 638–656.

[39] P. Sengupta et al. 2013. Integrating computational thinking with K–12 science education using agent-based compu-

tation: A theoretical framework. Educ. Inf. Technol. 18, 2 (2013), 351–380. DOI:10.1007/s10639-012-9240-x

[40] J. Sweller. 1988. Cognitive load during problem solving: Effects on learning. Cog. Sci. 12, 2 (1988), 257–285.

[41] Y. Tran. 2019. Computational thinking equity in elementary classrooms: What third-grade students know and can

do. J. Educ. Comput. Res. 57, 1 (2019), 3–31. DOI:10.1177/0735633117743918

[42] M. J. Tsai et al. 2019. Developing the computer programming self-efficacy scale for computer literacy education.

J. Educ. Comput. Res. 56, 8 (2019), 1345–1360. DOI:10.1177/0735633117746747

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

https://doi.org/10.1002/piq.20109
https://advocacy.code.org/
https://advocacy.code.org/
https://doi.org/10.1002/tea.21192
https://doi.org/10.1207/s15327884mca0502_4
https://doi.org/10.1145/2538862.2538934
https://doi.org/10.1145/2493394.2493414
https://doi.org/10.1145/2960310.2960332
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505006
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505006
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.1146/annurev.soc.29.110702.110112
https://doi.org/10.1146/annurev.soc.29.110702.110112
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1177/0735633117743918
https://doi.org/10.1177/0735633117746747

Elementary Students’ Understanding of CS Terms 17:19

[43] A. Unfried et al. 2015. The development and validation of a measure of student attitudes toward science, technology,

engineering, and math (S-STEM). J. Psychoeduc. Assess. 33, 7 (2015), 622–639. DOI:10.1177/0734282915571160

[44] L. S. Vygotsky. 1980. Mind in Society: The Development of Higher Psychological Processes. Harvard University Press,

Cambridge, MA.

[45] D. Weintrop. 2016. Modality matters: Understanding the effects of programming language representation in

high school computer science classrooms. Doctoral dissertation. Retrieved from http://www.terpconnect.umd.edu/∼
weintrop/papers/WeintropDissertation.pdf.

[46] D. Weintrop et al. 2016. Defining computational thinking for mathematics and science classrooms. J. Sci. Educ. Technol.

25, 1 (2016), 127–147. DOI:10.1007/s10956-015-9581-5

[47] A. Wigfield and J. S. Eccles. 2000. Expectancy—Value theory of achievement motivation. Contemp. Educ. Psychol. 25,

1 (2000), 68–81. DOI:10.1006/ceps.1999.1015

[48] E. Wiebe et al. 2018. The relationship of STEM attitudes and career interest. EURASIA J. Math. Sci. Technol. Educ. 14,

10. DOI:10.29333/ejmste/92286

[49] M. E. Woolley et al. 2004. Cognitive pretesting and the developmental validity of child self- report instruments: Theory

and applications. Res. Soc. Work Prac. 14, 3 (2004), 191–200. DOI:10.1177/1049731503257882

[50] D. L. Zeidler. 2014. Socioscientific issues as a curriculum emphasis: Theory, research and practice, S. K. Abell and

N. G. Lederman (Eds.). In Handbook of Research on Science Education. Routledge, Taylor and Francis, NY, 697–726.

Received August 2019; revised December 2019; accepted February 2020

ACM Transactions on Computing Education, Vol. 20, No. 3, Article 17. Publication date: June 2020.

https://doi.org/10.1177/0734282915571160
http://www.terpconnect.umd.edu/~weintrop/papers/WeintropDissertation.pdf
http://www.terpconnect.umd.edu/~weintrop/papers/WeintropDissertation.pdf
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1006/ceps.1999.1015
https://doi.org/10.29333/ejmste/92286
https://doi.org/10.1177/1049731503257882

