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Abstract

Today, the computer graphics community still struggles to create photoreal-
istic images. Looking at the objects around us, we might be unaware of all
the microscale details and irregularities that contribute to the final appear-
ance. However, the lack of such details is an important reason why we can
tell a rendered image from a photograph.

In this dissertation, we focus on generating and rendering such microscale
content in a physically based way. We also validate rendered results against
measurements.

In Chapter 3 we model the fluid flow on soap bubbles. Soap film thickness
is usually in the range of micrometers, demonstrating beautiful iridescence.
Previously, the variation in film thickness has been approximated by random
noise textures; such simplification fails to capture the rich appearance of soap
bubbles. Our work instead considers the mechanics that drive such fluid flow,
namely, the Navier-Stokes equations, surfactant concentration, Marangoni
surface tension, air friction, gravity, evaporation, etc. However, simulating
such a physical process brings a series of challenges: the significantly smaller
radial extent compared with the lateral extent, the singularity at poles when
advecting in spherical coordinates, the small step size needed when solving an
extremely stiff system, and the blurring of details after repeated advection,
for example. We design proper algorithms to address the above issues, thus
simulating a wide range of dynamic effects on soap bubbles that match real-
world footage for the first time.

In Chapter 4, we build a physically based hair scattering model. Hair
has a diameter of around 80 µm; its appearance is due to even smaller struc-
tures, such as the cuticle scales and the pigments inside. Hair rendering is a
long-studied topic. Virtually all current models are based on the Marschner
model, where one splits the scattering function into a longitudinal and an az-
imuthal component. This separation has its benefit in importance sampling
but lacks a physical ground, therefore does not match the measurement.
We revisit this topic and propose a novel physically based hair scattering
model, representing hair as cylinders with microfacet roughness. We demon-
strate that a 3D analysis of the light interaction with hairs is simpler than
it seems, so the former reduction to 2D analysis in the cross-section plane is
unnecessary. In this way, we reveal that the focused highlight in the forward-
scattering direction, observed in the measurement but not properly explained
and modeled before, is a result of the rough cylindrical geometry itself. Our



model also makes the extension to hair with elliptical cross-sections much
more straightforward and natural.

A much-related topic, feather rendering, is discussed in Chapter 5. Few
previous scientific works are available on this topic, while in production,
feathers are usually approximated by hair scattering models due to their
similar fiber-like appearance. However, feathers have distinct substructures
with non-cylindrical cross-sections, differing from human hairs. In particular,
a feather consists of many side branches, called barbs; similarly, a barb con-
sists of numerous side branches called barbules; the barbules have irregular
cross-sections. We build a scattering model directly upon such multi-scale
geometries: the feather is modeled as a collection of barb primitives, the ge-
ometry of which is an extrusion of a circular arc, corresponding to the curved
axis of barbules; the contribution of the barbule cross-sections is packed in
a normal distribution function, similar to in microfacet theory, while the lo-
cal shading frame of the barb geometry is aligned with the barbule axis. We
present the model on rock dove neck feathers and show that the result closely
matches the BSDF measurements and photographs.
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1. Introduction

1.1 Motivation

Physically based modeling uses physical laws to capture the essential proper-
ties of the subject of study, and uses various techniques to solve the resulting
equation system efficiently and accurately, instead of using empirical models
that match the reality only phenomenologically. Physically based modeling
has already become standard in offline simulation, such as movies, commer-
cials, and architectural visualization. With the recent advances in graphics
hardware and techniques, they have become a growing trend even in video
games, which require real-time performance; these advances also make it pos-
sible to model much finer details, which increase believability even further.

In the realm of natural phenomena, physically based modeling means solv-
ing the actual governing equations of the physical quantities rather than using
synthesized, procedurally generated textures. This includes physically based
simulation of atmosphere [45, 91], combustion [85] and snow avalanches [74],
or simulation at finer scales, including ocean foam [132] and fluid flow on soap
films [53, 25], to name a few. Sometimes, the developed techniques are so ac-
curate and efficient that they are even applied outside of computer graphics,
for example in weather nowcasting and natural hazard forecasting [119, 131].

In terms of producing the final images, physically based rendering aims
at producing photorealistic images via simulating the interaction of light
and matter as it is in the physical world. The central theorem is the ren-
dering equation introduced by Kajiya [65], which formulates the outgoing
radiance from a surface in terms of all the incoming light and the physical
properties of the surface itself. In the same paper, he showed how to solve
the equation by applying Monte Carlo path tracing, an imitation of pho-
ton transport in reality. Later, Veach [123] pushes this direction forward
by developing a rigorous theoretical basis for bidirectional path tracing and
proposing robust and efficient algorithms such as multiple importance sam-
pling and metropolis light transport. When describing surface properties,
microfacet models [21, 125] play an essential role because they can model
various materials, including glass and metal. Special models are designed for

1



more complex and delicate materials, such as Morpho butterflies [80], spider
webs [134] and gemstones [127].

Another important physical aspect is the wave nature of light. Previ-
ously, RGB representation dominated computer graphics as it mimics hu-
man trichromatic color vision. However, an RGB triplet can not uniquely
define a color: its interpretation depends on the color space and the de-
vices. Besides, RGB is only a sparse sampling of the visible light spectrum.
In contrast, spectral rendering [129] samples densely from a continuum of
the visible spectrum, supporting wavelength-dependent phenomena such as
interference, diffraction, fluorescence, and metamerism out-of-the-box; it is
therefore gradually gaining popularity against RGB rendering.

Recent advances in physically based modeling mainly focus on reduc-
ing image noises via producing high-quality Monte Carlo samples [13, 79]
or neural denoising guided by physically meaningful features [147], simu-
lating complex material appearances such as scratches [128], caustics, and
glints [146, 135], representing the wave nature of light globally instead of
locally [114], or simulating richer domains of natural phenomena. All in all,
physically based modeling has achieved great photorealism that was never
seen before.

In this dissertation, we revisit a few topics where previous works intend
to be physically based but neglect important physical aspects at microscales.
These topics are: fluid flow on soap bubbles (Chapter 3), hair rendering
(Chapter 4) and feather rendering (Chapter 5).

Soap film is a long-studied topic. However, previous works in computer
graphics only focus on physically modeling the evolving shape of the films,
while ignoring the fluid flow on the surface of the soap film—researchers either
assume the film thickness to be constant or apply ad-hoc noise textures, both
bear no resemblance with photographs.

Modern physically based hair rendering is based on Marschner et al.’s
work [76]. Although the Marschner model considers important physical char-
acteristics of hair (including the circular cross-section, tilted cuticle scales,
internal absorption, and radiant transfer), its separation of the scattering
function into a longitudinal and an azimuthal component has no physical
ground, thus fails to capture important highlights. The model also provides
only an approximated solution for elliptical cross-sections.

In production, feathers are usually rendered via texture-based or hair
scattering models, neglecting the complex hierarchical structures of feathers.
Meanwhile, many birds demonstrate iridescent colors, which could only be
approximated by mixing a hair shader and a thin-film shader.

We instead aim to close the above-mentioned gaps to improve photoreal-
ism of synthetic images. This is a cumulative work involving 3 publications,
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(a) Marschner model (b) Photograph (c) Our model

Figure 1.1: Although the Marschner model intends to be physically based by
considering the geometric and optical properties of hairs, its assumption of
the separability of the scattering function in the longitudinal and azimuthal
direction is not well justified. Nevertheless, it has become the standard rep-
resentation for following works until today. Before us, people also realized
that the Marschner model has difficulties modeling the strong highlight in
forward scattering. However, in production, this problem is usually bypassed
by using different roughnesses for front and rear views, or by applying a co-
sine modulation in the longitudinal direction [28]. Both methods can match
the appearance only phenomenologically. We instead build a physically based
hair scattering model rooted in microfacet theory, and demonstrate the accu-
racy of our model compared with Monte Carlo simulation and photographs.

each presented in a separate chapter. In each chapter, we propose new gov-
erning equations for the respective problems as well as new algorithms to
solve them; we also perform measurements to validate the photorealism of
our models.

The following content is structured as follows: in Sections 1.2 to 1.3, we
describe the physical properties of our objects of study, what previous works
are lacking in describing these objects and what our models offer; in Chap-
ter 2, we explain the background knowledge and necessary tools for under-
standing and solving the proposed problems; in Chapters 3 to 5, we present
the respective publications on soap bubbles [53], human hairs [52], and rock
dove neck feathers [54]; in Chapter 6, we conclude our achievements, discuss
the influence of our works on following research and production renderers,
and pose a few open problems.

3



1.2 Soap Film Dynamics

Few natural phenomena are so fascinating yet so easily accessible as soap bub-
bles and films, attracting the attention of children and grown-ups, laypeople
and scholars alike. The beauty of soap bubbles is a result of their chemical,
physical and mathematical aspects, interested readers can refer to Isenberg’s
book on soap films and soap bubbles [58] for a thorough explanation.

One charm of soap films lies in their shapes. Liquid surfaces have the
tendency to minimize the surface tension and thus the free energy; there-
fore, they tend to evolve into minimal surfaces, such as spherical bubbles or
catenoid between two rings. This property has even been used as an ana-
log tool to solve mathematical problems. Soap film simulations in computer
graphics also focused on the dynamic processes of their evolving into minimal
surfaces.

Another charm of soap films lies in their colors. A soap film’s iridescent
colors are due to thin-film interference (Section 2.3) and depend on the film’s
thickness. Previous to our work [53], the computer graphics community
did not look into the thickness dynamics of soap films. There have been
theoretical works [20, 55, 56] in the mathematics and physics communities
on the dynamics of soap film thicknesses, however, no full simulation was
available. Although soap film flows are described by the same set of equations
as other fluid flows, the Navier-Stokes equations, the extremely thin film and
small-scale features make numerical simulations challenging.

A soap bubble consists of water and soap molecules. The majority of
the soap molecules are adsorbed onto the surface so that their hydrophobic
ends avoid contact with water. The existence of the soap molecules on the
water surface, or surfactant, is why soap bubbles and films can last a long
time before they burst. The surface tension of soap solution is lower than
that of water; therefore, when a surface element is perturbed so that its area
increases, the soap concentration will decrease, leading to a larger surface
tension. Meanwhile, liquid surfaces tend to reduce the surface tension and
thus the free energy; as a result, nearby soap molecules will be pushed to
this region, restoring equilibrium. Since the film is so thin, an uncarefully
chosen simulation step size could cause a massive amount of fluid gathering
at the same place, or a sudden burst of the film. This kind of instability is
often seen in a stiff mass-spring system.

In Section 3.4.3, we introduce a novel, unconditionally stable method for
solving the surfactant concentration. We do so by combining the momentum
equation and the surfactant transport equation to derive an implicit scheme,
allowing significantly larger step sizes. In order to build a symmetric posi-
tive definite linear system, we choose to simulate in a spherical coordinate
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system. This, unfortunately, introduces singularities at the poles, causing
artifacts when advecting scalars or vectors near the poles. To address this
problem, in Section 3.4.2, we develop an unconditionally stable advection
scheme by constructing velocity-aligned local coordinate systems, effectively
advecting quantities as if they were on the equator. This advection scheme
could be applied to simulation on spherical coordinates in general. Besides
the above-mentioned surface tension, in Sections 3.3.3 and 3.6.2 to 3.6.4, we
also investigate other important sources that drive the fluid flow on a soap
bubble: gravitational forces, air friction and evaporation. We also design a
special shader for simulating multiple interactions between the soap bubble
surfaces in Section 3.5.2. Finally, we set up a simple studio environment in
the lab (Fig. 1.2) to capture real bubbles with a camera, and compare the
photos with our renderings in Figs. 3.12, 3.14 and 3.15.

canvas

soap bubble stand

camera

light panels

Figure 1.2: Studio for shooting soap bubbles

1.3 Hair Structure and Rendering

Hair is a much more popular topic than soap bubbles because it’s vital in hu-
man character creation; a more accurate description of the hair’s appearance
increases the character’s believability. Yet, hair rendering is difficult due to
the complexity of light transport between the vast number of hairs.

Hair has three layers: the medulla, the cortex, and the cuticle [24]. The
medulla is the innermost layer of hair; it is often narrow or absent in human
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(a) Asian Hair (b) Caucasian Hair (c) African Hair

Figure 1.3: Microscopic images of hairs of various racial origins. The cross-
sections vary from circular to elliptical. In (a), the three green circles from
the innermost to the outermost one indicate medulla, cortex and cuticle.
Images copyright: FBI Laboratory [24].

head hairs, compared to the distinct appearance in animal furs [138], its
contributions to the reflectance is therefore neglected in hair scattering mod-
els. The cortex is the middle and the main part of hair, mainly consisting
of keratin filaments and scattered melanin granules. While keratin is trans-
parent (with a refractive index of 1.549 at 589 nm [73]), melanin granules
absorb light (with a refractive index of 1.648 + 0.06321i at 589 nm [112]),
therefore, the amount of melanin determines the color of the hair. Due to
the dominant presence of keratin and the relatively small difference in re-
fractive indices between keratin and melanin, hair is usually modeled as a
homogeneous cylinder made of keratin, with melanin only contributing to
the absorption as light travels inside the cylinder [76, 26]. The cuticle is the
outermost coating made of several overlapping layers of keratinized cells [12],
with the tilt angle (around 2 to 4° [27]) pointing towards the root of the
hair. The cuticle tilt alters the normal direction of the hair surface, and in
particular causes the primary and secondary reflection from hair fibers to be
shifted towards opposite directions along the axis (Fig. 4.10).

Almost all hair scattering models today are based on Marschner et al.’s
work [76]. Their idea works as follows: According to Bravais law, the rays
interacting with a dielectric cylinder from a certain inclination to the axis will
exit at the same inclination, thus forming a cone. Therefore, a 3D analysis
of light scattering can be reduced down to a 2D analysis in the cross-section
plane by using a modified refractive index, so that the 4D scattering function
S(θ, φ) is factored into a product of two 2D terms: the longitudinal scattering
function M(θ) and the azimuthal scattering function N(φ). However, the
outgoing light only forms a specular cone when the interacting geometry is
a perfectly specular cylinder. Hair has rough surfaces, plus the tilted cuticle
scales, the outgoing rays from the same incoming angle do not form a cone
anymore. Marschner et al. [76] deal with the problem by blurring M(θ)
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Figure 1.4: The incident light on a hair strand is assumed to be collimated.
Components are grouped by the number of intersections.

along the axis using a Gaussian, and shifting M(θ) by a certain amount
depending on the number of interactions. However, this is only an arbitrary
approximation of the underlying rough cylinder model.

Many subsequent works extend the Marschner model to animal furs [138,
137], improve the artistic control [19, 101] or performance [137, 27] of the
model, but these are all built upon the separable assumption. The only ex-
ception is d’Eon et al.’s work [28], which points out that the longitudinal shift
of the outgoing ray due to the scale tilt depends on the distance of the hit
position to the axis (also called the azimuthal offset h, see Fig. 1.4). In par-
ticular, the angular shift of the primary reflection ray decreases as the offset
increases, thus forming a focused response in forward scattering (i.e. when
hair is observed against the illumination), which is verified in the measure-
ments by Khungurn et al. [66]. D’Eon et al. compute the specular direction
of the outgoing ray, and apply a cosine modulation of the original blurring
along the longitude. This formulation intrinsically still separates the longi-
tudinal and the azimuthal scattering functions, and is again a phenomeno-
logical approximation of the underlying rough cylinder model, as their result
only matches the Monte Carlo simulation from a Beckmann microfacet dis-
tribution [9] with low roughness, and has a significant discrepancy with the
ground-truth at grazing θ angles.

Our approach [52] is rooted in microfacet theory [21, 48]. In computer
graphics, a rough surface is usually modeled by a collection of small mi-
crofacets (also called microareas in the Trowbridge-Reitz distribution [120]),
which scatter light in mirror directions. Different microfacet distributions
are used to model different surface roughness. Similarly, to model a rough
cylinder, one can also imagine small mirrors scattered on the cylinder sur-
face and use the same microfacet model to describe light scattering, as there
must exist a distribution function of the microfacet orientations on a rough
cylinder. Following radiometry analysis by Cook and Torrance [21], it turns
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out that such a distribution is basically just an integration of the planar
distribution along the curve (Section 4.3.1). We show that this formulation
gives rise to the focused highlight in the forward direction in Section 4.4.1
and Fig. 4.13. It even has an analytical solution for the GGX microfacet dis-
tribution, when the shadowing-masking term is left out (Appendix E). For
subsequent interactions e.g . refraction and internal reflection, we adapt the
formulation by Walter et al. [125] and also integrate along internal paths, re-
sulting in higher-dimensional integrals, which we solve by combining Monte
Carlo and deterministic numerical integration schemes (Section 4.3.4).

Because the basic idea is microfacets on a curved surface, our model
naturally also works on elliptical cross-sections, which are the shapes of most
hairs, as we have seen in Fig. 1.3. In that case, one also just integrates
the distribution function along the elliptical curve (Section 4.3.3). Such a
straightforward extension was not possible before. Since the curvature varies
along the elliptical curve, light reflected from an elliptical cross-section shows
different intensities along the azimuth (Fig. 4.11a). More interestingly, the
secondary highlight is split into two distinct components pointing away from
the backward scattering direction (Figs. 4.11b and 4.11c), showing a much
brighter response when illuminated from the side, which is not present in
hair with circular cross-sections (Fig. 4.15).

1.4 Feather Structure and Rendering

Compared to hair rendering, a much related but less studied topic is the real-
istic rendering of bird feathers. Feathers and hairs are both fiber-like, which
explains why people use hair scattering models for feathers in production
rendering [44]. However, in Section 1.3 we have shown the influence of the
cross-sections on the appearance, and as we will see, the structure of feath-
ers is much more complex than that of hairs, especially when considering
particular complex effects like iridescence that occur in many bird species’
plumage, so that a hair model is only partially transferable to feathers.

Generally, feathers are composed hierarchically (Fig. 1.5), starting with a
central shaft that spans vane surfaces on both sides. Vanes consist of many
fiber-like barbs; which are the parts normally seen with bare eyes. The barbs
themselves consist of smaller barbules branching out to both sides. Finally,
the barbules have non-cylindrical cross-sections, and may contain regularly
aligned micro- or nanostructures.

Similar to human hairs, the general feather materials are keratin and
melanin. Melanin is a source of pigmentary colors, since it absorbs light in
a specific wavelength range. Other common pigments in avian plumage are
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Figure 1.5: The hierarchical structure of hummingbird feathers. Photos
taken from Giraldo et al. [42].

carotenoids, porphyrins, and psittacofulvins. More often [115], the regularly
organized micro- and nanostructures of keratin and melanin cause structural
colors by scattering light in a restricted wavelength range. Sometimes, struc-
tural colors also originate from the spongy barb.

The colors of rock dove neck feathers, the topic of Chapter 5, are a com-
bination of structural and pigmentary sources. Their distinct two-color iri-
descence is a result of thin-film interference caused by the keratin films on
the barbule surface. In certain thickness ranges (around 500 to 650nm),
keratin films appear either green or purple, depending on the thickness and
the viewing angle. Encapsulated by the keratin film are more or less ran-
domly arranged melanin granules, which reflect visible light broad-bandly;
they function as a background component that scatters light to a broader
angular range and decreases the color saturation. However, the scattering
behavior of rock dock neck feathers can only be partially explained by in-
terference from the keratin thin film and the broad-band reflection from the
melanin granules: it also depends on the millistructures, that is, the shape
of the barbules and how they arrange themselves to form a barb. Micro-
scope image (Fig. 1.6) shows that barbules are made of repeating cells with
a curved shape, reflecting light to a broader angle. Moreover, the barbules
are arranged regularly, forming a rather flat surface. In Section 1.3 we have
discussed the idea of modeling a rough surface by a collection of microar-
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100 µm

Figure 1.6: Microscopic image of purple barbules from a rock dove neck
feather

eas, which is quite similar to our case here: a surface consisting of repeating
microstructures.

We model the barb geometry explicitly as an extrusion of a circular arc
(Fig. 5.10b), this is the macrosurface for our microfacet-like feather scatter-
ing model; we then formulate the microarea distribution of a barbule cell
in Section 5.4.1, and model the randomness in the barbule orientation by
applying a noise map at the barb scale, since such variation is also visible
in the macroscale. There are two important aspects where our model differs
from the microfacet model: first, because of the overlap, different part of the
barbule is visible depending on the illumination and viewing angle, therefore,
the shadowing-masking term needs special treatment, which we will discuss
in Section 5.4.1; second, the barbule surface is a thin film, therefore, we need
to account for thin-film interference (Section 2.3) instead of simple Fresnel
reflection. Finally, we compare our rendered results with the measurement
and photographs in Section 5.5, and identify great similarities.
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2. Background

In this chapter, we give a thorough explanation of the background knowl-
edge used throughout this dissertation. The BxDFs in Section 2.1 lays the
foundation of both Chapters 4 and 5; thin-film interference in Section 2.3 is
relevant for Chapters 3 and 4; we also introduce hair geometric primitive for
Chapter 4.

2.1 BxDFs

BxDF is a family of bidirectional distribution functions describing how ma-
terials respond to incoming light. It is defined as the ratio between the
differential outgoing radiance (radiant flux per unit projected area per solid
angle) dLo(ωo) and the differential incoming irradiance (radiant flux per unit
area) dEi(ωi) [94]

f (ωi, ωo) =
dLo (ωo)

dEi (ωi)
=

dLo(ωo)

Li(ωi) cos θi dωi
, (2.1)

where ωi,o are incoming and outgoing directions, respectively, and θi is the an-
gle between the incoming light and the surface normal. Integrating Eq. (2.1)
over the sphere, we obtain the outgoing radiance

Lo(ωo) =

∫
Li(ωi)f(ωi, ωo) cos θi dωi. (2.2)

2.1.1 Microfacet BSDF

In computer graphics, microfacet theory [49] is the standard method to model
surface roughness, where a macrosurface is presumed to be a collection of
small mirrors that reflect light at the same angle as the incoming light.
The distribution of the microfacets’ normals is called the normal distribution
function (NDF) D(ωh), it appears in the bidirectional reflectance distribution
function (BRDF) as

fr(ωi, ωo) =
F (ωh, ωo)G(ωo, ωi, ωh)D(ωh)

4 cos θo cos θi
, (2.3)
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Figure 2.1: A macrosurface with normal direction ωm is modeled as a collec-
tion of small perfect mirrors, or microfacets. On the right, the microfacets’
normal directions ωh have a larger variance, the surface therefore appears
rougher.

with F being the Fresnel term, G the shadowing-masking term, and the
direction of ωh is given by ωi + ωo.

Defined above is the reflection in the upper hemisphere around the macro-
surface normal. If the surface is translucent, light is also refracted into the
lower hemisphere, giving the bidirectional transmittance distribution function
(BTDF)

ft(ωi, ωo) =
T (ωh, ωo)G(ωo, ωi, ωh)D(ωh)(ωi · ωh)(ωo · ωh)

∥ωo + η−1ωi∥2 cos θo cos θi
, (2.4)

with T being the Fresnel transmittance, η the relative refractive index of the
media of the outgoing ray w.r.t. that of the incoming ray, and ∥∥2 the squared
norm. In the transmission case, the direction of ωh is given by −ωo − η−1ωi,
exactly the term in ∥∥.

BRDF and BTDF combined give the bidirectional scattering distribution
function (BSDF) in the complete sphere around the incident position.

In the following chapters, we will see extensions of the microfacet model,
that is, the same formulation can be used even when the underlying macrosur-
face is not a plane, but a curved surface (Chapter 4), or when the microfacets
are not “facets”, but overlapping surfels, or smooth microareas (Chapter 5).

2.1.2 BCSDF

The BSDF defined in the last section is used to describe the scattering be-
havior of a surface. When light is scattered from a fiber, e.g . human hair or
animal fur, the bidirectional curve scattering distribution function (BCSDF)
is used instead, derived from analogies of radiance and irradiance defined per
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fiber length

S (ωi, ωo) =
dL̄o (ωo)

dĒi (ωi)
, (2.5)

where L̄ is radiant flux per unit projected fiber length per solid angle, and
Ē is radiant flux per unit fiber length, resulting in the rendering integral

Lo(ωo) =
Di

Do

∫
Li(ωi)S(ωi, ωo) cos θi dωi, (2.6)

with Di,o being the diameter viewed from the incoming and outgoing direc-
tions, respectively. For fibers with circular cross-sections, this ratio is 1. In
Section 4.3.3, we will discuss the case of elliptical cross-sections. Despite
the similarity of Eq. (2.6) to Eq. (2.2), the θi in both equations are differ-
ent: in Eq. (2.2), θi is the angle between the incoming light and the surface
normal, i.e. cos θi = ⟨ωi, ωm⟩, whereas in Eq. (2.6), θi is the angle between
the incoming light and the cross-section plane x− z (Figs. 1.4 and 4.2), i.e.
sin θi = ⟨ωi, e⃗y⟩, with e⃗y being the unit vector along the y axis.

Ray intersection: 146 s
BSDF evaluation/sampling: 15 s

(a) Near-field model

Ray intersection: 80 s
BSDF evaluation/sampling: 67 s

(b) Far-field Marschner model

Figure 2.2: Comparing brute-force ray tracing (left) with a far-field approx-
imation (right). Both images have a resolution of 1024 × 1024 and took
3 min to render on an Apple M1 8-core CPU. On the left, hair is modeled by
rough dielectric cylinders with absorption. Most of the time is spent on ray
intersection, and the image is very noisy. On the right, hair is modeled by
ray-facing stripes with BCSDF applied. BSDF evaluation now takes much
longer, but the ray intersection time is reduced, and the image also has much
better convergence.
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Although Marschner et al. [76] first formulated the scattering function
S(ωi, ωo) for hairs, it was Arno and Zinke [149] who performed the first
systematic derivation of radiance transfer at a hair, or more generally, a
fiber. Arno and Zinke [149] also pointed out that the scattering function
used by Marschner at al. [76] is a far-field approximation of the near-field
model integrated along the fiber width, and name the former BCSDF. Far-
field means that a fiber is illuminated and viewed from sufficiently large
distances and hence takes up less than one pixel on the screen, so that the
exact incident and outgoing position along the fiber width does not matter;
in this case, we can assume collimated light (Fig. 1.4). Local illumination
between fibers is also assumed to be collimated. Because the hair fiber is
very thin, the probability of hitting a particular fiber is low; by summarizing
the scattering behavior from the whole width, we reduce the samples needed
for convergence, at the tradeoff of longer BSDF computation times each time
the ray hits the fiber. In effect, one achieves less noisy results in the same
rendering times when a far-field model is applicable (Fig. 2.2).

2.2 Hair Primitive

Although triangle meshes are ubiquitous in shape representation, it is more
efficient to use interpolating curves when modeling hair.

Figure 2.3: Curve primitives. Left : a circular cross-section swept along a
curve. Right : a ray-facing stripe.

Ideally, a hair fiber is formed by sweeping a circular cross-section along a
curve (Fig. 2.3 left). Ray intersection with a curve primitive is often approx-
imated by recursively splitting the current curve section in half [94], until it
spans less than one pixel and can be approximated by a line segment (or a
cylinder, when considering the curve width). For far-field models, the exact
hit position on the cylinder does not matter, therefore, in practice, a ray-
facing stripe (Fig. 2.3 right) is used to replace the cylinder, saving the com-
putational expense of solving a quadratic equation. Recently, there have been
approaches to intersect a polynomial curve directly and efficiently without
recursive subdivisions [98, 144], however, they only support circular cross-
sections (with varying radius along the curve), not elliptical cross-sections as
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we will need in Section 4.3.3. Therefore, we stick with the ray-facing stripe
representation.

For elliptical cross-sections, one also needs to figure out the orientation
along the curve. Without previous knowledge, we assume the semi-minor
axis to be aligned with the curvature vector, as a long and thin structure,
such as a wire, is most easily bent along its thinnest direction.

2.3 Thin-film Interference

When the film thickness is at the scale of visible light wavelengths, we need to
consider the wave nature of light. The complex representation of an electric
field vector is

E = |E|eiϕ, (2.7)

with ϕ = ωt + ϵ accounting for the angular temporal frequency ω, time t,
and phase ϵ.

In its simplest form, a thin film has an infinite extent, sandwiched between
two semi-infinite media (both are air in our case). All media are homogeneous
and isotropic. When light is incident from air on the thin film, it is partially
reflected by an amplitude of r12 and partially transmitted by an amplitude of
t12. The transmitted part enters the thin film and is partially reflected and
transmitted repeatedly at the film-air interfaces by amplitudes of r21 and t21,
respectively (see Fig. F.1. For a flat thin film, the reflected rays are parallel
and interfere with each other, with the phase difference of successive rays
being ∆ψ. The transmitted rays are also parallel and have the same phase
difference ∆ψ. The reflection (transmission) coefficient is then obtained by
summing up an infinite series of the reflected (transmitted) rays, which is
given by the Airy formula [140]

r = r12 +
t12r21t21e

i∆ψ

1 − r221e
i∆ψ

, t =
t12t21

1 − r221e
i∆ψ

. (2.8)

the full expression of the infinite series can be found in Appendix F.
For a soap bubble (Chapter 3) or a feather barbule (Chapter 5), however,

the two interfaces of the thin film is not parallel. Also in Appendix F, we
perform a 2D analysis on a thin film with curvature, and found out that the
exact reflection coefficient can be very well approximated by a flat thin film,
except when the curvature radius is too small, even smaller than a grid size
in Chapter 3 or a barbule width in Chapter 5. Therefore, in both chapters,
we assume the film to be locally flat.
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3. Chemomechanical
Simulation of Soap Film Flow
on Spherical Bubbles

The content of this chapter has been published as:

Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chen-
fanfu Jiang, and Matthias B Hullin.
Chemomechanical simulation of soap film flow on spherical bubbles.
In ACM Transactions on Graphics (TOG), 39(4):41–1, 2020.
DOI: 10.1145/3386569.3392094

Summary

Numerous research works have focused on the dynamics of soap bubbles
or films, exploring various shapes such as soap films in frames, clusters of
bubbles [60], and bursting bubbles [148]. However, the colorful patterns
resulting from fluid flow in soap films, which contribute to their great beauty,
have not been replicated in previous works.

In the chapter, we derive the governing equation of fluid flow on soap
bubbles and identify the essential factors, including surfactant concentration,
gravitational force, and air friction. To alleviate numerical issues arising from
mixing substantially smaller radial dimension with larger lateral dimensions,
we employ lubrication theory to transform the 3D governing equation into a
2D equation, treating the film thickness as an additional variable dependent
on the lateral coordinates.

The resulting equation system is discretized for numerical simulation. We
adopt a spherical coordinate system, which is convenient for defining variables
due to the spherical nature of soap bubbles; additionally, a regular grid yields
a symmetric positive definite linear system, benefiting the numerical solver.
However, using a spherical coordinate system introduces singularities at the
poles, which can cause numerical problems when advecting quantities near
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the poles. To overcome this, we construct velocity-aligned local coordinate
systems, effectively treating every point on the sphere as if on the equator.

Preserving the fine details of fluid flow on soap bubbles requires address-
ing numerical diffusion, caused by repeatedly interpolating values from a
coordinate system with finite resolution. We tackle this problem by keeping
a bidirectional mapping [96], consisting of a backward mapping that maps
the current grid point to its position at the initial time step for interpolation,
and a forward mapping to accumulate changes along the flow. This approach
ensures that values are always interpolated from the initial time step instead
of repeatedly interpolated from the previous time step.

After advection, additional terms are applied with a single time step up-
date. Due to the elasticity resulting from the concentration gradient term,
the system requires extremely small step sizes when solved explicitly. To
overcome this limitation, we propose a concentration split step to solve the
concentration gradient term implicitly, while using explicit updates for other
terms. The resulting sparse matrix is solved using a conjugate gradient
method with the AmgX library.

Furthermore, we capture soap bubble footage in the lab and observed
significant similarities with our models. We are able to recreate the stripe-like
features resulting from velocity gradients and shear motion, the waterdrop
shapes with tails floating up- or downwards due to local thickness differences,
thinning due to evaporation, and thickness gradients resulting from gravity.

One drawback of our model is its limitation to spherical shape. Extending
the model to more general shapes would require different coordinate systems.
Additionally, our model neglects viscosity, which would require an extra up-
date step. Another challenge lies in simulating black films with extremely
small thickness, where the force gradient is so large and therefore requires
much finer resolutions. These aspects are left for future works.

Author Contribution: In this research, I conducted literature review,
derived and simplified the governing equation of the fluid system. Addition-
ally, I designed an unconditionally stable advection scheme and implemented
all simulation algorithms, including advection, external forces, bidirectional
mapping, and the conjugate gradient solver in AmgX. Furthermore, I con-
ducted the experiments with together with Matthias Hullin.

The initial idea was proposed by Matthias Hullin. Chenfanfu Jiang con-
tributed the concentration splitting scheme. Ziyin Qu provided valuable sug-
gestions for the conjugate gradient methods. Tom Kneiphof and Matthias
Hullin contributed to implementing the renderer. All the co-authors assisted
in revising the paper.
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Figure 3.1: Spatially-varying iridescence of a soap bubble evolving over time
(left to right). The complex interplay of soap and water induces a complex
flow on the film surface, resulting in an ever changing distribution of film
thickness and hence a highly dynamic iridescent texture. This image was
simulated using the method described in this chapter, and path-traced in
Mitsuba [62] using a custom shader under environment lighting.

Abstract

Soap bubbles are widely appreciated for their fragile nature and their colorful
appearance. The natural sciences and, in extension, computer graphics, have
comprehensively studied the mechanical behavior of films and foams, as well
as the optical properties of thin liquid layers. In this chapter, we focus on the
dynamics of material flow within the soap film, which results in fascinating,
extremely detailed patterns. This flow is characterized by a complex cou-
pling between surfactant concentration and Marangoni surface tension. We
propose a novel chemomechanical simulation framework rooted in lubrica-
tion theory, which makes use of a custom semi-Lagrangian advection solver
to enable the simulation of soap film dynamics on spherical bubbles both in
free flow as well as under body forces such as gravity or external air flow.
By comparing our simulated outcomes to videos of real-world soap bubbles
recorded in a studio environment, we show that our framework, for the first
time, closely recreates a wide range of dynamic effects that are also observed
in experiment.

3.1 Motivation

The beauty of soap films and bubbles is of great appeal to people of all ages
and cultures, and the scientific community is no exception. In the computer
graphics community, it is now widely understood how films, bubbles and
foams form, evolve and break. On the rendering side, it has become possi-
ble to recreate their characteristic iridescent appearance in physically based
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renderers. The main parameter governing this appearance, the thickness of
the film, has so far only been driven using ad-hoc noise textures [43], or was
assumed to be constant. The resulting renderings appear largely plausible
but static, as they lack the rich dynamics known from real-world soap films.

In this chapter, we aim to close this gap in order to achieve greater realism.
We do so by contributing a chemomechanical framework targeted specifically
at simulating the rich and detailed microscopic flow on spherical soap bub-
bles. Our framework employs a leading-order approximation for the soap film
dynamics developed by Chomaz [20], Ida and Miksis [55]. A soap bubble is
modeled as a two-dimensional flow on a static spherical surface with two as-
sociated scalar fields: the film thickness and the soap concentration. We are
able to show that this state-of-the-art model, paired with a custom solver,
is capable of expressing the intricate flows found on real-world soap bubbles
(Fig. 3.1) under the mutual influence of mechanical stress, film thickness and
surfactant concentration as well as body and surface forces like gravity and
air friction. Our simulation is performed on a staggered grid, using finite
differences in space and time. An advection scheme based on BiMocq2 [96]
minimizes numerical dissipation in order to prevent fine details from washing
out over time. The resulting thickness maps are presented in real time using
a custom, very efficient polarization-aware spectral rendering scheme.

Besides the underlying physical model, our framework is enabled by the
following key contributions:

• We propose a novel advection scheme for vector and scalar quantities in
spherical coordinates. Our scheme, which constructs a local coordinate
frame aligned with the direction of the flow, is unconditionally stable
and maintains continuous behavior even near and across the poles.

• We propose an implicit update step for the soap concentration, which
avoids solving a stiff indefinite system and enables the use of signifi-
cantly larger time steps when applying body forces.

• We introduce a novel real-time shader that is designed to reflect spec-
trally and polarization-dependent effects under environment lighting in
a physically accurate manner. This even holds for contributions which
are reflected multiple times in a spherical bubble.

• We investigate the influence of material parameters, geometric scale
and external forces on the flow, and compare our results to real-world
examples captured under lab conditions.
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3.2 Related Work

With their tendency to evolve into minimal surfaces, soap films embody a fun-
damental mathematical and physical principle in a way that is immediately
relatable and fascinating to experts and laypersons alike. Consequently, they
have inspired a large body of research in mathematics, physics and materials
science. Some mathematicians even went so far as to use them as analog
computers to solve mathematical minimization problems [58]. Within the
computer graphics community, the geometric properties of minimal surfaces
as well as the formation, evolution and destruction of films, bubbles and
foams have inspired a large number of groundbreaking works [122, 43, 61,
60, 148, 68, 23].

Besides their geometry, the beauty of soap bubbles also stems from their
dynamic iridescent patterns. The chaotic mixing, highly non-linear vortices
and turbulence of the fluid flow are not only visually interesting, but they
have also led to a body of scientific work that is just as varied and colorful
as its subject of study. Examples range from the visualization and study
of 2D flow [40] or using soap bubbles as a small-scale surrogate model for
planetary atmospheres [78, 106] via the visualization of sound and music [39]
to using soap films as volatile display surfaces [88]. In computer graphics,
the simple optical effect behind the characteristic iridescent colors (thin-
film interference) has long been understood and used [108, 117, 43, 63, 61,
10, 69]. However, the film thickness, which is the main governing parameter
besides the liquid’s refractive index, has rarely been driven by proper physical
simulation. While some works [102, 103, 148] have coupled thickness in their
models, they use it more or less as an intermediate variable that influences
the macroscopic motion and serves as a bursting condition. Most recently,
such models have been equipped with the ability to propagate turbulent flow
across Plateau boundaries [59]. In contrast, our goal is to simulate the rich
and detailed dynamics of the microscopic flow that is observable through
thin film interference, while staying as close as possible to a state-of-the-art
physical model.

We turn to the fluid mechanics and physics communities, where several
comprehensive models for soap film flow have been devised. Chomaz [20]
derived a highly accurate model for the dynamics of a flat soap film, which is
based on the asymptotic lubrication theory, assuming the thickness of the film
is small compared to its lateral extent. The main contribution of that work is
on the construction of similarities between soap film flows and compressible
fluid flows in a planar, two-dimensional domain. The model provided by Ida
and Miksis [55] is in principle capable of expressing general and time-varying
three-dimensional soap films. In order to simulate flow using their model [56],
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they employ a pseudospectral Chebychev spatial collocation and restrict the
solution to the one-dimensional axisymmetric case.

Since the pioneering work by Foster and Metaxas [34], physics-based an-
imation of fluids has been an important topic in computer graphics due to
its wide range of applications for capturing effects of smoke [31], free surface
flow [33], or fire [84]. We note that even lubrication theory, which forms
the foundation of our framework, has at least once before been employed by
other members of the computer graphics community: Azencot et al. [3] used
it to simulate the flow of thin liquid films across solid surfaces. Regarding
the geometric discretization, various possible choices exist [15, 32, 2, 57, 75].
Grid-based Eulerian simulation of fluid remains popular and widely adopted
due to its superior efficiency and versatility, despite its well-known problems
in numerical diffusion. In graphics, the semi-Lagrangian advection scheme
presented by Stam [109] builds the foundation for many more advanced fu-
ture developments on Eulerian fluids, including some recent impressively
successful examples [145, 82, 96]. Indeed, the advection equation is such
a mathematically simple, yet numerically challenging equation that consis-
tently draws a lot of attention. The difficulty is pronounced at an even
higher level when one tries to solve for fluid dynamics on a spherical geome-
try [51, 139] due to the notoriously difficult “pole singularity problem” [97].
In this chapter, we look into an even more challenging scenario where we
need to efficiently and robustly advect multiple physical quantities related to
the chemomechanical physics on a soap film.

3.3 Physical Model

The mechanical properties of soap solutions are characterized by the interplay
of water and the soap dissolved in it. Soap molecules, which have a polar
(hydrophobic) and a non-polar (hydrophilic) end, tend to settle at the water
surface, so that their hydrophobic part can avoid the contact with water.
As a result, the soap concentration at surfaces is usually much higher than
in the bulk fluid. Soap further acts as a surfactant, i.e., the presence of
soap molecules reduces the surface tension of the fluid. When the distance
between soap molecules at the surface increases, surface tension increases
accordingly. By adding soap to water, it becomes possible to make bubbles
that can last several seconds to minutes, since the surface tension prevents
them from bursting. The resulting structure of soap films consists of three
layers [22]: two water-air interfaces populated by soap molecules and a thin
layer of bulk fluid in between (Fig. 3.2). The thickness of a soap film is
usually around 1µm, which explains the colorful interference between light
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Figure 3.2: Cross-section of a soap film (image adapted from Couder et
al. [22]). A thin layer of liquid (thickness 2η) is centered around a macro-
scopically defined surface. The polar chemistry of surfactant molecules causes
them to concentrate at the liquid-air interface. We assume the number of
soap molecules in the bulk fluid (here marked in gray) to be negligible.

reflected at the two interfaces (Fig. 3.3).

As a soap solution’s refractive index is only weakly affected by the soap
concentration, the two dominant influences on the color of the film are its
large-scale geometry and hence the viewing angle, and the spatially varying
thickness of the fluid layer. For the purpose of this work, we assume the
shape of the bubble to be fixed. This leaves material transport within the
film manifold as the main source of texture. In order to recreate the intricate
dynamics found in real-world soap films, we have to understand, model and
simulate this flow.

3.3.1 Governing equations in 3D

We formulate the fluid flow in terms of the incompressible three-dimensional
Navier-Stokes equations,

∂u⃗

∂t
+ (u⃗ · ∇) u⃗ =

1

ρ
∇ · σ + f⃗ , (3.1a)

∇ · u⃗ = 0, (3.1b)

where ∇ is the nabla operator in three dimensions, u⃗ is the fluid velocity, σ is
the Cauchy stress tensor [8, Ch. 1.3], ρ is the mass density, and f⃗ represents
body accelerations such as gravity and air friction.
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Figure 3.3: Interference color of light reflected by a thin layer of dielectric
as a function of film thickness and incidence angle. Shown are simulations
with a spectral resolution of 5nm for materials of different refractive index,
including the most relevant material for our purpose, water. Colors are scaled
so that white corresponds to a reflectance of 100%. We refer the reader to
established literature [43, 10] on how to compute these colors. Somewhat
counterintuitively, we note that the optical path difference decreases with
increasing angle. Therefore, under oblique observation it takes a thicker film
to produce the same color.

At a film surface, the stress condition applies as [55, 22]

σ · n⃗ = (2C γ − pa)n⃗+ ∇sγ, (3.2)

where n⃗ is the outward normal vector at the respective surface, pa the air
pressure, γ the surface tension, and 2C = −∇ · n⃗ is twice the mean surface
curvature. In general, the values of these quantities differ between one surface
of the film and the other. The 2D gradient operator ∇s within the surface
acts on a scalar field Φ as

∇sΦ = ∇Φ − n(n · ∇Φ). (3.3)

The surface tension depends on the surfactant concentration Γ, i.e., the
concentration of soap molecules on the surface,

γ = γa − γrΓ, (3.4)

where γa is the surface tension of pure water, and γr accounts for the elas-
ticity of the film. In the small concentration range, γr is considered to be
constant [22].

Finally, the surfactant concentration Γ is driven by the advection-diffusion
equation

∂Γ

∂t
+ ∇s · (u⃗Γ) = Ds

(
∇s

)2
Γ, (3.5)

with Ds being the diffusivity for surfactant molecules.
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3.3.2 Thin-film analysis and governing equation on spheres

In the following, we will restrict ourselves to spherical bubbles with radius
R. For small (centimeter-sized) bubbles, this approximation is reasonable.
It is thus convenient to parameterize the problem in spherical coordinates
(r, θ, ϕ). The fluid velocity u⃗ then reads as

u⃗ = (ur, uθ, uϕ)⊤. (3.6)

We further note that the thickness of a soap bubble is very small compared
to its lateral extent. Using lubrication theory [99, 90], we reduce the three-
dimensional problem to a two-dimensional one. The extent of the film along
the normal direction (the thickness) is introduced as a variable rather than a
third dimension of the simulation domain. Suppose the inner and outer sides
of the bubble are symmetrically deformed with half thickness η to either
side (Fig. 3.2), then the kinematic condition (see Section D.1) describing
the interaction between the time and spatially varying film thickness η =
η(θ, ϕ, t) and the velocity u⃗ at the interface r = R± η can be written as

∂η

∂t
+
uθ
R

∂η

∂θ
+

uϕ
R sin θ

∂η

∂ϕ
= ±ur. (3.7)

With the mean half thickness η0 and the expansion parameter ϵ = η0/R, we
non-dimensionalize the variables as

η = η0η
′, uθ = Uu′θ, uϕ = Uu′ϕ, σ =

µU

R
σ′,

ur = ϵUu′r, r = R + ϵRr′, t =
R

U
t′, Γ = Γ0Γ

′, p =
µU

Rϵ
p′,

(3.8)

where U is the characteristic velocity and Γ0 is the mean surfactant con-
centration. We substitute these variables in Eqs. (3.1), (3.2), (3.4), (3.5)
and (3.7), expand u⃗, Γ and η asymptotically with a power series, and drop
all terms except those with leading order of ϵ (see Chomaz and Miksis et
al.’s works [20, 55] for more details). Note that our non-dimensionalization
is adapted to spherical coordinates and thus differs from the literature ex-
amples. The nabla operator ∇ now only acts within the surface,

∇ = ∇s = e⃗θ
∂

∂θ
+

1

sin θ
e⃗ϕ

∂

∂ϕ
, (3.9)
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where e⃗θ and e⃗ϕ are the respective basis vectors. The governing equations
are thus reduced to

Du⃗′

Dt′
= −M

η′
∇Γ′ + f⃗ + Re−1V⃗ ,

DΓ′

Dt′
= −Γ′∇ · u⃗′ +D′

s∇2Γ′,

Dη′

Dt′
= −η′∇ · u⃗′,

(3.10a)

(3.10b)

(3.10c)

where M = Γ0γr/ρη0U2 is the Marangoni number, Re = URρ/µ is the Reynolds
number, µ and ρ are the dynamic viscosity and the mass density of the soap
solution, respectively. The thermodynamic quantity γr = R̄T combines gas
constant R̄ and temperature T [22]. D′

s = Ds/UR is the scaled diffusivity, and
the total derivative

D

Dt′
=
∂

∂t′
+ u⃗′ · ∇. (3.11)

The vector V⃗ = (Vθ, Vϕ)⊤ represents viscous terms including second order
terms as

∂2u′θ
∂ϕ2

,
∂η′

∂θ

∂u′θ
∂θ

, . . .

The complete terms are provided in Eq. (D.37). For readability, we drop
the primes from this point onward. Further, within the scope of this work,
we assume that the soap molecules are not diffusive (Ds = 0) and that
viscosity can be neglected. Readers interested in viscous effects may refer
to Section 3.7.1. In spherical coordinates, the total derivative of u⃗ can be
written as

Du⃗

Dt
=

(
∂uθ
∂t

+ uθ
∂uθ
∂θ

+
uϕ

sin θ

∂uθ
∂ϕ

−
u2ϕ

tan θ

)
e⃗θ

+

(
∂uϕ
∂t

+ uθ
∂uϕ
∂θ

+
uϕ

sin θ

∂uϕ
∂ϕ

+
uθuϕ
tan θ

)
e⃗ϕ

(3.12)

and its divergence as

∇ · u⃗ =
1

sin θ

[
∂uϕ
∂ϕ

+
∂

∂θ
(uθ sin θ)

]
. (3.13)
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(a) Typical dimensions (b) Soap bubble photograph

Figure 3.4: Under the influence of gravity and with surface tension as op-
posing force, bubbles assume an equilibrium state where the film thickness
gradually increases from top to bottom. This is reflected by the horizontal
fringe pattern observed on real-world bubbles.

The derivatives of a scalar field Φ (which could either be the thickness η or
the soap concentration Γ), are

∇Φ =

(
∂Φ

∂θ
,

1

sin θ

∂Φ

∂ϕ

)⊤

, (3.14)

DΦ

Dt
=
∂Φ

∂t
+ uθ

∂Φ

∂θ
+

uϕ
sin θ

∂Φ

∂ϕ
, (3.15)

∇2Φ =
1

sin θ

[
∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

∂

∂ϕ

(
1

sin θ

∂Φ

∂ϕ

)]
. (3.16)

There are mainly two contributions for the evolution of soap film thickness
η and surfactant concentration Γ: they are passively advected by the flow
field [139], but also affected by inflow or outflow as expressed by the diver-
gence terms in Eqs. (3.10b) and (3.10c). Unlike the full 3D incompressible
flow (Eq. (3.1b)), the 2D flow within a thin film behaves like a compressible,
elastic medium.

3.3.3 Surface and body forces

The most important forces governing the motion of a soap film within its
manifold are surface tension, gravity and air friction. The interaction be-
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tween gravity and surface tension will cause thinner films to float upwards
and thicker films to drop downwards, so that a soap bubble (or film) at its
equilibrium state always assumes a wedge shape (Fig. 3.4). Let g be the
gravitational acceleration scaled by U2/R. If we assume the north pole of the
bubble to be pointing upwards, then the gravity vector g⃗ in the spherical
coordinate system (e⃗θ, e⃗ϕ) is g⃗ = (g sin θ, 0)⊤.

As a soap bubble is very thin, the film is easily set into motion by tan-
gential air flow. If the surrounding air is still, it damps the flow motion.
For simplicity, we assume a linear Stokes drag f⃗air = (Cr/η)(u⃗air − u⃗), with
Cr being the drag coefficient. Taking gravity and air friction into account,
Eq. (3.10) becomes

Du⃗

Dt
= −M

η
∇Γ +

Cr

η
(u⃗air − u⃗) + g⃗,

DΓ

Dt
= −Γ∇ · u⃗,

Dη

Dt
= −η∇ · u⃗.

(3.17a)

(3.17b)

(3.17c)

Interestingly, from Eq. (3.17a), we observe that surface forces as surface
tension and air drag are divided by the film thickness, so that thinner films
are more easily driven into motion, whereas body forces like gravity act
throughout the volume of the body and thus do not depend on the thickness.

3.4 Method

In this section we develop novel spatial and temporal discretization schemes
for the governing equations. In particular, via using a staggered spherical
grid (Section 3.4.1), we develop an unconditionally stable advection scheme
(Section 3.4.2) that can smoothly propagate flow across the poles, as well as
a projection-like implicit solver for handling chemomechanical forces (Sec-
tion 3.4.3).

3.4.1 Spatial discretization

We discretize the spherical domain with a staggered grid [139], where ve-
locities and scalar quantities are stored at different locations (illustrated in
Figs. 3.5 and 3.6). This allows the accurate evaluation of the concentration
gradient ∇Γ and the velocity divergence ∇ · u⃗ using central differences with-
out the formation of checkerboard patterns [15, Ch. 2.4]. Also, a regular grid
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Figure 3.5: The staggered spherical grid. Film thickness η and soap concen-
tration Γ are evaluated at the cell center, while the θ and ϕ components of
the velocity vector u⃗ are sampled at the midpoints of cell boundaries.

discretization makes it possible to build a symmetric positive definite linear
system that can be solved using the conjugate gradient method.

The velocity vector is split in two components, uϕ and uθ, which are
located at the center of the cell boundaries, whereas the concentration Γ and
the thickness η are sampled at the cell center. Assuming the staggered grid
consists of Nθ ×Nϕ cells, then the dimension of uϕ,Γ and η is Nθ ×Nϕ, and
the dimension of uθ is (Nθ−1)×Nϕ. Quantities that do not lie exactly on the
respective grid points are bi-linearly interpolated between neighboring grid
points (Fig. 3.7). Special care needs to be taken when sampling near the
poles, as neighborhood relations reach across the pole. At this point, both
e⃗θ and e⃗ϕ experience a sign change, so velocity samples drawn from across
the pole have to be negated.
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Figure 3.6: The staggered spherical grid unrolled in θ and ϕ direction, with
the north pole at θ = 0 and the south pole at θ = π. Cells with the same color
indicate direct neighborhood. Specifically, in ϕ-direction, periodic boundary
conditions are employed, while in θ-direction, ϕ is shifted by 180◦ when
crossing the pole. The velocity vector is not stored explicitly at the poles and
instead we sample the vectors close to the pole bi-linearly from neighboring
cells.

3.4.2 Advection

Taking an operator splitting approach, we first solve the material derivative
(D/Dt) parts of u⃗, η, and Γ in Eq. (3.17) along the velocity field through
advection; afterwards, we treat the remaining force terms in a separate step
(Section 3.4.3).

On the spherical domain, the pure advection of a time-dependent scalar
field Φ(x⃗, t), x⃗ = (θ, ϕ)⊤, along the velocity field u⃗(x⃗, t) = (uθ(x⃗, t), uϕ(x⃗, t))⊤

can be written as the initial value problem [95]

DΦ

Dt
=
∂Φ

∂t
+ uθ

∂Φ

∂θ
+

uϕ
sin θ

∂Φ

∂ϕ
= 0,

Φ(x⃗, 0) = Φ0(x⃗).

(3.18)

We seek to evaluate the advected quantity at a grid point x⃗ij = (θi, ϕj)
⊤.

In keeping with standard practice in fluid simulation, we introduce a virtual
particle that passes the grid point at time t, and trace it backward in time.
This results in the time-dependent trajectory X(x⃗ij ,t)(τ) for the seed point
(x⃗ij, t) and time parameter τ < t. Substituting this trajectory into Eq. (3.18)
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intermediate samples
interpolated along ϕ

query point

Figure 3.7: Sampling velocities bi-linearly at the pole. As samples are inter-
polated across the pole, it is important to take into account the sign flip of
u⃗ caused by the parameterization singularity.

yields

0 =
D

Dτ
Φ
(
X(x⃗ij ,t)(τ), τ

)∣∣∣∣
τ=t

≈ 1

∆t

(
Φ(X(x⃗ij ,t)(t)) − Φ(X(x⃗ij ,t)(t− ∆t))

)
,

(3.19)

where the finite difference corresponds to a discretization of the time domain
around t with step size ∆t. A particle that undergoes pure advection expe-
riences Φ as being constant. We exploit this property to approximate the
value for Φ(X(x⃗ij ,t)(t)) using a sample taken a step of ∆t backward through
the flow field. A numerical integration step like Euler or Runge-Kutta can
be used to obtain Φ(X(x⃗ij ,t)(t− ∆t)).

Advecting vectors in spherical coordinates is much more challenging. As
∂e⃗θ/∂ϕ and ∂e⃗ϕ/∂ϕ are not equal to zero (Appendix A) as they would be on a
Cartesian grid, Eq. (3.12) contains the additional terms −u2ϕ/tan θ and uθuϕ/tan θ
that are not present in Eq. (3.18). Yang et al. [139] advect vectors in a scalar-
like manner with (uθ, uϕ/sin θ)

⊤, and treat the two additional terms as body
forces in an additional backward Euler integration step. Their method does
not work well in practice when additional force terms are present. Instead,
we are able to perform unconditionally stable vector advection in a single
step. We note that at the equator θ = π/2, where tan−1 θ = 0, these two
extra terms vanish. There, the advection of a vector field falls back to the
known case of advecting a scalar field. We exploit this insight in order to
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(a) Before (b) Single step (c) RK3 (d) [139] (e) Ours
(order-1, (order-3, (order-2, (order-2,
global) global) global) aligned)

Figure 3.8: A scalar field with a sharp transition is advected across the north
pole. Shown are film thickness maps before (a) and after (b–e) passing the
pole, advected over 4 time steps using different methods. Using a velocity-
aligned coordinate frame introduced in Section 3.4.2, our method is the only
one to solve this problem without visible artifacts.

obtain this desirable property anywhere on the sphere. By constructing a
local coordinate system at each grid point that aligns with the velocity, we
can treat the quantities there as if they were on the equator.

For each grid point x⃗ij = X(x⃗ij ,t)(t), we draw a great circle on the sphere
that passes through this point and is tangent to the velocity u⃗ at this point
(see Fig. 3.9). We denote the unit vector in u⃗-direction to be ˆ⃗u, and the unit

vector pointing from the sphere center O to x⃗ij to be ˆ⃗w, and the binormal

unit vector to be ˆ⃗v = ˆ⃗w × ˆ⃗u. Then the great circle can be parameterized by

C(s) = sin(s)ˆ⃗u+ cos(s) ˆ⃗w, s ∈ R; (3.20)

i.e., changing the arc parameter s translates the current grid point x⃗ij =

C(0) = ˆ⃗w back or forward in time with unit velocity. Following u⃗ backward
for a time step ∆t results in a change in the arc parameter of −∆s = −∥u⃗∥∆t,
taking us to the point

C(−∆s) = sin(−∆s)ˆ⃗u+ cos(−∆s) ˆ⃗w. (3.21)

This results in the following single-step advection scheme (Fig. 3.9):

1. Evaluate the velocity u⃗ and establish the great circle C in its direction.

2. Perform an interpolated lookup of the velocity u⃗′ at C(−∆s) using the
technique described in Section 3.4.1.

3. Decompose u⃗′ into tangent and binormal components u′ and v′ with
respect to the great circle C at this point.
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C(–∆s) C(0)

v

Figure 3.9: A single advection step for the velocity field on the sphere, exe-
cuted in a local, flow-aligned coordinate frame (great circle C). A detailed
description of the procedure is provided in Section 3.4.2.

4. Move components back along the circle to x⃗ij = C(0) with v′′ = v′, u′′ =
u′.

5. Project the advected quantity u⃗′′ = v′′ ˆ⃗v + u′′ ˆ⃗u back to global spherical
coordinate system to obtain u∗θ and u∗ϕ.

The main distinction of this approach to existing work is in the choice of
coordinate frame. Rather than operating in the global spherical coordinate
system, it locally creates an orthonormal coordinate frame that is defined
by the velocity vector and therefore data-aligned. Since the method only
interpolates values from the last step, it is unconditionally stable.

When higher accuracy is desired, the same principle can also be used to
implement higher-order schemes involving multi-step updates. As an exam-
ple, we lay out the construction of a 2nd-order “half-step” scheme (Fig. B.1)
in Appendix B, which was used to generate the results shown throughout
this chapter.

By design, our advection scheme does not produce artifacts when ad-
vecting quantities (scalars or vectors) around the poles, see Fig. 3.8. Yang et
al. [139] adapts the advection scheme by Hill and Henderson [51] to staggered
grids, where boundary conditions are introduced at both poles to remove sin-
gularities. However, according to Hill and Henderson [51], their method is
not free of artifacts : small disturbances will appear near the pole due to
variation of grid spacing (the 1/sin θ term becomes prohibitively large near the
pole). By constructing a local frame in our advection scheme, the 1/sin θ term
always takes the value 1, so the variation in grid spacing does not affect the
advection. Moreover, the so-called geometry term [139, 51] that is caused
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by coordinate orientation changes in curvilinear coordinate systems (see Ap-
pendix A) is in our case implicitly handled when transforming from global to
local coordinates, and does not need to be solved separately. By performing
our global-to-local coordinate transformation everywhere on the sphere, we
show that all the discretization points on the sphere can be treated equally
and there is no need for any special pole treatment. We expect this method
to perform equally well as on a Cartesian grid.

Preserving details

The interpolated look-up in our advection scheme causes numerical diffu-
sion known from all semi-Lagrangian methods. This is acceptable for u⃗ and
Γ, since both PDEs include diffusive terms (see Eq. (3.10)). However, the
transport equation for η is non-diffusive. Therefore, it is important to prevent
high-frequency details in the film thickness from blurring out over time.

To achieve this goal, we make use of BiMocq2 [96] and extend the method
to spherical coordinates. Essentially, BiMocq2 keeps a backward mapping

X (x⃗(T )) : x⃗(T ) → x⃗(t0) (3.22)

which maps a spatial point x⃗(T ) back to its position at the initial time t0, as
well as a forward mapping

Y(x⃗(t0)) : x⃗(t0) → x⃗(T ) (3.23)

which maps a spatial point at the initial position x⃗(t0) to its current position
at t = T . Instead of repeatedly blurring the features from the last time
step, we acquire the initial state directly from the backward mapping, which
corresponds to the pure advection part D/Dt. The additional changes (−η∇ ·
u⃗ in our case) are accumulated along the forward mapping and added to
the acquired value from backward mapping. At each simulation step, both
mappings are updated via the advection method in Section 3.4.2, and the
coordinates are interpolated using spherical linear interpolation. When the
distortion between forward and backward mapping becomes too large, both
mappings are re-initialized. This, however, introduces a small amount of
numerical diffusion. We found that re-initializing both mappings when the
distortion is larger than π/128 provides a good trade-off between sharpness
and noise. For other implementation details, such as error correction, we
refer the reader to the original paper [96].

3.4.3 Concentration splitting

After solving the advection part D/Dt = 0, we now deal with force and diver-
gence terms in the right hand sides of Eq. (3.17). Soap film exhibits elastic
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properties similar to a mass-spring system. Solving such systems using an
explicit time integrator would require prohibitively small step sizes to achieve
a stable simulation. Instead, we construct a projection-like implicit system
for Γ and u⃗. To keep the system linear, we still solve for η explicitly.

We temporally discretize the continuous equations into
u⃗− u⃗∗

∆t
= −M

η∗
∇Γ +

Cr

η∗
(u⃗air − u⃗) + g⃗,

Γ − Γ∗

∆t
= −Γ∗∇ · u⃗,

η − η∗

∆t
= −η∗∇ · u⃗,

(3.24a)

(3.24b)

(3.24c)

where Γ∗, η∗, and u⃗∗ denote the respective quantities after applying the
advection step. First, we solve for Γ by rewriting Eq. (3.24a) and applying
divergence to both sides of the result,

∇ · u⃗ = ∇ · η
∗u⃗∗ + Cr∆tu⃗air + ∆tη∗g⃗

η∗ + Cr∆t
−M∆t∇ · ∇Γ

η∗ + Cr∆t
. (3.25)

Afterwards, we combine Eqs. (3.24b) and (3.25) and eliminate ∇ · u⃗,

Γ

Γ∗∆t
−M∆t∇ · ∇Γ

η∗ + Cr∆t

=
1

∆t
−∇ · η

∗u⃗∗ + Cr∆tu⃗air + ∆tη∗g⃗

η∗ + Cr∆t
.

(3.26)

Finally, we express this linear system as a sparse matrix (Appendix C), solve
it for Γ using a preconditioned conjugate gradient method [83], and update
u⃗n+1 and ηn+1 using Eqs. (3.24a) and (3.24c). Note that this system is strictly
symmetric positive definite unless Γ∗ approaches infinity, in which case we
end up with a Poisson equation that is closely related to pressure projection
in nearly incompressible mixed finite elements.

Our implicit treatment of the concentration based on its evolution Eq. (3.24b)
allows us to take significantly larger time steps compared to what could be
permitted when treating the forces explicitly. Our method also avoids solving
an extremely stiff indefinite system as in standard Newton-based elasticity
solvers [38].

3.4.4 Implementation and runtime performance

We implemented our method using CUDA and AmgX [83], and executed it
on an NVIDIA GeForce GTX 1080 graphics card. A typical resolution for
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our simulation grid is 1024×2048 with a step size of 0.002 s. At this setting,
a single time step typically takes 16–17 conjugate gradient iterations and
1.1 s to execute. The bulk of the compute time is spent on divergence/force
calculation and advection with 75% and 25%, respectively. The source code
is provided in https://github.com/RiverIntheSky/SoapBubble.

3.5 Soap bubble rendering

The iridescent effects produced by thin films are wave-optical effects that
arise from constructive and destructive interference of light waves. To com-
pute the light power that is reflected or transmitted when interacting with
a thin film, we need to consider the corresponding complex amplitudes of
the electromagnetic wave. This section describes a real-time renderer for
spherical soap bubbles that is specifically targeted at the correct handling of
polarization and spectral sampling.

3.5.1 Thin film model

We follow the modeling of Belcour and Barla [10] for the reflection and trans-
mission through a single thin film layer. In our case, the light interacts
multiple times with the soap bubble surface on a given light path, so their
analytical solution to the spectral integration does not directly apply here.
After each reflection, we would have to retract to an RGB representation
of the light, introducing an error that increases with each interaction with
the soap bubble. Therefore, we numerically integrate the compounded re-
flectance and transmittance for each light path over the wavelengths λ, which
we sample at 5 nm intervals, and compute the fractional light power that is
carried by each light path for each wavelength.

Material model The surface of the soap bubble is modeled locally as a
thin film with parallel interfaces, sandwiched between two layers of air with
refractive index na = 1. The refractive index of the soap water in between
is ns = 1.33. For a single interaction of the light with the soap bubble, the
film thickness 2η is assumed to be constant. For a given light direction i⃗ and
surface normal n⃗, we define the angle of incidence θa in air via cos θa = i⃗ · n⃗.
Upon refraction into the soap film, the angle at which the light travels is
found via Snell’s law: na sin θa = ns sin θs. Since the film interfaces are
assumed to be parallel, the angle at which the light is refracted out of the
film at both interfaces equals θa, and the direction of the light transmitted
through the film is uninterrupted from air to air. We assume that the light
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Figure 3.10: Light paths in soap film. Light is refracted into the film, and
attenuated at each film interaction. The emitted light paths at the top and
bottom of the film produce interference, respectively.

enters and leaves the film at the same location on a macroscopic scale, since
the film thickness is much smaller than the lateral extent of the soap bubble.

Thin-film reflectance The polarization-dependent reflectanceR and trans-
mittance T are the ratios of outgoing to incoming light powers at an interface
between two media. In order to compute these values for two media sepa-
rated by a thin film, we consider the complex-valued electro-magnetic wave
amplitudes. The complex-valued reflection coefficient r and transmission co-
efficient t describe the ratios of outgoing to incoming wave amplitudes. Since
the power carried by a light wave is proportional to the square of the wave
amplitude, we haveR = |r|2 and T = |t|2. In addition to the power ratio, they
also encode a phase shift of the light wave, which leads to constructive and
destructive interference when two light paths interfere and their reflection or
transmission coefficients are added. The reflectance and transmittance pro-
duced by an interaction with the film is computed for each wavelength and
polarization by taking all light paths inside the thin film (shown in Fig. 3.10)
into account and accumulating their wave amplitudes. The light waves are
affected by the reflection coefficients ras, rsa and transmission coefficients tas,
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tsa, defined by Fresnel’s equations [14], where ras and tas act at the air-to-
soap interface and rsa and tsa on the soap-to-air interface. The light waves of
each path are also affected by a wavelength-dependent phase shift, induced
by the difference in path length between successively emitted light rays at
each film interface. This difference in path length is known as the optical
path difference D = 4ηns cos θs, which introduces a phase shift ∆ψ = 2πD

λ
of

a light path with respect to its predecessor. The phase shifts with respect to
the first light ray accumulate linearly, such that the k-th ray is phase-shifted
by k∆ψ. Summing the contributions from the infinitely many emitted light
rays at the top and bottom interface yields the reflectance R,

R(λ) =

∣∣∣∣∣ras +
∞∑
k=0

tasrsa
(
r2sae

i∆ψ
)k
ei∆ψtsa

∣∣∣∣∣
2

=

∣∣∣∣ras +
tasrsatsae

i∆ψ

1 − r2sae
i∆ψ

∣∣∣∣2 ,
(3.27)

and transmittance T of the thin-film

T (λ) =

∣∣∣∣∣
∞∑
k=0

tas
(
r2sae

i∆ψ
)k
tsa

∣∣∣∣∣
2

=

∣∣∣∣ tastsa
1 − r2sae

i∆ψ

∣∣∣∣2 .
(3.28)

Since we are not dealing with total internal reflections, |rsa| < 1 holds and
taking the limit of the geometric series yields a closed form solution for each
wavelength.

3.5.2 Soap bubble ray tracing

The wave nature of light only needs to be taken into account when comput-
ing the reflectance and transmittance for a single interaction with the soap
bubble. Since soap bubbles are inherently transparent, many light paths
contribute to a given view ray. To compute the light transport along these
paths, we multiply the reflectance and transmittance produced at each soap
bubble interaction along the path. The light transport R(n) for the n-th
order light path is defined as

R(0) = R(0) and R(k) = T (0)

k−1∏
i=1

R(i)T (k), (3.29)
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Figure 3.11: Light paths in a spherical soap bubble. All angles marked in
red are equal.

for k ≥ 1, where R(i) and T (i) are the iridescent reflectance and transmittance
produced at the i-th interaction with the soap bubble along the path traced
backwards from the observer. The reflectance R(i) and transmittance T (i)

produced by different interactions along a path change only due to differences
in film thickness. The angle of incidence is constant for all interactions along
a light path (see Fig. 3.11) and the index of refraction is constant as well.

Polarization Due to the spherical geometry of the soap bubble, the incom-
ing and outgoing light directions for all interactions lie in the same plane.
This implies that the light polarization basis (the decomposition into s and
p component) does not change between successive soap film interactions.
Therefore, we are able to correctly handle polarization effects by first eval-
uating Eq. (3.29) for each polarization direction independently, and then
averaging both frames.

Tracing rays For the computation of the light paths through the soap
bubble, illustrated in Fig. 3.11, we exploit the assumption that the soap
bubble is spherical. We evaluate the first N = 8 light paths through the
soap bubble. Since we assume distant illumination, we do not track the
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world-space location of the film interactions, and only consider the relevant
directions: the incoming light direction i⃗(i) of the i-th order light path to
sample the environment map, the surface normal n⃗(i) to sample the film
thickness 2η at the i-th interaction, and the (virtual) viewing direction o⃗(i),
which is used to compute the directions for the succeeding interaction with
the soap film. Given these values for the i-th film interaction, the directions
for the i+ 1-th interaction are defined as

n⃗(i+1) = n⃗(i) − 2n⃗(i) · o⃗(i)o⃗(i),
i⃗(i+1) = −o⃗(i),
o⃗(i+1) = o⃗(i) − 2o⃗(i) · n⃗(i+1)n⃗(i+1).

(3.30)

The surface normal n⃗(i+1) is defined by a reflection of −n⃗(i) at the outgoing
light direction o⃗(i), and the new outgoing light direction o⃗(i+1) is then the
reflection of the incoming light direction i⃗(i+1) at the surface normal n⃗(i+1)

(see Fig. 3.11).

Spectral integration To produce an sRGB color image, we have to in-
tegrate the response to the respective color-matching functions sj for j ∈
{R,G,B} of the color space:

Lo,j =

∫
sj(λ) ·

∞∑
n=0

Rn(λ)L
(n)
i (λ) dλ, (3.31)

where Lo,j is the integrated response for the j-th color channel, and L
(n)
i is

the incoming light of the n-th light path. Since we use an RGB environment
map for illumination, L

(n)
i is not know. For each color channel j, we assume

L
(n)
i = L

(n)
i,j to be constant. Under this assumption Eq. (3.31) simplifies to

Lo,j ≈
N∑
n=0

L
(n)
i,j ·

∫
sj(λ)Rn(λ) dλ. (3.32)

3.6 Results

In the following, we perform a selection of synthetic experiments and discuss
the influence of the most important parameters and variables. From various
sources, we attempted to gather as realistic a set of parameters as possible.
The numbers used for simulations throughout this section, as well as sources
for the more exotic values, are listed in Tables 3.1 and 3.2.
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Table 3.1: Typical values and ranges of dimensional parameters used in our
simulation. For values associated with air and soap solution, such as density
and viscosity, we take common literature values for air and water, respec-
tively, under standard conditions.

Description Symbol Value / Range Unit
Bubble radiusa R 0.02 to 0.1 m

Mean half thicknessa η0 4 × 10−7 to 1 × 10−6 m
Characteristic velocity U 1 m s−1

Mean soap concentrationb Γ0 1 × 10−8 to 1 × 10−6 mol m−2

Surface tension of
water-air interface

γa 7.275 × 10−2 N m−1

Gas constant R̄ 8.3144598 J mol−1 K−1

Room Temperature T 298.15 K
Water mass density ρ 997 kg m−3

Water dynamic viscosity µ 8.9 × 10−4 Pa s
Air density ρa 1.184 kg m−3

Air kinematic viscosity νa 1.562 × 10−5 m2 s−1

Gravitational acceleration G 9.8 m s−2

Surfactant diffusivityc Ds (0) m2 s−1

aEmpirical values.
bTaken from Couder et al.’s work [22, Figure 1(a)] in the low concentration range.
cWe assume advection to be the dominant transport mechanism.

Table 3.2: Typical values of dimensionless parameters.

Description Symbol Definition Value

Expansion parameter ϵ η0
R

1 × 10−5

Marangoni number M Γ0R̄T
ρη0U2 0.83

Reynolds number Re URρ
µ

5.6 × 104

Drag coefficient Cr ρa
√
νaR

ρη0
√
U

2.1

Scaled gravitational acceleration g GR
U2 0.49
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Γ0 = 3.33 × 10−8 R = 0.0225 Reference photograph Γ0 = 6.67 × 10−8 R = 0.045

Figure 3.12: Influence of soap concentration Γ0 and bubble radius R on the
thickness gradient in equilibrium state. The ratio of both parameters, Γ0/R,
is kept constant for both simulations, causing a similar appearance.

R = 0.025 R = 0.05 R = 0.1

Figure 3.13: Equilibrium state as a function of R, for a film initialized with
soap concentration Γ0 = 6.67 × 10−8 and thickness η0 = 4 × 10−7 and relaxed
under standard gravity. For larger bubbles, the gravity drag causes a stronger
displacement of material from top to bottom.

3.6.1 Mean surfactant concentration and bubble ra-
dius

According to the momentum equation (3.17a), a soap film under gravity but
without other sources of excitation has its equilibrium state at

−M
η

∂Γ

∂θ
+ g sin θ = 0. (3.33)

The other two Eqs. (3.17b) and (3.17c) can be rewritten as

D(Γ/η)

Dt
= 0, (3.34)

i.e., Γ/η remains constant. If the simulation is started with uniform surfactant
concentration and thickness, we can non-dimensionalize the variables so that
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(a) Simulation (b) Photograph

Figure 3.14: Under the influence of gravity, thicker (heavier) regions form
downward-moving tears; thinner (lighter) regions rise from the bottom.
These effects can be observed both in simulation (a) and experiment (b).

Γ(t=0) = η(t=0) = 1. Combining the above two equations, this yields

−M
η

∂η

∂θ
+ g sin θ = 0, (3.35)

the solution of which is

η =
π∫ π

0
e−

g cos θ
M dθ

e−
g cos θ

M . (3.36)

From this, we can draw at least three conclusions:

• Soap films under the influence of gravity are thinner at the top and
thicker at the bottom, leading to colorful bands on soap bubbles (Fig. 3.12).
As noted in Fig. 3.3, the film color is also influenced by the viewing
angle. On a bubble, the bands are bent downwards; on a flat film they
appear horizontal.
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(a) Simulation (b) Photograph

Figure 3.15: Inflating a soap bubble with a straw generates a rotating “ball
of air” trapped inside the bubble. The resulting velocity gradient leads to a
shear motion and the formation of thin stripes.

• A constant ratio g/M will lead to the same equilibrium state (albeit
through a different dynamic process). From the definitions of M and
g (Table 3.2), this is equivalent to keeping R/Γ0 constant.

• The larger R/Γ0, the thinner the film is at the top, and thicker at the
bottom.

This expected behavior is confirmed in experiment and simulation (Figs. 3.12
and 3.13).

3.6.2 Gravity and buoyancy

The momentum equation of a soap bubble

Du⃗

Dt
= −M

η
∇Γ +

Cr

η
(u⃗air − u⃗) + g⃗ (3.37)

has great resemblance with the compressible Navier-Stokes equation

Du⃗

Dt
= −1

ρ
∇p+

µ

ρ
∇2u⃗+

µ

3ρ
∇(∇ · u⃗) + g⃗, (3.38)

where the surfactant concentration Γ takes the role of pressure p and the
variable thickness η substitutes the variable density ρ. In fact, just as smoke
with smaller density flows upwards in the air, thinner soap film regions also
tend to flow upwards. This is confirmed by our observation. As thinner
regions on a soap bubble flow upwards (and thicker regions downwards),
they form drop-shaped “islands”, and leave “rivers” behind (Fig. 3.14).
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(a) t = 0.52 s (b) t = 1.00 s (c) t = 2.04 s (d) t = 3.08 s (e) t = 3.56 s

Figure 3.16: False-color visualization of a time-varying airflow (top) and
the resulting velocity field (bottom) on a soap bubble using line integral
convolution [17]. From left to right, the correlation of the lines shows the
direction of the respective vector field, while the magnitude is encoded in
the color. (a) After initialization with a noise texture, the fluid sags down
under the influence of gravity. (b)–(d) Over a corridor on the surface, air
gradually starts flowing and slows down again. The soap fluid follows the
excitation. (e) After the air has stopped flowing, the bubble remains in a
rotating motion.

3.6.3 Air friction

Soap films are highly susceptible to air flow, and assume beautiful patterns in
windy environments. When a bubble is blown, a rapidly rotating wind field is
produced inside and induces a shear motion on the soap film. Advection along
the air flow results in thin stripes that remain stable even after the external
influence has stopped (Fig. 3.15). See Fig. 3.16 for a false-color visualization
of the external air flow and the resulting velocity field in multiple time steps
of an experiment.

3.6.4 Evaporation

Due to evaporation, a soap bubble exposed to air becomes thinner and thin-
ner and eventually breaks down. Since evaporation mostly depends on the
exposed surface (which is constant), we model this effect by subtracting a
small constant amount of η at each simulation step. Once a point on the sur-
face reaches thickness zero, the simulation is terminated. Our model in its
current form does not support the simulation of bursting bubbles. Fig. 3.17
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(a) t=1 s (b) t=3 s (c) t=5 s (d) t=7 s (e) t=9 s (f) t=11 s

Figure 3.17: The bubble was initialized with a Perlin noise texture and ex-
cited by curl-noise air flow. As water evaporates and the film becomes thin-
ner, the colorful bands move gradually downwards and the top of the bubble
fades to gray.

shows a soap bubble over its whole lifetime. Starting from a random thick-
ness distribution, thicker regions are moving downwards and horizontal color
bands. Shortly before bursting, the top of the bubble becomes very thin and
exhibits a gray appearance.

3.6.5 Real-world experiments

To capture stills and videos of real-world bubbles under laboratory condi-
tions, we constructed simple studio environments consisting of 1200mm ×
1200mm LED panels, black theater curtain and a Sony ILCE-7RM3 system
camera with a ZEISS Batis 135 mm f/2.8 lens. We use Pustefix brand soap
solution for all experiments.

3.7 Discussion and Future Work

We have been able to show that our model and solver, which is fast and sta-
ble, can recreate the most prominent effects found on spherical soap bubbles
in the real world. An obvious next step will be to look into more general
cases, like complex film shapes or groups of bubbles. Although we focus on
spherical geometry in this chapter, the ideas underlying our scheme are not
limited to spherical domains. Ida and Miksis’s model [55] is valid for gen-
eral manifolds; following their derivation, one arrives exactly at Eq. (3.10),
with the definition of the differential operators adjusted to the corresponding
curvilinear coordinate frame. Furthermore, the idea of our advection scheme
is independent of the underlying manifold shape, as long as a proper local co-
ordinate frame is constructed. Finally, the special force and divergence terms
treatment in Eq. (3.26) holds for arbitrary shapes and can be expressed as
a sparse matrix, as long as the neighborhood of each point is well-defined.
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Figure 3.18: A vertical soap film with marginal regeneration. Picture taken
from Nierstrasz and Frens’s work [86].

However, nice-to-have properties (such as the matrix being symmetric posi-
tive definite) might be lost in other types of meshes or grids. Consequently,
our scheme should not be difficult to generalize to bubbles that are diffeo-
morphic to a sphere. Groups of bubbles with Plateau borders, as well as
bounded films, are not manifolds and hence have to be left to future consid-
eration. The treatment of film boundaries deserves particular attention also
because a complicated mechanism called marginal regeneration [58] causes
the film to become even thinner at the boundaries, producing regions that
flow upwards erratically (see Fig. 3.18).

3.7.1 Viscous film

Soap films with larger viscosity tend to be more stable and last longer, which
can be achieved by adding glycerin to home-made soap solution. Some com-
mercial soap solution also includes additional formula to make it more vis-
cous. The soap solution we used in experiments, for example, has a dynamic
viscosity of 1.2 × 10−1 Pa s, which is about 100 times greater than that of
water and thus shows different dynamics. The example in Fig. 3.19 was ob-
tained by adding a very basic explicit step to compute viscosity; however,
this is slow and unstable and thus not included in our standard solver.

3.7.2 Black film

As a film keeps thinning through evaporation or gravity drag, at some point
it becomes so thin that destructive interference takes place, and the film
appears completely black. The thickness is then about 5 to 30 nm [100, 58].

47



(a) Viscous soap film (b) Inviscid soap film

Figure 3.19: Two simulations with/without viscosity term Re−1V⃗ , otherwise
under the same condition and after same frame numbers. A viscous film
tends to keep its texture longer in shape and has a reduced tendency to
break into fractal structures.

At such a small scale, molecular forces come into play, such as Van der
Waals attraction, electrostatic repulsion, and Born repulsion. These forces
cause black film to be surprisingly stable and form sharply defined “islands”
within the colorful film (Fig. 3.20). In future work, it will be interesting to
include such molecular forces in an extended model.

Figure 3.20: Black film on a soap bubble (photograph)
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4. A Microfacet-based Hair
Scattering Model

The content of this chapter has been published as:

Weizhen Huang, Matthias B Hullin, and Johannes Hanika.
A microfacet-based hair scattering model.
In Computer Graphics Forum, volume 41, pages 79–91. Wiley Online
Library, 2022.
DOI: 10.1111/cgf.14588

Summary

The modern hair rendering model, established by Marschner et al. [76] and
improved by d’Eon et al. [26, 28], is based on the assumption that the scat-
tering distribution function is separable along the fiber direction and the
azimuthal direction. While this assumption simplifies the model, its validity
has not been justified. Recent measurements [66] have revealed strong scat-
tering in the forward direction, which our simulations confirm to match well
with ray-traced results from a rough cylinder. Based on this observation,
we propose to model human hair as rough dielectric cylinders with a micro-
facet surface, which is the standard model in computer graphics for surface
roughness.

To make ray tracing efficient and practical, we follow the previous ap-
proach of establishing a far-field model, where incident light on a hair fiber
is assumed to be collimated due to the small size of the hair, allowing us to
compute the scattering across the entire width of the fiber. The scattering
function is further decomposed into components based on the number of sur-
face interactions, with the first three components being R (reflection), TT
(transmission-transmission) and TRT (transmission-reflection-transmission).
Higher order components are omitted due to increasing computational cost
and decreasing contribution to the overall appearance.
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For the R component, we observe that the integral equation takes a similar
form as the Cook-Torrance BRDF [21] and is computationally straightfor-
ward. When using the GGX distribution without the shadowing-masking
term, an analytical solution exists. However, for components beyond R, we
need to integrate not only across the fiber width but also along all the possible
internal paths. These higher-order integrations pose challenges for determin-
istic numerical integration due to the curse of dimensionality. Therefore, we
employ a combined technique of Simpson’s method for integration along the
fiber width, and sampling a microfacet at each interface to choose a spe-
cific internal path, similar as in Monte Carlo ray tracing. By dividing the
sampling probability, we greatly simplify the integral equation, making it
practical to solve on the fly.

Since such integration is generic and does not rely on assumptions about
the underlying shape, our model naturally extend, almost with almost no
additional computational cost, to elliptical hair cross-sections, which is the
shape of most human hairs.

The rendered results demonstrate narrow and bright reflections in the
forward scattering direction and the angle-depending highlights due to ellip-
tical cross-sections, aligning well with both microscopic measurements and
photographs.

Despite its many advantages, our model has some limitations. One obvi-
ous shortcoming is the introduced energy loss, as it inherits the energy loss
of single-scattering microfacet models. However, well-established algorithms
for addressing this issue in general microfacet models, such as multiple-
scattering [50] and albedo scaling [121] can be directly applied to our model.
Another limitation is that our model ignores wave-optics effects, which can
be prominent on dark hairs under sunlight. This limitation could potentially
be addressed by implementing complex ray tracing.

Author Contribution: I proposed the research topic and conducted a
thorough literature review. Furthermore, I designed the rendering model,
including the derivation of all necessary equations and the development of a
combined deterministic and non-deterministic integration scheme. Moreover,
I successfully implemented the rendering model in Mitsuba and performed
comparisons against other existing models, validating the accuracy of our
approach.

Johannes Hanika provided valuable feedback on the overall design, shared
relevant code for reference, and contributed to the literature review section.
Matthias Hullin suggested to align the ellipse direction with the curvature
vector, smoothed the hair curve, and revised the manuscript.
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(A) Previous [26] (a) (B) Photograph (C) Our GGX (c)

Figure 4.1: Details of a backlit studio scene rendered using a state-of-the-art
separable hair scattering model (A) and the proposed model (C), both com-
pared with a photograph under similar lighting conditions (B) (© Martyn
Thompson https://photographymk.co.uk), with visualization of the BCSDF
(a,c) as plotted against θo/φo, illumination angle θi = 0. The strongly fo-
cused reflection in the forward scattering direction seen in (C,c) gives rise
to a glint-like appearance that the previous separable hair scattering models
have been unable to capture. (Exposure of (a,c) is scaled up by 2.5 stops to
improve feature visibility. (A,C) are close-up images of Fig. 4.13.)

Abstract

The development of scattering models and rendering algorithms for human
hair remains an important area of research in computer graphics. Virtually
all available models for scattering off hair or fur fibers are based on separable
lobes, which bring practical advantages in importance sampling, but do not
represent physically-plausible microgeometry. In this chapter, we contribute
the first microfacet-based hair scattering model. Based on a rough cylinder
geometry with tilted cuticle scales, our far-field model is non-separable by
nature, yet allows accurate importance sampling. Additional benefits include
support for elliptical hair cross-sections and an analytical solution for the
reflected lobe using the GGX distribution. We show that our model captures
glint-like forward scattering features in the reflected lobe that have been
observed before but not properly explained.

4.1 Introduction

Rendering realistic hair is important for virtual creatures and humans. It
has thus received attention in computer graphics literature early on [64]. A
more detailed look at the effects contributing to the distinct look of hair
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established that the dielectric fiber surface reflects (R) and transmits (T)
part of the light [76]. Most prominently, the scattering distribution of hair is
composed of an R lobe, a TT lobe, and a TRT lobe, denoted by the type and
order of interactions between the light path and the fiber surface. Hair has
slightly tilted cuticle scales on the surface, which are responsible for a shift
between the direct highlight (R) and the secondary highlight (TRT). Also,
light passing through the pigmented fiber picks up the distinct coloration of
the material and results in the lively appearance of the two above-mentioned
highlights. Lobes of higher order, where the light has passed through the
fiber multiple times (TRRT, . . . ) exist as well, but are usually weak enough
to be neglected thanks to repeated absorption.

Monte Carlo path tracing of hair is hard: the size of the individual fibers
is usually small (on the order of a tenth of a millimeter), so already finding
an intersection of a ray with such a sub-pixel-sized object is hard. To counter
this, analytic fiber scattering models pre-integrate over the cross-section of
the hair: the geometric primitive to intersect is not actually a cylinder, but
a ray-facing stripe, and the curvature of the cylinder is included in the equa-
tions for the lobes. This way it is certain that all offsets from the stripe
center, i.e. normals on the cylinder, are considered appropriately.

This approach poses a set of challenging mathematical problems. To
make these tractable, separating the equations into a longitudinal and az-
imuthal factor was proposed [76]. This mathematical simplification was so
successful that it can be found in the most advanced models to date. On the
flip side, this artificial factorization of the scattering lobes does not have a
physical motivation. Basing advanced models on this assumption has thus
become increasingly hard, resulting in complicated equations which still fail
to capture even simulated reference faithfully in all cases.

In parallel to this development, microfacet-based surface reflectance mod-
els have gained popularity in computer graphics and have been studied in
quite some detail. We revisit fiber scattering models with this background
and devise a bidirectional curve scattering distribution function (BCSDF)
which is rooted in microfacet theory. We still intersect ray-facing stripes,
but then include a cylindrical macrosurface, tilted scales as mesosurface, as
well as a microsurface with Beckmann or GGX normal distribution function
in our analysis. This formulation naturally includes glinty behavior at graz-
ing angles and a non-separable shape of the lobes in longitudinal/azimuthal
space. The existence of this shape has been observed before [28, 66], but
could not be reproduced with a physically based model. We show how a
physically-plausible surface model simplifies working with the BCSDF: im-
portance sampling boils down to sampling microfacets, a closed-form solution
exists for the GGX R lobe, and the model naturally extends to elliptical fiber
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macrogeometry.
In summary, our contributions are:

• the first fiber scattering model based on physically-plausible macro-,
meso-, and microgeometry,

• accurate importance sampling despite non-separable lobes,

• an analytic form of the resulting integral for the R lobe with GGX
microroughness,

• a natural extension to elliptical cross-sections.

4.2 Background and Related Work

Light transport. Physically based rendering has a long history [94]. The
most successful numerical method to solve the integrals appearing in the
transport equations is Monte Carlo path tracing. Materials are included
in the physical model via the bidirectional scattering distribution function
(BSDF), which relates incoming irradiance to outgoing radiance. This func-
tion is valid on locally flat surfaces and is often derived from statistical models
of the microsurface by applying a far-field assumption. Analogous to that,
there is the BCSDF which models the same material properties assuming a
ray-facing stripe as underlying geometry, i.e., it can encode the curvature of
a cylinder inside it.

Fiber scattering models. Most if not all fiber scattering models in com-
puter graphics today can be traced back to Marschner’s work [76]. After
intersecting a ray-facing curve primitive, the BCSDF is evaluated when con-
necting to the light source. To make the definition of this BCSDF tractable,
they separated the model into a longitudinal (depending on θ) and an az-
imuthal part (depending on φ). These two are multiplied together to form the
final lobe. In addition to that, the full model consists of multiple lobes, one
for the directly reflected light (R), the light transmitting through the fiber
(TT) and the lobe formed by light entering the fiber, and exiting it again
after internal reflection (TRT). This scheme can be extended indefinitely, but
the contribution of the higher-order lobes vanishes soon.

In Monte Carlo path tracing, importance sampling and energy conserva-
tion are important topics and have been looked into [26, 19]. Also, there is an
excellent implementation guide [94] of Chiang et al.’s work [19]. Later, the
model has been extended to structures inside the fiber and for a stochastic
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near- and far-field model [138, 136]. The importance of elliptical hair fiber
cross-sections has been pointed out and a specialized azimuthal scattering
function has been devised to this end [66]. The model has even been ex-
tended to include certain effects of diffraction [134, 11], while still keeping
the original assumption of longitudinal/azimuthal separability. We do not
consider wave-optics in this work.

The notable exception to this pattern is a paper by d’Eon et al. [28], who
showed that the non-separable nature of the reflectance field causes a strong,
focused forward scattering effect. They conducted an offline Monte Carlo
simulation of a rough dielectric cylinder, which is the underlying geometry
of the Marschner model [76], and hand-tailored a non-separable model that
would match their observation better. Since importance-sampling a non-
separable 2D function is not trivial, they proposed an approximate way of
approaching this problem.

We take their observation further and show that the underlying geometry
of a rough dielectric cylinder can be traced directly using microfacet theory
without the effort of separation. The resulting lobes match the Monte Carlo
reference much closer than previous approaches. Since it is based on well-
studied microfacet models, we can importance sample the lobes of our model
exactly using standard inverse-CDF sampling.

Microfacet theory has a long history in literature, as it is relevant to
antenna theory and heat transfer, with which physically based rendering
shares a great deal of theory. The surface of a material is thought of as a set
of microfacets with certain reflection properties. Often they are assumed to
be perfect mirrors with material specific Fresnel behavior [21]. The geometry
of the microsurface is modeled statistically, to avoid instantiating and ray
tracing a multitude of geometric primitives. Certain random distributions
of the height and normals of the facets can be applied, and most often they
are assumed to be uncorrelated with each other, i.e. the surface consists of
disconnected, independent facets (a Smith surface [107]). The foundation
of modern microfacet models in computer graphics is Heitz’ work [48]. The
generic form of a bidirectional reflectance distribution function (BRDF) for
scattering on flat surfaces is

fr(ωi, ωo) =
F (ωh, ωo)G(ωo, ωi, ωh)D(ωh)

4|ωm · ωo||ωm · ωi|
. (4.1)

Here, ωi and ωo are the incident and outgoing directions, ωh is the half
vector (or, equivalently, the micronormal), ωm the geometric normal of the
macrosurface, F is the Fresnel term, and G the combined geometric factor for
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shadowing and masking within the microsurface. This model only represents
single scattering in the microsurface, so it fulfills energy conservation only
insofar as it does not generate energy. Since it lacks multiple scattering
contributions [50, 72, 121], it will be visibly too dark for very rough surfaces.

There has been a lot of interest in surface scattering models that exhibit
off-center reflectance peaks, i.e. the mean orientation of the microfacets is
not aligned with the normal of the triangle mesh. To this end, the surface
orientation can be divided up in micronormal, mesonormal, and macronor-
mal [30]. To arrive at a consistent surface model, the mesosurface has to be
closed. Schüßler et al. [104] devise such a model including multiple scattering
in the mesosurface for normal maps.

The case analyzed in our work is similar: the macrosurface is a cylinder,
the mesosurface consists of tilted cuticle scales, and the microsurface is a
Smith surface. We apply microfacet theory to this setting and arrive at a
reflectance model for hair fibers, including R, TT, and TRT lobes for circular
and elliptical cross-sections.

4.3 Model

In this section, we describe our model and its implementation details. First,
we will describe the geometry and derive the basic lobe evaluation formulas
in Section 4.3.1. Extensions to scale tilt (Section 4.3.2) and elliptical cross-
sections (Section 4.3.3) follow after. Section 4.3.4 then summarizes aspects
related to the requirements of Monte Carlo rendering system: evaluation, im-
portance sampling, evaluation of the probability distribution function (PDF).

4.3.1 A Microfacet BCSDF

We model the fiber as a cylinder with microfacet surface roughness, having
a radius of 1 (Fig. 4.2). In accordance with former fiber- and hair-models,
we associate the outgoing radiance Lo with the incoming radiance Li via the
BCSDF S(ωi, ωo)

Lo(ωo) =

∫
Li(ωi)S(ωi, ωo) cos θi dωi. (4.2)

We limit our discussion to R, TT, and TRT lobes, therefore

S(ωi, ωo) = SR(ωi, ωo) + STT(ωi, ωo) + STRT(ωi, ωo). (4.3)

The relevant vectors to appear in the following subsections are illustrated in
Fig. 4.3.
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Figure 4.2: An illustration of the geometry of our hair scattering model. The
longitudinal-azimuthal parameterization is shown on the left. The longitu-
dinal angle θ is defined as the angle between ω and the x− z plane, and the
azimuthal angle φ is the angle between the z axis and the projection of ω
onto the x− z plane. da is a differential surface element with macronormal
ωm, which is composed of specular microfacets ωh with associated normal
distribution D(ωh, ωm).

Reflection Lobe SR

For perfectly specular microfacets, only the half-angle vector ωh1 = ω̂i + ωo

contributes to the reflection from ωi to ωo. Consider a differential surface
area element

dam1 = dφm1 ds (4.4)

with the macronormal direction ωm1 and the differential length ds along the
fiber. Such a differential surface has an associated distribution D(ωh1, ωm1)
of micronormals ωh1, which satisfies∫

H2(ωm1)

D(ωh1, ωm1)|ωh1 · ωm1| dωh1 = 1, (4.5)

where |, ·, | denotes the absolute value of the dot product. The area of the
differential surface element dah1 with micronormals ωh1 is

dah1 = D(ωh1, ωm1) dωh1 dam1. (4.6)

The differential flux dΦh1 received by such microfacets is

dΦh1 = Li(ωi) dωi|ωi · ωh1| dah1. (4.7)
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Multiplying the Fresnel reflectance gives

dΦo = R(ωh1, ωo) dΦh1, (4.8)

the differential outgoing flux from the surface element dam1. The total out-
going flux is given by integrating the differential flux. Therefore, the average
outgoing radiance from the fiber is

Lo(ωo) =

∫
dΦo

dωoa⊥o
, (4.9)

where
a⊥o = 2 cos θo ds (4.10)

is the projected area of the full-width fiber in the outgoing direction. Mak-
ing use of the half-angle mapping dωh1 = dωo

4|ωh1·ωi| and combining Eqs. (4.4)

and (4.6) to (4.10), we obtain

Lo(ωo) =

∫∫
Li(ωi)R(ωh1, ωo)D(ωh1, ωm1) dφm1 dωi

8 cos θo
. (4.11)

Comparing Eq. (4.11) with Eq. (4.2) and adding the Smith shadowing-
masking term Gωm1(ωi, ωo) gives the BCSDF for the R lobe

SR(ωi, ωo) =
R(ωh1, ωo)

8 cos θo cos θi

∫
D(ωh1, ωm1)Gωm1(ωi, ωo) dφm1. (4.12)

Different from former fiber models [76, 26, 138, 136], we do not separate the
BCSDF into longitudinal and azimuthal components; rather, we compute the
half-angle vector ωh1 between incoming and outgoing angles, and integrate
its distribution along the azimuth. Other than this integration, Eq. (4.12)
is almost identical with the Cook-Torrance BRDF in Eq. (4.1), which makes
sense, since we have applied the same model on a curved surface, instead of
on a flat surface.

Hair usually has low roughness values, therefore, G ≈ 1 holds for a large
range of normal directions. Interestingly, if ignoring the shadowing-masking
function, an analytical solution of Eq. (4.12) exists for GGX roughness. The
result can be found in Appendix E.

Secondary Lobes STT and STRT

The BCSDFs for TT and TRT lobes are derived in similar ways. The differ-
ential flux transmitted through interface 1 (Fig. 4.3) is

dΦt = T1 dΦh1, (4.13)
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Figure 4.3: R, TT and TRT scattering from a circular cross-section. At each
interface with macro/mesonormals ωmi, i ∈ 1, 2, 3, the ray hits a microfacet
(denoted with thick line segments) with normal ωhi, after which it undergoes
specular reflection and refraction. Note the directions the vectors are pointing
to. h ∈ [−1, 1] denotes the azimuthal offset.

where T1 = 1 − R(ωh1, ωo) is the Fresnel transmittance. The corresponding
radiance is

Lt =
dΦt

dωt da⊥t
, (4.14)

with
da⊥t = |ωt · ωm1| dam1 (4.15)

being the projected microsurface area in the direction of ωt. The differential
flux received by microfacets with normal direction ωh2 is

dΦh2 = AtLt dωt|ωt · ωh2| dah2. (4.16)

Here we have introduced At as the absorption due to pigments inside the
hair as the ray travels along ωt. Two kinds of pigments are responsible for
absorption inside hair: eumelanin and pheomelanin with concentrations ρe
and ρp, respectively. Let σa = ρeσa,e + ρpσa,p be the absorption per unit
length [29], then

At = exp

(
−σa

2 cos(φt − φm1 + π)

cos θt

)
. (4.17)

58



Note that the path length 2 + 2 cos(2γt) in the original model [76] and its
derivation [26] has left out a square root when applying law of cosines and is
erroneous, it should be 2 cos γt, as the term in Pharr’s work [93].

Similar to Eq. (4.6), the area of the surface element dah2 with micronor-
mals ωh2 is given by

dah2 = D(ωh2, ωm2) dωh2 dam2, (4.18)

with
dam2 = dφm2 ds. (4.19)

Thus, the outgoing flux for the TT component is

dΦo = T2 dΦh2, (4.20)

with T2 = 1−R(ωh2, ωt) being the Fresnel transmittance through interface 2 .
Note the change in relative refractive index when exiting the fiber. Further,
the half vector and the outgoing direction is related by

dωh1 =
η2

∥ωh1∥2
|ωt · ωh1| dωt,

dωh2 =
1

η2∥ωh2∥2
|ωtt · ωh2| dωo, (4.21)

with ωh1 = −ωi − ηωt and ωh2 = −ωt + ωo/η being the unnormalized normal
vectors and ∥∥ their norms, and η the relative refractive index of hair with
respect to air. Combining Eqs. (4.6), (4.7), (4.9), (4.10), (4.13) to (4.16)
and (4.18) to (4.21), we obtain

Lo =
Li

2 cos θo

∫
T1T2

∥ωh1∥2∥ωh2∥2
|ωi ·ωh1||ωt ·ωh1||ωo ·ωh2||ωt ·ωh2|∫∫

D1D2G1G2At

|ωt · ωm1|
dφm2 dωt dωi. (4.22)

Here we have simplified D(ωhi, ωmi) as Di, and the shadowing-masking term
at interface i as Gi. Making use of φm1 = 2φt − φm2, the BCSDF for the
TRT lobe is given as

STT(ωi, ωo)=
1

2 cos θo cos θi∫
T1T2

∥ωh1∥2∥ωh2∥2
|ωi ·ωh1||ωt ·ωh1||ωo ·ωh2||ωt ·ωh2|∫

D1D2G1G2At

|ωt ·ωm1|
dφm1 dωt. (4.23)
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Repeating the above process at interface 3 , we obtain the BCSDF for the
TRT lobe

STRT(ωi, ωo) =
1

8 cos θo cos θi

∫
T1

∥ωh1∥2
|ωt · ωh1||ωi · ωh1|∫

R2T3
∥ωh3∥2

|ωtr · ωh3||ωo · ωh3|∫
D1D2D3G1G2G3AtAtr

|ωt · ωm1||ωtr · ωm2|
dφm1 dωtr dωt, (4.24)

with

Atr = exp

(
−2σa

cos(φtr − φm2 + π)

cos θtr

)
(4.25)

and making use of φm3 = φm1 − 2(φt − φtr) + π.

4.3.2 Scale Tilt

Hairs have tilted surface scales [76], resulting a shift of the macronormal from
ωm = [sinφm, 0, cosφm]⊤ to the mesonormal ωmα = [sinφm cosα, sinα, cosφm cosα]⊤,
with α being the tilt angle. Also, additional intersection test with the cylin-
der body should be performed. Otherwise, the BCSDFs remains the same.

When sampling microfacets from a tilted geometric normal, the projected
area as in Eq. (4.10) is also supposed to change; however, keep a⊥o unchanged
seems to bring only very slight discrepancy at grazing angles (Fig. 4.9).
Therefore, we only adjust the macronormal itself for simplicity. Since we
have completely replaced the macronormal with the mesonormal wherever it
appears, they share the same notation ωm throughout the work, except for
the discussion in Section 4.4.1 where a differentiation is needed.

It has been assumed that a scale tilt of α causes the outgoing longitudinal
angle of the R lobe to be deflected by 2α [76]. However, this is only true
when φi = φo. When |φi − φo| → π, θo converges to −θi, the same as
without scales. We illustrate this phenomenon in Fig. 4.4. This also results
in a distinctly non-separable contraction of the R lobe at both sides near the
grazing angle (see Section 5.5). To our knowledge, d’Eon et. al [28] are the
first to mention and model the dependence of θo on |φi −φo| in the presence
of cuticle scales. However, they mainly focus on deriving the expression for
the specular cone in the presence of a scale tilt, then add a cosine-modulated
longitudinal width around this specular cone. Such formulation describes this
contraction in a phenomenological way, rather than being an explanation of
the physical process, thus resulting in a non-separable lobe which is difficult
to importance-sample.
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θi

(a) side view (b) front view

Figure 4.4: Parallel rays reflected off a smooth cylinder. Without cuticle
scales, the reflected rays are restricted to a specular cone (dashed). In the
presence of cuticle scales, the reflected rays form a conical surface but not
a cone anymore (solid). We demonstrate the case for α = 4◦ and α = −4◦.
Regions that are unreachable because of invisibility is marked red. For the
purpose of illustration, the radius of the cylinder is set to zero in the front
view.

4.3.3 Extending the Model to Elliptical Hair Fibers

Our model does not only work for circular cross-sections; in general, the
above idea can be applied to any smooth convex shape. The key changes lie
in adjusting the differential surface area element dam and the projected area
in the outgoing direction a⊥o . We demonstrate the necessary modifications for
elliptical cross-sections, as real hair fibers are often roughly elliptical [11, 66].

z

x
y

b cos γ
sin γ

ωm

z

φm

Figure 4.5: An elliptical cross-section

Assuming the ellipse is parameterized by x = sin γ, z = b cos γ, γ ∈
[−π, π] (Fig. 4.5). This gives eccentricity e =

√
1 − b2. The normal vector of

a point on the ellipse is [sinφ, cosφ]⊤, or [b sin γ, cos γ]⊤. dam in Eqs. (4.4)
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and (4.19) now becomes

dam =

√
1 − e2 sin2 γm dγm ds, (4.26)

and a⊥o in Eq. (4.10) is replaced by

a⊥o = 2

√
1 − e2 sin2 φo cos θo ds. (4.27)

After replacing these terms in the above derivation, we arrive at the BCSDF
for elliptical fibers

SR(ωi, ωo) =
R1

8
√

1 − e2 sin2 φo cos θo cos θi∫
D1G1

√
1 − e2 sin2 γm1 dγm1, (4.28)

STT(ωi, ωo) =
1

2
√

1 − e2 sin2 φo cos θo cos θi∫
T1T2

∥ωh1∥2∥ωh2∥2
|ωi · ωh1||ωt · ωh1||ωo · ωh2||ωt · ωh2|∫

D1D2G1G2At

√
1 − e2 sin2 γm2

|ωt · ωm1|
dγm1 dωt, (4.29)

STRT(ωi, ωo) =
1

8
√

1 − e2 sin2 φo cos θo cos θi∫
T1

∥ωh1∥2
|ωt · ωh1||ωi · ωh1| (4.30)∫

R2T3
∥ωh3∥2

|ωtr · ωh3||ωo · ωh3|∫
D1D2D3G1G2G3AtAtr

√
1 − e2 sin2 γm3

|ωt · ωm1||ωtr · ωm2|
dγm1 dωtr dωt.

Further, it holds that γm2 = 2 tan−1(b tanφt) − γm1, and γm3 = γm1 −
2(tan−1(b tanφt) − tan−1(b tanφtr)) − π. The attenuation terms At,tr de-
pend on the distance through the medium inside the fiber, which can be
obtained by taking the difference between the intersection points divided by
cos θt,tr.

Compared to Eqs. (4.12), (4.23) and (4.24), above BCSDFs turn out to
have only two additional terms, which is a very minor change.
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4.3.4 Implementation

In this section, we provide the implementation details of our model, including
sampling, evaluating the BCSDF and the PDF. The code is provided in
https://github.com/RiverIntheSky/roughhair.

Importance Sampling

Since our model is based on the microfacet theory, the sampling procedure
boils down to sampling microfacets at each intersection. For simplicity, we
denote the vectors with their spherical coordinates as ωx = {θx, φx}. The
importance sampling for circular hair fibers works as follows:

• Randomly select an azimuthal offset h, similar to d’Eon et al. [27].

• Compute the mesonormal ωm1 = {α,− sin−1 h}, sample a micronormal
ωh1, compute the Fresnel reflectance, that is the attenuation of the R
lobe AR = R1.

• Compute the refracted ray via

ωt =
1

η

((
|ωi · ωh1| −

√
η2 + |ωi · ωh1|2 − 1

)
ωh1 − ωi

)
,

compute the mesonormal ωm2 = {−α, 2φt−φm1} at interface 2 , sample
a micronormal ωh2, compute the Fresnel reflectance R2 and the absorp-
tion At along ωt. The attenuation of the TT lobe is then ATT = T1T2At,
with Ti = 1 −Ri.

• Compute the reflected ray via ωtr = 2|ωt · ωh2|ωh2 − ωt, compute the
mesonormal ωm3 = {−α, φm1− 2(φt−φtr) +π}, sample a micronormal
ωh3, compute the Fresnel transmittance T3 and the absorption Atr along
ωtr. The attenuation of the TRT lobe is then ATRT = T1R2T3AtAtr.

• Select a lobe with the probability in proportion to the attenuation, com-
pute the outgoing direction of the selected lobe, return sample weight
AR + ATT + ATRT, multiplied by the visibility term G in the outgoing
direction.

A total of 8 random numbers are needed in this procedure.
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BCSDF evaluation

The integration in Eq. (4.12) can be evaluated either analytically (ignor-
ing the GGX shadowing-masking function, see Appendix E) or numerically.
For the numerical method, we apply composite Simpson’s rule. More sub-
intervals are needed when more of the cylinder is visible from both the in-
coming and the outgoing angles. We found that a step size of 0.7β deliv-
ers satisfying results, with β being the GGX or Beckmann roughness. For
β = 0.08, an average of ∼ 28 sub-intervals are needed to integrate the R
lobe.

Evaluating Eqs. (4.23) and (4.24) is trickier, as they involve integration
in 3D and 5D, respectively, which is extremely costly to evaluate with deter-
ministic numerical integration methods due to the curse of dimensionality.
We suggest precomputing them and storing the result in a 3D look-up table
(4D for elliptical cross-sections), or to apply our proposed combined Monte
Carlo-Simpson integration on the fly: That is, for each φm1, we sample an
internal path, connect it with the outgoing direction, then compute the in-
tegrand along the path, divided by the probability of sampling the internal
path.

For the TT lobe, ωh1 is sampled, ωh2 is computed via ωh2 = ̂−ωt + ωo/η.
If we importance-sample visible microfacets [49], then Eq. (4.23) is evaluated
as

STT(ωi, ωo) ≈
1

2 cos θo cos θi

∫
T1T2G1(ωt)D2G2At

η2∥ωh2∥2
|ωi · ωm1||ωo · ωh2||ωt · ωh2|

|ωt · ωm1|
dφm1, (4.31)

with G1(ωt) being the one-sided Smith’s shadowing-masking function for
direction ωt at surface normal ωm1.

For the TRT lobe, ωh1 and ωh2 are sampled, ωh3 is computed via ωh3 =
̂ωtr + ωo/η. Also sampling visible microfacets, Eq. (4.24) is evaluated as

STRT(ωi, ωo) ≈
1

2 cos θo cos θi
(4.32)∫

T1R2T3G1(ωt)G2(ωtr)D3G3AtAtr

η2∥ωh3∥2
|ωtr · ωh3||ωo · ωh3||ωi · ωm1||ωt · ωm2|

|ωt · ωm1||ωtr · ωm2|
dφm1,

with G2(ωtr) being Smith’s shadowing-masking function for direction ωtr

when the surface normal is ωm2.
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Figure 4.6: Evaluating STT + STRT as a function of θo and φo, with
θi = φi = 0, σa = 0 and α = 4◦. We test our combined Monte Carlo-
Simpson integration method with 1, 4, 16, 64, and 256 samples per pixel.
The ground truth is computed with Simpson’s rule applied along φm and
Lebedev quadrature [71, 16] in ωr and ωtr. In both subfigures β = 0.08. In
Section 4.4.1 we will explain how such images are produced.

Now Eqs. (4.31) and (4.32) integrate in 1D, we can easily evaluate them
using the same composite Simpson’s rule as before.

The above method is significantly faster than using quadrature on all di-
mensions, and has a reasonably low noise level even when we only sample
one internal path for each φm every time the BCSDF is evaluated (Fig. 4.6).
During render time, the function will be evaluated multiple times and grad-
ually converge. In practice, we do not observe more variance in the method
than that of d’Eon et al. [27].

Probability Distribution Function

Evaluating the PDF is similar to evaluating the BCSDF, we also integrate
along the azimuth. After selecting an azimuthal offset, we sample an internal
path (when applicable), compute the attenuation A of each lobe, and take
A/AR+ATT+ATRT as an estimate of the probability of sampling a specific lobe;
then for each lobe, we multiply A/AR+ATT+ATRT by the conditional probability
of sampling the final outgoing direction, given that we have sampled the
internal path (when applicable). To summarize, the probability of sampling
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an outgoing direction ωo given incident direction ωi is

Pωi
(ωo) ≈

1

2

∫ 1

−1

1

AR + ATT + ATRT

(ARD1G1(ωi)

4|ωi · ωm1|
(4.33)

+
ATTD2G2(ωt)|ωt · ωh2||ωo · ωh2|

η2∥ωh2∥2|ωt · ωm2|

+
ATRTD3G3(ωtr)|ωtr · ωh3||ωo · ωh3|

η2∥ωh3∥2|ωtr · ωm3|

)
dh,

assuming we sample visible normals.

4.4 Results and Comparison

In this section, we validate our BCSDF against the ground truth Monte
Carlo simulation, and compare both to previous separable [26] and non-
separable [28] models. We also show the final rendering results generated
using our and the separable model.

4.4.1 Validation

Similar to previous non-separable model by d’Eon et al. [28], we run a se-
ries of Monte Carlo simulation and compare the results with that computed
by Eqs. (4.12), (4.23) and (4.24), as well as the implementation in previous
works [26, 28]. For circular cross-section, we keep the azimuthal illumination
angle φi to be 0, and only vary θi. In each subfigure in Figs. 4.7 and 4.9
to 4.11, S(ωi, ωo) cos θi is plotted in (θo, φo) coordinates. The hair is repre-
sented by a rough cylinder made of keratin (ηkeratin/ηair ≈ 1.548), with micro-
facet roughness and Smith shadowing. We implement a spherical camera in
Mitsuba 2 [87] that looks at the hair at the sphere center from all directions.
The emitter is directional with irradiance 1, the developed film has a res-
olution of 400 × 100. All images are rendered using the scalar spectral

variant on an Apple M1 8-core CPU.

Monte Carlo simulation. For each sample on the image pixel, we gener-
ate a uniform random offset h ∈ [−1, 1] on the hair, and perform path tracing
towards the emitter. Scale tilt is simulated by centering the normal distri-
bution around the tilted mesonormal, but keeping the local shading frame
unchanged. 1024 samples per pixel (spp) are used in Fig. 4.7 for the R lobe,
others with TT and TRT lobes have 65536 spp.
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Numerical integration. For each pixel, S(ωi, ωo) cos θi is evaluated di-
rectly via composite Simpson’s rule or combined numerical method as de-
scribed in Section 4.3.4.

Analytical integration without shadowing-masking. There exists an
analytical solution for the R lobe with the GGX distribution. R1

8 cos θo

∫
D dφm1

is evaluated as described in Appendix E.

Previous separable model. We take the implementation of d’Eon et
al. [26, 27] with corrected absorption term as stated in Section 4.3.1. Their
longitudinal width βR is not equivalent to our microfacet roughness β; for
comparison, we manually choose a longitudinal width for each microfacet
roughness value so that the two deliver approximately the same reflectance
of the R lobe at θi = 0, θo = 0, φo = 0, α = 0. Such a roughness pair gives
almost the same longitudinal span. This choice holds for all such comparisons
between our and the separable model [26].

Previous non-separable model. In Fig. 4.8, we directly compare with
the lat-long images by d’Eon et al. [28]. Their image intensity seems different
than ours; therefore, we applied a cosine scaling on our rendered images for
a fair comparison, i.e. S(ωi, ωo) cos θi cos θo instead of S(ωi, ωo) cos θi.

R Lobe of a Circular Cross-Section

Since d’Eon et al.’s model [28] is designed to match Beckmann roughness,
we compare the R lobe of the first four aforementioned methods in Fig. 4.7
with GGX roughness and compare with d’Eon et al.’s work [28] separately
with Beckmann roughness in Fig. 4.8.

In Fig. 4.7, the numerical solution matches the ground truth Monte Carlo
simulation perfectly, even at grazing θo angles. The analytical solution also
reproduces the ground truth accurately, despite being brighter at extreme
grazing θo angles, where G should have been low. By ignoring G we omit the
energy loss which comes from visibility inside the microsurface.

The most noticeable difference between the three microfacet-based meth-
ods and the separable model lies in the focusing and increased brightness at
grazing φo angles, as predicted in Fig. 4.4. The support of the bright lobe
does not touch φo = ±π except when θi = 0. Therefore, we are particularly
interested in the behavior as φo approaches ±π.

In this case, assuming no scale tilt for the moment, When φo = ±π, the
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Figure 4.7: Each subfigure compares the R lobe of four different fiber BCS-
DFs, under various illumination angles θi. α = 4°,GGX β = 0.08, βR = 7.7°.
Each image is organized in four stripes: left: numerical integration of the
proposed model, including the shadowing-masking function G; middle left:
ground truth Monte Carlo simulation; middle right: analytical integration
of the proposed model, excluding G; right: [26].

incoming, outgoing and micronormal angles are

ωi =

 0
sin θi
cos θi

 , ωo =

 0
sin θo

− cos θo

 , ωh =

sinφh cos θh
sin θh

cosφh cos θh

 , (4.34)

respectively. ωi and ωo should be visible from the macronormal

ωm = [sinφm, 0, cosφm]⊤, (4.35)

therefore,

ωi · ωm ≥ 0, ωo · ωm ≥ 0 ⇒ cos θi cosφm ≥ 0, cos θo cosφm ≤ 0

⇒ cosφm = 0

⇒ ωm = [±1, 0, 0]⊤. (4.36)
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It also holds that

ωo = 2(ωi · ωh)ωh − ωi

= 2(ωi · ωh)

sinφh cos θh
sin θh

cosφh cos θh

−

 0
sin θi
cos θi

 . (4.37)

Comparing with the expression of ωo in Eq. (4.34), it must be either sinφh cos θh =
0 or (ωi·ωh) = 0. Assuming sinφh cos θh = 0, then ωh = [0, sin θh, cosφh cos θh]⊤.
From Eq. (4.36) follows that ωm ·ωh = 0; in this case, the normal distribution
function D(ωh) is extremely low. Therefore, ωi · ωh = 0 is a more probable
situation. From Eq. (4.37) we conclude that

ωo = −[0, sin θi, cos θi]
⊤. (4.38)

This explains why as φo → ±π, the reflection is focused on one point, the
longitudinal angle of which is θo = −θi.

However, in the presence of tilted surface scales, the incoming and out-
going angles must also be visible from the mesonormal

ωmα = [sinφm cosα, sinα, cosφm cosα]⊤, (4.39)

therefore

ωi · ωmα ≥ 0, ωo · ωmα ≥ 0, ωi · ωm ≥ 0, ωo · ωm ≥ 0

⇒ cosφm = − tan θi tanα = 0. (4.40)

When α ̸= 0, above equation is only satisfied at θi = 0. Therefore, at oblique
θi angles, φo = ±π is unreachable.

We believe that this focusing and increased brightness at both ends is
what Khungurn and Marschner [66] described as the E mode. According
to their measurement and description, the E mode “is the brightest around
forward directions and is very sharp in the θo direction”, and it satisfies
“θo = −θi”; these observations agree well with the appearance in Fig. 4.7
as |φo| → π. Most importantly, this E mode is also present in black hairs,
indicating that it is caused by reflection. Therefore, we conclude that the E
mode, instead of being a separate mode, is a component of the R mode as a
natural result of surface roughness at grazing angles.

In contrast to our method which is completely microfacet-based, previous
separable model [28] applies only a cosine modulation in the longitudinal
scattering direction based on the separable method [26]. This approximation
matches the Monte Carlo rendering at small inclinations. However, as θi gets
larger, the focusing brightness in the forward scattering direction can not be
described by a cosine modulation anymore, whereas our method still matches
the Monte Carlo simulation faithfully (Fig. 4.8).
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Ours
Monte
Carlo [dMH14]

(a) θi = 0

(b) θi = 0.5

(c) θi = −0.5

(d) θi = 1.3

(e) θi = −1.3

(f) θi = 1.5

(g) θi = −1.5

Figure 4.8: Each subfigure compares the R lobe of three different fiber BCS-
DFs, under various illumination angles θi. α = 4°,Beckmann β = 0.08. Each
subfigure is organized in three stripes: left: our proposed model with numer-
ical integration; middle: ground truth Monte Carlo simulation; right: [28].

TT and TRT Lobes of a Circular Cross-Section

The same comparison as in the previous subsection (without analytical method
and non-separable model [28]) is shown in Fig. 4.9. As before, our model
matches the Monte Carlo simulation closely.

Despite the similar longitudinal span, our TRT lobe is more concentrated
in the azimuth as compared to the separable model; ours is also less shiny at
grazing angles. Furthermore, the two methods have similar TT lobes except
at grazing angles. However, this similarity with the previous method only
holds for Beckmann roughness as we have used in Fig. 4.9. GGX roughness
has longer tails in the distribution (Fig. 4.6a) and is hardly comparable with
the previous method.
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Ours
Monte
Carlo [dFH*11]

(a) θi = 1 (b) θi = 0 (c) θi = −0.65 (d) θi = −1.3

Figure 4.9: TT plus TRT lobe for various illumination angles θi. α = 2°, σa =
0,Beckmann β = 0.05, βR = 4.4°. In each subfigure, left: Our model eval-
uated using combined numerical integration as described in Section 4.3.4;
middle: ground truth Monte Carlo simulation, 65536 spp; right: [26].

Scattering from Elliptical Fibers

Monte
Carlo Ours

θi = 0,ϕi = 0 θi = 0.7,ϕi = 0 θi =−0.7,ϕi = 0 θi = 0,ϕi = 45◦ θi = 0,ϕi = 90◦

Figure 4.10: Validating our BCSDF of elliptical cross-section against Monte
Carlo simulation, under various illumination angles. α = 4°, σa = 0, β = 0.05,
ellipse eccentricity e = 0.8. For each of the five pairs: left: Monte Carlo
simulation of scattering from an elliptic cylinder. right: our BCSDF for
elliptical cross-section.

We verify our BCSDF against Monte Carlo simulation in Fig. 4.10, as
we did for the cylindrical fibers. Here, our model also agrees well with the
ground truth. The small discrepancy at grazing angles for θi = 0.7 might be
because that the macro/mesonormal in the Monte Carlo simulation and our
theoretical model don’t always agree, as mentioned in Section 4.3.2.
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(a) R lobe, θi = 0
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Figure 4.11: Comparing fiber scattering function of circular and elliptical
cross-sections. α = 4°, σa = 0, β = 0.05. (a) R lobe of fibers with various
illumination angles in φi and different eccentricity e. (b) R, TT and TRT
lobes of circular and elliptical fibers with various illumination angles in θi.
Left: θi = 0. middle: θi = 0.7. right: θi = −0.7. (c) R, TT and TRT lobes
of a fiber with elliptical cross-section (e = 0.8) under oblique illumination
angles in φi.

We also show the effect of elliptical cross-sections with varying eccentricity
on the cosine scaled BCSDF in Fig. 4.11.

The first column in Fig. 4.11a shows the R lobe for a circular fiber under
various illumination angles in φi. As expected, the function is invariant to φi

due to rotational symmetry. The last column in Fig. 4.11a shows the R lobe
for an elliptical fiber with eccentricity e = 0.96. Such an elliptical fiber has a
higher value of the normal distribution function (NDF) near the z axis than
near the x axis (Fig. 4.5); thus, when the illumination is along the negative
z axis (φi = 0◦), the reflectance is higher at φo = 0, and lower in the forward
scattering direction, compared to a circular fiber. When the illumination is
along the negative x axis (φi = 90◦), although the NDF is the smallest in
the backward scattering direction, the diameter is also the smallest, thus, a
locally maximal reflectance is visible at φo = 0. The highest value of the
NDF along the z axis and the smallest projected area along the x axis lead
to a global maximum in reflectance along the forward scattering function.
When φi = 45◦, the reflectance has a highest value at around φo = −90◦.

An eccentricity of 0.96 is mainly for the purpose of illustrating the above
properties. According to Khungurn and Marschner [66], a hair fiber has an
eccentricity of up to 0.8, which is demonstrated in the middle column of
Fig. 4.11a. There, the above-mentioned properties still hold, but are less
significant, especially when compared to the influence of eccentricity on the
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89 min

48 min

53 min
(a) [26] (b) difference

176 min

109 min

113 min
(c) Our model

Figure 4.12: The Park Scene with increasing melanin concentration from top
to bottom. α = −4°. (a) Marschner model with βR = 11°. (c) our model with
Beckmann roughness β = 0.135. (b) the difference between the images on
the left and the right side. The exposure value of the accompanying BCSDF
visualization is increased by 1 to make the R lobe better visible.

TRT component in Figs. 4.11b and 4.11c. There exist two symmetric extrema
for the TRT lobe [76]. However, for a fiber with an elliptical cross-section,
these two extrema are further separated from each other, as is shown in
Fig. 4.11b, left. At oblique θi angles (Fig. 4.11b middle and right pairs), the
two extrema of a circular fiber are almost indistinguishable, whereas for an
elliptical fiber they are still clearly separated from each other. They also
appear to be much brighter than that of a circular fiber. When φi = 45◦

(Fig. 4.11c), the extremum on the left is much brighter than the extremum
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on the right, similar to what we have discussed before for the R lobe in
Fig. 4.11a. When φi = 90◦, the two extrema seem to be merging into one,
and the intensity is also much lower, since total internal reflection is less
pronounced.

4.4.2 Rendering Hair Scenes

In this subsection, we render a set of hair scenes to compare our method with
the separable model, as well as demonstrate the influence of the absorption
and the roughness parameter. The hair and the woman model is taken from
Yuksel’s website [143]. For hair with elliptical cross-sections, the semi-minor
axis is aligned with the curvature vector.

Circular Cross-Sections

Frontlit. Fig. 4.12 shows the park scene with strong sunlight right behind
the camera. The images are rendered in 600× 600 resolution with 1024 spp,
accompanied by visualizations of the corresponding BCSDF with θi = 0, and
the difference images.

One prominent difference between our and the previous separable model
lies in the specular highlight at the top of the head. Dark hairs rendered
with the Marschner model are almost completely black at the top, whereas
ours show more realistic specular highlight at such grazing angles. Another
difference is that the Marschner model has broader TRT lobes in the azimuth,
causing the same energy to spread in a larger angle; as a result, their model
looks more saturated, while ours show higher contrast. Our hair has a few
darker regions in the hair due to occluded highlights, while Marschner’s model
spreads the reflectance more uniformly around the occluding fibers. This
property is clearly visible in the blond hair. All in all, we found that hair
rendered using the Marschner model appears flatter.

Backlit. To demonstrate the glints of the R lobe in the forward scattering
direction, we render a studio scene with a small but strong area light source
in front of a woman’s head (Figs. 4.1 and 4.13).

With the previous method, the forward scattering is dominated by the
TT lobe. The R lobe has only very dim response, causing the hair to look
brown everywhere. With our method, there is a strong highlight due to the
R lobe. Such variation in intensity gives the hair more sense of depth.

Roughness. Rougher hairs appear softer (Fig. 4.14), and take less time
to render because of our roughness-dependent integration step size. From
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(a) [26], 15min (b) GGX, 22min (c) Beckmann, 28min

Figure 4.13: Backlit on dark hair modeled by previous method and our
method, with either Beckmann or GGX roughness. Our method (b,c) pro-
duces more realistic images due to the focused forward scattering of the R
lobe. All images are rendered with 256 spp. α = 4°, β = 0.15, βR = 12°.
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Figure 4.14: Hair with various roughness. All images are rendered in 600×600
resolution with 1024 spp. α = 3°.
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Fig. 4.6 we know that GGX has longer tails in the longitudinal direction;
the images therefore also appear softer than those produced by the same
Beckmann roughness. A Beckmann roughness of 0.06 to 0.24 is comparable
with a Marschner longitudinal width of about 5° to 19°.

Elliptical Cross-Sections

46 min

58 min

0◦

52 min

59 min

45◦

45 min

54 min

90◦

e
=

0
e
=

0.
8

Figure 4.15: Circular and elliptical hair under various illumination angles.
Left: illumination angle perpendicular to the camera plane; middle: illu-
mination angle 45° to the camera plane; right: illumination angle parallel
to the camera plane. Images rendered in 600× 600 resolution with 1024 spp.
α = 3°, Beckmann β = 0.135.

All the renderings in this section are without the PDF computation.
As shown in Fig. 4.15, the highlight positions from circular and elliptical

cross-sections differ significantly. When the illumination angle is perpendic-
ular to the camera plane, the TRT component of the circular cross-section
is strong, the hair therefore appears bright; for elliptical cross-sections, how-
ever, the TRT component is stronger at oblique illumination angles.
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4.5 Discussion and Limitation

Performance. All the rendered images in Section 5.5 are annotated with
rendering time. As both our and the previous method integrate along the
azimuth, we have hoped for a similar rendering time. However, ours are about
1.2 ∼ 5× slower than the previous method. We found out that 60% of the
rendering time is spent on computing the PDF, since the PDF is evaluated
both for emitter and BSDF sampling using the path integrator in Mitsuba
2. This computation time could almost completely be removed by using a
cheap approximation of the PDF as a proxy for the weight computation in
multiple importance sampling, as is common practice for complex material
models. Indeed, as we have dropped the PDF computation completely in
Fig. 4.15, our method shows comparable performance to the previous method.
Rendering elliptical cross-sections takes longer than circular cross-sections
because of the extra computation of arc lengths.

Sampling microfacets inside the integration is also expensive: 1/3 of the
total rendering time is spent on sampling microfacets. The numerical evalu-
ation of the R lobe, where no microfacet sampling is performed, takes only
8% of the BCSDF evaluation time.

Since we adjust the integration step size according to the roughness, the
rendering time also depends on the roughness. As can be seen in Fig. 4.14,
rough hair has comparable rendering time as previous work [27]. Production
rendering systems would often use a kind of regularization for indirect lighting
and use rougher variants of the materials for higher-order scattering. This
approach will directly profit from those performance gains.

Energy loss. Our model is based on the assumption that lobes beyond
TRT can be ignored due to the little energy they carry. We therefore eval-
uate the energy loss resulting from this simplification using Monte Carlo
simulation.

In the first row of Fig. 4.16, we show the BCSDF slices of tracing only
the first three lobes (R, TT, TRT), tracing lobes beyond the first three,
and tracing infinite lobes with zero internal absorption, respectively; in the
second row, we show only the lobes beyond the first three with increasing
absorption, the same as used in the renderings in Fig. 4.12.

Fig. 4.16 shows that lobes beyond TRT are only dimly visible with low
internal absorption (blond hair), especially at grazing incident angles. The
TRRT lobe still has characteristic shapes, and can be added to the model
similarly as described in Section 3, if necessary. Lobes beyond TRRT are
very weak and have only low-frequency features; if energy conservation is
desired, this contribution can be approximated using a single lobe following
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Figure 4.16: Evaluating higher-order lobes for various internal absorption
under different incident angles in θi using Monte Carlo simulation. α = 2°,
Beckmann β = 0.15, e = 0. First row: σα = 0; for blond, brown, and black
hair, the eumelanin and pheomelanin concentrations ρ = 0.06, 0.6, and 1.8,
respectively.

Chiang et al. [19]. For brown and black hair, the contribution of higher-order
lobes is negligible.

Far-field model. We have proposed a far-field scattering model that re-
quires expensive integration along the azimuth; this integration can poten-
tially be skipped to enable near-field scattering [19].

Wave-optics effect. Our model is a pure geometry one and ignores the
wave-optics effect. However, the mean diameter of human hair is 80 µm [24],
at which scale diffraction is present. It would be interesting to trace complex
rays with our method, similar to Benamira and Pattanaik’s method [11].
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4.6 Conclusion and Future Work

In this chapter, we present the first microfacet-based hair scattering model.
Instead of separating the scattering function in the outgoing direction with-
out physical justification, we model the roughness as a distribution of mi-
cronormals and derive a fiber BSDF following well-established microfacet
theory. The importance sampling procedure is naturally composed of sam-
pling microfacets. We verify that our R lobe can model the narrow and
bright reflectance in the forward scattering direction as observed in previous
works. Our R lobe is efficient to evaluate and can find its application in any
kind of fibers, including furs with complicated internal scattering. The TT
and TRT lobes are restricted to homogeneous materials and are slower to
evaluate than the previous model due to the high dimensional integration;
we are looking forward to a more efficient evaluation method, for example
dynamically adjusted subtler for numerical integration, skipping azimuthal
roughness completely so that no integration is needed, or a new microfacet
distribution for which an analytical solution exists. We also demonstrate
scattering from elliptical fibers and argue that the model can be extended to
any smooth convex shape, which finds its application in fibers with irregular
cross-sections [1].

With this work, we wish to provide a new look at the hair scattering
model in a physically based way.
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5. Rendering Iridescent Rock
Dove Neck Feathers

The content of this chapter has been published as:

Weizhen Huang, Sebastian Merzbach, Clara Callenberg, Doekele Stavenga,
and Matthias Hullin. Rendering iridescent rock dove neck feathers.
In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–8, 2022.
DOI: 10.1145/3528233.3530749

Summary

Abundant research has been dedicated to human hair or animal fur render-
ing models, while there is a lack of works focusing on feather rendering. As
a result, CG artists often use hair shaders to model bird feathers. How-
ever, feathers interact with light completely differently than hairs or furs.
Although they may appear similar at a macroscale, closer observation under
a microscope reveals significant differences. Unlike cylindrical hair strands,
bird feathers possess cascaded structures, with the hair-like structures known
as barbs, which branch out on both sides and form barbules with irregular
cross-sections. Currently, there is a lack of a proper shading model to de-
scribe these cascaded structures, the only exception being a recent work from
Baron et al. [6]. However, they still rely on a hair scattering model, which
fails to consider the irregular cross-section of barbules.

In this chapter, we propose a novel approach to render the iridescent
rock dove neck feathers. Our method involves modeling the geometry of the
barb and statistically describing the scattering behavior of the substructures,
since structures smaller than a barb are typically not visible to the naked
eye. With the help of a microscope, we observe that barbules are composed of
repeating saddle-like structures, which we refer to as unit barbule cells. We
model the interaction between light and a barbule unit cell using the Cook-
Torrance microfacet model, with a suitable normal distribution describing
the shape of the microarea, which is approximated by an elliptical arc in the
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azimuthal direction and a circular arc in the longitudinal direction. Addi-
tional terms are included to account for reduced visibility due to overlapping
of adjacent barbules. Furthermore, the prominent two-color iridescence of
rock dove neck feather barbules is caused by the thin keratin layer on the
surface, which we model as thin film reflection instead of the typical Fresnel
reflection in microfacet models. The background reflection resulting from
melanin granules beneath the keratin layer is modeled as a diffuse compo-
nent. Additionally, the barbules exhibit a certain degree of randomness in
terms of thickness, shape, orientation and distance. To address this, we in-
corporate the randomness into a texture that is loaded alongside the barb
geometry.

To validate our model, we employ a specialized optical device developed
by Stavenga et al. [110] to capture the hemispherical reflectance of barbule
samples, acquired from the biology department at the University of Gronin-
gen. Our rendered results demonstrate a close match compared with the
measurements: in the azimuthal direction, the barbule has a wider angu-
lar span but smaller normal distribution function (NDF) values, resulting
in a longer tail with lower intensity; the widespread background component
caused by melanin, the color shifting due to change in illumination or viewing
direction, and the randomness in barbule orientations are also successfully
reproduced by our model. In terms of performance, the render time is twice
as long as that of a plain iridescent shader.

Despite being the first model aimed at feather scattering, our model only
covers iridescent neck feathers of rock doves. Similar feather structures can
be found in other bird species such as hummingbirds and peacocks, and our
model can be extended to accommodate these species by adjusting the NDF
and the model for color mechanisms. However, some bird species exhibit
iridescence in ramus instead of barbules, and some bird species are less iri-
descent, necessitating separate models for these cases.

Author Contribution: I proposed the research topic and conducted a
comprehensive literature review. Furthermore, I also modeled the complete
feather geometry and designed the rendering model, which I implemented
in Mitsuba. In addition, I designed the measurements required for the re-
search, while Doekele Stavenga performed the actual measurements. Sebas-
tian Merzbach contributed to the literature review section in the paper and
captured photographs of bird feathers. All co-authors participated in revising
the paper and offering valuable insights.
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dove feathers

(b) Full feather rendering
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Figure 5.1: (a) The neck feather of the rock dove features geometric struc-
tures across a wide range of scales. (c–e) Barbules exhibit a characteristic
scattering behavior due to their intricate surface and interior structure. (b)
Our model covers details like milliscale roughness, thin films or mutual shad-
owing between barbules, and closely recreates the appearance of the feather.

Abstract

Bird feathers exhibit fascinating reflectance, which is governed by fiber-like
structures. Unlike hair and fur, the feather geometric structures follow in-
tricate hierarchical patterns that span many orders of magnitude in scale.
At the smallest scales, fiber elements have strongly non-cylindrical cross-
sections and are often complemented by regular nanostructures, causing rich
structural color. Therefore, past attempts to render feathers using fiber- or
texture-based appearance models missed characteristic aspects of the visual
appearance. We introduce a new feather modeling and rendering framework,
which abstracts the microscopic geometry and reflectance into a microfacet-
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like BSDF. The R, TRT and T lobes, also known from hair and fur, here
account for specular reflection off the cortex, diffuse reflection off the medulla,
and transmission due to barbule spacing, respectively. Our BSDF, which does
not require precomputation or storage, can be efficiently importance-sampled
and readily integrated into rendering pipelines that represent feather geome-
try down to the barb level. We verify our approach using a BSDF-capturing
setup for small biological structures, as well as against calibrated photographs
of rock dove neck feathers.

5.1 Introduction

The creation of realistic humans and animals has always been a central chal-
lenge in computer graphics. An important factor is the rendering of hair
and fur, for which various models exist [76, 149, 136, 26, 66]. A related but
much less studied problem is the rendering of bird feathers [18, 36], even
though birds have played pivotal roles in famous animation works like ‘For
the Birds’, ‘Piper’ (Pixar) or ‘Rio’ (Disney). Hair and fur models can only
partly be transferred to feathers, due to the more complex structure of the
latter.

Table 5.1: The four characteristic
scales of our model.

Name Scale Feature

Macro >20mm Feather
Milli 0.3mm Barb
Micro 40 µm Barbule
Nano 550 nm Thin film

This work explores the rendering of
the iridescent neck feathers of one of
the most well-known and representa-
tive urban bird species, the rock dove
(Fig. 5.1a). The feathers show a promi-
nent green-purple shading, which arises
from thin-film interference in the feather
substructure [142]. Supported by spec-
trally and angularly resolved measure-
ments, we develop a comprehensive
model for the accurate rendering of
feathers that takes into account features across various scales (Table 5.1).

Our main contributions are the following:

• We propose a parameterized bidirectional scattering distribution func-
tion (BSDF) for feathers, which encapsulates the statistics of microscale
structures (barbule). It is completely evaluated and importance-sampled
at render time.

• we apply the BSDF at milliscale (barb) by changing the local shading
frame, providing rich details without having to model the microstruc-
tures explicitly.
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• We incorporate iridescence in the model, alleviating the need to mix
hair and iridescence shaders.

• We validate our model using one-to-one comparisons between measured
and rendered BSDF as well as photographs.

5.2 Related Work

We briefly review existing models for feather geometry and appearance, as
well as previous work on reflectance measurement.

Geometry Similar to hair geometry modeling, the majority of works model
feathers as assemblies of parametric primitives, usually Bézier curves [18, 35,
116] or NURBS [4]. Latest works [4, 7] derive a procedural feather geometry
representation of curve primitives automatically from photos.

Triangulated representations are often used for texturing: Franco and
Walter [36] generate an auxiliary mesh from the Bézier representation of their
earlier work [35] to transfer results from a pigmentation simulation back to
the barb curves. Similarly, Seddon et al. [105] deform a Bézier patch from a
scanned feather. A shader generates barb curves along the patch, which can
be controlled by bio-inspired attributes painted on the patch.

Our model is based on barb curves with associated normal vector at each
vertices, representing the local barbule orientation. To our knowledge, Baron
et al.’s works [5, 6] are the only ones also adapting the shading frame between
barb and barbule.

Rendering When rendering feathers in larger scales, bidirectional texture
function (BTF) are often used without looking into its substructures [36, 18].
For more geometric detail, hair models [76, 26] are alternatively applied to
barbs [44, 70], ignoring finer structures such as barbules. However, accord-
ing to Harvey et al. [47], the feathers’ milliscale features also contribute to
optical scattering. Recently, Baron et al. [5, 6] demonstrate a new rendering
technique that take into account milliscale features by procedurally rendering
the substructures while still applying hair shading models.

None of the above works deal with iridescence. Iridescence in bird feathers
is well understood by the ornithology community; however, their simulation
is mostly restricted to nanoscales with basic approaches such as thin-film
interference simulation [89] and finite-difference time-domain modeling [130].
Only one heavy ray-tracing simulation on feather barbules [77] is performed
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with a commercial tool for optical system prototyping FRED [46]. These
methods are not well suited for integration in a renderer.

We instead propose a feather-specific BSDF, which models the barbule
reflectance statistically.

Measurements There are mainly two approaches to acquire BxDFs. Some
previous works [5, 67, 18] adopt an image-based acquisition approach, match-
ing the simulation with a few photographs; other works [138, 66] use a go-
nioreflectometer with motorized robotic arms, alternatively. The reflectance
can be sampled at high angular resolution, moving either the light source
or the sensor. In particular, Harvey et al. [47] take multiple photographs of
a complete feather using a spherical gantry; these photos are then fused to
visualize the BRDF.

Our image-based approach uses the setup by Stavenga et al. [110]. It is
closely related to the setups in some previous works in computer graphics [41,
66] regarding the application of a non-planar reflector. Our setup allows
direct and efficient BSDF acquisition with a digital camera, and is especially
suitable for measuring microscale features such as feather barbules and insect
wing scales.

5.3 Background

This section provides an introduction of the feather geometry, the mech-
anisms behind the color production and the measurement setting for the
BSDF. Table 5.2 lists an overview of the symbols.

5.3.1 Feather Geometry

A bird feather is a multi-scale structure (Fig. 5.1a). The hair-like structures
that are normally seen with bare eyes are barbs that branch from the rachis.
A barb, in turn, has numerous side branches: the barbules, which overlap
and together form a rather flat surface. The barbule has a distinctly non-
cylindrical cross-section and may, depending on species, comprise thin film
coatings, multilayer stacks or photonic crystals (Fig. 5.2). In this chapter,
we investigate rock dove neck feathers (Fig. 5.2c), which exhibit thin film
structure.
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(a) Lawes’ parotia (Parotia lawesii) (b) Peacock (Pavo cristatus)

R

TRT

2 µmmelanin granules

keratin layer

(c) Rock dove (Columba livia)

Figure 5.2: Various mechanisms of structural color in barbules. (a) Trans-
mission electron microscopic (TEM) image of a male Lawes’ parotia breast
feather barbule, showing multilayer structure [111]. (b) TEM image of the
transverse cross-section of a peacock tail feather barbule, showing 2D pho-
tonic crystal structure [37]. (c) Scanning electron microscopic (SEM) image
of the transverse cross-section of a rock dove neck feather barbule with thin-
film structure [81] (©2008 The Physical Society of Japan), overlaid with
annotations demonstrating the R and TRT components (Section 5.3.3).

5.3.2 The Colors of Bird Feathers

Mainly two mechanisms contribute to the color of birds: pigments and struc-
tures [115]. Pigmentary colors originate from pigments that absorb light in
selective wavelength ranges. A virtually universal pigment in bird feathers,
absorbing in a very broad wavelength range, is melanin, which also exists
in human hairs. Structural colors, on the other hand, originate from regular
organized micro- and nanostructures of keratin and melanosomes, reflect-
ing light in restricted wavelength ranges. Structural colors are generally
directional and more brilliant than pigmentary colors. Many birds combine
pigmentary and structural coloration.

Rock Dove Neck Feather Barbule Colors Rock dove neck feather bar-
bules (Fig. 5.2c) exhibit a special two-color iridescence caused by thin-film
interference from the upper keratin layer [142, 81, 89]. The feathers lo-
cated on the upper part of the neck have an average keratin thickness of
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595 nm [141] and look green at normal incidence. With only slight varia-
tion of the illumination or viewing angle though, the color can very suddenly
change from green to purple; the purple feathers on the lower part of the
neck, with a mean keratin thickness of 530 nm, turn green at an oblique an-
gle. This angle-dependence of color is demonstrated in Fig. 5.3. Below the

530 nm 595 nmthickness

in
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e

0◦

90◦

Figure 5.3: Simulated colors of a thin keratin film in air as a function of
thickness and incidence angle (illuminant D65).

keratin layer, the barbules feature randomly arranged melanin granules, with
minor and almost constant reflectance in the visible wavelength range. They
mainly decrease the color saturation.

5.3.3 The Physics of Thin Films

Thin-film interference occurs when light is reflected from the upper and lower
boundary of the film, causing difference in optical paths (Fig. 5.4). The path
difference D results in a phase shift ∆ψ = 2πD

λ
of the light, with λ being the

wavelength. We denote rak (tak) as the Fresnel reflection (transmission) coef-
ficient at the air-keratin interface and rka (tka) as that at the keratin-air inter-
face (Fig. 5.4 left), and derive the complex thin-film reflection/transmission
coefficients r and t via Airy formula [140, 10]

r = rak +
takrkatkae

i∆ψ

1 − r2kae
i∆ψ

, t =
taktka

1 − r2kae
i∆ψ

, (5.1)

where ∆ψ = 2πD
λ

= 4πdηk cosβ
λ

holds for both reflection and transmission, with
the index of refraction (IOR) of keratin ηk and the film thickness d. The
intensity reflectance is then given by

IR = |r|2. (5.2)

We call this reflection the R component.
We measure the reflectance spectra of a 10 × 10 µm2 spot from normal

incidence with a microspectrophotometer (MSP) [124]. Fig. 5.5 shows the the

88



Table 5.2: Important notations used in this work

Symbol Definition

η Index Of Refraction
λ Wavelength
IR,TRT Reflectance, similar to Fresnel term, Eqs. (5.2) and (5.3)
Li,o(ωi,o, λ) Incoming / outgoing spectral radiance
S(ωi, ωo, λ) Bidirectional Scattering Distribution Function
ωi,o Incoming / outgoing unit vectors
ωm Barbule normal vector, Fig. 5.7b
n⃗ Barb plane normal vector, Fig. 5.8
θ/ϕ Longitudinal/azimuthal parameterization of ω, Fig. 5.7b
ϕ0,1 Lower (ϕ0) and upper (ϕ1) bound of the azimuth
b Ellipse semi-minor axis, Fig. 5.7b
rθ Radius of the longitudinal circular arc, Fig. 5.7b
θd Circular arc opening angle, Section 5.4.1, Fig. 5.7b
D,Dθ, Dϕ Normal Distribution Function, Section 5.4.1
G(ωi, ωm, ωo) Masking and shadowing term, Section 5.4.1
H Barbule spacing, Fig. 5.8
∆h(ϕ),∆h′(ϕ) Projected length of elliptical arc, Fig. 5.8
h, l Azimuthal / longitudinal offset, Fig. 5.9

observed wavelength-dependent reflectance and the simulated R component.
Evidently, this component alone cannot sufficiently describe the barbule re-
flectance behavior, as total destructive interference appears at some wave-
lengths. There is clearly a background component, which is resulted from
the light transmitted through the keratin layer, reflected on the melanin
layer, then transmitted back through the keratin layer. We call this the TRT
component, it is illustrated in Fig. 5.4 (right), and is similarly computed as

ITRT =

∣∣∣∣ tramt
′
akt

′
ka

1 − (r′ka)
2ei∆ψ′

∣∣∣∣2 , (5.3)

where ram is the Fresnel reflection coefficient at the air-melanin interface,
and the phase shift ∆ψ′ = 4πdηk cosβ′

λ
. The superscript ′ takes account of

the possibility that the incoming and outgoing directions are non-symmetric.
After reflecting on the randomly distributed melanin granules, we do not
expect the R and the TRT components to interfere; thus, we simply add
their intensities Eq. (5.2) and Eq. (5.3) together. Due to the melanin layer’s
low reflectance of only 5% [141], we neglect all subsequent components that
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Figure 5.4: Thin-film interference. The keratin layer (k) is surrounded by
two air layers (a), beneath these layers lies the randomly dispersed melanin
granules (m), which we model as a diffuse surface. Left: thin-film reflection
(blue arrows) amounts to the R component. Right: thin-film reflection
(blue) plus TRT component (red), the thick rays on the right summarize the
respective thin rays on the left. The components after the blue dashed lines
are ignored due to their negligible contribution.

involve interaction with the melanin layer. This choice is validated by the
similarity of the blue curve to the measurement in Fig. 5.5.

5.3.4 Measuring with an Imaging Scatterometer

Above analyses apply to flat thin films; however, the keratin film in a bar-
bule is curved, as shown in Fig. 5.2c. We deploy the measurement setting
designed by Stavenga et al. [110], called imaging scatterometer (Fig. 5.6),
to measure the influence of the barbule geometry on the reflectance. The
resulting far-field scattering image is called a scatterogram, which captures
the hemispherical reflectance from the sample simultaneously via a digital
camera. Examples are shown in Figs. 5.1c to 5.1e. The long, pointed, black
object at 9 o’clock is the occlusion from the glass micropipette holding the
sample. The white circles indicate various scattering angles of ϑ.

We implement in Mitsuba 2 [87] a hemispherical sensor looking from all
directions at the sphere origin. This delivers equivalent images as scattero-
grams.

5.4 Modeling

In accordance with the SEM image, the scatterograms in Figs. 5.1d and 5.1e
show reflection into a wide solid angle. In particular, the iridescent pattern
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Figure 5.5: Reflectance spectra of a green barbule as measured with an MSP
(red, calibrated with a spectralon), and simulated with (blue) or without
(green) the background component.

stretches in one diagonal direction, which is the transversal direction of the
barbule. In the longitudinal direction, i.e. along the barbule axis, the angular
span is much smaller. Besides, the green color in Fig. 5.1d has a lower
intensity than purple; this is caused by the edges of the barbules (denoted by
the blue arrows in Fig. 5.7a), since a surface with a larger curvature reflects
the same amount of light to a broader angle. Thus, we model the longitudinal
barbule profile to be a small circular section, and the azimuthal profile to be
an elliptical section with a larger angular span (Fig. 5.7).

Due to the relatively large IOR of keratin (∼ 1.55 [73]), we assume that
light travels a relatively small tangential length before contributing to the
reflectance, so that the film can be treated as locally flat when computing
interference. Thus, we only consider influence of the barbule curvature on
the angular span of the reflectance. More discussions on interference from
curved thin films can be found in our supplementary document.

In the following subsection, we derive a new reciprocal BSDF.

5.4.1 Elliptical BSDF

The BSDF S(ωi, ωo, λ) describes the relationship between the incoming ra-
diance Li and the outgoing radiance Lo

Lo (ωo, λ) =

∫
Li (ωi, λ)S (ωi, ωo, λ) ⟨ωi, n⃗⟩ dωi, (5.4)

where n⃗ is the normal vector of the overlapping barbule plane (Fig. 5.8),
and S(ωi, ωo, λ) = SR + STRT + ST sums up the R, TRT and T lobes. This
formulation complies with the well-known rendering equation, yet differs from
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Figure 5.6: Diagram of the imaging scatterometer. A narrow beam (blue)
from a xenon lamp is focused through diaphragms D1,3, lenses L1,2, the beam
splitter together with an ellipsoidal reflector on the sample (purple). Light
scattered by the sample into the hemisphere is focused at the second focal
point F2 and delivered to a camera (Canon EOS 30D). D2 controls the in-
cident angle. Inset: Near-field image of a green barb, showing illumination
spot of our scatterograms, about 120× 120µm2, covering ∼ 30 barbule cells.

the formulations of fiber scattering models [76, 136, 134], where cos θi instead
of ⟨ωi, n⃗⟩ = cos θi cosϕi is used. This is because their radiance is defined per
unit length, while ours is defined per area.

Traditionally, the scattering distribution function S is divided further
into the product of the longitudinal scattering function M and the azimuthal
scattering function N . However, as argued by d’Eon et al. [28], separating
S causes significant artifacts at grazing angles. We propose to separate the
normal distribution function (NDF) instead, similar to microfacet models.

NDF A barbule can be considered a periodic structure consisting of an
array of saddle-like unit barbule cells, as indicated by the red outlines in
Fig. 5.7a. We model the exposed front surface (Fig. 5.7b), where the transver-
sal cross-section is represented by an elliptical arc with semi-major axis 1 and
semi-minor axis b, and the longitudinal cross-section is represented by a cir-
cular section with a radius rθ and an arc length of 2rθθd.

The overlapping barbules form a plane (“barb plane”, Fig. 5.8), which is
the x-y plane of the barbule coordinate system rotated by angle µ around
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20 µm 25 µm
(a) SEM images of iridescent dove barbules. Left: cross-section view. The blue
arrows indicate the edge of the barbules with a large curvature. Right: front view.
Images adapted from Nakamura et al. [81], ©2008 The Physical Society of Japan.
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(b) A saddle-like unit barbule cell. ω stands for incident, outgoing or normal
direction, it is parameterized by spherical angles θ and ϕ, where θ is the angle
between ω and the x− z plane and ϕ is the angle from the z axis to the projection
of ω onto the x− z plane (ω′). ω = [sinϕ cos θ, sin θ, cosϕ cos θ]⊤.

Figure 5.7: SEM image and model of a unit barbule cell.
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the y axis. The distance between adjacent barbules is denoted as H. The
NDF in azimuthal direction is

Dϕ(ϕm) =
1

Hκ(ϕm)
=
b2

H

(
sin2 ϕm + b2 cos2 ϕm

)− 3
2 , (5.5)

where κ(ϕm) is the curvature at ϕ = ϕm, ϕm ∈ [ϕ0, ϕ1]. Dividing by H ensures
that

∫
Dϕ(ϕm) cos(ϕm + µ) dϕm ≤ 1. The NDF in longitudinal direction is

Dθ(θm) =
1

2 sin θd
. (5.6)

Combining Eqs. (5.5) and (5.6), we obtain

D(ωm) = Dθ(θm)Dϕ(ϕm) (cos θm)−1

=
b2

2H sin θd cos θm

(
sin2 ϕm + b2 cos2 ϕm

)− 3
2 . (5.7)

Eq. (5.7) satisfies
∫
D(ωm)⟨ωm, n⃗⟩ dωm = 1.

Masking and Shadowing Diffraction often arises from regularly aligned
microstructures. However, the barbule spacing is rather large and irregular,
and from Figs. 5.1a and 5.5 it is obvious that the most prominent source of
iridescence is the thin film. Thus, we apply geometrical optics when consid-
ering shadowing and masking.

In previous literature, the correlation between the height and slopes is
usually ignored in the geometry term [107], so that each normal direction
has a certain probability to be visible, independent of the incident and out-
going angles. In our case, however, the relationship between the height and
slopes is known, so that each ωm is either always visible or always invisible,
depending on ωi,o. When sampling from or evaluating the NDF, we check
on-the-fly if there is an intersection of ωi or ωo with the two adjacent bar-
bules. The visibility term G(ωi, ωm, ωo) is either exactly 1 when there is no
intersection, or 0 if at least one intersection exists. This term is recipro-
cal. Figure 5.8 illustrates the visible sections from both ωi and ωo in purple.
Multiple interreflections are ignored.

SR: Thin-film reflection For the R lobe, ωm coincides with the half-
vector between ωi and ωo, acting as small mirrors. Consider the differential
flux dΦm incident on the differential surface oriented with normal direction
ωm. From the definition of the radiance

dΦm = Li(ωi, λ)⟨ωi, ωm⟩ dωi dA(ωm). (5.8)
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Figure 5.8: Transverse cross-section of a barb plane.

The differential area of the surface with orientation ωm is

dA(ωm) = D(ωm) dωmA, (5.9)

where A is the projected area of a unit barbule cell onto the barb plane. The
outgoing flux is

dΦo = IR(ωi, ωo, λ) dΦm. (5.10)

The differential outgoing radiance over the projected area Ao is

dLo(ωo, λ) =
dΦo

dωoAo
. (5.11)

Combining above equations and the half-angle mapping dωm = dωo

4⟨ωm,ωo⟩ yields

dLo(ωo, λ) =
IR(ωi, ωo, λ)Li(ωi, λ)D(ωm)A dωi

4Ao
. (5.12)

The ratio between the projected areas in normal and outgoing directions is

A

Ao
=

HL

cos θo∆h(ϕo)L
=

H

cos θoH cos(ϕo + µ)
=

1

⟨ωo, n⃗⟩
, (5.13)

where ∆h(ϕ) is the projected length in direction ϕ (Fig. 5.8), and L is the
length of a barbule cell along the z axis. The value of L is irrelevant as it
is canceled out in the equation. Comparing with Eq. (5.4) and adding the
term G, we acquire the BSDF for the R lobe

SR(ωi, ωo, λ) =
IR(ωi, ωo, λ)D(ωm)G(ωi, ωm, ωo)

4⟨ωi, n⃗⟩⟨ωo, n⃗⟩
, (5.14)

which is exactly the form of a microfacet BRDF.
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Figure 5.9: Uniform sampling of h and l.

ST: Transmission through barbule spacing At some angles, part of the
light rays do not hit the barbule surface (Fig. 5.8), causing

∫
Dϕ(ϕm) cos(ϕi−

ϕm) dϕm < cos(ϕi+µ). In practice, we always sample from the valid projected
length, denoted as ∆h′(ϕi). The rays that do not hit the barbule surface is
propagated without changing its direction and intensity, giving the T lobe

ST(ωi,−ωi, λ) = 1 − ∆h′(ϕi)

∆h(ϕi)
. (5.15)

STRT: Background component As seen in Fig. 5.2c, the melanin gran-
ules scatter the light into even wider angles. We model the melanin layer as
a diffuse surface due to its irregular distribution.

The BSDF for the TRT component is

STRT(ωi, ωo, λ) =
ρ(ωi, ωo, λ)

π
, (5.16)

where

ρ(ωi, ωo, λ) =
1

Ai

∫∫
ITRT(ωi, ωm, ωo) dh dl (5.17)

is the reflectance averaged over the illuminated projected area Ai. h, l are
the azimuthal and longitudinal offsets seen from the illumination direction,
respectively (Fig. 5.9). Since ωm is a function of h and l, the above equation
is impractical to solve analytically. We compute the integral implicitly by
randomly picking h and l at each evaluation.

5.4.2 Implementation

In this section, we provide the implementation details of our model, including
geometry modeling using the software package Houdini and rendering with
Mitsuba 2 using scalar spectral variant.
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(a) Exemplary Houdini feather

𝑠𝑡 𝑛 𝑠
𝑡

𝑛

(b) A barb primitive

Figure 5.10: Explicit geometry in Houdini (a) and implicit geometry in Mit-
suba 2 (b). The barb curves are represented by vertex chains (white in a) with
assigned vertex normals in yellow. Our barb primitives are modeled as an
extrusion of a circular arc (gray). Barbules (purple) and ramus (brown) are
illustrative only, their geometry is not modeled in the primitive. s, t and n
form the local shading coordinate system.
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Geometry Modeling In Houdini, we model a feather as a collection of
barb curves (Fig. 5.10a), as in usual feather grooming pipelines [44]. The
vertices with their normal directions and other customizable parameters are
exported as a .ply file. The geometry is read by a custom feather shape
plugin in Mitsuba 2, which generates barb primitives (Fig. 5.10b). The
BSDF described in Section 5.4.1 is applied on these barb primitives, the
local shading frame coincides with the local barb plane (Figs. 5.8 and 5.10b).

Importance Sampling Our sampling strategy is similar to that proposed
by d’Eon at al. [27]: first, the azimuthal offset h and the longitudinal offset
l are uniformly sampled (Fig. 5.9), then one of the three lobes is chosen
proportional to their energy. The PDF for the R lobe is computed the same
as in micro-facet models, whereas that for the TRT lobe is the same as for a
diffuse surface. The complete sampling procedure is stated in Algorithm 1.

ALGORITHM 1: Importance Sampling Barbule BSDF

Output: pdf, ωo, sample value
sample valid h and l and compute ωm(h, l);
calculate IR(ωi, ωm) according to Eq. (5.2);
sample ωTRT

o from the cosine-weighted upper hemisphere around n⃗;
ωTRT
o ∗= sgn⟨ωm, ωTRT

o ⟩;
calculate ITRT(ωi, ωm, ω

TRT
o ) according to Eq. (5.3);

generate uniform random sample ξ ∼ [0, IR + ITRT +∆hi/∆h′i − 1];
if ξ < IR then /* choose R lobe */

ωo = reflect(ωi,ωm); pdf = 0.25IRD(ωm)/⟨ωi, n⃗⟩;
else if ξ < IR + ITRT then /* choose TRT lobe */

ωo = ωTRT
o ; pdf = ITRT|ωo.z|/π;

else /* choose T lobe. */

ωo = −ωi; pdf = ∆hi/∆h′i − 1;
end
if sample position visible from ωo then

pdf /= IR + ITRT +∆hi/∆h′i − 1;
sample value = (IR + ITRT − 1)∆h′i/∆hi + 1;

else
reject sample;

end
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Figure 5.11: Comparison between calibrated photographs (top) and render-
ings with comparable light and view (bottom). The only linear light source
(illuminant E) has inclination angles range from 0° to 60° from left to right.
The non-iridescent parts of the barbs (invisible on the neck since feathers are
overlapping) are approximated with a thicker film.

5.5 Results and Comparison

In this section, we compare our rendered results with the measurements.
The source code is available at https://github.com/RiverIntheSky/dove_
neck.

5.5.1 Comparison with Scatterograms

Rock dove neck feathers were collected from a frozen dove. We removed
one green barb from a neck feather and investigated the scattering with the
scatterometer. The colors are not calibrated.

In Figs. 5.1c to 5.1e, the scatterograms are compared with our BSDF
renderings. The parameters are manually chosen to fit the scatterograms:
b = 0.25, ϕ0 = −0.37, ϕ1 = 2.64, H = 1.25, d = 590 nm, θd = 0.0785, µ =
−0.35. We conduct an ablation study of the effect of each of those parameters
in the supplementary document.

In Fig. 5.1c (top), the sample is illuminated omnidirectionally by remov-
ing diaphragm D2 , which we replicate in the renderer with a constant emit-
ter. The green color in the inner ring indicates the reflectance around normal
incidence, whereas oblique incidence angles (the middle ring) produce purple
color. At grazing angles, the reflectance approaches 1; as a result, the barbule
looks yellowish and bright. These characteristics are all predicted in Fig. 5.3
and reproduced in Fig. 5.1c (bottom). The darker region in the lower-left
part of the scatterogram is also present in our rendering, which is due to the
inclination of the local barb plane. We believe that the reflectance in this
region does not fall off completely because of random perturbations of the
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barbule orientations: they do not align perfectly to a flat surface on a larger
scale. We choose not to model the randomness in the BSDF term, but rather
to add a random noise in the orientation µ of the unit barbule cells when
exporting the barb curve geometry, as the influence of these perturbations is
also visible on a macroscopic level (Fig. 5.11).

In Figs. 5.1d and 5.1e, the scatterograms (top row) were illuminated from
an angular aperture of about 16◦; for the renderings (bottom row), we achieve
an equivalent illumination with a disk area light. The stretching in the
transversal direction, the transition between green and purple, and the lower
intensity in the upper-right part are all well captured in the rendering. The
large round background is the TRT component; its color is mostly brownish
due to the reflectance of the melanin granules; however, there are also faint
iridescent colors in the background. More precisely, the color is purple near
the center and green near the periphery, exactly the reversed order as the R
component. This is because when the reflected color is green, the transmitted
color would be its complement, which is purple and vice versa. Our TRT lobe
model follows this behavior. Also, the diffuse assumption of the melanin layer
seems appropriate, as both scatterogram and rendering show similar intensity
gradients that turn almost invisible toward the outer ring.

5.5.2 Comparison with Photographs

We further measure a rock dove neck feather in a calibrated appearance
scanner TAC7 [133]. The device contains several radiometrically calibrated
cameras and light sources. We use a camera observing the feather from
45◦ inclination and a series of light inclination angles. The resulting images
in Fig. 5.11 are HDR-combined, calibrated and converted to linear sRGB.
The renderings are obtained by modeling a similar scene in Mitsuba 2, with
the feather geometry coarsely matched against the real sample. The color
shifting, the glints and the irregularities are well reproduced.

5.5.3 Performance

Figure 5.1b shows a scene with 256 overlapping feathers (including 1032192
barb primitives), rendered with 256 samples per pixel and a resolution of
1024 × 768. The image took 8.3 min to render, 2.1× slower than rendering
the identical geometry with plain thin films implemented by [10].
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5.6 Conclusion and Future Work

In this chapter we have presented a novel framework for rendering feathers.
We measure the BSDF of a feather barb from several illumination angles with
a scatterometer, based upon which we design a parameterized BSDF. It is
straightforward to sample and compatible with existing rendering pipelines
for feathers.

Although the transversal cross-section is restricted to be elliptical in our
work, the same idea could be applied to barbules of other shapes. In fact,
any convex cross-section with C2 continuity has a continuous curvature and
produces a continuous NDF. This amounts to changing Dϕ in Eq. (5.5).
Roughness in the cortex is not a part of our model, as the barbule surface is
very smooth. A modification in the NDF can be applied to achieve roughness
if needed.

Our work only focuses on rendering the barbules, as their reflectance is the
most prominent on rock dove feathers. For some birds, the structural colors
instead originate from a sponge-like structure of the ramus [118, 92, 113]
which is currently not considered by our model and could be covered in future
work. Another potential extension would be the combination of iridescent
and non-iridescent barbules, the latter ones being sometimes more opaque
and possibly in need of further shading lobes.

As the measuring device was originally only designed for observational
purposes, the colors are not properly calibrated. In the future, a full spectral
calibration and an automated parameter fitting procedure could make the
model more accurate and versatile.
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6. Conclusion and Future Work

In this thesis, we explore a few aspects lacking in physically based modeling,
namely the microappearance of soap bubbles, human hair, and bird feather.

In Chapter 3, we simulate chemomechanical fluid flows on soap bubbles.
The fluid flow is mainly governed by the Navier-Stokes equations. The sur-
factant concentration at both film surfaces influences the surface tension,
thus entering the stress boundary conditions. The surfactant concentration
is further driven by the advection-diffusion equation. Although the fluid flow
is intrinsically 3D, the scale of the film thickness in the radial direction is
much smaller than the film’s lateral extent; therefore, a direct simulation
of the 3D equations would introduce large errors. A common approach in
this case is to divide the physical quantities by their characteristic units, so
that the resulting dimensionless quantities are at the same scale. After that,
we asymptotically expand the variables, and only solve the leading order
equations.

The above-mentioned theoretical aspects are primarily adapted from the
works of Chomaz [20], Ida and Miksis [55, 56]. We are not the first in
computer graphics to discover their works on soap films, but the first to
reveal the expressiveness of their models by introducing numerical methods
to solve the governing equations. We first introduce a great-circle advection
scheme, where we construct a velocity-aligned local coordinate system instead
of directly advect quantities along the global coordinate, thus preventing
artifacts at the poles. We also keep a forward and a backward mapping
to prevent the texture from blurring, preserving the rich details on soap
bubbles. When applying body forces, we face the problem of prohibitively
small step sizes, which we address by substituting the divergence term in the
concentration transport equation with a rearrangement of the velocity in the
momentum equation, resulting in an implicit system. Afterward, we express
the linear system as a sparse matrix, and solve it with CUDA and AmgX
using a preconditioned conjugate gradient method. Finally, we discuss the
influence of various external forces.

Our work has greatly improved the realism of fluid simulation on soap
films, and has inspired people to simulate the same phenomenon. In partic-
ular, our advection scheme is used in a work by Wang et al. [126] on soap
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films and bubbles. They also considered viscosity, which we ignored. A recent
work by Deng et al. [25] follows our implicit formulation of the surfactant
concentration to simulate fluid flows on flat films and on soap bubble clusters.
They even introduced black spots, which are absent in our model. However,
the generation of black spots is seeded, instead of in a physically based way,
since their framework can not handle the large force gradient at the spot
boundary. The same holds for the large thickness differences at the frame
boundaries for soap films. Also, the simulation is still far from real-time
performance. We hope these problems can be addressed in the future.

Chapters 4 and 5 are based on the same idea: extending the microfacet
model.

The microfacet model represents a flat macrosurface as a collection of
small mirror-like facets, whose normal directions follow a certain distribu-
tion. The same representation must also work on a curved surface, because
microfacets on a curved surface also have a certain normal distribution func-
tion. Therefore, we model human hair as a rough (elliptical) cylinder made
of microfacets. By analyzing the incoming and outgoing radiance of such a
shape in Sections 4.3.1 and 4.3.3, we point out that the NDF is basically an
integration of the planar NDF along the azimuthal curve, which allows us
to use the same formulation as the Cook-Torrance model for the reflection
component. There even exists an analytical solution for the Trowbridge-
Reitz (GGX) distribution on circular cross-sections. However, the situation
gets more complicated for subsequent components because transmission is in-
volved. We follow the derivation by Walter et al. [125] of refraction through
rough surfaces, and formulate the TT and TRT components as integrations
in 3D and 5D. In order to evaluate such multidimensional integrations effi-
ciently, we combine the quadrature and Monte Carlo method. We verify the
correctness of our formulation by comparing it with brute-force Monte-Carlo
traced results. We further show that our rendered results match the strong
forward scattering in a rim portrait photograph and the angle-dependent
highlight of elliptical hair.

Despite close visual matches, our hair model remains primarily a theo-
retical model that demonstrates the potential of microfacet model on curved
surfaces. For example, the common assumptions for hair scattering models
are that hair has elliptical cross-sections, the inner structure is homogeneous,
and the contribution of the medulla is ignored. However, in Fig. 1.3 we see
that ellipses can only approximately match the hair cross-sections, there ex-
ist irregularities. Also, especially for Asian and African hair, the distribution
of melanin granules is not homogeneous, and the medulla in the middle is
well visible despite being small. How well our assumptions hold still needs
to be verified by more thorough measurements. Moreover, the human hair
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shape is far from a perfect cylinder. Nature processes and chemical treatment
would damage the hair and change its appearance: the cuticle might have
larger and varied tilt angles, the hair might break or have split ends, and
wave optics effects might arise from the microstructures. All these effects are
not covered by current hair scattering models. Besides, our formulation is
limited to human head hairs. Whether other body hair, such as the beard or
the shorter, thinner vellus hair which covers most parts of the human body
can be described by the same model should be investigated in the future.
The possible extension to animal fur would also make an interesting topic.

The connection between the feather barb and the microfacet model might
not be that obvious at first glance due to the overlapping, repetitive and dis-
continuous structure of the former. However, our analysis in Section 5.4.1
shows that the BRDF of both has exactly the same form. We usually con-
ceptualize microfacets as flat mirrors. However, in 1975, Trowbridge and
Reitz [120] proposed an alternative representation of rough surfaces: curved
microareas. The curved barbule shape can therefore also be considered a
microarea, the NDF of which is derived from its curvatures. This formu-
lation turns out to match the BRDF measurement well: the different axial
and lateral extent, and the different intensities across the lateral direction
are all due to the NDF of the barbule. We also consider the masking and
shadowing as well as the gaps between barbules. The randomly distributed
melanin granules underneath the thin keratin film are modeled as a diffuse
surface. Besides, we model the angle between the barbules and the ramus by
shifting the local shading frame.

Our model on rock dove neck feathers is the first one to consider the geo-
metric structure of feathers down to the barbule cross-sections. It also repre-
sents the random orientations of the barbules as a texture on the macroscale.
While it is restricted to rock dove neck feathers, the same idea should be ap-
plicable to other types of feathers, since all avian feathers have the same
feather-barb-barbule structure, and almost only differ in the exact barbule
cross-sections and the color mechanisms. It is therefore thinkable to use a
parametric model to represent the NDFs of various barbule cross-sections.
For that, one needs a well-calibrated BRDF measurement device and a rig-
orous measurement pipeline, those are left for future works.

Our feather scattering model was designed earlier than the hair model.
Although we tried our best to match the reflectance behavior using a microfacet-
like model, the transmission is modeled in a much-approximated way. At that
time, a more expressive model that considers the multiple interactions inside
the barbule was unthinkable and also unnecessary for rock dove neck feath-
ers with large internal absorption. Later, we designed the hair model, and
showed that subsequent interactions inside a non-cylindrical structure can
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be calculated straightforwardly. This new formulation would be especially
meaningful for light-colored feathers, where transmission through the feather
contributes to the appearance greatly. It is therefore our hope to combine
the hair model in Chapter 4 and the feather model in Chapter 5 in the future
to represent even larger categories of bird feathers.

Although these details in microappearance might seem subtle, they are
already identified by people before us, it was only due to the lack of proper
models that people tried to fake these effects by using random noise textures,
twisting roughness values for front and rear view, or mixing different shaders.
Amazingly, great artists can make use of very limited tools to fake results
that are quite convincing to untrained eyes. However, a physically based
solution would spare such effort, the solution would also be more expressive
and ensure consistency across the frames. With this dissertation, we have
pushed the level of photorealism in computer graphics a step forward. At the
time of writing, our research has attracted the attention of various production
renderers, including the ones used by Wētā FX, Autodesk, and Blender.

Though, there remains much work to do. In addition to the various
limitations we discussed about our soap bubble, hair, and feather models at
the end of each chapter, a lot more topics remain to be better covered by
physically based models, such as gemstones, vegetation, or any materials and
natural phenomena around us that are currently over-simplified. We need to
better understand the physical processes behind each phenomenon, perform
extensive measurements, and design efficient algorithms to finally close the
gap between simulated and physical reality.
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A. Material Derivative in
Spherical Coordinates

The material derivative describes the rate of change of a quantity moving
with a time-dependent velocity field u⃗. We denote a dimensionless scalar
quantity in spherical coordinates as Φ(θ, ϕ, t). Applying the chain rule yields

DΦ

Dt
=
∂Φ

∂t
+
∂Φ

∂θ

dθ

dt
+
∂Φ

∂ϕ

dϕ

dt
. (A.1)

The dimensionless velocities in spherical coordinates are defined as

uθ =
dθ

dt
, uϕ = sin θ

dϕ

dt
. (A.2)

Note that we included the sphere radius R in our non-dimensionalization of
t in Section 3.3.2, thus we do not need to take account of the sphere radius
when taking the derivatives. Substituting Eq. (A.2) in Eq. (A.1) gives

DΦ

Dt
=
∂Φ

∂t
+ uθ

∂Φ

∂θ
+

uϕ
sin θ

∂Φ

∂ϕ
. (A.3)

The material derivative of a vector quantity, for example velocity, is similarly
written as

Du⃗

Dt
=
∂u⃗

∂t
+
∂u⃗

∂θ

dθ

dt
+
∂u⃗

∂ϕ

dϕ

dt
, (A.4)

where
∂u⃗

∂t
=
∂uθ
∂t

e⃗θ +
∂uϕ
∂t

e⃗ϕ + uθ
�
�
�∂e⃗θ

∂t
+ uϕ

�
�
�∂e⃗ϕ

∂t
. (A.5)

To evaluate the remaining two partial derivatives, we take a step back to
look at the derivatives of unit vectors in sphere coordinates. Neglecting the
radial (r-dependent) component, they are

∂e⃗θ
∂θ

= 0,
∂e⃗θ
∂ϕ

= cos θe⃗ϕ,
∂e⃗ϕ
∂θ

= 0,
∂e⃗ϕ
∂ϕ

= − cos θe⃗θ. (A.6)
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Thus,

∂u⃗

∂θ
=
∂uθ
∂θ

e⃗θ +
∂uϕ
∂θ

e⃗ϕ + uθ
∂e⃗θ
∂θ

+ uϕ
∂e⃗ϕ
∂θ

=
∂uθ
∂θ

e⃗θ +
∂uϕ
∂θ

e⃗ϕ, (A.7)

and
∂u⃗

∂ϕ
=
∂uθ
∂ϕ

e⃗θ +
∂uϕ
∂ϕ

e⃗ϕ + uθ
∂e⃗θ
∂ϕ

+ uϕ
∂e⃗ϕ
∂ϕ

=
∂uθ
∂ϕ

e⃗θ +
∂uϕ
∂ϕ

e⃗ϕ + uθ cos θe⃗ϕ − uϕ cos θe⃗θ.

(A.8)

Combining Eqs. (A.2), (A.5), (A.7) and (A.8) we obtain

Du⃗

Dt
=

(
∂uθ
∂t

+ uθ
∂uθ
∂θ

+
uϕ

sin θ

∂uθ
∂ϕ

−
u2ϕ

tan θ

)
e⃗θ

+

(
∂uϕ
∂t

+ uθ
∂uϕ
∂θ

+
uϕ

sin θ

∂uϕ
∂ϕ

+
uθuϕ
tan θ

)
e⃗ϕ.

(A.9)
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B. 2nd-Order Half-Step Update

C1

C2
great circle C1

great circle C2

velocity u2 retrieved 
at C1(–2–1||u1||∆t) 

velocity u1 at grid point

final lookup point
for velocity u3 :
full step to C2(–||u2||∆t)

back-traced point
C1(–2–1||u1||∆t)

Figure B.1: Construction of a multi-step scheme similar to an order-2 Runge-
Kutta update.

Based on the single-step scheme detailed in Section 3.4.2, we construct
a multi-step scheme inspired by second-order Runge Kutta that can deliver
higher accuracy (Fig. B.1). First, the velocity vector sampled at the grid
point (red) defines a great circle (also red), which is used to construct a local
coordinate frame. Following this direction backward by a half time step, a
second velocity vector (blue) is sampled. After transforming this vector back
to the original point, it generates a second great circle (also blue). A full
backward step along this circle takes us to the look-up location (∗) for the
value advected to the grid point.
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C. Linear System

We solve Eq. (3.26) on a grid of dimension m × n and cell size ∆s × ∆s in

matrix form AΓ = b⃗, where

Γ = [Γ0,0, . . . ,Γm−1,n−1]
⊤ ∈ Rmn, b = [b0,0, . . . , bm−1,n−1]

⊤ ∈ Rmn

and A ∈ Rmn×mn is a sparse, block diagonal matrix with five elements in each
row, corresponding to the cell itself and its four direct neighbors. In order
to make A symmetric positive definite, we multiply both sides of Eq. (3.26)
by sin θ. Then, in each row, the entries of A are given by

Ai,mid = sin θ(∆tΓ∗
θ,ϕ)−1 +M∆t∆s−2[

sin−1 θ

η∗
θ,ϕ−∆s

2

+ Cr∆t
+

sin−1 θ

η∗
θ,ϕ−∆s

2

+ Cr∆t
+

sin
(
θ + ∆s

2

)
η∗
θ+∆s

2
,ϕ

+ Cr∆t
+

sin
(
θ − ∆s

2

)
η∗
θ−∆s

2
,ϕ

+ Cr∆t

]
,

Ai,left—right = − sin−1 θM∆t∆s−2(η∗
θ,ϕ∓∆s

2
+ Cr∆t)−1,

Ai,up = − sin

(
θ − ∆s

2

)
M∆t∆s−2(η∗

θ−∆s
2
,ϕ

+ Cr∆t)−1,

Ai,down = − sin−1 θM∆t∆s−2(η∗
θ,ϕ+∆s

2
+ Cr∆t)−1,

where θ and ϕ denote the cell center of the respective mid cell. The right
hand side b is given by

bi,j = sin θ

(
1

∆t
−∇ · η

∗
i,ju⃗

∗
i,j + Cr∆t(u⃗air)i,j + ∆tη∗i,j g⃗i,j

η∗i,j + Cr∆t

)
.
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D. Derivation of the kinematic
condition and the lubrication
model in Eq. (3.10)

D.1 The Kinematic Condition

In this section, we derive the kinematic condition in spherical coordinates
(Eq. (3.7)). All the quantities preserve their physical dimensions.

Let F (θ, ϕ, r, t) = 0 be an implicit definition of the outer bubble surface,
where η is the half thickness of the film. Then, the height field at the outer
side of the bubble can be written as r = R + η(θ, ϕ, t), and the free surface
is given by

F (θ, ϕ, r, t) = η(θ, ϕ, t) − r +R = 0. (D.1)

Taking the material derivative of F we have

0 =
DF

Dt

=
∂F

∂t
+
∂F

∂θ

dθ

dt
+
∂F

∂ϕ

dϕ

dt
+
∂F

∂r

dr

dt

=
∂F

∂t
+
uθ
R

∂F

∂θ
+

uϕ
R sin θ

∂F

∂ϕ
+ ur

∂F

∂r

=
∂(η − r)

∂t
+
uθ
R

∂(η − r)

∂θ
+

uϕ
R sin θ

∂(η − r)

∂ϕ
+ ur

∂(η − r)

∂r

=

(
∂η

∂t
− 0

)
+
uθ
R

(
∂η

∂θ
− 0

)
+

uϕ
R sin θ

(
∂η

∂ϕ
− 0

)
+ ur (0 − 1)

=
∂η

∂t
+
uθ
R

∂η

∂θ
+

uϕ
R sin θ

∂η

∂ϕ
− ur

(D.2)

and subsequently

ur =
∂η

∂t
+
uθ
R

∂η

∂θ
+

uϕ
R sin θ

∂η

∂ϕ
. (D.3)
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The derivation for the inner side with r = R− η(θ, ϕ, t) is similar, yielding

−ur =
∂η

∂t
+
uθ
R

∂η

∂θ
+

uϕ
R sin θ

∂η

∂ϕ
. (D.4)

D.2 Asymptotic Expansion

In this section, we derive Equation (10), with neglect of the force term f⃗ .
The Cauchy stress tensor σ in Equation (1) is defined in terms of local fluid
pressure and viscosity as σ = −pI+µ[∇u⃗+ (∇u⃗)⊤]; in spherical coordinates
it has components

σθθ = −p+
2µ

r

(
∂uθ
∂θ

+ ur

)
,

σϕϕ = −p+
2µ

r sin θ

(
∂uϕ
∂ϕ

+ uθ cos θ + ur sin θ

)
,

σrr = −p+ 2µ
∂ur
∂r

,

σθϕ =
µ

r sin θ

(
∂uθ
∂ϕ

+
∂uϕ
∂θ

sin θ − uϕ cos θ

)
,

σθr =
µ

r

[
r
∂uθ
∂r

− uθ +
∂ur
∂θ

]
,

σϕr =
µ

r sin θ

[
r
∂uϕ
∂r

sin θ − uϕ sin θ +
∂ur
∂ϕ

]
.

(D.5a)

(D.5b)

(D.5c)

(D.5d)

(D.5e)

(D.5f)

The stress boundary conditions at both surfaces are

σ · n⃗i,o = (2Ci,oγ − pi,o)n⃗i,o + ∇sγ, (D.6)

where pi,o represent air pressure at the inner and the outer surface, and
2Ci,o = −∇ · n⃗i,o is twice the mean surface curvature, and the outward unit
normal vectors to both film surfaces are

n⃗o =
−1
r
∂η
∂θ
e⃗θ − 1

r sin θ
∂η
∂ϕ
e⃗ϕ + e⃗r√

1 + 1
r2

(
∂η
∂θ

)2
+ 1

r2 sin2 θ

(
∂η
∂ϕ

)2 , (D.7)

n⃗i =
−1
r
∂η
∂θ
e⃗θ − 1

r sin θ
∂η
∂ϕ
e⃗ϕ − e⃗r√

1 + 1
r2

(
∂η
∂θ

)2
+ 1

r2 sin2 θ

(
∂η
∂ϕ

)2 , (D.8)
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where as the (not normalized) tangent vectors are

t⃗o1 = e⃗θ +
1

r

∂η

∂θ
e⃗r, t⃗o2 = e⃗ϕ +

1

r sin θ

∂η

∂ϕ
e⃗r, (D.9)

t⃗i1 = e⃗θ −
1

r

∂η

∂θ
e⃗r, t⃗i2 = e⃗ϕ −

1

r sin θ

∂η

∂ϕ
e⃗r. (D.10)

With the variables in Equations (1), (5) and (52) non-dimensionalized by

ϵ =
η0
R
, η = η0η

′, uθ = Uu′θ, uϕ = Uu′ϕ,

σ =
µU

R
σ′, ur = ϵUu′r, r = R + ϵRr′,

t =
R

U
t′, Γ = Γ0Γ

′, p =
µU

Rϵ
p′, Ds = URD′

s,

(D.11)

and dropping the primes of the non-dimensionalized quantities for readability,
we arrive at

∂uθ
∂t

+ uθ
∂uθ
∂θ

+
uϕ

sin θ

∂uθ
∂ϕ

+ ur
∂uθ
∂r

+ ϵuθur −
u2ϕ

tan θ

= Re−1

(
ϵ−1∂σθr

∂r
+
∂σθθ sin θ

∂θ
+

1

sin θ

∂σθϕ
∂ϕ

+3σθr −
σϕϕ

tan θ

)
,

∂uϕ
∂t

+ uθ
∂uϕ
∂θ

+
uϕ

sin θ

∂uϕ
∂ϕ

+ ur
∂uϕ
∂r

+ ϵuϕur +
uθuϕ
tan θ

= Re−1

(
ϵ−1∂σϕr

∂r
+
∂σθϕ sin θ

∂θ
+

1

sin θ

∂σϕϕ
∂ϕ

+3σϕr +
σθϕ

tan θ

)
,

ϵ

(
∂ur
∂t

+ uθ
∂ur
∂θ

+
uϕ

sin θ

∂ur
∂ϕ

+ ur
∂ur
∂r

)
+ u2θ + u2ϕ

= Re−1

(
ϵ−1∂σrr

∂r
+
∂σθr sin θ

∂θ
+

1

sin θ

∂σϕr
∂ϕ

+2σrr − σθθ − σϕϕ) ,

∂uθ sin θ

∂θ
+
∂uϕ
∂ϕ

+ sin θ
∂ur
∂r

= 0,

∂Γ

∂t
+

1

sin θ

[
∂

∂θ

(
Γuθ sin θ

)
+

∂

∂ϕ

(
Γuϕ

)]
=

Ds

sin θ

[
∂

∂θ

(
sin θ

∂Γ

∂θ

)
+

∂

∂ϕ

(
1

sin θ

∂Γ

∂ϕ

)]
.

(D.12a)

(D.12b)

(D.12c)

(D.12d)

(D.12e)
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Additionally, we introduce the following dimensionless numbers

S =
γaϵ

µU
, Re =

URρ

µ
, M =

Γ0γr
ρη0U2

, (D.13)

where S is a measure of the equilibrium surface tension, Re is the Reynolds
number and M is the Marangoni number. The surface tension is now given
by

γ = µU
(
ϵ−1S −MReΓ

)
, (D.14)

and the expression for 2Co is

2Co =
ϵ

R

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
η − 2

R
+

2ϵη

R
+O(ϵ2), (D.15)

whereas that for 2Ci is similar and not to be explicitly listed.
We perform an asymptotic analysis by expanding the variables in ϵ series;

that is, we expand σθr, σϕr, σrr as

f = ϵ−1f (−1) + f (0) + ϵf (1) +O(ϵ2), (D.16)

and u⃗,Γ, p, η as well as the other components of the stress tensor as

g = g(0) + ϵg(1) +O(ϵ2), (D.17)

Substituting the above expansions into Eq. (D.12), grouping terms with
equal powers of ϵ and setting the coefficients to zero, we obtain a series of
solvable linear equations.

D.2.1 Leading-order Equations

The leading-order problem consists of the continuity equation

∂u
(0)
θ sin θ

∂θ
+
∂u

(0)
ϕ

∂ϕ
+ sin θ

∂u
(0)
r

∂r
= 0, (D.18)

and the momentum equations

Re−1∂σ
(−1)
θr

∂r
= 0, Re−1

∂σ
(−1)
ϕr

∂r
= 0, Re−1∂σ

(−1)
rr

∂r
= 0. (D.19)

For the boundary conditions, we have the kinematic condition (see Sec-
tion D.1) at the outer boundary

u(0)r =
∂η(0)

∂t
+ u

(0)
θ

∂η(0)

∂θ
+
u
(0)
ϕ

sin θ

∂η(0)

∂ϕ
(D.20)
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and at the inner boundary

−u(0)r =
∂η(0)

∂t
+ u

(0)
θ

∂η(0)

∂θ
+
u
(0)
ϕ

sin θ

∂η(0)

∂ϕ
, (D.21)

as well as the stress condition at the outer boundary

σ
(−1)
θr = 0, σ

(−1)
ϕr = 0, σ(−1)

rr = −po − 2S, (D.22)

and at the inner boundary

σ
(−1)
θr = 0, σ

(−1)
ϕr = 0, σ(−1)

rr = −pi + 2S. (D.23)

Combining Eqs. (D.5), (D.19), (D.22) and (D.23), we discover that

σ
(−1)
θr =

∂u
(0)
θ

∂r
= 0, (D.24)

σ
(−1)
ϕr =

∂u
(0)
ϕ

∂r
= 0, (D.25)

σ(−1)
rr = −p(0) = −pi + po

2
. (D.26)

Thus, u
(0)
θ and u

(0)
ϕ are independent of r and are only functions of θ, ϕ and t.

As a result, we may integrate the continuity equation (D.18) in r and obtain

u(0)r = − r

sin θ

(
∂u

(0)
θ sin θ

∂θ
+
∂u

(0)
ϕ

∂ϕ

)
+ C(θ, ϕ, t), (D.27)

combining with the kinematic conditions (D.20) and (D.21) yields

∂η(0)

∂t
+ u

(0)
θ

∂η(0)

∂θ
+
u
(0)
ϕ

sin θ

∂η(0)

∂ϕ
+

η(0)

sin θ

(
∂u

(0)
θ sin θ

∂θ
+
∂u

(0)
ϕ

∂ϕ

)
= 0. (D.28)

The leading-order equation for the surfactant concentration is

∂Γ(0)

∂t
+

1

sin θ

[
∂

∂θ

(
Γ(0)u

(0)
θ sin θ

)
+

∂

∂ϕ

(
Γ(0)u

(0)
ϕ

)]
(D.29)

=
Ds

sin θ

[
∂

∂θ

(
sin θ

∂Γ(0)

∂θ

)
+

∂

∂ϕ

(
1

sin θ

∂Γ(0)

∂ϕ

)]
.

From the leading-order problem, we obtain two evolution equations (D.28)
and (D.29) for the film thickness η(0) and the surfactant concentration Γ(0).
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D.2.2 Remaining Orders

From the momentum equations and the stress boundary conditions we simi-
larly obtain

σ
(0)
θr = σ

(0)
ϕr = 0, (D.30)

σ(0)
rr = S

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ 2

)
η(0) (D.31)

= −p(1) + 2
∂u

(0)
r

∂r
.

Making use of Eqs. (D.5) and (D.31), we further obtain

σ
(0)
θθ = − p(1) + 2

∂u
(0)
θ

∂θ
(D.32)

=S

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ 2

)
η(0)

+
2

sin θ

(
∂u

(0)
θ sin θ

∂θ
+
∂u

(0)
ϕ

∂ϕ

)
+ 2

∂u
(0)
θ

∂θ
,

σ
(0)
ϕϕ = − p(1) + 2

(
1

sin θ

∂u
(0)
ϕ

∂ϕ
+

u
(0)
θ

tan θ

)
(D.33)

=S

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ 2

)
η(0)

+
2

sin θ

(
∂u

(0)
θ sin θ

∂θ
+ 2

∂u
(0)
ϕ

∂ϕ
+ u

(0)
θ cos θ

)
.

Now the leading-order momentum equations in Eq. (D.12) can be rewritten
as

∂u
(0)
θ

∂t
+ u

(0)
θ

∂u
(0)
θ

∂θ
+
u
(0)
ϕ

sin θ

∂u
(0)
θ

∂ϕ
−

(u
(0)
ϕ )2

tan θ
(D.34a)

= Re−1

(
∂σ

(1)
θr

∂r
+
∂σ

(0)
θθ sin θ

∂θ
+

1

sin θ

∂σ
(0)
θϕ

∂ϕ
−

σ
(0)
ϕϕ

tan θ

)
,

∂u
(0)
ϕ

∂t
+ u

(0)
θ

∂u
(0)
ϕ

∂θ
+
u
(0)
ϕ

sin θ

∂u
(0)
ϕ

∂ϕ
+
u
(0)
θ u

(0)
ϕ

tan θ
(D.34b)

= Re−1

(
∂σ

(1)
ϕr

∂r
+
∂σ

(0)
θϕ sin θ

∂θ
+

1

sin θ

∂σ
(0)
ϕϕ

∂ϕ
+

σ
(0)
θϕ

tan θ

)
.
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The only unknowns remaining are σ
(1)
θr and σ

(1)
ϕr . To obtain them, we write

the two tangential stress conditions in O(ϵ) at the outer boundary as

∂η

∂θ

(
σ(0)
rr − σ

(0)
θθ

)
− 1

sin θ

∂η

∂ϕ
σ
(0)
θϕ + σ

(1)
θr = −MRe

∂Γ(0)

∂θ
, (D.35)

1

sin θ

∂η

∂ϕ

(
σ(0)
rr − σ

(0)
ϕϕ

)
− ∂η

∂θ
σ
(0)
θϕ + σ

(1)
ϕr = −MRe

sin θ

∂Γ(0)

∂ϕ
. (D.36)

All the zero-order terms in Eq. (D.34) do not vary with r. Integrating
Eq. (D.34) in r and applying Eqs. (D.35) and (D.36), then combining with

Eqs. (D.5) and (D.18), we obtain the evolution equations for u
(0)
θ and u

(0)
ϕ to

close our system

∂u
(0)
θ

∂t
+ u

(0)
θ

∂u
(0)
θ

∂θ
+
u
(0)
ϕ

sin θ

∂u
(0)
θ

∂ϕ
−

(u
(0)
ϕ )2

tan θ
(D.37a)

= − M
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∂Γ(0)

∂θ
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{
1
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∂η(0)

∂ϕ
σ
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+
2
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∂θ
+

1

sin θ

(
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1
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,

∂u
(0)
ϕ

∂t
+ u
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θ u
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(D.37b)

= − M
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1
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+
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1
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∂σ
(0)
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+
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(0)
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}
,
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where σ
(0)
θθ and σ

(0)
ϕϕ are given by Eq. (D.32), and

σ
(0)
θϕ =

1

sin θ

(
∂u

(0)
θ

∂ϕ
+
∂u

(0)
ϕ

∂θ
sin θ − u

(0)
ϕ cos θ

)
. (D.38)

The full evolution equations are thus Eqs. (D.28), (D.29) and (D.37). If

we denote terms in Eq. (D.37) associated with Re−1 as V⃗ , and drop the
superscript (0), the governing equations can be simplified to

Du⃗

Dt
= −M

η
∇Γ + Re−1V⃗ ,

DΓ

Dt
= −Γ∇ · u⃗+Ds∇2Γ,

Dη

Dt
= −η∇ · u⃗,

(D.39a)

(D.39b)

(D.39c)

with u⃗ = (uθ, uϕ)⊤. This corresponds to Eq. (3.10).

133



E. Analytical Integration of the
lobe for GGX

The GGX distribution with roughness parameter β is

D(ωh, ωmα) =
β2

π(1 + (β2 − 1)(ωh · ωmα)2)2
, (E.1)

where

ωh · ωmα = sinφh cos θh sinφm cosα + sin θh sinα + cosφh cos θh cosφm cosα

= cos θh cosα cos(φh − φm) + sin θh sinα. (E.2)

Substituting cos θh cosα
√

1 − β2 with A, sin θh sinα
√

1 − β2 with B, the
indefinite integral of Eq. (E.1) in φm is then

∫
D(ωh, ωmα) dφm

=
β2

π

∫
1

(1 − (A cos(φh − φm) +B)2)2
dφm

=
β2

4π

(
2(A2 −B2 + 3B − 2)

((B − 1)2 − A2)3/2
tan−1

(
(A−B + 1) tan φh−φm

2√
(B − 1)2 − A2

)
+

2(A2 −B2 − 3B − 2)

((B + 1)2 − A2)3/2
tan−1

(
(B − A+ 1) tan φh−φm

2√
(B + 1)2 − A2

)
+

A sin(φh − φm)

((B − 1)2 − A2) (A cos(φh − φm) +B − 1)
+

A sin(φh − φm)

((B + 1)2 − A2) (A cos(φh − φm) +B + 1)

)
+ C, (E.3)
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with C being some constant. If the scale tilt α = 0, the above equation can
be simplified as∫

D(ωh, ωm) dφm =
β2

π

∫
1

(1 − A2 cos2(φh − φm))2
dφm

=
β2

2π

(
(A2 − 2)

(1 − A2)3/2
tan−1

(
tan(φh − φm)√

1 − A2

)
+

A2 sin(2(φh − φm))

(1 − A2)(A2 cos(2(φh − φm)) + A2 − 2)

)
+ C.

(E.4)

The lower bound of the integral is the minimal possible φm that satisfies
ωm · ωi > 0 and ωm · ωo > 0, the upper bound of the integral is likewise the
maximal possible φm that satisfies the same inequations.
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F. Interference on Flat and
Curved Thin Films
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Figure F.1: Thin-film interference. Left: thin-film reflection (blue arrows).
Right: thin-film reflection (blue) and the background component (red),
which is transmitted through the keratin layer, reflected on the melanin layer,
then transmitted back through the keratin layer.

Airy Formula [140] The optical path difference (OPD) for thin-film reflec-
tion and transmission is D = ηk(OA1+A1B)−ηaOP = 2dηk cos β (Fig. F.1).
Thus, the complex thin-film reflection coefficient r is computed as

r = rak + takrkatkae
i∆ψr + takrkar

2
katkae

2i∆ψr + . . .

= rak +
+∞∑
n=0

takrkatkae
i∆ψr

[
r2kae

i∆ψr
]n

= rak +
takrkatkae

i∆ψ

1 − r2kae
i∆ψ

, (F.1)
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and the complex thin-film transmission coefficient

t = taktka + takr
2
katkae

i∆ψ + takr
4
katkae

2i∆ψ + . . .

=
+∞∑
n=0

taktka
[
r2kae

i∆ψ
]n

=
taktka

1 − r2kae
i∆ψ

. (F.2)

The OPD for the TRT component is similarly computed as D′ = ηk(OA′ +
A′B) − ηaO′P ′ = 2dηk cos β′. Thus,

ITRT =
∣∣∣tramt′akt′ka + tramt

′
ak (r′ka)

2
t′kae

i∆ψ′
+ . . .

∣∣∣2
=

∣∣∣∣∣ tramt
′
akt

′
ka

1 − (r′ka)
2 ei∆ψ′

∣∣∣∣∣
2

. (F.3)

Thin-film interference with curvature We perform a 2D analysis of
curved thin film interference. Fig. F.2a shows parallel light hitting a hollow
cylindrical tube. The two indicated incident rays with the same axis of
symmetry interfere, as their outgoing directions are also parallel. The optical
path difference is the difference between the optical path length of the blue
and red paths. Further orders of interference are computed analogously.

We compare the reflectance off such a cylindrical tube as a function of the
difference between the incoming and outgoing directions, with λ = 520 nm,
d = 650 nm. We choose a large curvature radius rl = 40 µm and a small
curvature radius rs = 4 µm, and compare the reflectance with a flat thin film.
As shown in Fig. F.2b, there is almost no difference between the reflectance
off a flat and a curved keratin thin film, except at near-grazing angles, where
total internal reflection happens, as on a convex curved thin film ϕ′

t > ϕt.
These angles can generally not be observed due to the overlapping geometry
of the barbules, and the curvature radius is only small at the edge of the
barbule. Thus, we assume the barbule to be piecewise flat for simplicity.
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(a) Parallel rays hitting a cylindrical keratin tube
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(b) Reflectance with piecewise flat assumption (green) plotted against an-
alytically computed reflectance with curvature (blue and red). The red
plot has a curvature radius of 40 µm, which is almost indistinguishable
from the green plot. This is also the average curvature radius of a rock
dove neck feather barbule. The blue plot has a curvature radius of 4 µm,
showing a large difference at near-grazing angles. Such a small radius only
occurs at the edge of the barbule.

Figure F.2: Illustration and reflectance plot of interference on a curved thin
film.
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G. Melanin transmittance

In our model we consider thin-film interference of the keratin layer (R com-
ponent), and the transmission through the keratin layer times the reflec-
tion off the melanin layer times the transmission through the keratin layer
back into the eyes (TRT component), plus the transmission through the
barbule gaps (T component). As we have seen, the intensity of the TRT
component is already very low, and all subsequent components are ignored
because of melanin’s large absorptance. The refractive index of melanin is
1.648 + 0.0632i at 589 nm [112], which means an absorption coefficient of
α = 0.0632×4π

589 nm
= 0.0013 nm−1. After traveling 2 µm of melanin granules, the

light intensity would be attenuated by exp(−α×2 µm) = 6.7% , which is fairly
low. Melanin-rich dark human hairs also have very low transmittance [93].
Unlike on human hairs, bird feathers overlap substantially so that backlit
doesn’t occur, thus, to be able to reach the eyes, further components must
be reflected again on another feather underneath it, and possibly transmitted
again through the feather, causing even more light to be absorbed. Such a
contribution is very low.
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H. Ablation Study of Feather
Rendering Model Parameters

(a) reference (b) d = 500 nm (c) µ = −0.8

(d) b = 1 (e) H = 2.5 (f) θd = 0.1571

Figure H.1: Ablation study with parameters that differ from Chapter 5
(shown in (a)). One parameter is varied in each rendering: (b) keratin layer
thickness changed from 590 nm to 500 nm, (c) barbule orientation changed
from -0.35 to -0.8, (d) semi-minor axis changed from 0.25 to 1, (e) barbule
spacing changed from 1.25 to 2.5, (f) circular arc opening angle changed from
0.0785 to 0.1571.

Models for rendering hair or fur usually assume a circular cross-section
of the fibers. The first column of Fig. H.1 shows a comparison of our model
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(Fig. H.1a), which assumes an elliptical cross-section of the barbules, to the
BSDF produced by a circular cross-section (Fig. H.1d). Compared to the
scatterogram in Fig. 5.1d (top), our elliptical model is clearly much closer to
the measurement than a circular model.

We also provide such an ablation study in Fig. H.1 for other parameters.
As expected from Fig. 5.3, changing the thickness d of the keratin layer
produces different scattered colors (Fig. H.1b). Changing the spacing H and
orientation µ of the barbules affects the visible normal distribution and the
gap between the barbules, thus changing the intensity of the scattered light
(Figs. H.1c and H.1e). With an increased spacing between the barbules and
a larger inclination angle, the amount of transmitted light increases, so the
intensity of the reflection is lowered. Increasing the opening angle θd of the
barbule’s circular arc in the longitudinal direction increases the scattering
angle in the corresponding direction (Fig. H.1f).
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