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ABSTRACT 

The late 2000s and 2010s saw the full arc of a dramatic 

hype cycle in learning at scale, where charismatic 

technologists made bold and ultimately unfounded 

predictions about how technologies would disrupt schooling 

systems. Looking toward the 2020s, a more productive 

approach to learning at scale is the tinkerer’s stance, one 

that emphasizes incremental improvements on the long 

history of learning at scale. This article offers two 

organizational constructs for navigating and building on 

that history. Classifying learning-at-scale technologies into 

three genres—instructor-guided, algorithm-guided, and 

peer-guided approaches—helps identify how emerging 

technologies build on prior efforts and throws into relief 

that which is genuinely new. Four as-yet intractable 

dilemmas—the curse of the familiar, the edtech Matthew 

effect, the trap of routine assessment, and the toxic power of 

data and experiments—offer a set of grand challenges that 

learning-at-scale tinkerers will need to tackle in order to see 

more dramatic improvements in school systems. (This 

paper is adapted from the introduction to [38].)  
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The late 2000s and 2010s were marked by a series of bold, 

unfulfilled predictions for learning at scale. In 2008, 

Harvard Business School professor Clayton Christensen, 

with colleagues Curtis Johnson and Michael Horn, wrote a 

book called Disrupting Class about online learning and the 

future of K–12 schools. They predicted that in ten years—

by 2019—half of all middle and high school courses would 

be replaced by adaptive, self-paced online courses, “the cost 

will be one-third of today’s costs, and the courses will be 

much better.” [9] Salman Khan founded Khan Academy in 

2007 to develop these kinds of online materials [19]. His 

vision captured the attention of popular media, and Wired, 

Time, and Forbes featured Khan on their covers with stories 

like “One Man, One Computer, 10 Million Students: How 

Khan Academy is Reinventing Education” [29, 34]. Khan’s 

own book was titled One World Schoolhouse: Education 

Reimagined, and as a demonstration school for these 

transformational ideas, he founded the Khan Lab Academy 

[20]. 

Some reformers went further, arguing that in an internet-

connected world, schools weren’t even necessary. In a 2013 

TED talk and a 2016 ACM Learning@Scale conference 

keynote, Sugata Mitra argued that with basic internet access 

and limited adult intervention, young people could teach 

themselves any topic, asserting that his two key 

initiatives—Hole in the Wall, and School in the Cloud—

could transform learning around the world [31, 32]. In his 

2016 Learning@Scale abstract, Mitra declared without 

reservation, “Thirteen years of experiments in children’s 

education takes us through a series of startling results - 

children can self organise their own learning, they can 

achieve educational objectives on their own, can read by 

themselves. Finally, the most startling of them all: Groups 

of children with access to the Internet can learn anything by 

themselves.” 

In higher education, massive open online courses (MOOCs) 

were ground zero for the rhetoric of disruption, 

transformation, and renewal. In 2011, Peter Norvig and 

Sebastian Thrun—researchers with affiliations with Google 

and Stanford—offered an online course called Introduction 

to AI, with short online videos and interspersed practice 

problems inspired by Khan Academy [18, 29]. When over 

160,000 learners signed up to participate in the course, elite 

higher education institutions embraced online learning with 

staggering speed. Stanford spun out the for-profit MOOC 

providers Coursera and Udacity, and Harvard and MIT 

created a non-profit MOOC provider, edX. Millions signed 

up for the first new offerings from these institutions, the 

New York Times declared 2012 the “Year of the MOOC,” 

and MOOC providers promised a radical reconfiguration of 

higher education [37]. In August 2013, Sebastian Thrun, 

Udacity’s founder, declared, “The thing I’m insanely proud 

of right now is I think we’ve found the magic formula” for 

offering powerful learning experiences at low cost and 

global scale [8].  
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1.0 THE CHARISMATIC AND THE TINKERER: TWO 
STANCES FOR LEARNING AT SCALE 

The projects of Christensen, Khan, Mitra, and Thrun 

exemplify what anthropologist Morgan Ames describes in 

The Charisma Machine, her history of the One Laptop Per 

Child initiative, as the “charismatic” approach to education 

technology [2]. The charismatic stance ascribes tremendous 

power to new technologies to reinvent education. In the 

2000s and 2010s, charismatic technologists often adopted 

the rhetoric of “disruptive innovation” to describe how 

emerging technologies can offer a new value proposition 

that leads to the wholesale transformation of existing 

systems. The TED conference hosts the annual revival 

meeting for charismatic technologists, and reading 

transcripts from TED talks about educational topics is a 

reliable research strategy for finding unfulfilled predictions 

about education technology over the last decade.  

One opposing position to the charismatic stance is 

skepticism, and education technology has a rich tradition of 

critique that designers and educators should take seriously 

(see, for instance, [40] and [51]). But as an alternative to the 

charismatic, Ames offers the tinkerer, a term drawn from 

David Tyack and Larry Cuban’s history of K–12 schooling 

in the United States, Tinkering toward Utopia [47]. 

Tinkerers see schools and universities as complex systems 

that can be improved, but they believe improvements come 

from many years of incremental changes to existing 

institutions rather than from wholesale renewal. Tinkerers 

harbor an optimism that technology can be used to improve 

teaching and learning, but they embrace research and 

critique as a crucial check against utopian thinking. 

Tinkerers study past efforts at educational reform to avoid 

replicating past mistakes. Charismatic technologists 

orchestrate boom-and-bust hype cycles; they cajole local 

systems into making major changes and then move on when 

transformation prove elusive. Tinkerers persist much longer 

with their designs, their partners, and their communities.  

Millions of people have watched Sal Khan’s two TED talks, 

but I suspect that far fewer have read his 2019 interview 

with District Administrator magazine, a little trade journal 

for school superintendents and central office staff, in which 

he told the interviewer, “Now that I run a school, I see that 

some of the stuff is not as easy to accomplish compared to 

how it sounds theoretically” [7]. In 2019, Khan’s 

recommendations focused less on disruptive 

transformations of math education and more on using Khan 

Academy as modest supplement to traditional classroom 

instruction: 

More recently, we’re seeing that if students put 30 

minutes to an hour per week—or one class period per 

week—toward software-based, self-paced learning, 

schools will see a 20 to 30 percent greater-than-

expected gain on state assessments. That’s exciting 

because that’s a dosage that’s very doable in 

mainstream classrooms. We tell schools to give 

students 30 to 60 minutes of Khan Academy per week, 

with teachers doing traditional curriculum four days 

per week. You’re going to see a pretty dramatic 

improvement. You’ll get the best of both worlds. [7] 

When Khan’s soaring vision met the complex reality of 

schools, disruption and transformation gave way to 

accommodation.   

The blended model that Khan espoused in District 

Administration is actually at least 25 years old. In 1997, 

Ken Koedinger and colleagues published “Intelligent 

Tutoring Goes to the Big City,” a report in the International 

Journal of Artificial Intelligence in Education that 

described the use of adaptive, self-paced algebra tutoring 

software in the Pittsburgh public schools. Students learned 

in traditional settings for most of their class time and then 

spent about one day a week using math tutoring software, 

which led to improvements on math tests similar to what 

Khan found decades later [22]. Much of what Khan 

Academy discovered in 2019 about computer-assisted math 

instruction—after more than $100 million in philanthropic 

investment—could have been found in academic papers 

published in the 1990s.  

In Khan’s District Administration interview, I see a 

welcome turn from the charismatic stance to the tinkering 

stance, from an effort to use technology to disrupt schools 

to the recognition that schools are complex, conservative 

institutions, and the efforts of technologists, designers, and 

education reformers are better spent tinkering—targeting 

specific improvements in specific areas—than pursuing 

magic formulas or all-knowing robot tutors in the sky.  

One of the tinkerer’s most useful resources is the historical 

and scholarly literature on schooling and technology in 

schools (see [11]). Very few emerging large-scale learning 

technologies are wholly new. Education technologists have 

been building systems for using computers to teach students 

since the days when mainframe computers took up entire 

rooms [3, 12]. Digital learning at scale is a 60-year-old 

endeavor; distance education goes back at least a century. 

At their best and most innovative, most new technologies 

offer an incremental improvement over past developments. 

Tinkerers embrace this incremental improvement as the 

most feasible pathway toward meaningful improvement and 

change in learning institutions.  

Looking back at the past is made more challenging by the 

insistence of technology advocates and enthusiasts that their 

new inventions are wholly new, disruptive, and 

transformative. To help synthesize this long history of 

large-scale learning technologies, I offer two contributions. 

First, I organize learning-at-scale technologies into three 

genres based primarily on the agent that determines the next 

action in a sequence of learner actions. I call these 

instructor-guided, algorithm-guided, and peer-guided 

genres of learning at scale. If you can figure out how a new 

large-scale learning technology fits into one of these three 
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genres, you can do two useful things. First, based on the 

prior performance of similar approaches, you can make 

predictions about what outcomes will emerge as new 

technologies are integrated into complex systems of 

schooling. Second, understanding what is old and recycled 

can throw into relief what is genuinely innovative in a new 

product or approach. Identifying the modest innovations in 

new technologies can help predict how a new offering 

might offer some incremental improvement over past 

efforts.  

Second, I identify four kinds of obstacles that large-scale 

learning systems have encountered repeatedly over recent 

decades, which I call “as-yet intractable dilemmas”: the 

curse of the familiar, the edtech Matthew effect, the trap of 

routine assessment, and the toxic power of data and 

experiments. These patterns help explain why predictions 

for transformative change have fallen flat, and examining 

these dilemmas is critical for looking forward. These four 

dilemmas are a set of grand challenges that designers, 

researchers, and educators must overcome in order for 

education technology to make learning faster, cheaper, 

more enjoyable, more effective, and more accessible for 

people around the world. In what follows, I provide an 

introduction to these three genres and four dilemmas as a 

framework for organizing the history of learning at scale in 

a way that could inspire in the 2020s more productive 

approaches for improvement and innovation than we saw in 

the 2010s.  

2.0 THREE GENRES OF LEARNING AT SCALE: 
INSTRUCTOR-GUIDED, ALGORITHM-GUIDED, AND 
PEER-GUIDED LEARNING AT SCALE 

Large-scale learning environments can be classified into 

three genres, based on the answer to the question, Who 

creates the activity sequence for learners? These sequences 

can be created by instructors (as in the case of MOOCs), by 

algorithms (as in the case of adaptive tutoring software), or 

by peers (as in the case of distributed learning networks). 

Each of these genres of instructor-guided, algorithm-

guided, and peer-guided large-scale learning technologies 

has a history, a research literature, and a track record of 

success and failure in formal educational institutions. Each 

genre also uses a common set of core technologies, and 

they reenact pedagogical debates that have deep roots in the 

history of education (Figure 1 summarizes the three 

genres).  

The MOOCs created by elite universities are examples of 

instructor-driven learning experiences. Instructors design or 

select lectures, readings, and activities that form a 

knowledge base for student learning [5]. Learners are 

assessed by tools and systems designed by instructors that 

can range from simple multiple-choice questions to 

complex systems for evaluating computer programming 

assignments [27]. The learning experiences in the course 

are arranged in a particular order—from the Shang dynasty 

to Mao’s People’s Republic, say, or from “Hello World” to 

recursive algorithms—that are selected by the instructor. A 

Figure 1: Three Genres and Four Dilemmas of Learning at Scale 
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student may be free to traverse this material in her own 

way—and she might help a peer along the path—but most 

students generally proceed along the main path laid out by 

instructors.  

Adaptive, large-scale learning environments are those 

where each item in a learning sequence is selected by an 

algorithm or other system on the basis of student 

performance in previous parts of a learning sequence. These 

kinds of learning experiences are often called adaptive 

tutors [24] or computer-assisted instruction. Khan 

Academy offers a useful example. While Khan Academy is 

best known for Khan’s video lectures, when Khan 

Academy is used in schools, students spend 85% of their 

time doing practice problems [35]. These problems will be 

familiar to anyone who has ever completed a worksheet in 

math class; they pose a question, and students must provide 

a correct answer by inputting an equation, selecting a point 

on a Cartesian plane, ordering a series of numbers in a line, 

or selecting from a list of multiple-choice options. The 

problems are organized into topics, such as dividing 

fractions or solving quadratic equations.  

Unlike a paper worksheet, however, with an adaptive tutor, 

the order of problems that a student encounters depends 

upon her performance on each problem. Within a class of 

problems—such as multiplying fractions—some problems 

are easier (multiplying by ½) and some are harder 

(multiplying by ⅔). Students are given an initial problem, 

and if the student gets a problem right, an algorithm assigns 

a more difficult problem. If she gets it wrong, the system 

assigns an easier problem, perhaps with some form of 

remediation, like a hint or a link to an explanation. These 

systems are often called adaptive because they can increase 

or decrease in difficulty and provide specific remediation 

based on the performance of the student. In nearly all 

MOOCs from edX or Coursera, every student receives the 

same number of problems and assignments, which are 

presented in the same order. Students using Khan Academy 

and other adaptive tutors are offered a set of assignments 

that are dynamically adjusted for the individual student.  

In peer-driven learning environments—like those proposed 

by Sugata Mitra in the School in the Cloud—participants 

can offer instruction, examples, comments, and feedback, 

and users can follow each other and form subgroups and 

networks. Mitra argued that if learners were organized into 

small groups with access to the learning resources of the 

internet and some minimal on-demand mentoring and 

coaching (he proposed using a network of British 

pensioners in his trials), then students could learn any topic 

of any complexity [32, 33]. The original connectivist-

inspired MOOCs (cMOOCs) provide another example of a 

peer-guided large-scale learning community. Participants 

created their own blogs, social media accounts, and other 

sites on the open web, where they responded to course 

prompts and to each other. Instructors used the course home 

page and other technologies to aggregated copies of these 

diverse contributions into one central location. But at their 

most successful, peer interactions were the driving force of 

cMOOCs [26, 31].  

The most prominent peer-driven learning environment in 

K–12 schools is the community organized around the 

Scratch programming language, developed by the Lifelong 

Kindergarten Lab at MIT [39]. Scratch is a block-based 

programming language in which the young and young-at-

heart can learn to program by dragging “blocks” with 

executable code instructions into place with other blocks, 

rather than by writing programming syntax with 

specifications for spacing, semicolons, variable names, and 

so forth. By default, all Scratch programs exist as projects, 

all projects are publicly viewable and openly licensed, and 

all projects can be forked and remixed as new projects; 

sharing and community are thus integral parts of the 

experience of using the Scratch programming language. In 

these communities, there are designers and leaders; Mitch 

Resnick, Natalie Rusk, and many others in the Lifelong 

Kindergarten Lab create the environment for Scratchers to 

work and learn, highlight projects on the Scratch website 

and social media, and cultivate community. This 

community then creates a wide array of projects, tutorials, 

guides, and other subcommunities, and learners in the 

Scratch community then choose for themselves how they 

navigate this web of opportunities for practice and learning.  

I define these three categories—instructor-driven, 

algorithm-driven, and peer-driven—as genres of learning at 

scale. Hybridity between categories and uniqueness beyond 

these three categories certainly exist, but much of the 

existing infrastructure of large-scale online learning fits in 

an instructor-driven, algorithm-driven, or peer-driven 

bucket. Within each of these genres, large-scale learning 

tools use similar technology architectures, and they 

embrace similar pedagogical approaches. By identifying 

which of these three slots a new technology or service 

offering fits into, education stakeholders can make good 

bets about how it’s built, how it will likely be used to 

support learning, and what historical analogs might exist 

that can help predict its impact.  

2.1 Core Technologies of Learning at Scale Genres 

Within the three genres of learning at scale, common 

patterns in technology architecture emerge. Instructor-

driven learning environments typically build off learning 

management systems and autograders; algorithm-driven 

environments build off autograders and adaptive 

algorithms; and peer-driven systems use the open web with 

navigational aggregators like search terms and hashtags. 

Many emerging large-scale learning technologies will 

include variants and improvements on these technologies, 

but usually, the roots of these technologies are decades 

deep. Situating new technologies within these patterns helps 

predict how they will perform and how they will be 

integrated into complex systems.  
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2.1.1 Instructor-Guided Learning at Scale Technologies 

Instructor-paced systems require a mechanism that presents 

content to learners in an instructor-defined order while 

simultaneously tracking individual participant progress 

through that content. Learners must be able to start and stop 

at their own pace and then pick up right where they left off. 

The core platform enabling most instructor-paced systems 

is the learning management system (LMS). The phrase 

management system has been used to describe computer-

based instructional platforms since the 1960s, years before 

the advent of personal computers [4, 10]. Since then, LMSs 

have become ubiquitous in higher education and many K–

12 schools as storage and dissemination systems in 

residential learning environments and as a complete 

delivery platform for fully online learning. Instructors place 

readings, course notes, lecture videos, syllabi, and 

assignment prompts online, usually following linear 

structures that map onto the weekly schedule of typical 

residential courses. Students might be required to contribute 

to topical discussion forums, to submit their assignments in 

online dropboxes, and to take short multiple-choice quizzes 

or surveys directly inside the LMS platform, but these 

interactive features are typically secondary to the role of the 

LMS in content dissemination.  

For an LMS to support the certification of learning at scale, 

it needs a second key technology: autograders. In courses 

with thousands of students and one or two instructors, if the 

course aspires to certify or credential learners, it needs 

some mechanism to assess performance at scale. The 

autograding tools in MOOC platforms include both 

multiple-choice quiz questions and a variety of forms of 

quantitative and computational input. Students can choose a 

multiple choice answer for some problems, enter numerical 

answers, algebraic equations, and chemical formulas for 

others, and submit short computer programs to be evaluated 

and tested by other computer programs.  

These grading mechanisms depend principally upon pattern 

matching, where course designers program a bank of 

possible correct answers and computationally compare 

student responses to these banks. The earliest versions of 

these pattern-matching systems were programmed not 

computationally but mechanically. Sydney Pressey, a 

professor at Ohio State University, developed a “teaching 

machine,” patented in 1928, that presented students with a 

series of multiple-choice questions with four possible 

answers, each of which advanced to the next question only 

upon submission of a correct answer (entered by touching a 

typewriter-like key) [50]. From the earliest days of 

mainframe computers in the 1950s, technologists have 

sought to adapt computers to similar functions. The earliest 

forms of computer-assisted instruction maintained banks of 

words, phrases, or numbers that represented correct 

responses to a question (“5,” “five” “Five,” “fiv”), which 

were computationally compared to student responses. Even 

complex contemporary efforts like autograding natural-

language essays boil down to mathematically intensive 

pattern matching rather than sense making. 

2.1.2 Algorithm-Guided Learning at Scale Technologies 

The genre of algorithm-driven learning environments also 

requires autograders, but these technologies do not use a 

learning management system that sequences content in a 

linear order. Rather, autograders assess human 

performance, and then an algorithm determines whether to 

assign an easier problem or a harder problem, whether to 

certify that a learner has “mastered” a topic and is therefore 

ready for a new sequence of problems, or whether some 

other instructional step is appropriate. For these processes 

to work, the system must be able to maintain models of 

student proficiency and question difficulty, which it can 

then adaptively match. Fortunately, this is another problem 

in education technology that designers and researchers have 

worked on for decades. Researchers in the 1950s and 60s at 

Educational Testing Services and elsewhere developed a 

statistical toolkit—item response theory—for creating a 

model of question difficulty [49].  

Item response theory emerged to solve a basic problem in 

test design. When testing large numbers of students, 

consumers of testing data (admissions offices, employers, 

policymakers) would like to be able to compare two 

students tested on the same subject area. Testing 

companies, however, would prefer not to test all students on 

the exact same material, since using identical test items and 

formats with different students in different places and times 

opens the door to cheating and malfeasance. Giving 

students different tests whose results can be fairly compared 

requires the ability to quantify the difficulty of each 

individual question and then compare each against all 

others.  

A model of item difficulty can be used to fairly compare 

test outcomes, and it can also be used to provide students 

with progressively more or less difficult items from a bank, 

based on their performance. Algorithmically driven 

learning environments combine autograders with these 

models of item difficulty to create learning environments 

that are responsive to student performance. Just as learning 

management systems and autograders have roots that go 

back decades, so do the algorithms that model item 

difficulty and student performance.  

2.1.3 Peer-Guided Learning at Scale Technologies 

Peer-driven learning environments are powered by 

technologies that enable networked learning. In the early 

1970s, a compelling critic of formal schooling, Ivan Illich, 

imagined the kinds of technologies required for peer-driven 

online communities. He wrote: 

A student who has picked up Greek before her vacation 

would like to discuss Greek Cretan politics when she 

returns. A Mexican in New York wants to find other 

readers of the paper Siempre—or of “Los 

Agachados,” the most popular comic book. Somebody 
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else wants to meet peers who, like himself, would like 

to increase their interest in the work of James Baldwin 

or of Bolivar. 

The operation of a peer-matching network would be 

simple. The user would identify himself by name and 

address and describe the activity for which he sought a 

peer. A computer would send him back the names and 

addresses of all those who had inserted the same 

description. It is amazing that such a simple utility has 

never been used on a broad scale for publicly valued 

activity. 

In its most rudimentary form, communication between 

client and computer could be established by return 

mail. In big cities typewriter terminals could provide 

instantaneous responses. The only way to retrieve a 

name and address from the computer would be to list 

an activity for which a peer was sought. People using 

the system would become known only to their potential 

peers [16]. 

Though the technologies of today are not quite what Illich 

imagined, his vision of “learning webs” offers an uncanny 

description of the essential features of networked learning 

in the internet era. Illich’s fundamental metaphor, the 

bazaar, constrained his imagination to an expanding series 

of small—ideally dyadic—tutorial interactions. But most 

peer-driven learning environments occur either on the open 

web or on web-like open platforms, which allow all kinds 

of interactions between individual learners, peers, and 

experts of varying levels of proficiency and formal 

designation. Search engines and keywords—rather than 

punch cards and mainframes—function as aggregators and 

provide the essential connections between tutorial makers 

and learners.  

2.1.4 Classifying Learning-at-Scale Genres by 
Technology 

Understanding how genres of large-scale learning 

technologies build on common technological infrastructure 

provides three useful insights. First, recognizing these 

familiar technologies helps classify emerging technologies 

into the three genres. Second, familiarity with the history of 

these technologies evaluates and critiques the claims of 

novelty that are so often deployed by charismatic 

technologists. Jose Ferreira, founder of the edtech company 

Knewton, claimed that his adaptive tutoring tools were 

“like a robot tutor in the sky that can semi-read your mind 

and figure out what your strengths and weaknesses are, 

down to the percentile” [52]. As Ferreira was describing a 

system of unprecedented scale and complexity, Knewton 

engineers were simultaneously publishing blog posts with 

titles like “Understanding Student Performance with Item 

Response Theory.” In one post, engineers declared, “At 

Knewton, we’ve found IRT models to be extremely helpful 

when trying to understand our students’ abilities by 

examining their test performance” [25]. Lift up the hood of 

the magical robot tutor, and underneath was a 40-year-old 

technology powering the whole operation. Understanding 

this continuity helps critics and tinkerers ask the question, 

What’s really new here, and can the specific elements of 

novelty actually produce the dramatic results claimed by 

evangelists? 

While researchers and developers have been working on 

computer-based learning technologies for over half a 

century, educators have been developing pedagogical ideas 

for millennia. If the technological underpinnings of most 

new edtech tools are starting to look a little old, the 

pedagogies underneath them have roots that go back 

millennia.  

2.2 New Technologies, Old Pedagogies 

In the essay “On Listening,” Plutarch wrote that “education 

is not the filling of a pail, but the lighting of a fire” [43]. Of 

course, theories of learning and instruction can be infinitely 

more complex that this simple dichotomy, but these two 

perspectives—bucket filling and fire lighting—appear in 

various guises throughout education history, perhaps 

nowhere more clearly delineated than in the contrasting 

theories of Edward Thorndike and John Dewey. Ellen 

Lagemann, the former dean of the Harvard Graduate School 

of Education, summarized the last century of educational 

history this way: “I often argued to my students, only in 

part to be perverse, that one cannot understand the history 

of education in the United States during the twentieth 

century, unless one realizes that Edward L. Thorndike won 

and John Dewey lost” [28].. 

John Dewey, perhaps the foremost pedagogical progressive 

in the United States, was a philosopher of the pragmatist 

school. He famously argued that “education . . . is a process 

of living and not a preparation for future living,” and he 

advocated for an approach to education that emphasized 

apprenticeship, interdisciplinary learning, and connections 

to the world beyond schools [13]. His ideas spawned 

pedagogies and pedagogical philosophies whose variants 

might reasonably be categorized as expressions of social 

constructivism—the idea that individuals construct new 

understandings from prior understandings in the context of 

social groups.  

Edward Thorndike is less well-known than Dewey, but his 

approach to education will be easily recognized. An early 

developer and advocate of standardized tests and 

intelligence testing, Thorndike believed that education 

could be organized as a science—in the positivist traditions 

that shaped sociology, political science, economics, and 

other social sciences—and that learning could be precisely 

measured [46]. With these measures of learning, 

educational techniques could be evaluated to identify those 

that were most and least effective at promoting learning 

gains on standardized measures, and best practices could be 

standardized and scientifically evaluated. The intellectual 

descendants of Thorndike’s thinking can be generally 

grouped as expressions of instructionism—learning with an 

emphasis on direct instruction from experts to novices. 
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In the decades since Thorndike and Dewey, educational 

theorists have offered updated approaches to both 

philosophies (constructionism [36] and connectivism [41] 

for the social constructivists, and cognitive load theory [44] 

for the instructionists) and have developed new approaches 

based on syntheses of these ideas (such as the knowledge-

learning-instruction framework [23]). For all of these 

innovations, Lagemann’s point still holds: Thorndike and 

Dewey have come to define two poles of an educational 

debate in the American context. If Plutarch were to declare 

to both of them that education is not the filling of a pail but 

the kindling of a flame, Dewey would nod, and Thorndike 

would scoff while measuring the flow rate into the pail.  

Rather than resolving this pedagogical debate, learning at 

scale reenacts it.  

Both philosophies—the bucket-filling and the fire-

kindling—are at play in today’s large-scale learning 

environments. Khan Academy’s adaptive technologies 

depend upon quantifying the state of student knowledge in 

a domain (like multiplying fractions) and the difficulty of a 

given problem, such that the student can be dosed with the 

optimal level of difficulty for each problem. University 

MOOCs are motivated by the utilitarian challenge of 

providing the maximum number and diversity of learners 

across the world with access to content produced by the 

world’s most esteemed thinkers in a given field. Learners 

receive knowledge primarily through lectures, and they 

recite such knowledge primarily through multiple-choice 

and quantitative tests. The self-paced and instructor-paced 

genres of learning at scale tend to enact a Thorndike-

inspired “banking” model of education.  

By contrast, designers of peer-driven learning environments 

are eager to create learning environments that mirror as 

closely as possible the knowledge-building practices used 

by professionals in fields and disciplines. The act of 

building a network of resources and fellow learners is more 

important than any specific (and certainly any measurable) 

act of learning. The goal is not to optimize the trajectory 

toward a defined end, but to mirror learning practices of the 

real world. Though Dewey and Thorndike would likely be 

befuddled by Scratchers building new programs on flat 

tablet computers, they would recognize the apprenticeship 

model of novices looking over the shoulders of 

journeymen, watching them work and trying new things 

themselves.  

2.3 Outcomes 

Scholarly literature on each of the three genres offers 

valuable insights about what might be predicted from new 

entrants. The most well-developed literature, in terms of 

meta-analysis, is for the adaptive tutors in algorithm-guided 

learning at scale. These tools have been used primarily in 

subjects where autograders can evaluate well-defined right 

and wrong answers (in the K–12 curriculum, these typically 

reside in math and the early parts of the reading 

curriculum). Meta analyses, especially those by economists 

and others outside the education technology field, have 

generally found null average results for the use of reading 

tutors and modest positive results for math tutors [14, 42]. 

Of course, it always remains possible that an emerging 

technology could lead to dramatic changes. But when read 

in the light of the scholarly literature, Khan Academy’s 

predictions for transformation in the early 2010s seem like 

long odds.  

A long history of distance-education research shows that 

instructor-guided self-paced online learning experiences 

can be used by some students to successfully pursue higher 

education, but persistence and completion are serious 

problems [6]. MOOC researchers over the last ten years 

have found similar results, with the important wrinkle that 

self-regulated learning strategies appear to be essential for 

persistence and success, and these self-regulated learning 

skills are often correlated with measures of educational 

attainment and socioeconomic status [1, 21]. Instructor-

guided self-paced online learning appears to work best for 

already-educated, already-affluent learners. Researchers 

summarizing the literature on online learning in K–12 have 

come to similar conclusions: high achieving learners are 

most likely to benefit from online options [15].  

Researchers in peer-guided learning at scale have been less 

likely than researchers studying the other two genres to use 

quantitative research, preferring instead to produce rich 

qualitative descriptions of successful learners. Since 

learners bring their own learning goals to peer-driven 

learning environments, standardized measures of average 

achievement have often not been the methodology of choice 

for those studying peer-learning communities. Two key 

themes that emerge from the qualitative literature on 

learners in peer-driven communities is that successful 

learners are quite extraordinary, demonstrating a 

remarkable capacity to synthesize new insights, skills, and 

knowledge from peers online. The most sophisticated 

Scratchers, for example, produce animations, games, and 

other programs that showcase a sophisticated understanding 

of computer science and computational thinking [39]. Many 

learners, however, struggle to find their footing in peer-

driven learning environments. People may get bored going 

through xMOOCs and cognitive tutors and may eventually 

quit for lack of sustained interest, but xMOOC students 

don’t tend to become so confused that they don’t know how 

to participate. By contrast, many cMOOC participants find 

these networked learning environments overwhelming, and 

students’ getting stuck—not knowing what to do next to 

advance their learning—is a common challenge in 

classrooms adopting Scratch. One of the signature design 

challenges of peer-guided learning environments is to 

figure out how to make them more accessible to novices 

without turning them into instructor-led learning 

environments [17, 27, 33]. 

Nowhere in this overview of large-scale learning 

technologies is there an example of a technology that 
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proved disruptive to existing systems or that provided 

transformative benefits to an entire system of learners. 

Rather, the literature shows that the best designed learning 

technologies serve particular people in specific niches of 

existing education systems; they work, they have value, but 

they do not lead to the wholesale transformation of systems. 

The limits of their impact are gated by a set of dilemmas 

that cut across all three genres of learning at scale. 

3.0 AS-YET INTRACTABLE DILEMMAS IN LEARNING AT 
SCALE 

There are many differences between the progressive, open-

ended, peer-driven Scratch community and the linear, 

instructor-driven catalog of MOOCs. Yet both learning 

systems are bound by similar struggles to minimize 

inequality and to balance innovation in design and purpose 

with the limits of learners’ tolerance for novelty. For all the 

differences between these three genres of learning at scale, 

nearly all large-scale learning technologies face a common 

set of challenges in reshaping educational systems or even 

just serving existing systems. Typically, the three genres of 

learning at scale are studied by educational researchers 

from different communities: researchers studying 

algorithm-driven systems attend the Artificial Intelligence 

in Education or Educational Data Mining conferences; 

researchers interested in instructor-driven systems attend 

Learning Analytics and Knowledge or Learning with 

MOOCs; and designers building and researching peer-

driven systems attend the Connected Learning Summit. 

Since some of the most pressing dilemmas in learning at 

scale are common across the three genres, effective 

strategies for managing these obstacles that are discovered 

within one genre might very well be effective across the 

field. Although I view these dilemmas as persistent, 

durable, and resistant to simple technological fixes, I am an 

optimist at heart (albeit one chastened by the history of 

education technology), and I believe they can be overcome 

by equivalently persistent designers, reformers, and 

practitioners. 

There are four kinds of obstacles—I call them “as-yet 

intractable dilemmas”—that large-scale learning systems 

have encountered repeatedly over recent decades. These 

challenges are useful in looking backward; they help 

explain why grand predictions for transformative change 

fall flat. But I also hope they are useful for looking forward; 

these are the obstacles that designers and educators must 

overcome in order for education technology to reach its 

potential. I call these dilemmas the curse of the familiar, the 

edtech Matthew effect, the trap of routine assessment, and 

the toxic power of data and experiments.  

3.1 The Curse of the Familiar 

The conservatism and complexity of schools and learners 

elicits a set of reinforcing tendencies in edtech developers. 

Schools have many recognizable, durable features: 

schedules, desks, worksheets, bells, credit-hours, and other 

features that David Tyack and William Tobin call the 

“grammar of schooling” [48]. The curse of the familiar is 

that the easiest way to get a new technology adopted is to 

digitize one of these existing elements. One of the most 

widely used education technology websites in the world—

called Quizlet—allows users to create, share, and use digital 

flashcards. Quizlet was able to reach millions of students in 

the US and around the world because it created a learning 

experience instantly familiar to anyone who has ever 

studied factual content using index cards. But if we 

gathered educational experts from around the world to 

describe the most pressing challenges faced by school 

systems, I suspect that “limited flashcard availability” 

would not make the list of major concerns. Digitizing flash 

cards is unlikely to be an important part of solving complex 

problems of education achievement, opportunity, or 

inequality. When developers do create new technologies 

that offer substantially new approaches to teaching and 

learning—especially the peer-guided initiatives such as 

cMOOCs or Scratch—educators often perceive these 

offerings as confusing or irrelevant. As a result, truly novel 

approaches to technology-mediated teaching and learning 

have to be paired with substantial efforts to help educators 

and learners understand how to reshape existing systems to 

allow new technologies to be useful. Education technology 

needs education reform more than education reform needs 

education technology. 

3.2 The Edtech Matthew Effect 

The Matthew effect is a sociological theory drawn from the 

biblical book of Matthew: “For to him who has will more 

be given, and he will have abundance; but from him who 

has not, even what he has will be taken away.” The edtech 

Matthew effect is that new technologies—even those that 

are available freely and openly on the internet—are 

typically used more often and more efficaciously by 

already-affluent learners, so new technologies tend to 

exacerbate rather than ameliorate inequalities in educational 

opportunities. Moreover, the barriers to equity are often less 

about access to technology, and more about access to robust 

networks of human support that can make learning 

technology meaningful. In order to prevent learning at scale 

from making already yawning opportunity gaps even worse, 

developers, policymakers, and educators need to develop a 

set of design principles for digital equity—guidelines for 

making technology-mediated learning that doesn’t simply 

reinforce existing inequality.  

3.3 The Trap of Routine Assessment 

The trap of routine assessment focuses in on one of the 

critical sources of unevenness in education technology. 

Computers excel at anything that can be reduced to a series 

of routines or to pattern matching exercises. From this 

principle, two corollaries emerge, one in assessment 

technologies and one in the labor market. Our computer 

assessment technologies are very good at assessing routine 

tasks with well-defined right answers. Similarly, in the 

labor market, mechanical robots and online bots will take 

over much of the routine work that we currently pay people 

do. Put another way, our assessment technologies are 
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particularly good at assessing the kinds of human 

performance that we no longer need humans to perform. To 

the extent that we use standardized, computationally 

autograded tests to guide our education system, we will 

increasingly test and teach students in domains where 

human work is either unnecessary unrewarded. 

Technologists may believe that with advances in artificial 

intelligence or machine learning, these limits will be 

overcome in the years ahead. But there are good reasons to 

believe that to the extent that learning at scale depends upon 

automated assessment, many important domains of human 

learning will remain beyond the boundaries of what can be 

taught and assessed well at scale. The usefulness and 

potential of large-scale learning tools closely follows the 

contours of what can be meaningfully assessed by 

computers.  

3.4 The Toxic Power of Data and Experiments 

The toxic power of data and experiments recognizes that 

one of the signature characteristics of large-scale learning 

systems is that like other online systems, they can be 

continuously improved through experimentation and data 

analysis. When children across the country complete 

homework assignments on paper worksheets, that data is 

lost to trash cans and attic boxes, and the field learns little 

about how students learn. When children complete 

homework assignments in digital environments, researchers 

can examine that accumulated data to understand how 

people learn, to assess which specific problems work well 

and which confuse students, and to develop instructional 

modifications to the system for better learning outcomes. 

The large-scale learning systems that have proven to be 

most meaningful and effective for learners have been those 

developed in the context of rigorous efforts at research, 

evaluation, and continuous improvement.  

But massive data collection and experimentation are also 

among the most disturbing and dangerous features of what 

Shoshana Zuboff calls “surveillance capitalism”—systemic 

new efforts to monetize personal data and manipulate 

human behavior [53The data collected by online learning 

systems, like nuclear energy, has a potent but potentially 

toxic power, simultaneously capable of fueling technologies 

that can improve educational systems and of unleashing 

great harm to both individuals and society. Balancing 

learner autonomy, privacy, and dignity with the potential 

for data collection and experimentation to improve learning 

systems is one of the thorniest dilemmas that large-scale 

learning developers will face in the years ahead.  

Together, these dilemmas help explain why the prophecies 

of edtech charismatics over the last decade have failed to 

come to fruition. Too often, advocates for learning-at-scale 

solutions have promised that new technologies would 

reinvent educational systems, that they could sweep away 

the past to make room for new futures. No doubt, there is a 

new generation of venture capitalists and technology 

advocates preparing to make similar pitches about virtual 

reality or artificial intelligence or some other new 

technology that can be framed as a disruptive threat to the 

status quo. But the common theme behind the four learning-

at-scale dilemmas is that the challenges to effective learning 

are more cultural than technological. There is no tech that 

erases structural inequality. There is no tech that bypasses 

the conservatism of education stakeholders. There is no 

tech that will resolve the disagreements among experts 

about the subjective evaluation of many facets of student 

work. Anyone serious about improving educational systems 

through technology must be equally serious about 

improving education policy, management, and professional 

learning for educators.  

4.0 CONCLUSION 

As we enter 2020 and a new decade of work in learning at 

scale, our partners in schools, colleges, policymaking, and 

technology development will be best served by a research 

community that embraces a tinkerer’s mindset. Let the 

lessons learned from the hype cycle of the 2010s be learned 

once and for all: that schools and formal education systems 

need partners, not disrupters. The histories embodied in the 

three genres and four dilemmas for learning at scale are 

tools for helping educators, developers, and education 

researchers adopt the tinkerer’s stance as patient optimists, 

willing to put shoulder to the wheel and engage in the long, 

hard, and ultimately rewarding work of incrementally 

improving learning through technology.  
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