
Lagrangian Neural Style Transfer for Fluids

BYUNGSOO KIM, ETH Zurich
VINICIUS C. AZEVEDO, ETH Zurich
MARKUS GROSS, ETH Zurich
BARBARA SOLENTHALER, ETH Zurich

Fig. 1. Our Lagrangian neural style transfer enables novel artistic manipulations, such as time-coherent stylization of smoke, multiple fluids and liquids.

Artistically controlling the shape, motion and appearance of fluid simulations
pose major challenges in visual effects production. In this paper, we present
a neural style transfer approach from images to 3D fluids formulated in a
Lagrangian viewpoint. Using particles for style transfer has unique benefits
compared to grid-based techniques. Attributes are stored on the particles
and hence are trivially transported by the particle motion. This intrinsically
ensures temporal consistency of the optimized stylized structure and notably
improves the resulting quality. Simultaneously, the expensive, recursive
alignment of stylization velocity fields of grid approaches is unnecessary,
reducing the computation time to less than an hour and rendering neural
flow stylization practical in production settings. Moreover, the Lagrangian
representation improves artistic control as it allows for multi-fluid stylization
and consistent color transfer from images, and the generality of the method
enables stylization of smoke and liquids likewise.

CCS Concepts: • Computing methodologies → Physical simulation;
Neural networks.

Additional Key Words and Phrases: physically-based animation, fluid simu-
lation, deep learning, neural style transfer

Authors’ addresses: Byungsoo Kim, ETH Zurich, kimby@inf.ethz.ch; Vinicius C.
Azevedo, ETH Zurich, vinicius.azevedo@inf.ethz.ch; Markus Gross, ETH Zurich,
grossm@inf.ethz.ch; Barbara Solenthaler, ETH Zurich, solenthaler@inf.ethz.ch.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART1 $15.00
https://doi.org/10.1145/3386569.3392473

ACM Reference Format:
Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler.
2020. Lagrangian Neural Style Transfer for Fluids. ACM Trans. Graph. 39, 4,
Article 1 (July 2020), 10 pages. https://doi.org/10.1145/3386569.3392473

1 INTRODUCTION
In visual effects production, physics-based simulations are not only
used to realistically re-create natural phenomena, but also as a tool
to convey stories and trigger emotions. Hence, artistically control-
ling the shape, motion and the appearance of simulations is essential
for providing directability for physics. Specifically to fluids, the ma-
jor challenge is the non-linearity of the underlying fluid motion
equations, which makes optimizations towards a desired target dif-
ficult. Keyframe matching either through expensive fully-optimized
simulations [McNamara et al. 2004; Pan and Manocha 2017; Treuille
et al. 2003] or simpler distance-based forces [Nielsen and Bridson
2011; Raveendran et al. 2012] provide control over the shape of
fluids. The fluid motion can be enhanced with turbulence synthesis
approaches [Kim et al. 2008; Sato et al. 2018] or guided by coarse
grid simulations [Nielsen and Bridson 2011], while patch-based tex-
ture composition [Gagnon et al. 2019; Jamriška et al. 2015] enables
manipulation over appearance by automatic transfer of input 2D
image patterns.
The recently introduced Transport-based Neural Style Transfer

(TNST) [Kim et al. 2019a] takes flow appearance and motion control
to a new level: arbitrary styles and semantic structures given by
2D input images are automatically transferred to 3D smoke simula-
tions. The achieved effects range from natural turbulent structures

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

ar
X

iv
:2

00
5.

00
80

3v
1

 [
cs

.G
R

]
 2

 M
ay

 2
02

0

1:2 • B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler

𝜕ℒ/𝜕𝐼𝜃𝜕𝐼𝜃/𝜕𝑑
∗

𝒑𝑠 for style transfer

𝑑∗

ℐ𝑝2𝑔(𝐱
°, 𝜆°, ℎ, 𝐱⊞)

𝒑𝑐 for semantic transfer

𝑳
𝒐
𝒔
𝒔
𝑵
𝒆
𝒕𝒘
𝒐
𝒓
𝒌

ℒ

ℛ𝜃(𝑑
∗)

𝐼𝜃

𝜕𝑑∗/𝜕𝜆°

(or 𝜕𝐱°)

…

…

𝐱⊞ ∈ ℝ𝐷×𝐻×𝑊

𝐱° ∈ ℝ𝑁×3, 𝜆° ∈ ℝ𝑁×𝑚

+ +

Upscale to
𝑛𝐷 × 𝑛𝐻 × 𝑛𝑊

Multi-scale Density Reconstruction

Fig. 2. Overview of our LNST method. We optimize particle positions x◦ and attributes λ◦ to stylize a given density field d∗. We transfer information from
particles to the grid with the splatting operation Ip2д , and jointly update loss functions and attributes. The black arrows show the direction of the feed-forward
pass to the loss network L, and the gray arrows indicate backpropagation for computing gradients. For grid-based simulation inputs, we sample and re-simulate
particles in a multi-scale manner (Algorithm (1)).

to complex artistic patterns and intricate motifs. The method ex-
tends traditional image-based Neural Style Transfer [Gatys et al.
2016] by reformulating it as a transport-based optimization. Thus,
TNST is physically inspired, as it computes the density transport
from a source input smoke to a desired target configuration, al-
lowing control over the amount of dissipated smoke during the
stylization process. However, TNST faces challenges when dealing
with time coherency due to its grid-based discretization. The veloc-
ity field computed for the stylization is performed independently
for each time step, and the individually computed velocities are
recursively aligned for a given window size. Large window sizes are
required, rendering the recursive computation expensive while still
accumulating inaccuracies in the alignment that can manifest as
discontinuities. Moreover, transport-based style transfer is only able
to advect density values that are present in the original simulation,
and therefore it does not inherently support color information or
stylizations that undergo heavy structural changes.

Thus, in this work, we reformulate Neural Style Transfer in a La-
grangian setting (see Figure 2), demonstrating its superior properties
compared to its Eulerian counterpart. In our Lagrangian formula-
tion, we optimize per-particle attributes such as positions, densities
and color. This intrinsically ensures better temporal consistency
as shown for example in Figure 3, eliminating the need for the
expensive recursive alignment of stylization velocity fields. The La-
grangian approach reduces the computational cost to enforce time
coherency, increasing the speed of results from one day to a single
hour. The Lagrangian Style transfer framework is completely obliv-
ious to the underlying fluid solver type. Since the loss function is
based on filter activations from pre-trained classification networks,
we transfer the information back and forth from particles to the
grids, where loss functions and attributes can be jointly updated.
We propose regularization strategies that help to conserve the mass
of the underlying simulations, avoiding oversampling of styliza-
tion particles. Our results demonstrate novel artistic manipulations,
such as stylization of liquids, color stylization, stylization of multiple
fluids, and time-varying stylization.

Fig. 3. Neural color stylization [Christen et al. 2019] using the input Red
Canna applied to a smoke scene with TNST (top) and LNST (bottom). The
close-up views (dashed box, frames 60 and 66) reveal that LNST is more
time-coherent than TNST (dashed circle).

2 RELATED WORK
Lagrangian Fluids have become popular for simulating incompress-
ible fluids and interactions with various materials. Since the intro-
duction of SPH to computer graphics [Desbrun and Gascuel 1996;
Müller et al. 2003], various extensions have been presented that
made it possible to efficiently simulate millions of particles on a
single desktop computer. Accordingly, particle methods reached an
unprecedented level of visual quality, where fine-scale surface effects
and flow details are reliably captured. To enforce incompressibility,
the original state equation based method [Becker and Teschner 2007;
Monaghan 2005] has been replaced by pressure Poisson equation
(PPE) solvers using either a single source term for density invari-
ance [Ihmsen et al. 2014; Solenthaler and Pajarola 2009] or two PPEs
to additionally account for divergence-free velocities [Bender and
Koschier 2015]. Solvers closely related to PPE have been presented,
such as Local Poisson SPH [He et al. 2012], Constraint Fluids [Servin

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Lagrangian Neural Style Transfer for Fluids • 1:3

et al. 2012] and Position-based Fluids [Macklin and Mueller 2013].
Boundary handling is computed with particle-based approaches
that sample boundary geometry (e.g. [Gissler et al. 2019]) or implicit
methods that typically use a signed distance field (e.g. [Koschier and
Bender 2017]). Extensions include highly viscous fluids (e.g. [Peer
et al. 2015]), and multiple phases and fluid mixing (e.g. [Ren et al.
2014]). An overview of recent developments in SPH can be found in
the course notes of Koschier et al. [2019].

Hybrid Lagrangian-Eulerian Fluids combine the versatility of the
particles representation to track transported quantities with the
capacity of grids to enforce incompressibility. Among popular ap-
proaches, the Fluid Implicit Particle Method (FLIP) [Brackbill et al.
1988] was first employed in graphics to animate sand and water
[Zhu and Bridson 2005]. Due to its ability to accurately capture
sub-grid details it has been widely adopted for liquid simulations,
being extended to animation of turbulent water [Kim et al. 2006],
coupled with SPH for modelling small scale splashes [Losasso et al.
2008], improved for efficiency [Ando et al. 2013; Ferstl et al. 2016],
used in fluid control [Pan et al. 2013], and enhanced with better
particle distribution [Ando and Tsuruno 2011; Um et al. 2014]. The
Material Point Method (MPM) [Stomakhin et al. 2013] was used to
simulate a wide class of solid materials [Jiang et al. 2016]. Recent
work on hybrid approaches extended the information tracked by the
particles by affine [Jiang et al. 2015] and polynomial [Fu et al. 2017]
transformations. For a thorough discussion of hybrid continuum
models, we refer to Hu et al. [2019b].
Patch-based Appearance Transfer methods compute similarities

between source and target datasets in local neighborhoods, mod-
ifying the appearance of the source by transferring best-matched
features from the target dataset. Kwatra et al. [2005] employ lo-
cal similarity measures in an energy-based optimization, enabling
texture patches animated by flow fields. This approach was fur-
ther extended to liquid surfaces [Bargteil et al. 2006; Kwatra et al.
2006], and improved by modifying the texture based on visually
salient features of the liquid mesh [Narain et al. 2007]. Jamriška et al.
[2015] improved previous work with better temporal coherency and
matching precision for obtaining high-quality 2D textured fluids.
Texturing liquid simulations was also implemented in a Lagrangian
framework by using individually tracked surface patches [Gagnon
et al. 2016, 2019; Yu et al. 2011]. Image and video-based approaches
also take inspiration from fluid transport. Bousseau et al. [2007]
proposed a bidirectional advection scheme to reduce patch distor-
tions. Regenerative morphing and image melding techniques were
combined with patch-based tracking to produce in-betweens for
artist-stylized keyframes [Browning et al. 2014]. Recent advances
in patch-based appearance transfer often rely on evaluating the
underlying 3D geometric information; examples include improving
template matching by a novel similarity measure [Talmi et al. 2017],
patch matching for illumination effects [Fišer et al. 2016], extensions
to texture mapping [Bi et al. 2017] and intricate texture motifs [Dia-
manti et al. 2015]. While these approaches were successful in 2D
settings and for texturing liquids, they cannot inherently support
3D volumetric data.

Velocity Synthesis methods augment flow simulations with veloc-
ity fields, which manipulate or enhance volumetric data. Due to the

inability of pressure-velocity formulations to properly conserve dif-
ferent energy scales of flow phenomena, sub-grid turbulence [Kim
et al. 2008; Narain et al. 2008; Schechter and Bridson 2008] was
modelled for better energy conservation. These approaches were
extended to model turbulence in the wake of solid boundaries [Pfaff
et al. 2009], liquid surfaces [Kim et al. 2013] and example-based
turbulence synthesis [Sato et al. 2018]. In order to merge fluids
of different simulation instances [Thuerey 2016] or separated by
void regions [Sato et al. 2018], velocity fields where synthesized by
solving an unconstrained energy minimization problem. Lastly, the
Transport-based Neural Style Transfer (TNST) [Kim et al. 2019a]
can also be seen as a velocity synthesis method: at each time-step,
the method optimizes a velocity field that transports the smoke
towards a desired stylization.
Machine Learning & Fluids was first introduced to graphics by

Ladický et al. [2015]. They used Regression Forests to predict posi-
tions of fluid particles over time, resulting in a substantial perfor-
mance gain compared to traditional Lagrangian solvers. CNN-based
architectures were employed in Eulerian-based solvers to substi-
tute the pressure projection step [Tompson et al. 2017; Yang et al.
2016] and to synthesize flow simulations from a set of reduced pa-
rameters [Kim et al. 2019b]. An LSTM architecture [Wiewel et al.
2019] predicted changes on pressure fields for multiple subsequent
time-steps, speeding up the pressure projection step. Differentiable
fluid solvers [Holl et al. 2020; Hu et al. 2020, 2019a; Schenck and
Fox 2018] have been introduced that can be automatically coupled
with deep learning architectures and provide a natural interface for
image-based applications. Patch-based [Chu and Thuerey 2017] and
GAN-based [Xie et al. 2018] fluid super-resolution enhance coarse
simulations with rich turbulence details, while also being compu-
tationally inexpensive. While these approaches produce detailed,
high-quality results, they do not support transfer of arbitrary smoke
styles.
Differentiable Rendering and Stylization is used in Neural Style

Transfer algorithms to transfer the style of a source image to a tar-
get image by matching features of a pre-trained classified network
[Gatys et al. 2016]. However, stylizing 3D data requires a differen-
tiable renderer to map the representation to image space. Loper and
Black [2014] proposed the first fully differentiable renderer with
automatically computed derivatives, while a novel differentiable vol-
ume sampling was implemented by Yan et al. [2016]. Raster-based
differentiable rendering for meshes for stylization with approxi-
mate [Kato et al. 2018] and analytic [Liu et al. 2018] derivatives
was proposed to approximate visibility changes and mesh filters,
respectively. A cubic stylization algorithm [Liu and Jacobson 2019]
was implemented by minimizing a constrained energy formulation
and employed to mesh stylization. Closer to our work, Kim et al.
[2019a] defines an Eulerian framework for a transport-based neural
style transfer of smoke. Their approach computes individually styl-
ized velocity fields per-frame, and temporal coherence is enforced
by aligning subsequent stylization velocity fields and performing
smoothing. We compare the Eulerian approach with our method in
the subsequent sections. For an overview on differentiable rendering
and neural style transfer we refer to Yifan et al. [2019] and Jing et
al. [2019], respectively.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:4 • B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler

3 EULERIAN TRANSPORT-BASED NST
We briefly review previous Eulerian-based TNST [Kim et al. 2019a]
for completeness and to better compare against our novel Lagrangian
approach. Transport-Based Neural Style Transfer (TNST) extends
the original NST algorithm to transfer the style of a given image to a
flow-based 3D smoke density. As opposed to NST where individual
pixels of the target image are optimized, TNST optimizes a velocity
field that modifies density values through indirect smoke transport.
The velocity field v̂ that stylizes the input density d is defined by a
loss function L computed from a pre-trained image classification
CNN by

v̂ = argmin
v

∑
θ ∈Θ
L(Rθ (T (d, v)) , p), (1)

where T is a transport function that advects d with v, generating
the stylized density d̂ = T(d, v̂); R is a differentiable renderer con-
verting the density field to image-space for a specific view θ by
I = Rθ (d̂), and p denotes the set of user-defined parameters used
in the stylization process. The velocity field contributions are in-
dividually computed per view, resulting in a 3D volumetric smoke
stylization. While the authors separate the velocity field into its
irrotational and incompressible parts which can be optimized inde-
pendently, we omit this here for simplicity.

The loss function is subdivided into semantic and style losses for
additional control over artistic stylization given a rendered density
field. Style transfer considers an input image and user-selected
activation layers (levels of features), while semantic transfer selects
a CNN layer with desirable attributes that will be transferred to
the target stylized smoke. Since the smoke is advected towards a
target objective, this guarantees that the original smoke shape and
semantics is enforced without matching its original content loss, as
in traditional NST algorithms [Gatys et al. 2015]. For simplicity, we
restrict our discussion to the style loss, which is given by

Ls (I , ps) =
L∑
l

[
1

4C2
l (Hl ×Wl)2

Cl∑
m,n

(
Gl
mn (I) −Gl

mn (Is)
)2]
, (2)

where the Gram matrix G computes correlations between different
filter responses. The Gram matrix is calculated for a given layer l
and two channelsm andn, by iterating over all pixels of the flattened
1-D feature map F̂ l (I) as

Gl
mn (I) =

Hl×Wl∑
i
F̂ l
mi (I) F̂

l
ni (I). (3)

Extending the single frame stylization in a time-coherent fashion
is expensive and inaccurate when computed in an Eulerian frame-
work. TNST aligns stylization velocities by recursively advecting
them with the simulation velocities for a given window size as
shown in Figure 4. The recursive nature renders this computation
inefficient time- and memory-wise, especially when large window
sizes are employed to enable smooth transitions between consecu-
tive frames. Due to the large memory requirement, this operation
often has to be computed on the CPU, which generates additional
overhead by the use of expensive data transfer operations.

Fig. 4. Recursive temporal alignment in TNST. For a window size w , (w2 −
1)/4 recursive temporal alignment steps are performed for each stylization
velocity v̂. Colors indicate the distance to frame t , and arrows refer to
advection steps (with recursive steps shown as dashed lines).

4 LAGRANGIAN NST
In contrast to its Eulerian counterpart, the Lagrangian representa-
tion uses particles that carry quantities such as the position, den-
sity and color value. Neural style transfer methods compute loss
functions based on filter activations from pre-trained classification
networks, which are trained on image datasets. Thus, we have to
transfer the information back and forth from particles to the grids,
where loss functions and attributes can be jointly updated. We
take inspiration from hybrid Lagrangian-Eulerian fluid simulation
pipelines that use grid-to-particle Iд2p and particle-to-grid Ip2д
transfers as

λ◦ = Iд2p (x◦, λ+) and λ+ = Ip2д(x◦, λ◦,h, x+), (4)

where λ◦ and λ+ are attributes defined on the particle and grid,
respectively, x◦ refers to all particle positions, x+ are grid nodes
to which values are transferred, and h is the support size of the
particle-to-grid transfer.
Our grid-to-particle transfer employs a regular grid cubic inter-

polant, while the particle-to-grid transfer uses standard radial basis
functions. Regular Cartesian grids facilitate finding grid vertices
around an arbitrary particle position. For this, we extended a differ-
entiable point cloud projector [Insafutdinov and Dosovitskiy 2018]
to arbitrary grid resolution, neighborhood size and custom kernel
functions. Given all the neighboring particles j ∈ ∂Ωx around a grid
node x, a grid attribute λ+ is computed by summing up weighted
particle contributions as

λ+ (x) =
∑
j ∈∂Ωx λ

◦
j W (| |x − xj

◦ | |,h)∑
j ∈∂Ωx W (| |x − xj◦ | |,h)

, (5)

where we choseW to be the cubic B-spline kernel, which is also
often used in SPH simulations [Monaghan 2005]:

W (r ,h)cubic =

2
3 − r2 +

1
2r

3, 0 ≤ r ≤ 1,
1
6 (2 − r)3, 1 ≤ r ≤ 2,
0, r > 2.

(6)

We now have all the necessary elements to convert the previous
Eulerian style transfer (Equation (1)) into a Lagrangian framework.
Given a set of Lagrangian attributes Λ◦, the optimization objective
for a single frame is

Λ̂◦ = argmin
Λ◦

∑
θ ∈Θ

∑
λ◦∈Λ◦

wλ◦ L(Rθ (Ip2д(x◦, λ◦), p), (7)

where wλ◦ are weights for the losses that include Lagrangian at-
tributes. In case of particle position x◦ given as the target quantity
λ◦, we use the SPH density Ip2д(x◦) =

∑
j ∈∂Ωx mjW (| |x − x◦j | |,h),

wheremj represents themass of the j-th particle [Bender 2016]. Note
that our losses are evaluated similarly as in the original Eulerian

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Lagrangian Neural Style Transfer for Fluids • 1:5

method, since the gradients computed in image-space also mod-
ify grid values (λ+). However, these gradients are automatically
propagated back to the particles by auto-differentiating the particle-
to-grid Ip2д function. Thus, our method only reformulates the do-
main of the optimization, sharing the same stylization possibilities
(semantic and content transfers) as in the original TNST.

Since the Lagrangian optimization is completely oblivious to the
underlying solver type, the chosen attributes for creating styliza-
tions can be arbitrarily combined, enabling a wide range of artistic
manipulations in different scene setups. We outline two strategies
and demonstrate their impact on the stylization. The first one is par-
ticularly suitable for participating volumetric data, which are often
simulated with grid-based solvers. It involves optimizing a scalar
value carried by the Lagrangian stylization particles by Equation (7).
For most of our smoke scenes, this scalar value is the density, though
it can also be the color or emission. The regularization term

L(λ◦)ρ = (
∑

∆λ◦)2 −
∑

log | |∆λ◦ | |1 (8)

reinforces the conservation of the original amount of smoke. It
minimizes the total net smoke change, preventing the stylization to
undesirably fade out particles and keeping changes non-zero by min-
imizing cross-entropy loss at the same time. Figure 5 demonstrates
the impact of different regularizer weights.

Fig. 5. Different weights for the density regularization show the trade-off
between pronounced structures and conservation of mass. The images on
the left show results with zero, low, and high weights, respectively, and the
right image is the ground truth.

The second strategy is suitable if the underlying fluid solver is
particle-based or hybrid, which is often the case for liquids. For these
simulations, we can define particle position displacements as the
optimized Lagrangian attributes. However, generating stylizations
by modifying particle displacements may cause cluttering or regions
with insufficient particles. The regularization penalizes irregular
distribution of particle positions and is defined as

L(x◦)∆x = | |Ip2д(x◦) − ρ+0 | |
2
2 , (9)

where ρ+0 corresponds to the rest density for cells that contain parti-
cles, and is zero otherwise. Note that Equation (9) does not account
for the particle deficiency near fluid surfaces. This could be ad-
dressed by adding virtual particles [Schechter and Bridson 2008] or
applying (variants of) the Shepard correction to the kernel function
[Reinhardt et al. 2019]. We show the impact of this regularizer on
the particle sampling in Figure 6, highlighting the trade-off between
uniform distribution and stylization strength.

Fig. 6. Different weights for the position regularization show the trade-off
between pronounced structures and uniform sampling. The images on the
left show results with zero, low, and high weights, respectively, and the right
image is the ground truth.

We notice that both regularizations in Equation (8) and Equa-
tion (9) are different incarnations of the mass conservation property
commonly used in fluid simulations. In TNST, mass conservation
is enforced by decomposing the stylization velocities into their
irrotational and incompressible parts, which can be optimized inde-
pendently. Both techniques enable a high degree of artistic control
over the content manipulation.

4.1 An Efficient Particle-Based Smoke Re-Simulation
If the input is a grid-based simulation, we have to sample and re-
simulate particles. We can use a sparse representation with only
one particle per voxel, in constrast to hybrid liquid simulations that
usually sample 8 particles per voxel to properly capture momentum
conservation [Zhu and Bridson 2005]. Combining a low number
of particles with a position integration algorithm that accumulates
errors over time will yield irregularly distributed particles [Ando
and Tsuruno 2011]. This manifests in a rendered image as smoke
with overly dense or void regions. We therfore solve the following
optimization problem

x̂◦, ρ̂◦ = argmin
x◦,ρ◦

∑
t
| |Ip2д(x◦t , ρ◦t) − ρ+t | |

2
2 . (10)

The optimization problem presented above is not only severely
under-constrained but also has a time-varying objective term, and
optimizing for Equation (10) is challenging if tackled jointly for
both particle positions x◦ and densities ρ◦. Thus, we use a heuris-
tic approach for solving this optimization, subdividing it into two
steps, position optimization and multi-scale density update (Sec-
tion 4.1.1). Firstly, we minimize the irregular distribution of particle
positions by employing a position-based update, optimizing particle
distributions using Equation (9) as objective. The distribution of
the particles is optimized per frame and serves as an input for opti-
mizing subsequent frames, enabling temporally coherent position
updates. Equation (9) can be automatically computed by our fully
differentiable pipeline.

4.1.1 Multi-scale Density Representation. In addition to the position
update, we also compute smoke densities individually carried by the
particles to further eliminate small gaps that may appear due to the
sparse discretization, further enhancing the solution of Equation (10).
Owing to the low number of sampled particles and the mismatches

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:6 • B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler

(a) (b) (c)

(d) (e) (f)

Fig. 7. Comparison of different re-simulation strategies. (a): ground truth
density, (b): constant density carried by particles, (c): (b) with redistribution
by Equation (9), (d): single-scale sampled density, (e): (d) with redistribution,
(f): multi-scale (ns = 3) sampled density with redistribution (final method).

between grid and particle transfers, carrying a constant density
will either produce grainy (Figure 7, (b)) or diffuse (Figure 7, (c))
volumetric representations, depending on if particle re-distribution
(Equation (9)) is applied or not. A simple approach is to interpolate
density values directly from the grid over time. Larger kernel sizes
could be used to remedy sparse sampling, but would excessively
smooth structures and degrade quality.
We take inspiration from Laplacian pyramids, where distinct

grid resolution levels are treated separately. In our case, we com-
pute residuals of different support kernel sizes of the particle-to-
grid transfer. This efficiently captures both low- and high-frequency
information, covering potentially empty smoke regions while also
providing sharp reconstruction results. The residual computation
of kernels of varying support sizes is synergistically coupled with
matching grid resolutions, which creates an efficient multi-scale
representation of the smoke.
The multi-scale reconstruction works as follows: we first sam-

ple grid densities to the particles. This represents the smoke low-
frequency information, whichwe interpolate to the particle variables
ρ◦0 . The variables above the first level (e.g., ρ

◦
1 , ρ
◦
2) will carry residual

information computed between subsequent levels. The Lagrangian
representations vary between each level because they perform grid-
to-particle transfers with progressively reduced kernel support sizes.
To compare residuals between Lagrangian representations, we make
use of particle-to-grid transfers, which act as a low-pass filter, simi-
larly to blurring operations of Laplacian pyramids. This process is
performed until the original grid resolution is matched. Our multi-
scale density representation is summarized in Algorithm (1). Figure 7
illustrates the impact of using a single scale without (d) and with
(e) particle re-distribition (Equation (9)). The multi-scale result with
re-distribution (f), which corresponds to our final method, has a

higher PSNR (31.89) than its single-scale counterpart (31.39) and is
very close to the ground truth (a).

Algorithm 1:Multi-scale Density Reconstruction
Data: Particle positions x◦ optimized by Equation (9)
Original grid-based smoke simulation ρ+

Grid node positions x+

Coarsest support kernel radius r
Number of pyramid subdivisions ns
Result:Multi-scale residual density ρ◦ stored on particles

1 ρ◦0 ← Iд2p (x
◦, ρ+)

2 ρ+∗ ← Ip2д(x◦, ρ◦0 , r , x
+)

3 for i ← 1 to ns do
4 ρ+∗ ← ρ+ − ρ+∗
5 ρ◦i ← Iд2p (x

◦, ρ+∗)
6 r ← r

2
7 ρ+∗ ← ρ+∗ + Ip2д(x◦, ρ◦i , r , x

+)
8 end

4.2 Temporal coherency
The major advantage of our Lagrangian discretization is the in-
expensive enforcing of temporal coherency. Since quantities are
carried individually per particle, it is intrinsically simple to track
how attributes change over time. Neural style gradients are com-
puted on the grid and need to be updated once the neighborhood
of a particle changes. To ensure smooth transitions, we apply a
Gaussian filter over the density changes of a particle, as shown in
Figure 8. Besides being sensitive to density neighborhood changes,
stylization gradients are also influenced by the density carried by
the particle itself (Section 4.1.1).

Density Value

Stylization Gradients

Smoothed Gradients

𝑡0 𝑡5𝑡4𝑡3𝑡2𝑡1

Fig. 8. Particle density (circles) variation for a single particle over time.
Temporal coherency is enforced by smoothing density gradients used for
stylization from adjacent frames.

To further improve efficiency, and in contrast to TNST, we can
keyframe stylizations, i.e., apply stylization to keyframes and inter-
polate particle attributes in-between. In practice, we reduced the
stylization frames by a factor of 2 at max, but more drastic approx-
imations could be used. Sparse keyframes still show temporally
smooth transitions, but quality is degraded. Nevertheless, sparse
keyframing would still be useful for generating quick previews of
the simulation. The impact of sparse keyframing (every 10 frames)
is shown in Figure 9.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Lagrangian Neural Style Transfer for Fluids • 1:7

Fig. 9. Stylization of every frame (left three images) versus keyframed
stylization every 10 frames (images on the right). Sparse keyframing is
visually similar and can be useful for quick previews.

5 RESULTS
We implemented the method with the tensorflow framework and
computed results on a TITAN Xp GPU (12GB). We used mantaflow
[Thuerey and Pfaff 2018] for smoke scene generation, a 3D smoke
dataset from Kim et al. [2019a] for comparisons with TNST, a
2D smoke dataset from Jamriška et al. [2015] for color stylization,
SPlisHSPlasH [Bender 2016; Koschier et al. 2019] for liquid simula-
tions and Houdini for rendering.

Performance. Using particles for stylization eliminates the need
for recursively aligning stylization velocities from subsequent frames,
which notably improves the computational performance. In combi-
nation with our sparse particle respesentation for smoke (1 particle
per cell), simulations of size 200 × 300 × 200 can now be stylized
within an hour instead of a day (TNST). The computation time per
frame is 0.66 minutes for the Smoke Jet scene shown in Figure 11,
which is a speed-up of a factor of 20.41 compared to TNST. This
improvement allows artists to more easily test different reference
structures (input images) and hence renders neural flow styliza-
tion better applicable in production environments. Table (1) gives
an overview of the timings and parameters for the individual test
scenes. Keyframing (every other frame) was applied to the Smoke
Jet (Figure 11) and Double Jets (Figure 12) examples.

Table 1. Performance table.

Scene Resolution # Particles Time (m/f)
Moving Sphere (Fig. 10) 192 × 192 × 192 237K 0.8
Smoke Jet (Fig. 11) 200 × 300 × 200 1.2M 0.66
Double Jets (Fig. 12) 200 × 200 × 200 2M/2M 0.45
Chocolate (Fig. 13) 200 × 200 × 200 80K 0.05
Colored Smoke (Fig. 3) 800 × 800 136K 1.21
Dam Break (Fig. 14) 512 × 1024 23K 0.58
Double Dam (Fig. 15) 512 × 1024 31K/8K 0.65

Time-coherency. To illustrate the benefit of the Lagrangian for-
mulation, we use a simple test scene where we initialize a smoke
sphere with a uniform density. We then move the smoke artificially
to the right, and apply the neural stylization to every frame of the
sequence. We compare the results of LNST and TNST for different
time instances in Figure 10. The top row shows the results of TNST.
It can be seen that TNST is not able to preserve constant stylized
textures in regions where the density function does not change. This
is due to the recursive alignment of stylization gradients, which
accumulate errors especially for bigger window sizes. The second

Fig. 10. Selected frames of a stylized moving smoke sphere. From top to
bottom: TNST with structures changing over time, LNST with temporally
coherent structures, LNST result with applied shearing, and LNST result
with noise-added density inducing style variation over time.

row shows the corresponding results with LNST, demonstrating
consistent stylization over time since gradients are constant. Also
when applied a shearing deformation to the sphere, as shown in
the third row, strucutures remain coherent. If an artist prefers to
have changing structures in such situations, noise can be added
to the densities carried by the particles, which in turn will induce
stylization gradients as shown in the last row.

Smoke Stylization. Figure 11 shows a direct comparison of LNST
and TNST applied to the smoke jet dataset of Kim et al. [2019a].
While the resulting structures inherently depend on the under-
lying representation, they naturally differ and cannot be directly
compared with each other. It can be observed, however, that the
Lagrangian stylization may lead to more pronounced structures,
well visible in the semantic transfer net and the style transfer blue
strokes, and that boundaries are smoother, noticeable in the Seated
Nude example.

Multi-fluid Stylization. Stylization of multiple fluids is naturally
enabled by stylizing different sets of particles with different input
images. Figure 12 shows a simulation of two smoke jets colliding,
where the left one is stylized with the semantic feature net and
the right one with the style transfer of the input image spirals.
Transferred structures are retained per fluid type even if the flow
undergoes complex mixing effects.

Stylization of Liquids. We use a simple differentiable renderer
for stylization of liquids. Unlike smoke renderer, which integrates
media radiance scattered in the medium, we compute the amount
of diffused light, i.e., absorbed light except transmitted by its liquid
volume [Ihmsen et al. 2012], which is given by

τ (x, r) = e−γ
∫ x

0 d (r) dr

Ii j = 1 − τ (rmax , r).
(11)

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:8 • B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler

Fig. 11. Semantic transfer applied to the smokejet simulation of [Kim et al. 2019a] (leftmost column). Stylized results are shown for our LNST (top) and TNST
(bottom) for semantic feature transfer net (second column) and input images blue strokes, Seated Nude, and fire (last three columns)1.

Fig. 12. Two colliding smoke jets, which are stylized individually with the semantic feature net and input image spirals. The Lagrangian representation enables
coherent stylization of multiple fluids even if the flow undergoes complex mixing.

Figure 13 shows the results of a stylized SPH simulation computed
with SPlisHSPlasH [Bender 2016]. We applied the patterns spiral
and diagonal to a thin sheet simulation.

Fig. 13. Thin sheet SPH simulation computed with SPlisHSPlasH [Bender
2016] stylized with the patterns spiral and diagonal.

Color Transfer. We transfer color information from input images
to flow fields by storing a color value per particle and optimizing it
by Equation (7). This can be applied to any grid-based or particle-
based smoke or liquid simulation. In Figure 14 we applied the color
stylization to a 2D dam break simulation using different example
images, and in Figure 15 to two liquids with distinct types (and hence
color). The accompanying videos show that local color structures
change very smoothly over time, which is attributed to the improved
time-coherency of the Lagrangian stylization. This is especially well
visible in Figure 3, where two subsequent frames are shown for
TNST and LNST. In this example, we have transferred the style blue
stroke to a smoke scene. The close-up views reveal discontinuities
for TNST, while LNST shows smooth transitions for color structures.

1Image sources: http://storage.googleapis.com/deepdream/visualz/tensorflow_
inception/index.html, https://github.com/byungsook/neural-flow-style

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Lagrangian Neural Style Transfer for Fluids • 1:9

Fig. 14. Lagrangian color stylization applied to a 2D particle-based liquid simulation using the input images Kanagawa Wave, Red Canna and Starry Night.

Fig. 15. Lagrangian color stylization applied to a mixed 2D particle-based liquid simulation using the input images Kanagawa Wave and fire.

6 DISCUSSION AND CONCLUSION
Wehave presented a Lagrangian approach for neural flow stylization
and have demonstrated benefits with respect to quality (improved
temporal coherence), performance (stylization per frame in less
than a minute), and art-directability (multi-fluid stylization, color
transfer, liquid stylization). A key property of our approach is that
it is not restricted to any particular fluid solver type (i.e., grids,
particles, hybrid solvers). To enable this, we have introduced a
strategy for grid-to-particle transfer (and vice versa) to efficiently
update attributes and gradients, and a re-simulation that can be
effectively applied to grid and particle fluid representations. This
generality of our method facilitates seamless integration of neural
style transfer into existing content production workflows.

A current limitation of the method is that we use a simple differen-
tiable renderer for liquids. While this works well for some scenarios,
a dedicated differentiable renderer for liquids would improve the
resulting quality and especially also support a wider range of liquid
simulation setups. Similar to the smoke renderer, such a liquid ren-
derer must be differentiable as gradients are back-propagated in the
optimization. It must also be efficient as the renderer is used in each
step of the optimization. Although the complexity of the renderer
has a direct influence on the quality of the results, we suspect that,
analogously to our smoke renderer, a lightweight renderer that can
recover the core flow structures is sufficient for stylizing liquids.

We have shown that LNST enables novel effects and a high degree
of art-directability, which renders flow stylization more practical in
prodcution workflows. However, we have not tested the method on
large-scale simulations that are typically used in such settings.While
our method can handle up to 2 million particles, larger scenes are
restricted by the available memory. Moreover, in practical settings
the scene complexity is higher, which potentially poses challenges
with respect to artist control of the stylization.

By reducing the computation time for stylizing an entire simula-
tion from one day with TNST to a single hour with LNST renders the

method much more practical for digital artists. However, for testing
different input structures, a real-time method would be desirable.
Recent concepts presented on neural image stylization might be
mapped to 3D simulations to further improve efficiency.

ACKNOWLEDGMENTS
The authors would like to thank Fraser Rothnie for his artistic con-
tributions. The work was supported by the Swiss National Science
Foundation under Grant No.: 200021_168997.

REFERENCES
Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations

on tetrahedral meshes. ACM Transactions on Graphics 32, 4 (jul 2013), 1.
Ryoichi Ando and Reiji Tsuruno. 2011. A particle-based method for preserving fluid

sheets. In Proceedings of SCA’11. 7. https://doi.org/10.1145/2019406.2019408
Adam W Bargteil, Funshing Sin, Jonathan E Michaels, Tolga G Goktekin, and James F

O’Brien. 2006. A Texture Synthesis Method for Liquid Animations. In Proceedings
of SCA’06. 345–351. http://dl.acm.org/citation.cfm?id=1218064.1218111

Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface
flows. In Symposium on Computer Animation. 1–8.

Jan Bender. 2016. SPlisHSPlasH. https://github.com/InteractiveComputerGraphics/SPlisHSPlasH.
Jan Bender and Dan Koschier. 2015. Divergence-Free Smoothed Particle Hydrodynamics.

In Symposium on Computer Animation. 1–9.
Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2017. Patch-based optimization

for image-based texture mapping. ACM ToG 36, 4 (jul 2017), 1–11.
Adrien Bousseau, Fabrice Neyret, Joëlle Thollot, and David Salesin. 2007. Video water-

colorization using bidirectional texture advection. ACM ToG 26, 3 (2007).
J.U. Brackbill, D.B. Kothe, and H.M. Ruppel. 1988. Flip: A low-dissipation, particle-in-cell

method for fluid flow. Computer Physics Communications 48, 1 (1988), 25–38.
Mark Browning, Connelly Barnes, Samantha Ritter, andAdam Finkelstein. 2014. Stylized

keyframe animation of fluid simulations. In Proceedings of the Workshop on Non-
Photorealistic Animation and Rendering. ACM, 63–70.

Fabienne Christen, Byungsoo Kim, Vinicius C. Azevedo, and Barbara Solenthaler. 2019.
Neural Smoke Stylization with Color Transfer. (dec 2019). arXiv:1912.08757 http:
//arxiv.org/abs/1912.08757

Mengyu Chu and Nils Thuerey. 2017. Data-driven synthesis of smoke flows with
CNN-based feature descriptors. ACM Transactions on Graphics 36, 4 (jul 2017), 1–14.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A new paradigm
for animating highly deformable bodies. In Eurographics Workshop on Computer
Animation and Simulation. 61–76.

Olga Diamanti, Connelly Barnes, Sylvain Paris, Eli Shechtman, and Olga Sorkine-
Hornung. 2015. Synthesis of Complex Image Appearance from Limited Exemplars.
ACM Transactions on Graphics 34, 2 (mar 2015), 1–14.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:10 • B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey.
2016. Narrow Band FLIP for Liquid Simulations. CGF 35, 2 (2016), 225–232.

Jakub Fišer, OndÅŹej Jamriška, Michal Lukáč, Eli Shechtman, Paul Asente, Jingwan Lu,
and Daniel Sýkora. 2016. StyLit: illumination-guided example-based stylization of
3D renderings. ACM ToG 35 (2016), 1–11. https://doi.org/10.1145/2897824.2925948

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A
polynomial particle-in-cell method. ACM ToG 36, 6 (nov 2017), 1–12.

Jonathan Gagnon, François Dagenais, and Eric Paquette. 2016. Dynamic lapped texture
for fluid simulations. The Visual Computer 32, 6-8 (jun 2016), 901–909.

Jonathan Gagnon, Julián E. Guzmán, Valentin Vervondel, François Dagenais, David
Mould, and Eric Paquette. 2019. Distribution Update of Deformable Patches for
Texture Synthesis on the Free Surface of Fluids. CGF 38, 7 (2019), 491–500.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural algorithm of
artistic style. Nature Communications (2015).

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer
Using Convolutional Neural Networks. In 2016 IEEE CVPR. 2414–2423.

C Gissler, A Peer, S Band, J Bender, and M Teschner. 2019. Interlinked sph pressure
solvers for strong fluid-rigid coupling. ACM ToG 38, 1 (2019), 5:1–5:13.

Xiaowei He, Ning Liu, Sheng Li, HonganWang, and GuopingWang. 2012. Local Poisson
SPH for Viscous Incompressible Fluids. CGF 31 (2012), 1948—-1958.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to Control PDEs with
Differentiable Physics. In ICLR. https://openreview.net/forum?id=HyeSin4FPB

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Fredo Durand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. In ICLR. https://openreview.net/forum?id=B1eB5xSFvr

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019a. ChainQueen: A
real-time differentiable physical simulator for soft robotics. In ICRA. 6265–6271.

Yuanming Hu, Xinxin Zhang, Ming Gao, and Chenfanfu Jiang. 2019b. On hybrid
lagrangian-eulerian simulation methods: practical notes and high-performance
aspects. In ACM SIGGRAPH 2019 Courses. 16.

Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2012. Unified
spray, foam and air bubbles for particle-based fluids. The Visual Computer 28, 6-8
(2012), 669–677.

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias
Teschner. 2014. Implicit incompressible SPH. IEEE TVCG 20, 3 (2014), 426–436.

Eldar Insafutdinov and Alexey Dosovitskiy. 2018. Unsupervised Learning of Shape and
Pose with Differentiable Point Clouds. In NeurIPS.

Ondřej Jamriška, Jakub Fišer, Paul Asente, Jingwan Lu, Eli Shechtman, and Daniel
Sýkora. 2015. LazyFluids: appearance transfer for fluid animations. ACMTransactions
on Graphics (TOG) 34, 4 (2015), 92.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM ToG 34, 4 (jul 2015), 51:1–51:10.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle.
2016. The material point method for simulating continuum materials. In ACM
SIGGRAPH 2016 Courses. 1–52.

Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song.
2019. Neural style transfer: A review. IEEE TVCG (2019).

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3d mesh renderer.
In Proceedings of the IEEE Conference on CVPR. 3907–3916.

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2019a.
Transport-based neural style transfer for smoke simulations. ACM Transactions on
Graphics 38, 6 (nov 2019), 1–11. https://doi.org/10.1145/3355089.3356560

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. 2019b. Deep Fluids: A Generative Network for Parameterized
Fluid Simulations. Computer Graphics Forum 38, 2 (2019).

Janghee Kim, Deukhyun Cha, Byungjoon Chang, Bonki Koo, and Insung Ihm. 2006.
Practical Animation of Turbulent Splashing Water. In Proceedings SCA’07. 335–344.

Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for
liquid surfaces. ACM Transactions on Graphics (TOG) 32, 2 (2013), 15.

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence
for fluid simulation. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 50.

D Koschier and J Bender. 2017. Density maps for improved sph boundary handling. In
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1–10.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed
Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and
Solids. In Eurographics 2019 - Tutorials.

Vivek Kwatra, David Adalsteinsson, Nipun Kwatra, Mark Carlson, and Ming C. Lin.
2006. Texturing fluids. In ACM SIGGRAPH ’06 Sketches on. 63.

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. 2005. Texture optimization
for example-based synthesis. In ACM SIGGRAPH ’05. 795.

L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
2015. Data-driven fluid simulations using regression forests. ACM Transactions on
Graphics 34, 6 (oct 2015), 1–9. https://doi.org/10.1145/2816795.2818129

Hsueh-Ti Derek Liu and Alec Jacobson. 2019. Cubic Stylization. ACM ToG (2019).

Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. 2018. Paparazzi: Surface Editing
by way of Multi-View Image Processing. ACM Transactions on Graphics (2018).

Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable
Renderer. 154–169. https://doi.org/10.1007/978-3-319-10584-0_11

F. Losasso, J.O. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-Way Coupled SPH and
Particle Level Set Fluid Simulation. IEEE TVCG 14, 4 (jul 2008), 797–804.

Miles Macklin and Matthias Mueller. 2013. Position Based Fluids. ACM Transactions on
Graphics 32, 4 (2013), 104:1–104:12.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. In ACM SIGGRAPH ’04. 449.

J J Monaghan. 2005. Smoothed Particle Hydrodynamics. Reports on Progress in Physics
68, 8 (2005), 1703–1759.

Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simu-
lation for Interactive Applications. In Symposium on Computer Animation.

Rahul Narain, Vivek Kwatra, Huai-Ping Lee, Theodore Kim, Mark Carlson, and Ming C
Lin. 2007. Feature-guided Dynamic Texture Synthesis on Continuous Flows. In
Proceedings of the 18th EGSR. 361–370.

Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. 2008. Fast animation of
turbulence using energy transport and procedural synthesis. ACM Transactions on
Graphics 27, 5 (dec 2008), 1. https://doi.org/10.1145/1409060.1409119

Michael B. Nielsen and Robert Bridson. 2011. Guide shapes for high resolution natural-
istic liquid simulation. In ACM SIGGRAPH ’11. 1.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive
localized liquid motion editing. ACM ToG 32, 6 (nov 2013), 1–10.

Zherong Pan and Dinesh Manocha. 2017. Efficient Solver for Spacetime Control of
Smoke. ACM Trans. Graph. 36, 4, Article Article 68a (July 2017), 13 pages.

A. Peer, M. Ihmsen, J. Cornelis, andM. Teschner. 2015. An Implicit Viscosity Formulation
for SPH Fluids. ACM Transactions on Graphics 34, 4 (2015), 1–10.

Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. 2009. Synthetic turbulence
using artificial boundary layers. ACM Transactions on Graphics 28, 5 (dec 2009), 1.

Karthik Raveendran, Nils Thuerey, Chris Wojtan, and Greg Turk. 2012. Controlling
Liquids Using Meshes. In Proceedings of the SCA. 255–264.

Stefan Reinhardt, Tim Krake, Bernhard Eberhardt, and Daniel Weiskopf. 2019. Consis-
tent Shepard Interpolation for SPH-Based Fluid Animation. ACM ToG 38 (2019).

Bo Ren, Chenfeng Li, Xiao Yan, Ming C Lin, Javier Bonet, and Shi-Min Hu. 2014.
Multiple-Fluid SPH Simulation Using a Mixture Model. ACM ToG 33, 5 (2014), 1–11.

Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018. Example-
based turbulence style transfer. ACM Trans. Graph. 37, 4 (2018), 84.

Hagit Schechter and Robert Bridson. 2008. Evolving Sub-Grid Turbulence for Smoke
Animation. 1–7. https://doi.org/10.2312/SCA/SCA08/001-007

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid Dynamics for Deep
Neural Networks. In Conference on Robot Learning. 317–335.

M. Servin, K. Bodin, and C. Lacoursiere. 2012. Constraint Fluids. IEEE TVCG 18, 03
(mar 2012), 516–526. https://doi.org/10.1109/TVCG.2011.29

Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible
SPH. ACM Trans. Graph. 28, 3 (2009), 40:1–40:6.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A Material Point Method for Snow Simulation. ACM ToG 32, 4 (2013).

Itamar Talmi, Roey Mechrez, and Lihi Zelnik-Manor. 2017. Template matching with
deformable diversity similarity. In Proceedings of the IEEE CVPR. 175–183.

Nils Thuerey. 2016. Interpolations of Smoke and Liquid Simulations. ACM Transactions
on Graphics 36, 1 (sep 2016), 1–16. https://doi.org/10.1145/2956233

Nils Thuerey and Tobias Pfaff. 2018. MantaFlow. http://mantaflow.com.
Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017.

Accelerating eulerian fluid simulation with convolutional networks. In Proceedings
of the 34th ICML-Volume 70. JMLR. org, 3424–3433.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
control of smoke simulations. ACM Transactions on Graphics 22, 3 (jul 2003), 716.

Kiwon Um, Seungho Baek, and JungHyun Han. 2014. Advanced Hybrid Particle-Grid
Method with Sub-Grid Particle Correction. CGF 33, 7 (oct 2014), 209–218.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. 2019. Latent space physics: Towards
learning the temporal evolution of fluid flow. In CGF, Vol. 38. 71–82.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempogan: A temporally
coherent, volumetric gan for super-resolution fluid flow. ACM ToG 37, 4 (2018).

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspec-
tive transformer nets: Learning single-view 3d object reconstruction without 3d
supervision. In Advances in NIPS. 1696–1704.

Cheng Yang, Xubo Yang, and Xiangyun Xiao. 2016. Data-driven projection method in
fluid simulation. CAVW 27, 3-4 (may 2016), 415–424.

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung.
2019. Differentiable Surface Splatting for Point-based Geometry Processing. (jun
2019). https://doi.org/10.1145/3355089.3356513 arXiv:1906.04173

Q. Yu, F. Neyret, E. Bruneton, and N. Holzschuch. 2011. Lagrangian Texture Advection:
Preserving both Spectrum and Velocity Field. IEEE TVCG 17, 11 (nov 2011).

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics 24, 3 (jul 2005), 965. https://doi.org/10.1145/1073204.1073298

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

