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ABSTRACT
Programmable switches have emerged as powerful and flexible
alternatives to fixed-function forwarding devices. But because of
the unique hardware constraints of network switches, the design
and implementation of compilers targeting these devices is tedious
and error prone. Despite the important role that compilers play in
software development, there is a dearth of tools for testing com-
pilers for programmable network devices. We present Druzhba,
a programmable switch simulator used for testing compilers tar-
geting programmable packet-processing substrates. We show that
we can model the low-level behavior of a switch’s programmable
hardware. We further show how our machine model can be used
by compiler developers to target Druzhba as a compiler backend.
Generated machine code programs are fed into Druzhba and tested
using a fuzzing-based approach that allows compiler developers to
test the correctness of their compilers. Using a program-synthesis-
based compiler as a case study, we demonstrate how Druzhba has
been successful in testing compiler-generated machine code for our
simulated switch pipeline instruction set.
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1 INTRODUCTION
Traditionally, network switches have been fixed-function; in these
switches, behavior is baked into the underlying hardware itself
with little to no room for modification in the field. Though there
have been programmable network processors available (e.g., [5]),
it was widely believed that fixed-function switches would always
be cheaper, more power efficient, and much faster. Programmable
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packet-processing devices were failing to reach the 1 Tb/s packet
forwarding speeds observed in large data centers and enterprises,
causing many to opt not to deploy these systems. However, network
operators need to be able to dynamically add new functionalities
and packet-processing operations whilst still ensuring that the de-
vice runs at high-speeds. While operators can opt to make an invest-
ment in new fixed-function hardware, this is a time-consuming and
costly use of resources. It can take several years for network switch
vendors to produce these new devices due to the complications of
designing new software and ASIC hardware. After these switches
are developed, it takes additional time and effort to integrate these
devices within their networking infrastructure.

The emerging prominence of software-defined networking (SDN)
[25] and programmable networks has attempted to mitigate these
issues. Programmability of the data plane has been accompanied
by the advent of high-speed programmable networking substrates
which have drastically increased the ability to dynamically change
packet-processing functionality. The switching chips for these sub-
strates [2, 4, 8, 17, 19] have demonstrated that relative to fixed-
function chips, a certain level of programmability can be achieved
without compromising performance within the data plane. Along
with these switching chips, high-level domain-specific languages
for data plane programming such as P4 [9], Domino [15], POF [29],
and Lyra [12] have emerged to configure packet-processing be-
havior. With these advances, programmable switches have been
shown to have a plethora of use cases. These uses dynamically im-
plementing new protocols such as VXLAN [11], running network
functions such as firewalls or load balancers [13], and implementing
centralized lock management [34].

Today, most programmable switching chips feature a pipeline
of stages that perform packet-processing computations. However,
building compilers for these chips remains challenging. Unfortu-
nately, programmers bear the weight of these consequences as they
rely on compiler heuristics to adequately map their programs to
machine code and an incorrect mapping could result in a binary
with erroneous behavior. While the testing and development of tra-
ditional compilers has never been easy, the issue is exacerbated for
compilers targeting switches. We make the following observations:

(1) Switching chips have restraining budgets of hardware re-
sources such as pipeline stages and arithmetic logic units
(ALUs).

(2) Due to the feed-forward design of switch pipelines where
packets flow from an earlier stage to a later one but not
in reverse, computations must be placed into stages while
respecting dependencies between computations.

(3) Programmable pipelines have an all-or-nothing nature, mean-
ing that a program either runs at line-rate if it can fit within
a pipeline’s resources or it is rejected by the compiler.

Furthermore, severe damage can result from bugs whose effects can
permeate across an entire network causing issues such as security
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vulnerabilities if ACLs aren’t correctly implemented, heightening
the importance of validating compiler correctness.

Thus, due to limited switch hardware resources as well as the
feed-forward pipeline architecture, the mapping of programs to
the switch computational model is challenging. This along with
switches’ all-or-nothing nature results in compilers having to fre-
quently reject high-level programs. This is because compilers are
unable to map programs to the underlying switching chip [3, 7],
even if a mapping exists. To better illustrate the severity of this
problem, consider the case where there exist two seemingly differ-
ent, yet semantically equivalent programs. It is possible for these
switch programs to have two different compilation results — one
can succeed in being compiled while the other fails and gets re-
jected. For general-purpose CPUs, if the high-level implementation
of a program is not resource-efficient, it can still be executed re-
gardless of the aggressiveness of the compiler optimizations at
the costs of longer runtime and/or more memory usage. Compiler
developers for general-purpose CPUs also don’t have to grapple
with the resource-constrained pipeline model of programmable
switches. Additionally, compiler developers for general-purpose
CPUs have access to a plethora of robust testing and bug-finding
tools and techniques (e.g., [28, 33]) that aren’t available to switch
compiler developers. In summary, the design and implementation
of compilers for packet-processing is much more challenging than
for traditional compilers. A few questions are posed because of
these difficulties: how can we ease the tedious development process
for switch compiler developers? How can we check the correctness
of switch compiler mappings to the switch pipeline instruction set?
In this paper, we address these concerns.

We present Druzhba, a switch pipeline hardware simulator for
testing compilers targeting high-speed programmable switches. To
test their compilers, developers target Druzhba as a compiler back-
end. Druzhba then simulates compiler-generated machine code
programs so that compiler developers can observe whether their
programs exhibit the expected packet-processing behavior or not.
If unexpected behavior is observed, compiler developers conclude
that the compiler mapping to the switch pipeline instruction set
was erroneous. In implementing Druhba, we model the low-level
hardware primitives of the RMT (Reconfigurable Match Tables)
[17] architecture. We do this by enabling compiler developers
to specify the low-level hardware implementation details of the
switching chips that they are programming their compilers to tar-
get. We are also in the process of implementing simulation for a
network processor-based model, dRMT (Disaggregated Reconfig-
urable Match Tables) [19]. Druzhba’s source code can be found at
https://github.com/chipmunk-project/druzhba-simulator.

2 SWITCHING CHIP ARCHITECTURE
In this section we discuss the high-speed packet forwarding per-
formed by switches. We also delve into the emergence of the RMT
programmable switch architecture that we model. We further de-
scribe our RMT pipeline instruction set modeling methodology.

2.1 Overview
Switches perform high-speed packet forwarding which first in-
volves a parser to extract packet fields from an incoming bytestream.

Second, they operate on packets using match+action tables. These
tables are allocated using local pipeline stage memory and map
matches on packet header fields to actions that perform computa-
tions on packet header fields, metadata, and switch state. Examples
of actions include mutating a state variable, dropping a packet, or
decrementing a packet’s TTL.
Motivation for switch chips. CPUs and network processors ini-
tially come to mind as ideal candidates for these processing re-
quirements but they do not perform at high speeds. CPUs have
a general-purpose instruction set and use external memory and
thus aren’t specialized to perform fast packet-processing. Many
network processors contain computing clusters with configurable
units for packet processing. However, these architectures have vari-
able performance, don’t guarantee line rate, and can have degraded
performance when memory is shared between different processors.
On the other hand, switching chips can operate at two orders of
magnitude faster than many CPUs and one order of magnitude
faster than many network processors.

One prominent fixed-function switching chip design was the
MultipleMatch Tables (MMT)model which consists of two pipelines,
called the ingress and egress pipelines, that are separated by switch-
ing fabric which determines the connections between the input
and output ports. Each pipeline is comprised of a series of pipeline
stages stages with each stage containing local memory to be used
for match+action tables. Due to the performance requirements of
line-rate forwarding, fixed-functionMMT chips limit the freedom in
switch reconfiguration which is problematic for implementing new
header fields for matching and actions for tasks such as tunneling,
queue management, and traffic engineering.
Programmable pipelines. The RMT architecture has risen as a pop-
ular alternative due to its increased flexibility. RMT also contains
pipelines of match+action tables but goes further in allowing recon-
figurability of the switching chip data plane. The first contribution
is that the parser is programmable, enabling new header types and
fields to be defined without being restricted to pre-defined ones.
Second, the size and number of match tables within the switch can
be reconfigured. Third, new actions that haven’t been pre-defined
can be created. Lastly, more control is given in allowing packets to
be placed in specific queues. The design of RMT’s match+action
tables reduces wasteful resource consumption and allows for the
ability to meet different algorithmic requirements. On the other
hand, in the MMT model, new hardware often needs to be con-
structed for a specific configuration that a current switch does not
support.

2.2 Compilation to Switch Pipelines
Along with the increased freedom in programmability, compilers
are responsible for ensuring that high-level programs are mapped
to switch hardware primitives. Within the hardware, the parser
generates packet header vectors (PHVs) that are vectors of con-
tainers each holding a packet or metadata field; metadata is data
associated with each packet. Metadata fields include the number of
bytes in the packet or the ingress port on which the packet arrived.
Action units are implemented using configurable digital circuits
which comprise arithmetic logic units (ALUs) and memories. ALUs
perform computations and are either stateful or stateless; stateful
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Figure 1: The left side shows a high level program (e.g., Domino, P4) given to the compiler. It is mapped to the Druzhba RMT
machine model on the right, which features a pipeline with depth and width of 2 and PHV length of 2. The pipeline stages’
connections between PHVs to ALU inputs and ALU outputs to PHVs are also shown.

ALUs can read and write to their switch state values while stateless
ALUs solely operate on PHVs. Switch state is data that is stored
locally within an ALU and any modification made to state must
be visible to the next PHV that the ALU executes on. State is local
to stateful ALUs and isn’t shared across multiple ALUs to prevent
non-deterministic performance from memory contention. Compil-
ers translate programs to machine code using the instruction set
of the underlying switching chip to (1) determine which header
fields for a parser to match on and place into PHVs, (2) implement
the tables and ALUs, and (3) generate the connections between
ALUs and PHVs. Figure 1 shows the compilation process of taking
a high-level packet-processing program and converting it to switch
pipeline machine code. The machine code is then used to program
the hardware primitives of our Druzhba machine model.

2.3 RMT Instruction Set Modeling
Druzhba doesn’t directly represent the match+action tables, but
models their underlying hardware primitives. First, instead of mod-
eling packets directly, we model PHVs to better capture the low-
level architectural details. Second, we use ALUs to represent the
switch action units. Third, we use input and output multiplexers
to illustrate the connections between PHVs and ALUs. Druzhba
accurately models the ALUs within a physical switching chip (e.g.,
[8]). At the moment, we do not model parsing, matching, and other
switching chip functionalities.

ALU behavior is determined by opcodes that specify the type of
operations to perform and immediate operands that are unsigned in-
teger constants. PHV container values are fed into an ALU through
input multiplexers with each multiplexer corresponding to an ALU
operand. Once the input multiplexers have forwarded the operands
to their respective ALUs, the ALUs execute and state variables are
written to as needed. Each output multiplexer receives the output
value from every each ALU and selects one to write to its allo-
cated PHV container. Figure 1 shows an in-depth view of our model
by illustrating Druzhba’s feed-forward pipeline structure and the
multiplexers that connect the PHVs and ALUs.

3 DESIGN AND IMPLEMENTATION
Our Druzhba pipeline simulation consists of (1) our pipeline gen-
erator, dgen, and (2) our simulation component, dsim, which per-
forms the packet-processing behavior specified by dgen’s generated
pipeline on incoming packets. In this section, we delve into these

details as well as how we employ optimizations to simplify the
pipeline code and reduce dsim simulation runtime. Druzhba is writ-
ten entirely in Rust.

3.1 Hardware Specification
We express our pipeline model by allowing dgen to take specifica-
tions of the hardware and convert them into an executable Rust
program of the pipeline given (1) the depth andwidth of the pipeline
(i.e., number of stages and number of ALUs per stage), (2) a high-
level representation of the ALU structure, and (3) machine code
to determine the switch’s behavior. The machine code program-
matically defines the behavior of the multiplexers and ALUs. The
pipeline model that is generated by dgen is the design that will
be simulated for compiler testing. Each pipeline configuration is
defined by the width and length of the pipeline in addition to the
high-level representation of the ALUs. This customizability thus
effectively allows Druzhba to act as a family of simulators, one for
each possible pipeline configuration.
Expressing ALU functionality. We express the capabilities of ALUs
via our ALU domain-specific language (DSL). Our ALU DSL allows
us to specify the input packet field operands and state variables,
whether the ALU is stateful or stateless, and the immediates and
opcodes that determine the ALU’s computations. The input packet
fields come from the PHV container values. The ALU DSL supports
unary and binary ALU operations as well as additional multiplexers;
binary operations can use either arithmetic, relational, or logical
operators. Figure 2 shows our ALU DSL grammar. We have written
5 stateless ALUs and 6 stateful ALUs in our ALU DSL that model
atoms in Banzai [1], a switch pipeline simulator for Domino. Atoms
are Banzai’s natively supported atomic units of packet-processing.

Stateless ALUs take in an opcode, a set of PHV container val-
ues, and an immediate operand as input. These ALUs perform an
arithmetic operation on its operands which is determined by the
opcode. Using our ALU DSL, these semantics can be captured using
an if statement. Stateful ALUs also take in a set of PHV containers
as input as well as state variables. Stateful ALUs are much more
constrained in their computational abilities since they must be
able to read and write to state while still maintaining the switch’s
throughput of 1 packet per clock cycle. Because of these difficulties,
stateful ALUs are more complex and contain more configurable
operations. Figure 3 shows one of our stateful ALUs that models
Banzai’s If Else Raw atom [1].
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𝑙 ∈ literals 𝑣 ∈ variables 𝑟𝑒𝑙_𝑜𝑝 ∈ relational operators

𝑙𝑜𝑔_𝑜𝑝 ∈ logical operators

𝑎𝑟𝑖𝑡ℎ_𝑜𝑝 ∈ arithmetic operators
𝑢𝑛_𝑜𝑝 ∈ unary operators

𝑡 ∈ ALU type declaration ::= stateful | stateless
𝐷 ∈ packet field declarations ::= set of variables 𝑣
𝐾 ∈ Hole variable declarations ::= set of variables 𝑣
𝑆𝑉 ∈ state variable declarations ::= set of variables 𝑣

𝑒 ∈ expressions ::= 𝑙 | 𝑣 | 𝑒 𝑎𝑟𝑖𝑡ℎ_𝑜𝑝 𝑒 | 𝑒 𝑟𝑒𝑙_𝑜𝑝 𝑒
| 𝑢𝑛_𝑜𝑝 𝑒 | 𝑒 𝑙𝑜𝑔_𝑜𝑝 𝑒 | Mux(𝑒, 𝑒, . . .)

𝑠 ∈ statements ::= 𝑒 = 𝑒 | if (𝑒) {𝑠 } | if (𝑒) {𝑠 } else {𝑠 }
| 𝑠 ; 𝑠 | return (𝑒)

𝑝 ∈ ALU specification ::= 𝑡 ;𝐷 ;𝐾 ;𝑆𝑉 ; 𝑠

Figure 2: Overview of the ALU DSL grammar. Operators in-
clude logical (&&, | |), relational (!=, <, >, ==), arithmetic (+, −,
∗, /), and unary (−). Hole variable declarations include addi-
tional machine code values such as opcodes and immediate
operands.

Machine code for switch primitives. To interface with Druzhba and
to configure pipeline behavior, a compiler-generated machine code
program consisting of a list of string and integer pairs is provided.
The machine code pairs correspond to pipeline hardware primitive
operations and are each identified by a unique name. The integer
value in each pair determines the behavior of that operation. In
Figure 3, the expressions 𝐶 (), 𝑎𝑟𝑖𝑡ℎ_𝑜𝑝 (), 𝑟𝑒𝑙_𝑜𝑝 (), and 𝑂𝑝𝑡 () are
configurable ALU operations whose behaviors are determined by
machine code values such as opcodes and immediates. For instance,
an ALU relational operation, 𝑟𝑒𝑙_𝑜𝑝 (𝑒1, 𝑒2), uses an opcode to de-
termine which relational operator (!=, <, >, ==) to perform on
expressions 𝑒1 and 𝑒2. Our machine code also allows for determin-
ing the connections between PHVs to ALU inputs and ALU outputs
to PHVs through specifying the behavior of the input and output
multiplexers. For instance, a 3-to-1 input multiplexer uses its multi-
plexer control setting within the machine code to determine which
of its 3 PHV container values to send to the connected ALU.

3.2 Compiler Testing Workflow
Pipeline generation. dgen uses the hardware specification and gen-
erates a Rust program that can be used to simulate a pipeline with
that hardware specification. This generated program represents the
scaffolding of the specified pipeline as well as the ALUs within it.
Abstract Syntax Trees (ASTs) are generated from the given ALU
files. As the ASTs are traversed, corresponding Rust code for the
ALUs is generated. A Rust function is created for each ALU and
subsequent helper functions are created for multiplexers and ALU
operations. Each multiplexer and ALU operation function is given
additional parameters for machine code values. This process is
repeated for every stateful and stateless ALU within the switch
pipeline. Once these ALU functions in addition to their correspond-
ing helper functions are generated, additional code is generated to
specify the overall structure of the pipeline. This code groups the
ALU functions together by stage and connects the PHVs, multiplex-
ers, and ALUs together. This code ensures that the input and output
multiplexers as well as the ALUs are executed in the proper order
within the pipeline. Further, it utilizes a hash table of machine code
pairs and passes on the machine code values to the proper hardware
units. For instance, it will give input multiplexer functions their

If Else Raw Stateful ALU
1
2
3
4
5
6
7
8
9
10
11
12
13

type : stateful 
state variables : {state_0} 
hole variables : {} 
packet fields : {pkt_0, pkt_1} 

if (rel_op(Opt(state_0), Mux3(pkt_0, pkt_1, C()))) { 
    state_0 = Opt(state_0) + Mux3(pkt_0, pkt_1, C()); 
} 
else { 
    state_0 = Opt(state_0) + Mux3(pkt_0, pkt_1, C()); 
}

Figure 3: If Else RawBanzai [1] atomwritten in theALUDSL.
C() denotes a constant andOpt() denotes a 2-to-1multiplexer
that either returns 0 or its argument.

proper machine code values needed to determine which operands
to forward to their allocated ALUs. dgen’s generated Rust program
is written into a Rust file that we refer to as the pipeline description.
Pipeline simulation. After dgen’s pipeline description is complete,
it is compiled with dsim. Prior to the simulation of the architecture
specified by the pipeline description, state variables are either ini-
tialized with random integer values or they are specified by the user.
At every simulation tick, a PHV created by the traffic generator
enters the pipeline and is executed by the first pipeline stage and
PHVs in subsequent stages are sent to their next respective stages.
We refer to the PHVs generated by the traffic generator along with
the recorded state variable values at the time of each PHV entering
the pipeline as the input trace. Following each simulated tick, an
output PHV is generated. We call the modified PHVs along with the
recorded state variable values at the time of each PHV leaving the
pipeline the output trace. dsim displays to the user both the input
and output traces.

Druzhba tests a compiler-generated program by fuzzing the
generated pipeline model. This is done using the random PHVs
generated by the traffic generator and checking the correctness of
the output trace. When generating the PHVs, each PHV container
was initialized with an integer in [0, 10000] — it is straightforward to
extend or restrain this bound if needed. The user then writes a high-
level specification capturing the intended algorithmic behavior on
both PHVs and state values and recording both the input and output
traces. To write this specification, compiler developers convert the
initial program given to the compiler into Rust code. The input
trace is then given to the specification which generates its own
output trace. A compiler-generated machine code program is said
to be correct if the output trace generated by the specification is
equivalent to the output trace generated by dsim. In other words,
the program is correct if the output PHVs at every tick and the
values of the state variables at those ticks are equivalent to the
corresponding output PHV container and state variable values
produced by the specification program. Conversely, a machine
code program is said to have failed if there exists an input PHV
and state variable configuration such that the simulation yields a
different output from the specification program. Figure 4 shows
this compiler testing process. We use Rust assertions to determine
whether output traces containing the output PHVs and modified
state variables from dsim and the specification match or not.
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Figure 4: Compiler testing workflow.

3.3 Optimizations
Compiler developers need to quickly test their compilers on many
different programs at once. To gauge overall compiler correctness,
they need to test mappings from a wide distribution of varying
programs. However, these program simulation times can become
cumbersome during compiler development. This is especially true
when frequent changes are made to the compiler codebase or when
the compiler tester wants to increase the number of input PHVs to
enable a larger PHV search space to be explored. We thus seek to
reduce dsim’s simulation time.
Sparse conditional constant propagation. dsim initially took ma-
chine code in as input instead of dgen which caused the pipeline
description functions to treat the machine code as variables that are
passed as arguments during runtime. This allowed machine code
to be swapped between simulations without rerunning dgen and
recompiling dsim. In beginning optimizations, we give the machine
code as input to dgen and note that (1) providing the machine code
pairs during pipeline generation enables a global static mapping
of names to values which is unchanged for the duration of the
simulation and (2) the functions in our pipeline description use
if statements to check these values. These observations allow us
to use sparse conditional constant (SCC) propagation [23], which
involves constant propagation followed by the evaluation of branch
conditions, which in turn allows it to remove entire code paths
that will never be evaluated. We do this by replacing machine code
variable occurrences with their corresponding integer values. Then
we use constant folding by evaluating constant expressions which
allows us to determine the results of conditional statements. This
results in dead code elimination from unused control paths and
solely emitting single simplified expressions in place of the previous
function bodies.

For instance, consider an arithmetic operation function that adds
its operands if its machine code opcode is 0 and subtracts otherwise.
During optimization, the if statement that checks the opcode is
removed and solely replaced with either the addition or subtraction
expression. Large opcode values can cause function behavior to
branch in many different ways. This initially required numerous
conditional expressions to check against every possible value case
but now these computations are not performed during simulation.

4 EVALUATION
In this section we describe our experience in testing a compiler for
switch pipelines. We also evaluate the simulation performance of
Druzhba on several benchmark programs.

4.1 Case Study
Druzhba tested Chipmunk [32], a retargetable compiler for packet-
processing pipelines. Chipmunk compiles programs written in
Domino [15], a high-level language for programmable switches
with C-like syntax, to machine code using program synthesis [30].
At this time, we have only tested Chipmunk. Chipmunk’s usage
of program synthesis was used to easily interface with Druzhba’s
instruction set. Testing other existing compilers would require fur-
ther manual work in enabling them to generate the proper machine
code to interface with Druzhba’s instruction set. To set up our test-
ing of Chipmunk, we first created multiple Domino programs and
generated corresponding machine code for each one. We then took
each of the Domino programs that were initially given to Chipmunk
and converted them to Rust; these programs served as our speci-
fication programs. During the testing process, for each program
we fuzzed both the switch pipeline model and the corresponding
program specification. We checked that the state variables and out-
put PHVs were equivalent to the state variables and output PHVs
from the specification program. These tests validated the accuracy
of Chipmunk’s code generation for the programs tested. Table 1
shows 12 Domino programs that were compiled to machine code
by Chipmunk and later converted to Rust.

Over 120 Chipmunk machine code programs were determined
to be correct after fuzz testing using Druzhba. These programs
were generated by taking the 12 benchmarks and mutating them
in semantic-preserving ways to create more test cases for the Chip-
munk compiler. This shows how Druzhba can be used as an aid
during compiler development to improve the correctness of com-
pilers.

4.2 Benchmarks
We execute our benchmarks by taking 12 compiler-generated pro-
grams from Chipmunk and measuring the amount of time it took to
perform unoptimized and optimized simulations for 50000 PHVs for
each one using Rust’s supported benchmark tests. These programs
are listed in Table 1. All experiments were performed with our 28-
core 56-hyperthread 64-GB RAM machine (Intel Xeon Gold 6132).
For each program, wemeasured the amount of time it took to run (1)
the unoptimized simulation and (2) the optimized pipeline simula-
tion using SCC propagation. The program complexity and number
of PHV containers the program uses dictate the pipeline dimensions
needed to implement the intended algorithmic behavior.

Generally, programs in Table 1 that showed the most significant
improvements due to our optimizations were the ones with the
highest number of pipeline depths and widths, e.g., stateful fire-
wall, flowlets, and learn filter. Since the pipeline code generated is
commensurate with pipeline size, unoptimized runtime was much
higher and the optimizations affected a greater portion of code for
larger pipeline simulations. We also looked at how ALU program
complexity affected simulation times since every ALU is executed
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Program Depth,
width

ALU
name

Unoptimized
(ms)

Optimized
(ms)

BLUE (decrease) [20] 4,2 sub 986 576
BLUE (increase) [20] 4,2 pair 1,268 724
Sampling [15] 2,1 if else raw 234 167
Marple new flow [24] 2,2 pred raw 404 215
Marple TCP NMO [24] 3,2 pred raw 729 481
SNAP heavy hitter [16] 1,1 pair 143 103
Stateful firewall [16] 4,5 pred raw 1,549 703
Flowlets [27] 4,5 pred raw 1,771 983
Learn filter [15] 3,5 raw 1,911 1,162
RCP [18] 3,3 pred raw 1,261 793
CONGA [14] 1,5 pair 393 206
Spam detection [16] 1,1 pair 145 103

’

Table 1: Simulation runtimes with and without optimiza-
tions. ALU names refer to Banzai [1] atoms.

for every PHV that traverses the pipeline. Some ALU implementa-
tions were muchmore terse and consisted of much fewer arithmetic,
relational, and logical operations than others. But we found that
the ALUs’ program complexities had little impact on performance.

5 RELATEDWORK
Network simulation tools have long been used. Platforms such as
Mininet [6] and CrystalNet [21] are primarily concerned with em-
ulating a network of data communications devices. PFPSim [26]
is more similar to Druzhba and models the architecture of pro-
grammable switches and simulates match+action operations using
P4 programs. NS4 [22] is also a switch simulator but goes a step
further from PFPSim by allowing emulation of entire P4-enabled
networks. While PFPSim and NS4 are useful for debugging and
studying algorithmic impact at the networking level, Druzhba is a
platform that takes a different approach by modeling the low-level
details of the switch pipeline instruction set to test compilers that
target switch pipelines. Program testers interface with PFPSim and
NS4 using high-level P4 programs while compiler developers inter-
face with Druzhba using switch pipeline machine code after their
programs have been compiled.

Though Banzai [1] is a switch simulator that serves as a compiler
target for Domino, it does not model the switch architecture at the
same low-level detail as Druzhba. This low-level modeling allows
Druzhba to simulate machine code, which Banzai cannot do. To
better illustrate their differences, consider the case of simulating
a compiled Domino program using Banzai. The Domino compiler
generates code at a relatively high level of abstraction — the source
program is sliced into codelets that specify the high-level behav-
ior to be performed by the atoms1. Then the Domino compiler
verifies that a mapping from codelets to atoms exists. But Banzai
only performs direct execution of these codelets within the context
of the pipeline rather than executing atoms themselves. On the
other hand, when using Druzhba, the program is compiled down
to machine code. During simulation, the ALUs are executed and
perform the behavior specified by the machine code. Thus, because
Druzhba more closely resembles the low-level hardware details of
the switching chip, there is a higher level of assurance that compiler
mappings are correct. Because Druzhba provides a more compre-
hensive end-to-end check of compiler correctness, bugs that are
1Domino refers to these ALUs as atoms.

deeper within the compilation process can be found (e.g., backend
code generation bugs).

6 FUTUREWORK
We recognize that there is still room for additional amelioration and
development. First, our RMT simulation can be further enhanced by
modeling other switch details such as buffers, tables, and parsing
and the interface can be improved to ease the difficulty of Druzhba
code generation. Second, our dRMT simulation that simulates high-
level P4-14 programs isn’t comprehensive; many details such as
packet field length aren’t thoroughly simulated. Further, we look to
use program verification by allowing support for a high-level spec-
ification that contains the pipeline’s intended algorithmic behavior
as well as PHV and state value constraints. This specification and
the pipeline description will be transformed into SMT formulae so
that equivalence will be formally proven, instead of being checked
by fuzz testing. We also look to adding a domain-specific time travel
debugger [10] for Druzhba to further aid in bug finding. Lastly, we
are looking into using Druzhba to evaluate the impact and effects
of new hardware designs by modeling different instruction sets or
by adding hardware support for multitenancy [31].

7 CONCLUSION
We presented Druzhba, a programmable switch simulator that per-
forms low-level RMT instruction set modeling. We showed how
Druzhba serves as a compiler target to test compilers for pro-
grammable switches. Druzhba has been useful in the testing of
a program-synthesis-based compiler by simulating generated ma-
chine code programs. By simulating compiled machine code pro-
grams, Druzhba helped in determining whether the compiler had
successfully mapped the high-level packet-processing programs to
the low-level architectural details of our simulated pipeline instruc-
tion set. In the future, we expect that Druzhba can further aid in
testing switch compilers for not only pipeline-based models, but
also for other switching chip architectures.
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