skip to main content
10.1145/3386901.3388949acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

Gateway over the air: towards pervasive internet connectivity for commodity IoT

Published:15 June 2020Publication History

ABSTRACT

This paper presents GateScatter, the first backscatter-based gateway connecting commodity IoT to WiFi. The backscatter design of GateScatter is an economic option towards pervasive Internet connectivity for ever-growing IoT. The carefully designed tag optimally reshapes ZigBee IoT packets with an arbitrary payload into an 802.11b WiFi packet over the air, such that the payload can be reliably retrieved at the WiFi receiver (hence a gateway). Gate-Scatter is highly compatible - it works with a wide range of IEEE 802.15.4-compliant systems, is agnostic to upper layer proprietary protocols, and does not require any modification to the commodity IoT platforms. GateScatter is extended to BLE IoT for generality. We prototype GateScatter hardware on FPGA where the wide applicability is demonstrated through evaluations on five popular IoT devices including Samsung SmartThings sensor, Philips smart bulb, and Amazon Echo Plus. Further extensive evaluations show that GateScatter consistently achieves throughput above 200 kbps and range of over 27 m under diverse practical scenarios including a corridor, dormitory room, and under user mobility.

References

  1. 802.15.4e Task Group. IEEE Standard for Local and metropolitan area networks-Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Std 802.15.4e, 2012.Google ScholarGoogle Scholar
  2. AEROSPACE INNOTECH. Card Type Active RFID Tag. http://www.htrfid.com/En/Products/info/id/164.html.Google ScholarGoogle Scholar
  3. Analog Devices. SPST Switch ADG902. https://www.analog.com/en/products/adg902.html.Google ScholarGoogle Scholar
  4. Atheros. AR9271. https://wikidevi.com/files/Atheros/specsheets/AR9271.pdf.Google ScholarGoogle Scholar
  5. D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti. Backfi: High throughput wifi backscatter. ACM SIGCOMM Computer Communication Review, 45(4):283--296, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences. ACM Transactions on Sensor Networks (TOSN), 12(3):24, 2016.Google ScholarGoogle Scholar
  7. Bluetooth SIG. Bluetooth Core Specification v 5.0. https://www.bluetooth.com/specifications/adopted-specifications, 2017.Google ScholarGoogle Scholar
  8. Broadcom. BCM4360. https://www.broadcom.com/products/wireless/wireless-lan-infrastructure/bcm4360.Google ScholarGoogle Scholar
  9. K. Chebrolu and A. Dhekne. Esense: communication through energy sensing. In Proc. of ACM MobiCom, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Chen, Z. Li, and T. He. Twinbee: Reliable physical-layer cross-technology communication with symbol-level coding. In Proc. of IEEE INFOCOM, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  11. Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu. B2w2: N-way concurrent communication for iot devices. In Proc. of ACM SenSys, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dell. Edge Gateway 3000 Series. https://www.mouser.com/new/dell/dell-edge-gateway-3000.Google ScholarGoogle Scholar
  13. M. Erol-Kantarci and H. T. Mouftah. Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Transactions on Smart Grid, 2(2):314--325, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. ESPRESSIF. ESP32-WROOM-32D. https://www.espressif.com/en/products/hardware/modules.Google ScholarGoogle Scholar
  15. D. Flowers and Y. Yang. Microchip MiWi Wireless Networking Protocol Stack. Microchip Technology Inc, 2010.Google ScholarGoogle Scholar
  16. C. Gao, Y. Li, and X. Zhang. LiveTag: Sensing human-object interaction through passive chipless WiFi tags. In Proc. of USENIX NSDI, 2018.Google ScholarGoogle Scholar
  17. Gartner Inc. Gartner Report. https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016.Google ScholarGoogle Scholar
  18. W. Gong, H. Liu, K. Liu, Q. Ma, and Y. Liu. Exploiting channel diversity for rate adaptation in backscatter communication networks. In Proc. of IEEE INFOCOM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. group. Thread. https://www.threadgroup.org.Google ScholarGoogle Scholar
  20. M. Hessar, A. Najafi, and S. Gollakota. Netscatter: Enabling large-scale backscatter networks. In Proc. of USENIX NSDI, 2019.Google ScholarGoogle Scholar
  21. Hive. Active Heating. https://www.hivehome.com/products/hive-active-heating.Google ScholarGoogle Scholar
  22. IEEE 802.11 Working Group and others. Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz band. ANSI/IEEE Std 802.11, 1999.Google ScholarGoogle Scholar
  23. ISA. Wireless system for industrial automation: process control and related applications. ANSI/ISA-100.11a-2011.Google ScholarGoogle Scholar
  24. V. Iyer, R. Nandakumar, A. Wang, S. Fuller, and S. Gollakota. Living IoT: A Flying Wireless Platform on Live Insects. In Proc. of ACM MobiCom, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. Inter-technology back-scatter: Towards internet connectivity for implanted devices. In Proc. of ACM SIGCOMM, 2016.Google ScholarGoogle Scholar
  26. W.Jiang, S. M. Kim, Z. Li, and T. He. Achieving receiver-side cross-technology communication with cross-decoding. In Proc. of ACM MobiCom, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. W.Jiang, Z. Yin, S. M. Kim, and T. He. Transparent cross-technology communication over data traffic. In Proc. of IEEE INFOCOM, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  28. W. Jiang, Z. Yin, R. Liu, Z. Li, S. M. Kim, and T. He. Bluebee: a 10,000 x faster cross-technology communication via phy emulation. In Proc. of ACM SenSys, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. Wi-fi back-scatter: Internet connectivity for rf-powered devices. ACM SIGCOMM Computer Communication Review, 44(4):607--618, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. B. Kellogg, V. Talla, and S. Gollakota. Bringing gesture recognition to all devices. In Proc. of USENIX NSDI, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive wi-fi: Bringing low power to wi-fi transmissions. In Proc. of USENIX NSDI, 2016.Google ScholarGoogle Scholar
  32. S. M. Kim and T. He. Freebee: Cross-technology communication via free side-channel. In Proc. of ACM MobiCom, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Kochut, A. Vasan, A. U. Shankar, and A. Agrawala. Sniffing out the correct physical layer capture model in 802.11 b. In Proc. of IEEE ICNP, 2004.Google ScholarGoogle Scholar
  34. LAN/MAN Standards Committee and others. IEEE Standard for Local and metropolitan area networks-Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer Society, 2011.Google ScholarGoogle Scholar
  35. J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. An experimental study on the capture effect in 802.11a networks. In Proc. of ACM International Workshop on Wireless network testbeds, experimental evaluation and characterization, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Li, Z. Chi, X. Liu, and T. Zhu. Passive-ZigBee: Enabling ZigBee Communication in IoT Networks with 1000X+ Less Power Consumption. In Proc. of ACM SenSys, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Z. Li and T. He. Webee: Physical-layer cross-technology communication via emulation. In Proc. of ACM MobiCom, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Z. Li and T. He. Longbee: Enabling long-range cross-technology communication. In Proc. of IEEE INFOCOM, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  39. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient backscatter: wireless communication out of thin air. ACM SIGCOMM Computer Communication Review, 43(4):39--50, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. V. Liu, V. Talla, and S. Gollakota. Enabling instantaneous feedback with full-duplex backscatter. In Proc. of ACM MobiCom, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for habit monitoring. In Proc. of ACM International Workshop on Wireless Sensor Networks and App, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Microsemi. IGLOO nano low-power FPGA. https://www.microsemi.com/product-directory/fpgas/1689-igloo#igloo-nano.Google ScholarGoogle Scholar
  43. J. Ou, M. Li, and Y. Zheng. Come and be served: Parallel decoding for cots rfid tags. In Proc. of ACM MobiCom, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging ambient backscatter communication. ACM SIGCOMM Computer Communication Review, 44(4):619--630, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Philips. Hue. https://www2.meethue.com/en-us.Google ScholarGoogle Scholar
  46. Ralink. RT3070. https://wikidevi.com/files/Ralink/RT307x%20product%20brief.pdf.Google ScholarGoogle Scholar
  47. J. Ryoo, Y. Karimi, A. Athalye, M. Stanaćević, S. R. Das, and P. Djurić. Barnet: Towards activity recognition using passive backscattering tag-to-tag network. In Proc. of ACM MobiSys, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Samsung. SmartThings. https://www.smartthings.com/products.Google ScholarGoogle Scholar
  49. T. Schmid. Gnu radio 802.15. 4 en-and decoding. Technical report, UCLA NESL, 2006.Google ScholarGoogle Scholar
  50. J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt. WirelessHART: Applying wireless technology in real-time industrial process control. In Proc. of IEEE RTAS, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. SYRIS. Active RFID compact asset tag. http://www.syris.com/product.php?id=259.Google ScholarGoogle Scholar
  52. V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota. Lora backscatter: Enabling the vision of ubiquitous connectivity. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):105, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker. Sora: high-performance software radio using general-purpose multi-core processors. Communications of the ACM, 54(1):99--107, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Texas Instruments. CC2538 A Powerful System-On-Chip for 2.4-GHz IEEE 802.15.4-2006 and ZigBee Applications. http://www.ti.com/product/CC2538.Google ScholarGoogle Scholar
  55. Texas Instruments. SimpleLink multi-standard CC2650 SensorTag. http://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG.Google ScholarGoogle Scholar
  56. D. Vasisht, G. Zhang, O. Abari, H.-M. Lu, J. Flanz, and D. Katabi. In-body backscatter communication and localization. In Proc. of ACM SIGCOMM, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota. FM Backscatter: Enabling Connected Cities and Smart Fabrics. In Proc. of USENIX NSDI, 2017.Google ScholarGoogle Scholar
  58. J. Wang, J. Zhang, R. Saha, H. Jin, and S. Kumar. Pushing the Range Limits of Commercial Passive RFIDs. In USENIX NSDI, 2019.Google ScholarGoogle Scholar
  59. L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile RFID tags to high precision using COTS devices. In Proc. of ACM MobiCom, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu. See Through Walls with COTS RFID System! In Proc. of ACM MobiCom, 2015.Google ScholarGoogle Scholar
  61. Z. Yin, W. Jiang, S. M. Kim, and T. He. C-morse: Cross-technology communication with transparent morse coding. In Proc. of IEEE INFOCOM, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  62. P. Zhang, D. Bharadia, K. Joshi, and S. Katti. Hitchhike: Practical backscatter using commodity wifi. In Proc. ACM SenSys, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan. Ekhonet: High speed ultra low-power backscatter for next generation sensors. In Proc. of ACM MobiCom, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. P. Zhang, C. Josephson, D. Bharadia, and S. Katti. Freerider: Backscatter communication using commodity radios. In Proc. of ACM CoNEXT, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. P. Zhang, M. Rostami, P. Hu, and D. Ganesan. Enabling practical backscatter communication for on-body sensors. In Proc. of ACM SIGCOMM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. X. Zhang and K. G. Shin. Gap sense: Lightweight coordination of heterogeneous wireless devices. In Proc. of IEEE INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  67. ZigBee Alliance. ZigBee Specification. https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf, 2015.Google ScholarGoogle Scholar

Index Terms

  1. Gateway over the air: towards pervasive internet connectivity for commodity IoT

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MobiSys '20: Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services
        June 2020
        496 pages
        ISBN:9781450379540
        DOI:10.1145/3386901

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 June 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate274of1,679submissions,16%

        Upcoming Conference

        MOBISYS '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      ePub

      View this article in ePub.

      View ePub