
Deep Geometric Texture Synthesis

AMIR HERTZ∗, Tel Aviv University
RANA HANOCKA∗, Tel Aviv University
RAJA GIRYES, Tel Aviv University
DANIEL COHEN-OR, Tel Aviv University
Recently, deep generative adversarial networks for image generation have
advanced rapidly; yet, only a small amount of research has focused on gener-
ative models for irregular structures, particularly meshes. Nonetheless, mesh
generation and synthesis remains a fundamental topic in computer graphics.
In this work, we propose a novel framework for synthesizing geometric
textures. It learns geometric texture statistics from local neighborhoods
(i.e., local triangular patches) of a single reference 3D model. It learns deep
features on the faces of the input triangulation, which is used to subdivide
and generate offsets across multiple scales, without parameterization of
the reference or target mesh. Our network displaces mesh vertices in any
direction (i.e., in the normal and tangential direction), enabling synthesis
of geometric textures, which cannot be expressed by a simple 2D displace-
ment map. Learning and synthesizing on local geometric patches enables a
genus-oblivious framework, facilitating texture transfer between shapes of
different genus.

CCSConcepts: •Computingmethodologies→Neural networks; Shape
analysis.

Additional Key Words and Phrases: Geometric Deep Learning, Shape Syn-
thesis

ACM Reference Format:
Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. 2020. Deep
Geometric Texture Synthesis.ACMTrans. Graph. 39, 4, Article 108 (July 2020),
11 pages. https://doi.org/10.1145/3386569.3392471

1 INTRODUCTION
In recent years, neural networks for geometry processing have
emerged rapidly and changed the way we approach geometric prob-
lems. Yet, common 3D modeling representations are irregular and
unordered, which challenges the straightforward adaptation from
image-based techniques. Recent advances enable applying convolu-
tional neural networks (CNNs) on irregular structures, like point
clouds and meshes [Li et al. 2018a; Hanocka et al. 2019]. So far,
these CNN-based methods have demonstrated promising success
for discriminative tasks like classification and segmentation. On
the other hand, only a small amount of research has focused on
generative models for irregular structures, particularly meshes [Gao
et al. 2019].
∗Joint first authors.

Authors’ addresses: Amir Hertz, Tel Aviv University; RanaHanocka, Tel Aviv University;
Raja Giryes, Tel Aviv University; Daniel Cohen-Or, Tel Aviv University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART108 $15.00
https://doi.org/10.1145/3386569.3392471

Fig. 1. Learning local geometric textures from a reference mesh (gold) and
transferring it to a target mesh (giraffe).

In this work, we take a step forward in developing generative
models for meshes. We present a deep neural network that learns
the geometric texture of a single 3D reference mesh, and can transfer
its texture to any arbitrary target mesh. Our generative framework
uses a CNN to learn to model the unknown distribution of geometric
textures directly from an input triangular mesh. Our network learns
local neighborhoods (i.e., local triangular patches) from a reference
model, which is used to subdivide and generate offsets over the
target mesh to match the local statistics of the reference model. For
example, see Figure 1, where the geometric spikes of the reference

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

ar
X

iv
:2

00
7.

00
07

4v
1

 [
cs

.G
R

]
 3

0
Ju

n
20

20

https://doi.org/10.1145/3386569.3392471
https://doi.org/10.1145/3386569.3392471

108:2 • Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or

3D model are learned, and then synthesized on the target surface of
the giraffe.
In this work, we calculate deep features directly on the mesh

triangles and exploit a unique property of triangular meshes. Every
triangle inmanifold triangularmesh is adjacent to exactly three faces
(Figure 3), which defines a fixed-sized convolutional neighborhood,
similar in spirit to MeshCNN [Hanocka et al. 2019]. Our network
generates mesh vertex displacements to synthesize local geometries,
which are indistinguishable from the local statistics of the reference
texture. To facilitate learning the statistics of geometric textures
over multiple scales, we process the mesh using a hierarchy.We start
with a low-resolution mesh (e.g., an icosahedron), and iteratively
subdivide its faces and refine the geometry for each scale in the
hierarchy.
Our method of transferring geometric texture from a reference

model to a target model has notable properties: (i) it requires no
parameterization, of neither the reference nor target surface; (ii)
the target surface can have an arbitrary genus, which is not neces-
sarily compatible with the reference surface, and last but not least,
(iii) it is generative: reference patches are not copied or mapped,
instead, they are learned, and then probabilistically synthesized.
Note that geometric textures can be rather complex, as shown in
Figure 10, which cannot simply be expressed by 2D displacement
maps. Our network is given the freedom to displace mesh vertices
in any direction, i.e., not only along the normal direction, but also
tangentially.
We demonstrate results of transferring geometric textures from

single meshes to a variety of target meshes. We show that the refer-
encemesh can have a different genus than the targetmesh.Moreover,
we show that our generative probabilistic model synthesizes vari-
ations of the reference geometric texture based on different latent
codes.

Fig. 2. Our method is agnostic to the genus of both the reference and target
meshes. Learning the geometric texture on a cat with a genus of one, and
transferring it to the fertility statue with a genus of four.

2 RELATED WORK
Generative models have garnered significant attention since the
introduction of Generative Adversarial Network (GAN) [Goodfellow
et al. 2014]. GANs are commonly trained on a large data set (typically
images), attempting to generate novel samples that come from the
distribution of the training data. Recently, some works presented
GANs trained on a single image [Zhou et al. 2018; Shocher et al.
2018; Gandelsman et al. 2019; Shaham et al. 2019; Sun et al. 2019].
The basic idea is to learn the distribution of local patches from the
patches of the reference image, and then apply the knowledge in
various applications. In the same spirit, in this work, we learn the
distribution of local patches, but of 3D triangular meshes, which,
unlike images, have an irregular structure.

Deep generative models in 3D. In recent years, a large body of
works have proposed generating or synthesizing 3D shapes using
deep neural networks. 3D shapes are commonly represented by
irregular structures, which challenge the use of traditional convolu-
tional neural networks. Thus, early approaches proposed using a
volumetric representation, which naturally extends 2D image CNN
concepts to a 3D voxel grid [Wu et al. 2015, 2016]. However, applying
CNNs on 3D voxel-grids is highly inefficient, as it necessarily incurs
huge amounts of memory, particularly when a high resolution is
required.

On the other hand, a sparse and more direct portrayal of shapes
uses the point cloud representation, which is simple and native to
scanning devices. Achlioptas et al. [2018] pioneered the concept
of deep generative models for point clouds, using the operators
defined in pointnet [Qi et al. 2017a], which uses 1 × 1 convolutions.
Later, these ideas were extended to hierarchical structures and syn-
thesis [Qi et al. 2017b; Li et al. 2018b]. Recently, Yang et al. [2019]
proposed a probabilistic framework for generating 3D point clouds.
However, since the point cloud representation struggles to accu-
rately portray fine grained details [Hertz et al. 2020], it is not a
common choice for representing shapes in 3D art or animation.

Alternatively, a 3D object surface and the fine grained details can
be represented more accurately using some form of parameteriza-
tion. Groueix et al. [2018] propose representing surfaces as local
charts, and use a deep network to learn a 2D parameterization for
different tasks such as auto-encoders and surface reconstruction.
The concept of using local charts for 3D shape generation has been
further explored by Ben-Hamu et al. [2018]. Kostrikov et al. [2018]
propose generating surfaces through intrinsic networks. An alterna-
tive to an explicit surface is an implicit representation, for example
using a signed-distance function and extracting the surface from
its zero level-set. Recently, implicit fields have been proposed for
3D shape generation [Park et al. 2019; Chen and Zhang 2019; Chen
et al. 2019b].

The most common 3D representation in computer graphics is the
polygonal mesh, a favorite of many due to the efficient, yet accurate
portrayal of the underlying surface. Existing techniques for explicit
mesh generation typically deform a template mesh, which preserves
the genus and connectivity of the template. Pixel2Mesh [Wang et al.
2018] is a network for generating genus-0 shapes by deforming
a sphere from an input RGB image. DIB-R [Chen et al. 2019a] is
a differentiable renderer which was demonstrated to reconstruct

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

Deep Geometric Texture Synthesis • 108:3

Fig. 3. Method overview. Starting with the training input in the current scale in the hierarchy, we (1) add noise to the vertices and (2) extract local rotation
and translation invariant input features per triangular face. We (3) learn face-based equivariant convolutional kernels which learn to generate differential
displacements per vertex with respect to the input. Subdividing the generated mesh progresses to the next level in the hierarchy.

3D objects from images. SDM-Net [Gao et al. 2019] is a VAE-based
network for generating genus-0 mesh parts, yet, the collective sum
of the parts can define non-genus zero shapes.
The most related work is MeshCNN [Hanocka et al. 2019], a

neural network with operators that delete and un-collapse edges
from a mesh for discriminative tasks like segmentation. However,
unlike Hanocka et al. [2019], in this work, we propose a generative
network for synthesizing newmesh geometries. Since we learn from
local geometric patches, our framework is oblivious to genus, and
can transfer textures between arbitrary genus shapes (Figures 2 and
8).
Texture transfer on Meshes. Texturing a target surface has

been a fundamental problem in computer graphics. Basically, tex-
ture mapping requires parameterizing the target surface to define a
low-distortion mapping between the source surface and target sur-
face [Sorkine et al. 2002; Lévy et al. 2002; Sheffer et al. 2007]. In the
most common setting, the source surface is a plane with a trivial pa-
rameterization. Naively, mapping a topological disc with boundary
onto a manifold without boundaries, necessarily yields noticeable
seams, where the boundaries are mapped and form discontinuities.
Various works dealing with special textures with symmetries have
developed continuous seamless mappings between closed surfaces
(i.e., no boundaries) which have compatible genus [Aigerman et al.
2015; Aigerman and Lipman 2015; Knöppel et al. 2015; Campen et al.
2018].

Rather than mapping textures between surfaces, the textures
can be synthesized over the target surface. Ying et al. [2001] and
Turk et al. [2001] have presented texture synthesis techniques that
synthesize textures from a 2D exemplar directly on the triangles
of a target mesh. Their methods extend basic image space texture
synthesis techniques by forming local parameterization over the
mesh. Xu et al. [2009] present a more advanced method applied on
meshes which is based on texture optimization [Wexler et al. 2004;
Kwatra et al. 2005].

The above texture synthesis techniques are based on the premise
that there is a simple local mapping between patches on the target
and the source surfaces. Thus, they assume that the source surface
is a flat image with a trivial parameterization [Chen et al. 2012]. The
method we present does not map local patches, but learns the local
geometries from the source mesh and synthesizes local geometries
over the target mesh using a neural generative model. As noted
earlier, local geometries are often too complex to be modeled by a
simple 2D displacement maps. Recently, Liu and Jacobson [2019]
proposed an approach for cubic stylization, which can cubifiy a
3D mesh directly, without any parameterization. Applying as-rigid-
as-possible [Sorkine and Alexa 2007] reconstruction with an ℓ1
regularization on the normals leads to a cubic stylization that is
detail-preserving.

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

108:4 • Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or

Fig. 4. Multiscale training data generation. Given a reference mesh with geometric texture, we create a series of multi-resolution training data using an
optimization strategy. Starting with a low-res template mesh we repeatedly subdivide and optimize the mesh geometry, to obtain a training input with
increasing resolution.

3 DEEP GEOMETRIC TEXTURE SYNTHESIS
We present a framework for learning to synthesize the local geo-
metric texture from a single mesh. We learn the statistics of the
patches in a hierarchical, coarse-to-fine manner, where the input
to each level is a subdivided version of the output coarser level.
Figure 3 illustrates an overview of a single level in the hierarchy.
We train a generative adversarial network (GAN) on the patches
(i.e., local triangulations) of a single mesh, where the generator aims
to synthesize local mesh patches that are indistinguishable from the
reference patch.
Given a reference mesh with geometric textures, we create a

series of meshes which depict the reference mesh across multiple
resolutions. This multi-resolution series is used as input to train the
hierarchical network. We obtain thesemulti-scale training inputs via
a preliminary optimization strategy. Starting with a low-resolution
template mesh, the vertices are optimized such that its surface will
match the reference mesh. This template is repeatedly subdivided
and optimized to fit the reference, resulting in a multi-scale repre-
sentation of the reference mesh (example in Figure 4). From this
point forward, the reference mesh is discarded, and these multi-scale
training inputs are used to train the discriminator and generator.
Starting with the coarsest scale training mesh, we add Gaussian

noise to its vertices, which are then used as input to the network.
Then, we extract local geometric features per triangular face, which
are invariant to rigid transformations. The initial geometric features
pass through a series of face convolutions to learn deep features.
The output of the final convolutional layer is a displacement vector
per triangular face, which describes a displacement for each of the
three incident vertices. To generate the final displacement vector
per-vertex, we average the displacement vectors of all its incident
faces. The displaced mesh is then refined by a subdivision and fed
as input to the next level in the hierarchy.
The synthesized mesh in each scale is passed to the discrimina-

tor in the same scale, which learns to discriminate whether local
patches (i.e., faces) are real or fake. The discriminator trains face-
based convolutional kernels to abstract the input geometric features
to salient deep features, which indicate whether the local mesh is

synthesized or real. Note that the series of generators and discrimi-
nators have decreasing receptive fields that control the scale-space
for synthesizing the geometric textures, in a similar hierarchical
fashion as Shaham et al. [2019] demonstrated on images.

After training is complete, we discard the discriminators, and use
the series of multi-scale generators to displace vertices of any novel
target mesh. The scale space of the synthesized geometric texture is
determined by the scale of the generators employed. See for example
Figure 6, where the training input (gold) is transferred to a target
(gray) starting from the coarsest scale (left) to the finest scale (right).
Note that the target mesh may have a different triangulation and
genus from the training input data.
In the process, we exploit a unique property of triangle meshes:

the one-ring neighborhood of a mesh triangle has a fixed size of
three triangles (step (3) in Figure 3). Similar to the edge-based con-
volution in MeshCNN [Hanocka et al. 2019], we learn convolutional
kernels which operate on the faces of each triangle, and the three
neighboring faces of each triangle. We apply convolutions on the
features of each face and the neighboring 1-ring faces. To be in-
variant to the initial ordering of the mesh, we apply symmetric
functions to the features in the neighboring 1-ring, resulting in an
equivariant triangular face convolution.

3.1 Triangular Mesh Representation
A triangular mesh is a special type of graph defined by a set of
vertices and triangles: (V , F), where V = {v1,v2 · · ·vn } is the un-
ordered set of vertex positions in R3. The mesh connectivity, or
adjacency information, is designated by an unordered set of trian-
gular faces F = { f1, f2 · · · fm }, each containing a triplet of vertices,
which implicitly constructs the edges of the graph E = {e1, e2 · · · }
(pairs of vertices).

Input Features.At each resolution level, the input features to our
network are defined locally on each face and describe the relations
between each face and its three neighboring faces. We define a local
coordinate system for each edge in every face, where the origin is
the edge midpoint. We use the face normal to define a consistent
orientation for each local x , y, z axis. The local z-axis orientation

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

Deep Geometric Texture Synthesis • 108:5

Fig. 5. Unconditional mesh generation. Our method can unconditionally
generate meshes (top rows), or conditionally generate meshes in different
scale spaces. Higher levels in the scale space conditioned on a higher level
input mesh results in a synthesis that maintains the global structure of the
reference mesh.

is defined by the face normal, x-axis is the edge direction and y is
their cross product. Finally, we extract 4 features for each edge: edge
length and Cartesian coordinates of the opposite vertex to that edge,
projected onto the local coordinate system (see step 2 of Figure 3).
We denote the features of the three edges of the face f by the

matrix S ∈ R3×4, where each row contains the features of a single
edge. These features are invariant to translations and rotations of
the mesh. Moreover, these features contain enough information to
reproduce the mesh in any global position and orientation from any
face.

3.2 Symmetric Face Convolution
In our network, we first perform a 1 × 1 convolution on the input
features to learn an order invariant face feature embedding. Then,
we perform a symmetric convolution that takes into account the
three 1-ring neighbours of the face.

Face Feature Embedding. The geometric features per face serve
as input features to our face-based convolutional neural network,
which are subsequently abstracted to deep features. We denote the
dimension of the feature vector in convolution layer i by di . For the
first convolutional layer of the network, we extract neural features
f̂ ∈ Rd1 for each face side via a linear layer Ŝ = д (S |W ,b) = SW +b,
where S ∈ R3X 4 are the extracted features of that face, andW ∈
R4×d1 and b ∈ Rd1 are learned weights. As we want to generate a
face embedding that is invariant to the order of neighbouring faces,
we apply amax operation on the rows of Ŝ . This leads to an initial
face embedding f̂ that is invariant to rigid transformations and
mesh face order.

Convolutions on Faces. In the subsequent convolutions, the
input face features are the deep embedding from the previous layer.
Unlike the first block, in subsequent layers, the convolution operates
on the face feature vector and the 3 neighboring face feature vectors.
Abusing notation, denote by S ∈ R3×di the matrix whose rows
contains the intermediate face embedding of the neighbouring faces
of a face f and by f̂ ∈ Rdi its intermediate embedding. Then,
we define the linear operation for the face by д(S, f̂ |WS ,Wf ,b) =
SWS + f̂ TWf + b, whereWS ∈ Rdi×di+1 ,Wf ∈ Rdi×di+1 ,b ∈ Rdi+1
are the learned weights. To ensure the convolution is invariant
to the face ordering, we take a Max operation across the rows of
д(S, f̂ |WS ,Wf ,b).

Vertex displacement. In this work, the face-based convolutions
are used to build both the discriminator and generator networks.
The discriminator uses the deep feature embedding to distinguish
between real and fake faces, while the generator outputs 3D dis-
placement vectors which modify the input mesh geometry. The
generator outputs a single displacement vector per face, which is
used to displace its three vertices symmetrically.

Each face predicts a displacement vector that is shared across all
three vertices in that face, which is then projected onto the local
coordinate axis of each edge, respectively. Since each vertex is shared
by several faces, it receives multiple displacements. We average all
of them to calculate its final displacement. Note that while each face
predicts a symmetric displacement to each vertex, the vertices can
be moved in all directions since they receive displacements from all
the incident faces.

3.3 Subdivision and Multi-Scale Meshes
Realizing our goal to learn to synthesize geometric textures from
a reference mesh, requires defining a method for upsampling, or
subdividing the input mesh to achieve a hierarchical scale space.
After defining a subdivision operator, it will be used to iteratively
increase the resolution of some input mesh, such that with each
subdivision, additional details from the reference mesh are added to
the input mesh (see golden mesh in Figure 6).

Uniform Subdivision. In images upsampling is trivial, since
downsampling and upsampling results in the same connectivity,

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

108:6 • Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or

Fig. 6. Hierarchical texture scale space. A series of multi-scale generators are trained to synthesize geometric textures across multiple scales using the
multi-scale training inputs (gold). During test time the geometric textures are synthesized on a novel target shape (gray). The scale space of the synthesized
geometric texture is defined by the scale of the generators employed. The target shape is input to the first-level generator which synthesizes the first texture
scale in the output (left). This output is passed to the second-level generator which synthesizes the next scale, and so on.

i.e., the local scale space of the image grid is preserved. However,
for the irregular mesh structure, we must define an operator which
can upsample both the training and inference meshes in a similar
manner. For example, it is not sufficient to simply collapse edges in
some pre-defined order, and then restore the collapses, since there
would be no way of transferring this operation to a novel mesh. To
this end, we propose using a uniform subdivision operator, which
will have the same behavior on any given connectivity.

Uniform subdivision divides each face into four faces, by placing
a triangle inside each face (see step 5 of Figure 3). A vertex is placed
in the midpoint of every edge in the triangle, which increases the
mesh resolution by four. This operation is fixed, meaning that given
a specific connectivity (regardless of vertex placement), the uniform
subdivision will always generate the same mesh. This property
is desirable for transferring to novel target meshes which have a
different connectivity than the training mesh.
Multiscale Input Shapes. Given a reference mesh with geomet-

ric texture, we employ a pre-processing phase to prepare a series of
multi-scale input shapes which we will use for training. The user
defines a low resolution template which is iteratively subdivided and
deformed to match the reference mesh. The template was chosen to
be either: an icosahedron, torus or coarse mesh (simplified version
of the reference). Note that for a given reference mesh, the exact
tessellation will not be recovered using uniform subdivision from
some template. For this reason, we remesh the reference shape prior
to training, and only use the multi-scale inputs during training (i.e.,
discard the reference).
The proposed re-meshing procedure will generate a series of

multi-scale training inputs. We create increasing resolutions (or

scales) of the reference mesh via an optimization procedure. Starting
with a template mesh, we iteratively subdivide and minimize the
distance to the reference mesh. As the number of mesh elements
increase, the optimization will obtain a better fit to the reference
mesh.
We solve this optimization problem through back-propagation,

where the minimizer is the vertex locations of the training meshes.
The optimization objective is measured by a bi-directional Chamfer
distance between uniformly sampled points on both the reference
and the optimized mesh. This distance is the Euclidean distance
between each point on the training mesh and its closest point in the
reference (and vice-versa), in addition to a negative cosine similarity
between the normals on the meshes at those points.

We add two regularization terms to this optimization process to
obtain a locally uniform triangulation and a smooth shape. The first
(uniform) term encourages the minimization of the variance of the
edge lengths and the second (smoothness) term reduces the distance
between each vertex vi on the mesh to the average coordinate of
its one-ring: ������v − 1

di

∑
j :(i, j)∈E

vj

������ ,
where di is the degree of the vertex v .

3.4 Learning from a Single Mesh
We describe how we use our face-based convolutional layers to
design a GAN model (generator and discriminator) that learns the
local geometric statistics from a single mesh using a hierarchy of

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

Deep Geometric Texture Synthesis • 108:7

Fig. 7. Geometric texture synthesis which are learned from a reference shape (gold) and transferred to different target shapes. Textures can be synthesized
from natural shapes with geometric textures (e.g., the thorny lizard).

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

108:8 • Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or

Fig. 8. Latent synthesized textures. By sampling different noise vectors, we
can synthesize variations of the geometric texture.

generators. The generator network learns to predict vertex displace-
ments to generate local geometries which are indistinguishable from
the local statistics of the reference texture.
Hierarchical GAN training. We synthesize geometric textures

via a series of generators which create local geometries incremen-
tally. The output of a generator at a given level is local refinements
to the input mesh, which is subdivided and used as input to the
generator in the next level. In this manner, displacements in the
coarse generator correspond to large refinements on the final mesh,
and as the mesh progresses through the hierarchy, the generator
displacements become fine-grained. This eases the training since
each generator level only needs to capture the local refinements of
each scale.

The generator in our model receives an input mesh and a tensor of
noise z that is added to the input mesh vertices. Then, the generator
outputs a displacement vector per-face, which is applied on the
input mesh shape (without noise). The discriminator receives both
the modified input mesh (fake) and the corresponding real mesh (i.e.,
training shape with the same resolution) as input. An illustration of
the realmeshes for each level is shown in Figure 4. The discriminator
is patch-based, so it learns to classify whether faces are real or fake.
In other words, given an input mesh, the discriminator estimates a
probability per face of being real.
As with standard GAN training, the goal of the generator is to

fool the discriminator by generating shapes that are as similar to
the real mesh, and the goal of the discriminator is to be able to
distinguish between the generator output and the true mesh. We
use the WGAN-GP [Gulrajani et al. 2017] framework to train both.

Fig. 9. Transferring geometric texture from the spikey ball (shown in Fig-
ure 1) to a torus with different resolutions. Transferring the spikes to a
low resolution torus results in coarse texture scale space. Increasing the
resolution of the torus increases the transferred texture scale space.

In addition to the adversarial loss, we add also a reconstruction
loss as suggested in [Shaham et al. 2019]. We require that for a given
fixed noise vector z = c , the generator will be able to reconstruct
the real mesh. We use theMSE distance between the vertices of the
generated and real meshes. To combine the two loss functions, we
use a parameter γ to weight the reconstruction loss.

Training starts with the generator and discriminator in the coars-
est level. The input to the coarsest generator is the template (+
noise z = c), while the desired output (i.e., using reconstruction
and adversarial loss) is the training input in the coarsest level. Both
the generator and the discriminator are trained until convergence.
When progressing to train the next level, the generator from the
previous level is kept fixed. The output from the previous level is
subdivided and scaled and then input to the next level. After subdivi-
sion, we uniformly scale the mesh such that the mean-edge length is
preserved. We set c to be a fixed random noise vector in the coarsest
resolution, and a vector of zeros in the higher resolutions.

Inference. Our generator network is fully convolutional, and
therefore it can be applied to any mesh with any connectivity and
resolution. Given a new shape (i.e., target mesh), we use the genera-
tor to synthesize the learned local structures of the reference mesh.
This is achieved by scaling the target shape to have an average edge
length of one (i.e., input feature normalization). We use the target
shape plus random noise, as an input to the generator in one of
the lower resolutions in the hierarchy. This leads to transferring
the (local) structure of the reference mesh to the target mesh. Note,
unlike the reference mesh, the given connectivity of the target mesh
does not need to be re-meshed.

4 EXPERIMENTS
The reference meshes using for training our models are provided
by Thingi10K dataset [Zhou and Jacobson 2016] or built by hand.
Our PyTorch [Paszke et al. 2017] implementation as well as pre-
trained models and multiscale training meshes will be made publicly
available upon publication.

Each model contains 5 − 7 levels (scales), depending on the com-
plexity of the geometric texture in the reference mesh. Across all

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

Deep Geometric Texture Synthesis • 108:9

Fig. 10. Geometric textures with complex 3D displacements. The network learns to synthesize geometric textures from the reference geometry, whose
tangential movement is highlighted in a cross section illustration, respectively. Synthesizing the geometric textures on different target shapes (right - gray).

levels, the generator and discriminator have 7 layers of face convo-
lutions with instance normalization [Ulyanov et al. 2016] and leaky
ReLU. The face feature embedding dimension (d1 in Section 3.2), or
the output of the first convolution layer increases as we move up
the hierarchy. Starting with 32 in the first level, and reaching 128 at
the third level. From the fourth level and onward, we initialize both
the generator and the discriminator models, with the weights of the
previous level. Each level was trained for 2000 iterations using the
Adam optimizer [Kingma and Ba 2014] with a learning rate of 5e−4
and learning rate decay of 0.5 applied in intervals of 500 iterations.
In all experiments, the reconstruction weight γ was set to 5.
Hierarchical Generation. Our hierarchical training allows syn-

thesizing meshes starting from different levels of the generator.
When starting from the lowest level with the template, the gener-
ator outputs different meshes with different global structures (see
top rows of Figure 5). When synthesizing from higher levels by
using higher resolution inputs, the generator preserves the global
structure of the input and only deforms local regions on the mesh
(see bottom rows in Figure 5).

This hierarchical characteristic enables applying our model on a
variety of meshes with different resolutions during inference from
any given level. In general, we usually start from level 2-3 of the
source shape when performing the texture synthesis. However, this
is dependent on the training meshes, and the scale spaces that are
defined within each level. Some geometric textures require more
levels, while others can be compactly defined in a few levels.

We evaluate the pretrained models by applying them on unseen
target meshes. Figure 6 shows the hierarchical generation of textures.
Notice how the geometric texture is transferred gradually from the
source shape (in gold) to the target shape, where the process starts
using the source shape in a lower resolution and progresses while
increasing it.
Texture Synthesis. Figure 7 presents additional texture synthe-

sis for various unseen target meshes from different reference shapes.
Observe how our method is able to synthesize different geometrical
structures on directly on the target shape, without the use of any
parametrization.

A remarkable property of our approach is that it can process
pairs with a different genus. See for example the torus and the pig
in Figure 7. In Figure 2 the generator was trained on the cat model
(genus of one), and was transferred to a target fertility shape with a
genus of four.
Notice that the resolution (number of mesh faces) used in the

target shape determines the scale of the texture synthesized on
them. Figure 9 demonstrates this effect by synthesizing spikes on
a torus mesh, where we start from different mesh resolutions and
transfer the texture from levels 2 − 4 (top row). In all three cases,
we synthesized the textures using the same generator scales trained
on the spikey ball. Naturally, the resolution of the target affects the
size of the synthesized texture.

Latent Space Interpolation. Since our framework is generative,
it enables synthesizing different textures from the same reference
shape. This can be done by sampling different noise vectors, result-
ing in different synthesized textures on the target mesh. We show
examples on two different shapes and textures in Figure 8. Note
that since the generator was trained on a single reference mesh,
the differences in the synthesized texture on the same target shape
are solely due the noise vector. This enables smoothly interpolating
between shapes by simply interpolating over the latent variable that
was used for generation. Performing smooth interpolations between
shapes enables animation of the textures. We provide several such
examples in the supplementary material.

Comparison. We compare against OptCuts [Li et al. 2018c], a
state-of-the-art parameterization technique, in Figure 11. We man-
ually create a 2D displacement map which corresponds to the 3D
reference shape (gold), and use OptCuts to automatically calculate
the parameterization and cutting of the 3D mesh, resulting in a
mapping of the displacement map to the target mesh. We use the
UV mapping to displace vertices in the normal direction on the
target mesh. On the other hand, our technique learns to synthesize
geometric textures directly from a 3D reference mesh. Finally, it
can be seen that the edges of OptCuts textures are sharp. However,
automatically creating 2D displacement maps from 3D geometries is
non-trivial. Moreover, a 2D displacement map that moves geometry

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

108:10 • Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or

Fig. 11. Comparison to OptCuts [Li et al. 2018c] (left), which projects a
2D displacement map to the target surface. This UV mapping is used to
displace vertices in the normal direction. The 2D displacementwas estimated
manually from the 3D reference shapes in gold: cylinder and coronavirus.
Note the tangential displacements of the coronavirus are not captured
by a 2D displacement map. Our technique (right) learns to synthesize 3D
geometric textures directly from the reference mesh (gold).

in the normal direction is rather limited, since it does not encode
tangential movement (e.g., the coronavirus). Lastly, OptCuts took 10
minutes to compute a parameterization, while our technique only
requires a few seconds.

5 DISCUSSION AND FUTURE WORK
We have presented a novel concept for geometric texture synthesis,
which uses a generative framework to learn the local structures
from a given triangular mesh and then synthesizes it on different
target models. Our technique learns to match the local statistics of
a specified mesh model and transfers it to a target one. To the best
of our knowledge, this is the first generative model that learns from
a single mesh.

Fig. 12. Our method is limited to isometric textures. The vertical (cactus)
and horizontal (brick) texture direction is not transferred to to the duck.

A prominent advantage of our scheme is that it does not require
any parameterization of the reference or target shape. Given a model
with natural organic geometric texture (i.e., lizard Figure 6), which
is not given as a displacement map, it is not immediately obvious
how to employ a classic parameterization technique to transfer the
geometric texture to another (target) shape (i.e., squirrel Figure 6).
There is no generic method for decomposing an arbitrary surface
with geometric textures into a base and displacements. Furthermore,
not every geometric texture is simple enough to be represented
as displacements along the surface normal (e.g., reference shapes
with tangential movement in Figure 10). By contrast, our approach
receives a reference 3D model which contains geometric texture
(i.e., not a displacement map), and learns to synthesize geometric
structures by displacing vertices in all directions (e.g., not only along
the normal direction but also tangentially).

However, the presented method has its limitations. First, it learns
to synthesize local textures, and cannot capture large structures.
Moreover, it currently assumes that the geometric textures are sta-
tionary and isometric (e.g., Figure 12). Handling anistropic textures
would entail learning a directional field which can be transferred
from the reference to the target mesh, a difficult task in and of itself.
Moreover, even after the directional field is estimated, synthesizing
the final geometric texture from the directional field is not a trivial
task. Another limitation is that the hierarchical learning requires
the mesh to have a locally-uniform triangulation and well-behaved
subdivision structure. Currently, we achieve this via a preliminary
remeshing process. This remeshing procedure may fail on complex
shapes, e.g., thin and intertwined structures, and in general, where
the euclidean and geodesic distances differ significantly. In the fu-
ture we would like to relax this requirement, and build the hierarchy
by learning vertex splits.

While the focus of this work is geometric texture synthesis from
a single mesh, our approach opens the door for a variety of follow
up works. For example, it is possible to use the machinery devel-
oped in this work for transferring color texture or other attributes.
Furthermore, by learning different positions of the same shape, the
generative model can be used to interpolate between two positions
and thus, animate shapes in a controlled direction.

Another possible application of our method employs a geometric
texture transfer using a two-step mapping. First, we build a local
geometric texture on a simple shape such as a sphere or a torus,
where automatic or semi-automatic tools work well. Then, this
mesh is used as an intermediate shape toward the ultimate goal of
generating textures on the target mesh. This two-step method is
reminiscent of the 30+ year old work of Bier and Sloan [1986] for
texture mapping.
Learning to synthesize is a challenging task, especially when

it comes to irregular geometric data. The proposed face convolu-
tion facilitates the development of a GAN framework for triangular
meshes. Our learning-based technique leads to results that are diffi-
cult to achieve using state-of-the-art graphics tools, or requires a
tailored solution for each target shape. We believe that this work
is just a first step towards the development of more deep-learning
techniques for 3D generative mesh models.

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

Deep Geometric Texture Synthesis • 108:11

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their help-
ful comments. This work is supported by the NSF-BSF grant (No.
2017729), the European research council (ERC-StG 757497 PI Giryes),
ISF grant 2366/16, and the Israel Science Foundation ISF-NSFC joint
program grant number 2217/15, 2472/17.

REFERENCES
Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018. Learn-

ing Representations and Generative Models for 3D Point Clouds. In International
Conference on Machine Learning. 40–49.

Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte embeddings. ACM Trans.
Graph. 34, 6 (2015), 190–1.

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless surface mappings.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 72.

Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri, and Yaron Lipman. 2018.
Multi-chart generative surface modeling. In SIGGRAPH Asia 2018 Technical Papers.
ACM, 215.

Eric A Bier and Kenneth R Sloan. 1986. Two-part texture mappings. IEEE Computer
Graphics and applications 6, 9 (1986), 40–53.

Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2018. Seamless
Parametrization with Arbitrarily Prescribed Cones. arXiv preprint arXiv:1810.02460
(2018).

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson,
and Sanja Fidler. 2019a. Learning to predict 3d objects with an interpolation-based
differentiable renderer. In Advances in Neural Information Processing Systems. 9605–
9616.

Xiaobai Chen, Tom Funkhouser, Dan B Goldman, and Eli Shechtman. 2012. Non-
parametric texture transfer using meshmatch. Technical Report Technical Report
2012-2 (2012).

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2019b. BSP-Net: Generating Com-
pact Meshes via Binary Space Partitioning. arXiv:cs.CV/1911.06971

Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 5939–5948.

Yossi Gandelsman, Assaf Shocher, and Michal Irani. 2019. "Double-DIP": Unsupervised
Image Decomposition via Coupled Deep-Image-Priors. (6 2019).

Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang.
2019. SDM-NET: Deep generative network for structured deformable mesh. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–15.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
Advances in neural information processing systems. 2672–2680.

Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu Aubry.
2018. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation. In
CVPR 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. 2017. Improved training of wasserstein gans. In Advances in neural
information processing systems. 5767–5777.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Trans. Graph. 38, 4,
Article 90 (July 2019), 12 pages. https://doi.org/10.1145/3306346.3322959

Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. 2020. PointGMM: a
Neural GMM Network for Point Clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 12054–12063.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns
on Surfaces. ACM Trans. Graph. 34 (2015). Issue 4.

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2018.
Surface networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2540–2548.

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. 2005. Texture optimization
for example-based synthesis. In ACM Transactions on Graphics (ToG), Vol. 24. ACM,
795–802.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares
conformal maps for automatic texture atlas generation. In ACM transactions on
graphics (TOG), Vol. 21. ACM, 362–371.

Jiaxin Li, Ben M Chen, and Gim Hee Lee. 2018b. So-net: Self-organizing network for
point cloud analysis. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 9397–9406.

Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin Solomon, and Alla Sheffer.
2018c. OptCuts: Joint Optimization of Surface Cuts and Parameterization. ACM

Transactions on Graphics 37, 6 (2018). https://doi.org/10.1145/3272127.3275042
Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. 2018a. PointCNN. arXiv

preprint arXiv:1801.07791 (2018).
Hsueh-Ti Derek Liu and Alec Jacobson. 2019. Cubic stylization. ACM Transactions on

Graphics (TOG) 38, 6 (Nov 2019), 1âĂŞ10. https://doi.org/10.1145/3355089.3356495
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. arXiv preprint arXiv:1901.05103 (2019).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. In NIPS-W.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 652–660.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems. 5099–5108.

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. 2019. SinGAN: Learning a
Generative Model from a Single Natural Image. arXiv preprint arXiv:1905.01164
(2019).

Alla Sheffer, Emil Praun, Kenneth Rose, et al. 2007. Mesh parameterization methods
and their applications. Foundations and Trends® in Computer Graphics and Vision 2,
2 (2007), 105–171.

Assaf Shocher, Nadav Cohen, and Michal Irani. 2018. "zero-shot" super-resolution using
deep internal learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 3118–3126.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Sympo-
sium on Geometry processing, Vol. 4. 109–116.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion piecewise mesh parameterization. In Proceedings of the conference on
Visualization’02. IEEE Computer Society, 355–362.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A Efros, and Moritz Hardt.
2019. Test-Time Training for Out-of-Distribution Generalization. arXiv preprint
arXiv:1909.13231 (2019).

Greg Turk. 2001. Texture synthesis on surfaces. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. ACM, 347–354.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normalization:
The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).

NanyangWang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018.
Pixel2mesh: Generating 3d mesh models from single rgb images. In Proceedings of
the European Conference on Computer Vision (ECCV). 52–67.

Yonatan Wexler, Eli Shechtman, and Michal Irani. 2004. Space-time video completion.
In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., Vol. 1. IEEE, I–I.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016.
Learning a probabilistic latent space of object shapes via 3d generative-adversarial
modeling. In Advances in neural information processing systems. 82–90.

ZhirongWu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1912–1920.

Kai Xu, Daniel Cohen-Or, Tao Ju, Ligang Liu, Hao Zhang, Shizhe Zhou, and Yueshan
Xiong. 2009. Feature-aligned shape texturing. ACM Transactions on Graphics (TOG)
28, 5 (2009), 108.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normalizing
flows. In Proceedings of the IEEE International Conference on Computer Vision. 4541–
4550.

Lexing Ying, Aaron Hertzmann, Henning Biermann, and Denis Zorin. 2001. Texture
and shape synthesis on surfaces. In Rendering Techniques 2001. Springer, 301–312.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
2018. Non-stationary Texture Synthesis by Adversarial Expansion. ACM Trans.
Graph. 37, 4, Article 49 (July 2018), 13 pages. https://doi.org/10.1145/3197517.
3201285

ACM Trans. Graph., Vol. 39, No. 4, Article 108. Publication date: July 2020.

http://arxiv.org/abs/cs.CV/1911.06971
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3272127.3275042
https://doi.org/10.1145/3355089.3356495
https://doi.org/10.1145/3197517.3201285
https://doi.org/10.1145/3197517.3201285

	Abstract
	1 Introduction
	2 Related Work
	3 Deep Geometric Texture Synthesis
	3.1 Triangular Mesh Representation
	3.2 Symmetric Face Convolution
	3.3 Subdivision and Multi-Scale Meshes
	3.4 Learning from a Single Mesh

	4 Experiments
	5 Discussion and Future Work
	Acknowledgments
	References

