
ar
X

iv
:2

00
2.

07
58

4v
2

 [
cs

.D
C

]
 1

3
Ju

l 2
02

0

A Computational Approach to Packet Classification

Alon Rashelbach
Technion

alonrs@campus.technion.ac.il

Ori Rottenstreich
Technion

or@technion.ac.il

Mark Silberstein
Technion

mark@ee.technion.ac.il

ABSTRACT

Multi-field packet classification is a crucial component in modern
software-defined data center networks. To achieve high through-
put and low latency, state-of-the-art algorithms strive to fit the rule
lookup data structures into on-die caches; however, they do not
scale well with the number of rules.

We present a novel approach, NuevoMatch, which improves the
memory scaling of existing methods. A new data structure, Range
Query Recursive Model Index (RQ-RMI), is the key component that
enables NuevoMatch to replace most of the accesses to main mem-
ory with model inference computations. We describe an efficient
training algorithm that guarantees the correctness of the RQ-RMI-
based classification. The use of RQ-RMI allows the rules to be com-
pressed into model weights that fit into the hardware cache. Fur-
ther, it takes advantage of the growing support for fast neural net-
work processing inmodernCPUs, such as wide vector instructions,
achieving a rate of tens of nanoseconds per lookup.

Our evaluation using 500K multi-field rules from the standard
ClassBench benchmark shows a geometric mean compression fac-
tor of 4.9×, 8×, and 82×, and average performance improvement
of 2.4×, 2.6×, and 1.6× in throughput compared to CutSplit, Neu-
roCuts, and TupleMerge, all state-of-the-art algorithms1.

1 INTRODUCTION

Packet classification is a cornerstone of packet-switched networks.
Network functions such as switches use a set of rules that deter-
mine which action they should take for each incoming packet. The
rules originate in higher-level domains, such as routing, Quality
of Service, or security policies. They match the packets’ metadata,
e.g., the destination IP-address and/or the transport protocol. If
multiple rules match, the rule with the highest priority is used.

Packet classification algorithms have been studied extensively.
There are two main classes: those that rely on Ternary Content
Addressable Memory (TCAM) hardware [13, 20, 23, 28, 37], and
those that are implemented in software [3, 8, 21, 22, 34, 36, 41, 44].
In this work, we focus on software-only algorithms that can be
deployed in virtual network functions, such as forwarders or ACL
firewalls, running on commodity X86 servers.

Software algorithms fall into two major categories: decision-
tree based [8, 21, 22, 34, 41, 44] and hash-based [3, 36]. The former
use decision trees for indexing andmatching the rules, whereas the
latter perform lookupvia hash-tables by hashing the rule’s prefixes.
Other methods for packet classification [7, 38] are less common as
they either require too much memory or are too slow.

A key to achieving high classification performance in modern
CPUs is to ensure that the classifier fits into the CPU on-die cache.
When the classifier is too large, the lookup involves high-latency

1This work does not raise any ethical issues.

Incoming
Packet

Independent Set

RQ-RMI

(CPU Cache)

iSet
Rules

(DRAM)

predicted
index

candidate
rule

Remainder Set

External
Classifier

(CPU Cache)

Remainder
Rules

(DRAM)
indexes

candidate
rule

Selector

Action

Figure 1: NuevoMatch overview. The rules are divided into

Independent Sets indexed by RQ-RMIs and the Remainder

Set indexed by any classifier. One RQ-RMI predicts the stor-

age index of the matching rule. The Selector chooses the

highest-priority matching rule.

memory accesses, which stall the CPU, as the data-dependent ac-
cess pattern during the lookup impedes hardware prefetching. Un-
fortunately, as the number of rules grows, it becomes difficult to
maintain the classifier in the cache. In particular, in decision-tree
methods, rules are often replicated amongmultiple leaves of the de-
cision tree, inflating its memory footprint and affecting scalability.
Consequently, recent approaches, notably CutSplit [21] and Neuro-
Cuts [22], seek to reduce rule replication to achieve better scaling.
However, they still fail to scale to large rule-sets, which in modern
data centers may reach hundreds of thousands of rules [6]. Hash-
based techniques also suffer from poor scaling, as adding rules in-
creases the number of hash-tables and their size.

We propose a novel approach to packet classification, Nuevo-
Match, which compresses the rule-set index dramatically to fit it
entirely into the upper levels of the CPU cache (L1/L2) even for
large 500K rule-sets. We introduce a novel Range Query Recursive

Model Index (RQ-RMI) model, and train it to learn the rules’ match-
ing sets, turning rule matching into neural network inference. We
show that RQ-RMI achieves out-of-L1-cache execution by reduc-
ing the memory footprint on average by 4.9×, 8×, and 82× com-
pared to recent CutSplit [21], NeuroCuts [22], and TupleMerge [3]
on the standard ClassBench [39] benchmarks, and up to 29× for
real forwarding rule-sets.

To the best of our knowledge, NuevoMatch is the first to per-
form packet classification using trained neural network models.
NeuroCuts also uses neural nets, but it applies them for optimiz-
ing the decision tree parameters during the offline tree construc-
tion phase; their rule matching still uses traditional (optimized) de-
cision trees. In contrast, NuevoMatch performs classification via
RQ-RMIs, which are more space-efficient than decision trees or
hash-tables, improving scalability by an order of magnitude.

http://arxiv.org/abs/2002.07584v2

NuevoMatch transforms the packet classification task from
memory- to compute-bound. This design is appealing because it
is likely to scale well in the future, with rapid advances in hard-
ware acceleration of neural network inference [11, 19, 29]. On the
other hand, the performance of both decision trees and hash-tables
is inherently limited because of the poor scaling of DRAM access
latency and CPU on-die cache sizes (e.g., 1.5× over five years for
L1 in Intel’s CPUs).

NuevoMatch builds on the recent work on learned indexes [18],
which applies a Recursive Model Index (RMI) model to indexing
key-value pairs. The values are stored in an array, and the RMI
is trained to learn the mapping function between the keys and the
indexes of their values in the array. Themodel is used to predict the
index given the key. When applied to databases [18], RMI boosts
performance by compressing the indexes to fit in CPU caches.

Unfortunately, RMI is not directly applicable for packet classi-
fication. First, a key (packet field) may not have an exact match-
ing value, but match a rule range, whereas RMI can learn only
exact key-index pairs. This is a fundamental property of RMI: it
guarantees correctness only for the keys used during training, but
provides no such guarantees for non-existing keys ([18], Section
3.4). Thus, for range matching it requires enumeration of all pos-
sible keys in the range, making it too slow. Second, the match is
evaluated over multiple packet fields, requiring lookup in a multi-
dimensional space. Unfortunately, multi-dimensional RMI [17] re-
quires that the input be flattened into one dimension, which in the
presence of wildcards results in an exponential blowup of the input
domain, making it too large to learn for compact models. Finally, a
key may match multiple rules, with the highest priority one used
as output, whereas RMI retrieves only a single index for each key.

NuevoMatch successfully solves these challenges.
RQ-RMI. We design a novel model which can match keys to
ranges, with an efficient training algorithm that does not require
exhaustive key enumeration to learn the ranges. The training
strives to minimize the prediction error of the index, while main-
taining a small model size. We show that the models can store in-
dices of 500K ClassBench rules in 35 KB (§5.2.1). We prove that our
algorithm guarantees range lookup correctness (§3.3).
Multi-field packet classification. To enable multi-field match-
ing with overlapping ranges, the rule-set is split into independent
sets with non-overlapping ranges, called iSets, each associatedwith
a single field and indexed with its own RQ-RMI model. The iSet
partitioning (§3.6) strives to cover the rule-set with as few iSets as
possible, discarding those that are too small. The remainder set of
the rules not covered by large iSets is indexed via existing classifi-
cation techniques. In practice, the rules in the remainder constitute
a small fraction in representative rule-sets, so the remainder index
fits into a fast cache together with the RQ-RMIs.

Figure 1 summarizes the complete classification flow. The query
of the RQ-RMI models produces the hints for the secondary search
that selects one matching rule per iSet. The validation stage selects
the candidates with a positive match across all the fields, and a
selector chooses the highest priority matching rule.

Conceptually, NuevoMatch can be seen as an accelerator for ex-
isting packet classification techniques and thus complements them.
In particular, the RQ-RMI model is best used for indexing rules
with high value diversity that can be partitioned into fewer iSets.

We show that the iSet construction algorithm is effective for select-
ing the rules that can be indexed via RQ-RMI, leaving the rest in
the remainder (§5.3.1). The performance benefits of NuevoMatch
become evident when it indexes more than 25% of the rules. Since
the remainder is only a fraction of the original rule-set, it can be
indexed efficiently with smaller decision-trees/hash-tables or will
fit smaller TCAMs.

Our experiments2 show that NuevoMatch outperforms all the
state-of-the-art algorithms on synthetic and real-life rule-sets. For
example, it is faster than CutSplit, NeuroCuts, and TupleMerge, by
2.7×, 4.4× and 2.6× in latency and 2.4×, 2.6×, and 1.6× in through-
put respectively, averaged over 12 rule-sets of 500K ClassBench-
generated rules, and by 7.5× in latency and 3.5× in throughput
vs. TupleMerge for the real-world Stanford backbone forwarding
rule-set.

NuevoMatch supports rule updates by removing the updated
rules from the RQ-RMI and adding them to the remainder set in-
dexed by another algorithm that supports fast updates, e.g., Tuple-
Merge. This approach requires periodic retraining to maintain a
small remainder set; hence it does not yet support more than a few
thousands of updates (§3.9). The algorithmic solutions to directly
update RQ-RMI are deferred for future work.

In summary, our contributions are as follows.

• We present an novel RQ-RMI model and a training technique
for learning packet classification rules.
• We demonstrate the application of RQ-RMI to multi-field
packet classification.
• NuevoMatch outperforms existing techniques in terms of mem-
ory footprint, latency, and throughput on challenging rule-sets
with up to 500K rules, compressing them to fit into small caches
of modern processors.

2 BACKGROUND

This section describes the packet classification problem and sur-
veys existing solutions.

2.1 Classification algorithms

Packet classification is the process of locating a single rule that is
satisfied by an input packet among a set of rules. A rule contains
a few fields in the packet’s metadata. Wildcards define ranges, i.e.,
they match multiple values. Ranges may overlap with each other,
i.e., a packet may match several rules, but only the one having the
highest priority is selected. Figure 2 illustrates a classifier with two
fields and five overlapping matching rules. An incoming packet
matches two rules (R3,R4), but R3 is used as it has a higher priority.

Packet classification performance becomes difficult to scale as
the number of rules and the number ofmatching fields grow. There-
fore, it has received renewed interest with increased complexity
of software-defined data center networks, featuring hundreds of
thousands of rules per virtual network function [5] and tens of
matching fields (up to 41 in OpenFlow 1.4 [27]).

Decision Tree Algorithms. The rules are viewed as hyper-cubes
and packets as points in a multi-dimensional space. The axes of the
rule space represent different fields and hold non-negative integers.

2The source code of NuevoMatch is available in [31].

IPv4 Address Port Priority Action

R0 10.10.*.* 10-18 1 (highest) a1

R1 10.10.1.* 15-25 2 a2

R2 10.*.*.* 5-8 3 a3

R3 10.10.3.* 7-20 4 a4

R4 10.10.3.100 19 5 (lowest) a5

Incoming packet

10.10.3.100:19

Action to take
a4

Figure 2: Packet classificationwith two fields: IP address and

port.

A recursive partitioning technique divides the rule space into sub-
sets with at most binth rules. Thus, to match a rule, a tree traver-
sal finds the smallest subset for a given packet, while a secondary
search scans over the subset’s rules to select the best match.

Unfortunately, a rule replication problem may hinder perfor-
mance in larger rule-sets by dramatically increasing the tree’s
memory footprint when a rule spans several subspaces. Early
works, such as HiCuts [8] and HyperCuts [34] both suffer from
this issue. More recent EffiCuts [41] and CutSplit [21], suggest that
the rule set should be split into groups of rules that share similar
properties and generate a separate decision-tree for each. Neuro-
Cuts [22], themost recent work in this domain, uses reinforcement
learning for optimizing decision tree parameters to reduce itsmem-
ory footprint, or the number of memory accesses during traversal,
by efficiently exploring a large tree configuration space.

Hash-BasedAlgorithms. Tuple Space Search [36] and recent Tu-
pleMerge [3] partition the rule-set into subsets according to the
number of prefix bits in each field. As all rules of a subset have
the same number of prefix bits, they can act as keys in a hash ta-
ble. The classification is performed by extracting the prefix bits, in
all fields, of an incoming packet, and checking all hash-tables for
matching candidates. A secondary search eliminates false-positive
results and selects the rule with the highest priority.

Hash-based techniques are effective in an online classification

problemwith frequent rule updates, whereas decision trees are not.
However, decision trees have been traditionally considered faster
in classification. Nevertheless, the recent TupleMerge hash-based
algorithm closes the gap and achieves high classification through-
put while supporting high performance updates.

2.2 Poor performance with large rule-sets

The packet classification performance of all the existing techniques
does not scale well with the number of rules. This happens because
their indexing structures spill out of the fast L1/L2 CPU caches into
L3 or DRAM. Indeed, as we show in our experiments (§5), Tuple-
Merge and NeuroCuts exceed the 1MB L2 cache with 100K rules
and CutSplit with 500K rules. However, keeping the entire index-
ing structure in fast caches is critical for performance. The inherent
lack of access locality in hash and tree data structures, combined
with the data-dependent nature of the accesses, make hardware
prefetchers ineffective for hiding memory access latency. Thus, the
performance of all lookups drops dramatically.

m0,0(x)s0

m1,0(x) m1,1(x) m1,W1−1(x)s1

More Stages

mn−1,0(x) mn−1,Wn−1−1(x)sn−1

v0 v1 v2 v |I |−1Values

Stage

Figure 3: RMI model structure and inference [18].

The performance drop is significant even when the data struc-
tures fit in the L3 cache. This cache is shared among all the cores,
whereas L1 and L2 caches are per-core. Thus, L3 is not only slower
(up to 90 cycles in recent X86 CPUs), but also suffers from cache
contention, e.g., when another core runs a cache-demanding work-
load and causes cache trashing. We observe the effects of L3 con-
tention in §5.2.1.

NuevoMatch aims to provide more space efficient representa-
tion of the rule index to scale to large rule-sets.

3 NUEVOMATCH CONSTRUCTION

We first explain the RMI model for learned indexes which we use
as the basis, explain its limitations, and then show our solution that
overcomes them.

3.1 Recursive Model Index

Kraska et al. [18] suggest using machine-learning models for stor-
ing key-value pairs instead of conventional data structures such as
B-trees or hash tables. The values are stored in a value array, and
a Recursive Model Index (RMI) is used to retrieve the value given a
key. Specifically, RMI predicts the index of the corresponding value
in the value array using a model that learned the underlying key-
index mapping function.

The main insight is that any index structure can be expressed
as a continuous monotonically increasing function y = h(x) :
[0, 1] 7→ [0, 1], where x is a key scaled down uniformly into [0, 1],
and y is the index of the respective value in the value array scaled
down uniformly into [0, 1]. RMI is trained to learn h(x). The result-

ing learned index model ĥ(x) performs lookups in two phases: first

it computes the predicted index ŷ = ĥ(key), and then performs a
secondary search in the array, in the vicinity ϵ of the predicted in-
dex, where ϵ is the maximum index prediction error of the model,

namely |ĥ(key) − h(key)| ≤ ϵ .

Model structure. RMI is a hierarchical model made of several (n)
stages (Figure 3). Each stage i includesWi submodelsmi, j , j <Wi ,
whereWi is the stage width. The first stage has a single submodel.
Each successive stage has a larger width. The submodels in each
stage are trained on a progressively smaller subset of the input
keys, refining the index prediction toward the submodels in the
leaves. Thus, each key-index pair is learned by one submodel at
each stage, with the leaf submodel producing the index prediction.

RMI is a generic structure; a variety of machine learning models
or data structures can be used as submodels, such as regression

models or B-trees. The type of the submodels, the number of stages
and the width of each stage are configured prior to training.

Training. Training is performed stage by stage.

First stage. The submodel in stage m0,0 is trained on the whole
data set. Then, the input key-index pairs are split into W1 dis-
joint subsets. The input partitioning is performed as follows.
For each input key-index pair {key : idx} we compute the sub-

model prediction ĵ = m0,0(key), satisfying ĵ ∈ [0, 1). The output
ĵ is used to obtain j = ⌊ ĵ ·W1⌋ which is the index of the submodel
in stage 1, m1, j , to be used for learning {key : idx}. We call the
subset of the input to be learned by model mi, j as model input
responsibility domain Ri, j , or responsibility for short. R0,0 is the
whole input.

Internal stages. The submodels in stage i , mi, j , are trained on
the keys in Ri, j (j <Wi). After training, the responsibilities of the
submodels in stage i + 1 are computed, and the process continues
until the last stage.

Last stage. The submodels of the last stage must predict the ac-
tual index of thematching value in the value array. However, a sub-
model may have a prediction error. Therefore, RMI uses the model
prediction as a hint. The matching value is found by searching in
the value array in the vicinity of the predicted index, as defined
by the maximum error bound ϵ of the model. Note that ϵ should
be valid for all input key-index pairs. To compute ϵ , RMI exhaus-
tively computes the submodel prediction for each input key in its

responsibility. Submodels with a high error bound are retrained or
converted to B-trees.

Inference. Given a key, we iteratively evaluate each submodel
stage after stage, fromm0,0. We use the prediction in stage i − 1 to
select a submodel in stage i , until we reach the last stage. The last
selected submodel predicts the index in the value array. This index
î determines the range for the secondary search in the value array
that spans [̂i − ϵ, î + ϵ].

3.2 RMI limitations

Direct application of RMI to indexing packet classification rules is
not possible for the following reasons:

No support for range matching3. RMI allows only an exact
match for a given key, whereas packet classification requires re-
trieving rules with matching ranges as defined by wildcards. This
problem is fundamental: RMI exhaustively enumerates all the keys
in all the ranges to calculate the submodel responsibility and the
maximum model prediction error (see the underlined parts of the
training algorithm). In other words, all the values in the rangemust
be materialized into key-index pairs for RMI to learn them, since
RMI does not guarantee correct lookup for keys not used in train-

ing [18]. The original paper sketches a few possible solutions, how-
ever, they either rely on model monotonicity (while we do not) or
use smarter yet still expensive enumeration techniques.

Slow multi-dimensional indexing. RMI is ineffective for multi-
dimensional indexes because the proposed solution [17] leads to

3The RMI paper also uses the term range index while applying RMI to range index
data structures (i.e., B-trees) that can quickly retrieve all stored keys in a requested
numerical range. Our work is fundamentally different: given a key it retrieves the
index of its matching range.

x

M(x), ⌊M(x) · 4⌋
1, 4

0.75, 3

0.5, 2

0.25, 1

0, 0
t0 t1 t2 t3 t4

Figure 4: Transition inputs (t0, ..., t4) for a piece-wise linear

function with the output domain=4.

generating an exponential number of rules in the presence of wild-
cards. For example, a single rule with wildcards in destination IP
(0.0.0.*), port (10-100), and protocol (TCP/UDP) results in 46,592 dis-
tinct key-index pairs. Since the input domain becomes too large, it
requires a large model that exceeds the CPU cache.

In the following we outline the solutions to these challenges
We first discuss Range-Query RMI (RQ-RMI), which extends RMI
to perform range-value queries in a one-dimensional index where
ranges do not overlap (§3.3-§3.5). We then show how to apply RQ-
RMI in multi-dimensional index space with overlaps (§3.6-§3.7).

3.3 One-dimensional RQ-RMI

We first seek to find a way to perform range matching over a set
of non-overlapping ranges in one dimension.

There are two basic ideas:

Sampling. Each submodelmi, j is trained by generating a uniform
sample of key-index pairs from input ranges in its responsibility.
The samples are generated on-the-fly for each submodel (§3.5.4).

Analytical error bound estimation for ranges. We eliminate
the RMI’s requirement for exhaustive key-value enumeration dur-
ing training by making the following observation: if a submodel is

a piece-wise linear function, the worst-case error bound ϵ can be com-

puted analytically, thereby enabling efficient learning of ranges.
The intuition behind this observation is illustrated in Figure 4.

It shows the graph of some piece-wise linear function which rep-
resents a submodel M whose outputs are quantized into integers
in [0, 4), i.e., M predicts the index in an array of size 4. We call the
inputs for which this function changes its quantized output transi-
tion inputs ti ∈ T . In turn, transition inputs determine the region
of inputs with the same quantized output. Therefore, given an in-
put range in the model’s responsibility, to compute the model’s
maximum prediction error for any key in that range, it suffices to
evaluate the prediction error in the transition inputs that fall in
the range. We describe the training algorithm that relies on these
observations in Section 3.4. We now provide amore formal descrip-
tion, but leave most of the proofs in the Appendix.

3.4 Using a neural network as a submodel

We choose to use a 3-layer fully-connected neural network (NN)
with a single hidden layer and ReLU activation A. Such NNs have
been suggested in the original RMI paper [18]; however, they did
not leverage their properties for accelerating error bound compu-
tations.

We denote a submodel asmi, j , and define it as follows.

Compute
transition
inputs

Generate
dataset w/
s samples

Train
submodel

Compute
error
bounds

Submodels w/ error > threshold. s ← 2s

Figure 5: The submodel training process. The additional

phase for training submodels in the leaves is depicted with

dashed lines.

Definition 3.1 (RQ-RMI submodel). Denote the output of a 3-
layer fully-connected neural network as:

Ni, j (x) = A
(
x ·w1 + b1

)
×w2 + b2

where x is a scalar input, w1,b1 are the weight and bias row-
vectors for layer 1 (hidden layer), andw2,b2 are the weight column-
vector and bias scalar for layer 2. Note that Ni, j (x) is a scalar. The
ReLU function A applies a function a on each element of an input
vector:

a(x) =

{
x x ≥ 0

0 x < 0.

The submodel output, denotedMi, j (x), is defined as follows:

Mi, j (x) = H
(
Ni, j (x)

)

where H (x) trims the output domain to be in [0, 1).

Corollary 3.2. Mi, j (x) is a piece-wise linear function.

3.5 RQ-RMI training

We use Corollary 3.2 to compute the transition inputs and the re-
sponsibility of the submodels. We provide a simplified description;
see Appendix for the precise explanation.

3.5.1 Overview. RQ-RMI training is similar to RMI’s. It is per-
formed stage by stage. Figure 5 illustrates the training process for
one stage. We start by training the single submodel in the first
stage using the entire input domain. Next, we calculate its tran-
sition inputs (§3.5.2) and use them to find the responsibilities of
the submodels in the following stage (§3.5.3). We proceed by train-
ing submodels in the subsequent stage using designated datasets
we generate based on the submodels’ responsibilities (§3.5.4). We
repeat this process until all submodels in all internal stages are
trained. For the submodels in the leaves (last stage), there is an
additional phase (dashed lines in Figure 5). After training, we cal-
culate their error bounds and retrain the submodels that do not
satisfy a predefined error threshold (§3.5.6).

3.5.2 Computing transition inputs. Given a trained submodel
m we can analytically find all its linear regions, and respectively
the inputs delimiting them, which we call trigger inputs дl . For
all inputs in the region [дl ,дl+1], the model function, denoted as
M(x), is linear by construction. On the other hand, the uniform out-
put quantization defines a step-wise function Q = ⌊M(x) ·W ⌋/W ,
where W is the size of the quantized output domain (Figure 4).
Thus, for each input region [дl ,дl+1], the set of transition inputs
tl ∈ T are those where M(x) and Q intersect.

3.5.3 Computing the responsibilities of submodels in the follow-

ing stage. Given a trained submodel mi, j in an internal stage i ,
we say that it maps a key to a submodel mi+1,k , k < Wi+1, if
⌊Mi, j (key) ·Wi+1⌋ = k . As discussed informally earlier, the re-
sponsibility Ri+1,k ofmi+1,k is defined as all the inputs which are
mapped by submodels in stage i to mi+1,k . In other words, the
trained submodels at stage i define the responsibility of untrained
submodels at stage i + 1.

Knowing the responsibility of a submodel is crucial, as it deter-
mines the subset of the inputs used to train the submodel. RMI
exhaustively evaluates all the inputs, which is inefficient. Instead,
we compute Ri+1,k using the transition inputs of mi, j . In the fol-
lowing, we assume for clarity that Ri, j is contiguous, and mi, j is
the only submodel at stage i .

We compute Ri+1,k by observing that it is composed of all the
inputs in the regions (tl , tl +1) that map to submodelmi+1,k , where
tl ∈ Ti, j are transition inputs ofmi, j . By construction, the inputs
in the region between two adjacent transition points map to the
same output. Then, it suffices to compute the output ofmi, j for its
transition points, and choose the respective input ranges that are
mapped tomi+1,k .

3.5.4 Training a submodel with ranges using sampling. Up to
this point, we used only key-index pairs as model inputs. Now we
focus on training on input ranges. A range can be represented as all
the keys that fall into the range, all associated with the same index
of the respective rule. For example, 10.1.1.0-10.1.1.255 includes 256
keys. Our goal is to train amodel such that given a key in the range,
the model predicts the correct index. Enumerating all the keys in
the ranges is inefficient. Instead, we use sampling as follows.

We generate the training key-index pairs by uniformly sampling
the submodel’s responsibility. We start with a low sampling fre-
quency. A sample is included in the training set if there is an in-
put rule range that matches the sampled key. Thus, the number of
samples per input range is proportional to its relative size in the
submodel’s responsibility. Note that some input ranges (or individ-
ual keys) might not be sampled at all. Nevertheless, they will be
matched correctly as we explain further.

3.5.5 Submodel training. We train submodels on the generated
datasets using supervised learning and Adam optimizer [14] with
a mean squared error loss function.

3.5.6 Computing error bounds. Given a trained submodel in the
last stage, we compute the prediction error bound for all inputs
in its responsibility by evaluating the submodel on its transition in-
puts. The prediction error is computed also for the inputs that were
not necessarily sampled, guaranteeing match correctness. If the er-
ror is too large, we double the number of samples, regenerate the
key-index pairs, and retrain the submodel. Training continues un-
til the target error bound is attained or after a predefined number
of attempts. If training does not converge, the target error bound
may be increased by the operator. The error bound determines the
search distance of the secondary search; hence a larger bound causes
lower system performance. We evaluate this tradeoff later (§5.3.4).

IP
Address

Port Number

R0
r 01

R1

r 10

R2
r 21

R3

r 30

r 41
R4

Figure 6: Rules from Figure 2 are split into two iSets:

{R0,R2,R4} (by port), and {R1,R3} (by IP).

3.6 Handling multi-dimensional queries with
range overlaps

NuevoMatch supports overlapped ranges and matching over mul-
tiple dimensions, i.e., packet fields, by combining two simple ideas:
partitioning the rule-set into disjoint independent sets (iSets), and
performing multi-field validation of each rule. In the following, we
use the terms dimension and field interchangeably.

Partitioning. Each iSet contains rules that do not overlap in one

specific dimension.We refer to the coverage of an iSet as the fraction
of the rules it holds out of those in the input. One iSet may cover all
the rules if they do not overlap in at least one dimension, whereas
the same dimension with many overlapping ranges may require
multiple iSets. Figure 6 shows the iSets for the rules from Figure 2.

Each iSet is indexed by one RQ-RMI. Thus, to find thematch to a
query withmultiple fields, we query all RQ-RMIs (in parallel), each
over the field on which it was trained. Then, the highest priority
result is selected as the output.

Each iSet adds to the total memory consumption and compu-
tational requirements of NuevoMatch. Therefore, we introduce a
heuristic that strives to find the smallest number of iSets that cover
the largest part of the rule-set (§3.6.1).

Multi-field validation. Since an RQ-RMI builds an index of the
rules over a single field, it might retrieve a rule which does not
match against other fields. Hence, each rule returned by an RQ-
RMI is validated across all fields. This enables NuevoMatch to
avoid indexing all dimensions, yet obtain correct results.

3.6.1 iSet partitioning. We introduce a greedy heuristic that
repetitively constructs the largest iSet from the input rules, pro-
ducing a group of iSets. To find the largest iSet over one dimension,
we use a classical interval scheduling maximization algorithm [15].
The algorithm sorts the ranges by their upper bounds, and repeti-
tively picks the range with the smallest upper bound that does not
overlap previously selected ranges.

We apply the algorithm to find the largest iSet in each field.
Then we greedily choose the largest iSet among all the fields and
remove its rules from the input set. We continue until exhausting
the input. This heuristic is sub-optimal but quite efficient. We plan
to improve it in future work.

Having a larger number of fields in a rule-set might help im-
prove coverage. For example, if the rules that overlap in one field
do not overlap in another and vice versa, two iSets cover the whole
rule-set, requiring more iSets for each field in isolation.

3.7 Remainder set and external classifiers

Real-world rule-sets may require many iSets for full coverage, with
a single rule per iSet in the extreme cases. Using separate RQ-RMIs
for such iSets will hinder performance. Therefore, we merge small
iSets into a single remainder set. The rules in the remainder set are
indexed using an external classifier. Each query is performed on
both the RQ-RMI and the external classifier.

In essence, NuevoMatch serves as an accelerator for the external
classifier. Indeed, if rule-sets are covered using a few large iSets, the
external classifier needs to index a small remainder set that often
fits into faster memory, so it can be very fast.

Two primary factors determine the end-to-end performance: (1)
the number of iSets required for high coverage (depends on the
rule-set), and; (2) the number of iSets for achieving high perfor-
mance (set by an operator).

Our evaluation (§5.3.1) shows that most of the evaluated rule-
sets can be covered with high coverage above 90% with only 2-3
iSets. This is enough to accelerate the external classifier, as is evi-
dent from the performance results. On the other hand, the choice
of the number of iSets depends on the external classifier properties,
in particular, its sensitivity to memory footprint. We analyze this
tradeoff in §5.3.

Worst-case inputs. Some rule-sets cannot achieve good coverage
with only a few iSets. For example, a rule-set with a single field
whose ranges overlap requires too many iSets to be covered.

To obtain a better intuition about the origins of worst-case in-
puts, we consider the notion of rule-set diversity for rule-sets with
exact matches. Rule-set diversity in a field is the number of unique
values in it across the rule-set, divided by the total number of rules.
The rule-set diversity is an upper bound on the fraction of rules in the

largest iSet of that field. In other words, low diversity implies that
using the field for iSet partitioning would result in poor coverage.

We can also identify challenging rule-sets with ranges. We de-
fine rule-set centrality as the maximal number of rules that each
pair of them overlap (they all share a point in a multi-dimensional
space). The rule-set centrality is a lower bound on the number of iSets

required for full coverage.
The diversity and centrality metrics can indicate the potential

of NuevoMatch to accelerate the classification of a rule-set. On the
positive side, our iSet partitioning algorithm is effective at segre-
gating the rules that cannot be covered well from the rules that can,
thereby accelerating the remainder classifier as much as possible
for a given rule-set. We analyze this property in §5.3.3.

3.8 Putting it all together

We briefly summarize all the steps of NuevoMatch.
Training

(1) Partition the input into iSets and a remainder set
(2) Train one RQ-RMI on each iSet
(3) Construct an external classifier for the remainder set

Lookup

(1) Query all the RQ-RMIs
(2) Query the external classifier
(3) Collect all the outputs, return the highest-priority rule

τ 2τ 3τ 4τ

Time

Throughput Fast training Long training

Figure 7: Updates impact on Throughput over time. An up-

per bound (in green) is for zero training time.

3.9 Rule Updates

We explain how NuevoMatch can support updates with a limited
performance degradation.

Firstly, an external classifier used for the remainder must sup-
port updates. Among the evaluated external classifiers only Tuple-
Merge is designed for fast updates.

Secondly, we distinguish four types of updates: (i) a change in
the rule action; (ii) rule deletion (iii) rule matching set change; (iv)
rule addition.

The first two types of updates are supported without perfor-
mance degradation, and require a lookup followed by an update
in the value array. However, if an update modifies a rule’s match-
ing set or adds a new rule, it might require modifications to the
RQ-RMI model. We currently do not know an algorithmic way to
update RQ-RMI without retraining; therefore, an updated rule is
always added to the remainder set.

Unfortunately, this design leads to gradual performance degra-
dation, as updates are likely to increase the remainder set. Accord-
ingly, the model is retrained on the updated rule-set, either peri-
odically or when a large performance degradation is detected. Up-
dates occurring while retraining are accommodated in the follow-
ing batch of updates.

Estimating sustained update rate. Let r and u be the total num-
ber of rules and the number of updates that move a rule to the re-
mainder, respectively;u can be smaller than the real rate of rule up-
dates. We assume that the updates are independent and uniformly
distributed among the r rules. For each rule update, a rule is mod-
ified w.p. (with probability) 1

r . Thus a rule is not modified in any

of the updates w.p. (1 − 1
r)
u ≈ e−u/r . The expected number of un-

modified rules is r · (1 − 1
r)
u ≈ r · e−u/r . Throughput behaves as a

weighted average between that of NuevoMatch and the remainder
implementation, based on the number of rules in each.

Figure 7 illustrates the throughput over time for different re-
training rates given a certain update rate. If retraining is invoked
every τ time units, the slower the training process, the worse the
performance degradation.

With these update estimates, using the measured speedup as a
function of the fraction of the remainder (§5.3.3), NuevoMatch can
sustain up to 4k updates per second for 500K rule-sets, yielding

about half the speedup of the update-free case, assuming a minute-
long training. These results indicate the need for speeding up train-
ing, but we conjecture there might be a more efficient way to per-
form updates directly in RQ-RMI without complete re-training of
all submodels. Accelerating updates is left for future work.

4 IMPLEMENTATION DETAILS

RQ-RMI structure. The number of stages and the width of each
stage depend on the number of rules to index. We increase the
width of the last stage from 16 for 10K rules to as much as 512 for
500K. See Table 4 in the Appendix.

Submodel structure. Each submodel is a fully connected 3-layer
neural net with 1 input, 1 output, and 8 neurons in the hidden layer
with ReLU activation. This structure affords an efficient vectorized
implementation (see below).

Training.Weuse TensorFlow [1] to train each submodel on a CPU.
Training a submodel requires a few seconds, but thewhole RQ-RMI
may take up to a fewminutes (see §5.3.4).We believe, however, that
a much faster training time could be achieved with more optimiza-
tions, i.e., replacing TensorFlow (known for its poor performance
on small models). We leave it for future work.

iSet partitioning. We implement the iSet partitioning algorithm
using Python. The partitioning takes at most a few seconds and is
negligible compared to RQ-RMI training time.

Inference and secondary search. We implement RQ-RMI infer-
ence in C++. For each iSet we sort the rules by the value of the
respective field to optimize the secondary search. To reduce the
number of memory accesses, we pack multiple field values from
different rules in the same cache line.

Handling long fields. Both iSet partitioning algorithms and RQ-
RMI models map the inputs into single-precision floating-point
numbers. This allows the packing of more scalars in vector opera-
tions, resulting in faster inference. While enough for 32-bit fields,
doing so might cause poor performance for fields of 64-bits and
128-bits.

We compared two solutions: (1) splitting the fields into 32-bit
parts and treating each as a distinct field, and (2) using a single-
precision floating-point to express long fields. The two showed
similar results for iSet partitioning with MAC addresses, while
with IPv6, splitting into multiple fields worked better. Note that
both the secondary search and the validation phases are not af-
fected because the rules are stored with the original fields.

Vectorization. We accelerate the inference by using wide CPU
vector instructions. Specifically, with 8 neurons in the hidden layer
of each submodel, computing the prediction involves a handful of
vector instructions. Validation is also vectorized.

Table 1 shows the effectiveness of vectorization. The use of
wider units speeds up inference, highlighting the potential for scal-
ing NuevoMatch in future CPUs.

Parallelization. NuevoMatch lends itself to parallel execution
where iSets and the remainder classifier run in parallel on different
CPU cores. The system receives the packets and enqueues each for

Table 1: Submodel acceleration via vectorization. Methods

are annotated with the number of floats per single instruc-

tion.

Instruction set (width) Serial(1) SSE(4) AVX(8)

Inference Time (ns) 126 62 49

execution into the worker threads. The threads are statically allo-
cated to run RQ-RMI or the external classifier with a balanced load
between the cores.

Note that since RQ-RMI are small and fit in L1, running them
on a separate core enables L1-cache-resident executions even if
the remainder classifier is large. Such an efficient cache utilization
could not have been achieved with other classifiers running on two
cores.

Early termination.One drawback of the parallel implementation
is that the slowest thread determines the execution time. Our ex-
periments show that the remainder classifier is the slowest one.
It holds only a small fraction of the rules, so it returns an empty
set for most of the queries, which in turn leads to the worst-case
lookup time. In TupleMerge, for example, a query which does not
find any matching rules results in a search over all tables, whereas
in the average case some tables are skipped.

Instead, we query the remainder after obtaining the results from
the iSets, and terminate the search when we determine that the
target rule is not in the remainder.

To achieve that, we make minor changes to existing classifica-
tion techniques. Specifically, in decision-tree algorithms, we store
in each node the maximum priority of all the sub-tree rules. When-
ever we encounter a maximum priority that is lower than that
found in the iSets, we terminate the tree-walk. The changes to the
hash-based algorithms are similar.

We call this optimization early termination. With this optimiza-
tion, both the iSets and the remainder are queried on the same
core. While a parallel implementation is possible, it incurs higher
synchronization overheads among threads.

5 EVALUATION

In the evaluation, we pursued the following goals.

(1) Comparison of NuevoMatch with the state-of-the-art algo-
rithms TupleMerge [3], CutSplit [21], and NeuroCuts [22];

(2) Systematic analysis of the performance characteristics, in-
cluding coverage in challenging data sets, the effect of RQ-
RMI error bound, and training time.

5.1 Methodology

We ran the experiments on Intel Xeon Silver 4116 @ 2.1 GHz
with 12 cores, 32KB L1, 1024KB L2, and 16MB L3 caches, running
Ubuntu 16.04 (Linux kernel 4.4.0). We disable power management
for stable measurements.

Evaluated configurations. CutSplit (cs) is set with binth = 8, as
suggested in [21].

For NeuroCuts (nc), we performed a hyperparameter sweep and
selected the best classifier per rule-set. As recommended in [22],

we focused on both top-mode partitioning and reward scaling. We
ran the search on three 12-core Intel machines, allocating six hours
per configuration to converge. In total, we ran nc training for up
to 36 hours per rule-set. In addition, we developed a C++ imple-
mentation of nc for faster evaluation of the generated classifiers,
much faster than the authors’ Python-based prototype.

TupleMerge (tm) is used with the version that supports updates
with collision-limit = 40, as suggested in [3].

NuevoMatch (nm) was trained with a maximum error thresh-
old of 64. We present the analysis of the sensitivity to the chosen
parameters and training times in §5.3.2.

Multi-core implementation. We run a parallel implementation
on two cores. NuevoMatch allocates one core for the remainder
computations and the second for the RQ-RMIs. For cs, nc, and tm,
we ran two instances of the algorithm in parallel on two cores
using two threads (i.e., no duplication of the rules), splitting the
input equally between the cores. We discarded iSets with cover-
age below 25% for comparisons against cs and nc, and below 5%
for comparisons against tm. We used batches of 128 packets to
amortize the synchronization overheads. Thus, these algorithms
achieve almost linear scaling and the highest possible throughput
with perfect load-balancing between the cores.

Single-core implementation.We used a single core to measure
the performance of NuevoMatch with the early termination opti-
mization. For nm, we discarded iSets with coverage below 25%.

5.1.1 Packet traces and rule-sets. For evaluating each classifier,
we generated traces with 700K packets. We processed each trace 6
times, using the first five as warmup and measuring the last. We
report the average of 15 measurements.

Uniform traffic.We generate traces that access all matching rules
uniformly to evaluate the worst-case memory access pattern.

Skewed traffic. For each rule-set we generate traces that follow
Zipf distributionwith four different skew parameters, according to
the amount of traffic that accounts for the 3% most frequent flows
(e.g., 80% of the traffic accounts for the 3% most frequent flows).
This is representative of real traffic, as has been shown in previous
works [13, 33].

Additionally, we use a real CAIDA trace from the Equinix data-
center in Chicago [2]. As CAIDA does not publish the rules used
to process the packets, we modify the packet headers in the trace
to match each evaluated rule-set as follows. For each rule, we gen-
erate one matching five-tuple. Then, for each packet in CAIDA,
we replace the original five-tuple with a random five-tuple gen-
erated from the rule-set, while maintaining a consistent mapping
between the original and the generated one. Note that the rule-set
access locality of the generated trace is the same or as high as the
original trace.

ClassBench rules. ClassBench [39] is a standard benchmark
broadly used for evaluating packet classification algorithms [3, 16,
21, 22, 28, 41, 44]. It creates rule-sets that correspond to the rule dis-
tribution of three different applications: Access Control List (ACL),
Firewall (FW), and IP Chain (IPC). We created rule-sets of sizes
500K, 100K, 10K, and 1K, eachwith 12 distinct applications, all with
5-field rules: source and destination IP, source and destination port,
and protocol.

1 2 3 4 5 6 7 8 9 10 11 12 GM 1 2 3 4 5 6 7 8 9 10 11 12 GM
0

2

4

6

8
100K Classifiers 500K Classifiers

La
te
n
cy

Sp
ee
du

p

NuevoMatch w/ CutSplit NuevoMatch w/ NeuroCuts NuevoMatch w/ TupleMerge

1 2 3 4 5 6 7 8 9 10 11 12 GM 1 2 3 4 5 6 7 8 9 10 11 12 GM
0

1

2

3

4
100K Classifiers 500K Classifiers

T
h
ro
ug

h
pu

t
Sp
ee
du

p

Figure 8: ClassBench: NuevoMatch vs. CutSplit, NeuroCuts, and TupleMerge, using two CPU cores. (See rule-set in the Appen-

dix.)

Real-world rules.We used the Stanford Backbone dataset which
contains a large enterprise network configuration [46]. There are
four IP forwarding rule-sets with roughly 180K single-field rules
each (i.e., destination IP address).

5.2 End-to-end performance

For fair comparison, NuevoMatch used the same algorithm for both
the remainder classifier and the baseline. For example, we eval-
uated the speedup produced by NuevoMatch over cs while also
using cs to index the remainder set.

We present the results for random packet traces, followed by
skewed and CAIDA traces.

Large rule-sets:ClassBench:multi-core. Figure 8 shows that, in
the largest rule-sets (500K), the parallel implementation of Nuevo-
Match achieves a geometric mean factor of 2.7×, 4.4×, and 2.6×
lower latency and 1.3×, 2.2×, and 1.2× higher throughput over
cs, nc, and tm, respectively. For the classifiers with 100K rules,
the gains are lower but still significant: 2.0×, 3.6×, and 2.6× lower
latency and 1.0×, 1.7×, and 1.2× higher throughput over cs, nc,
and tm, respectively. The performance varies among rule-sets, i.e.,
some classifiers are up to 1.8× faster than cs for 100K̇ inputs.

Large rule-sets: ClassBench: single core. Figure 9 shows the
throughput speedup of nm compared to cs, nc, and tm. For 500K
rule-sets, NuevoMatch achieves a geometric mean improvement
of 2.4×, 2.6×, and 1.6× in throughput compared to cs, nc, and
tm, respectively. For the single core execution the latency and the
throughput speedups are the same.

Large rule-sets: Stanford backbone: multi-core. Figure 10
shows the speedup of nm over tm for the real-world Stanford back-
bone dataset with 4 rule-sets. nm achieves 3.5× higher throughput
and 7.5× lower latency over tm on all four rule-sets.

Small rule-sets: multi-core. For rule-sets with 1K and 10K rules,
NuevoMatch results in the same or lower throughput, and 2.2×
and 1.9× on average better latency compared to cs and tm. The
lower speedup is expected, as both cs and tm fit into L1 (§5.2.1), so
nm does not benefit from reduced memory footprint, while adding
computational overheads. See Appendix for the detailed chart.

1 2 3 4

1

2

3 ·10
6

3.51× 3.49× 3.40× 3.56×

T
h
ro
ug

h
pu

t
(p
ps
)

TupleMerge NuevoMatch w/ TupleMerge

1 2 3 4
0

200

400
7.51× 7.84× 7.59× 7.47×

La
te
n
cy

(µ
s
)

Figure 10: End-to-end performance on real Stanford back-

bone data sets.

The cs results are averaged over three rule-sets of 1K and six
rule-sets for 10K. In the remaining rule-sets, NuevoMatch did not
produce large-enough iSets to accelerate the remainder. Note, how-
ever, that it promptly identifies the rule-sets expected to be slow
and falls back to the original classifier.

The source of speedups. The ability to compress the rule-set to
fit into faster memory while retaining fast lookup is the key factor
underlying the performance benefits of NuevoMatch. To illustrate
it, we take a closer look at the performance. We evaluate tm with
and without nm acceleration as a function of its memory footprint
on ClassBench-generated 1K,10K,100K and 500K rule-sets for one
application (ACL).

Figure 11 shows that the performance of tm degrades as the
number of rules grows, causing the hash tables to spill out of L1 and
L2 caches. nm compresses a large part of the rule-set (see coverage
annotations), thereby making the remainder index small enough
to fit in the L1 cache, and gaining back the throughput equivalent
to tm’s on small rule-sets.

ClassBench: Skewed traffic. Figure 12 shows the evaluation of
the early termination implementation on skewed packet traces.We
report the throughput speedup of nm compared to cs and tm; the
results for nc are similar to those of cs.

We perform 6000 experiments using 25 traces per rule-set: five
traces per Zipf distribution plus five modified CAIDA traces. We
evaluate over twelve 500K rule-sets and report the geometric mean.
Additionally, we evaluate CAIDA traces in two settings. First, the

1 2 3 4 5 6 7 8 9 10 11 12 GM 1 2 3 4 5 6 7 8 9 10 11 12 GM
0

1

2

3

4 100K Classifiers 500K Classifiers

T
h
ro
ug

h
pu

t
Sp
ee
du

p

NuevoMatch w/ CutSplit NuevoMatch w/ NeuroCuts NuevoMatch w/ TupleMerge

Figure 9: ClassBench: NuevoMatch vs. CutSplit, NeuroCuts, and TupleMerge, using a single CPU core.

103 104 105 106
2

3

4

5

6
·106

L2 Size (1MB)L1 Size (32KB)

14.85:15.6
25%

192.0:192.8
6%

2.9:21.3
99% 7.9:46.1

99%

19.5 KB

205.0 KB

2 MB

10 MB

Number of Rules

T
h
ro
ug

h
pu

t
(p
ps
)

TupleMerge NuevoMatch w/ TupleMerge

Figure 11: Throughput vs. number of rules for TupleMerge

and NuevoMatch. Annotations are coverage (%) and index

memory size in KB (remainder : total).

classifier runs with access to the entire 16MB of the L3 cache (de-
noted as CAIDA). Second, the classifier use of L3 is restricted to
1.5ṀB via Intel’s Cache Allocation Technology, emulating multi-
tenant setting (denoted as CAIDA*).

NuevoMatch is significantly faster than cs, but its benefits over
tm diminish for workloads with higher skews. Yet, the speedups
are more pronounced under smaller L3 allocation.

Overall, we observe lower speedups for the skewed traffic than
for the random trace. This is not surprising, as skewed traces in-
duce a higher cache hit rate for all the methods, which in turn
reduces the performance gains of nm over both cs and tm, simi-
lar to the case of small rule-sets. Nevertheless, it is worth noting
that classification algorithms are usually applied alongside caching
mechanisms that catch the packets’ temporal locality. For instance,
Open vSwitch applies caching for most frequently used rules. It
invokes Tuple Space Search upon cache misses [30]. Therefore, if
NuevoMatch is applied at this stage, we expect it to yield the perfor-
mance gains equivalent to those reported for unskewed workloads.
Open vSwitch integration is the goal of our ongoing work.

5.2.1 Memory footprint comparison. Figure 13 compares the
memory footprint of the classifiers without and with NuevoMatch
(the two right-most bars in each bar cluster).We use the same num-
ber of iSets as in the end-to-end experiments. Note that a smaller
footprint alone does not necessarily lead to higher performance if
more iSets are used. Therefore, the results should be considered in
conjunction with the end-to-end performance.

The memory footprint includes only the index data structures
but not the rules themselves. In particular, the memory footprint

Zipf 80%
(α=1.05)

Zipf 85%
(α=1.10)

Zipf 90%
(α=1.15)

Zipf 95%
(α=1.25)

CAIDA CAIDA*
0.5

1

1.5

2

2.5
2.06×

1.14×

1.95×

1.06×

1.84×

0.99×

1.62×

0.89×

1.79×

1.05×

2.26×

1.16×

T
h
ro
ug

h
pu

t
Sp
ee
du

p

NuevoMatch w/ CutSplit NuevoMatch w/ TupleMerge

Figure 12: ClassBench: NuevoMatch vs. CutSplit and Tuple-

Merge with skewed traffic.

for NuevoMatch includes both the RQ-RMI models and the remain-
der classifier. Each bar is the average of all the 12 application rule-
sets of the same size.

For nmwe show both the remainder index size (middle bar) and
the total RQ-RMI size (right-most bar). Note that due to the loga-
rithmic scale of the Y axis, the actual ratio bewteen the two is much
higher than it might seem. For example, the remainder for 10K tm

is almost 100× the size of the RQ-RMI. Note also that since we run
nm on two cores, both RQ-RMI and the remainder classifier use
their own CPU caches.

Overall, NuevoMatch enables dramatic compression of the
memory footprint, in particular for 500K rule-sets, with 4.9×, 8×,
and 82× on average over cs, nc and tm respectively.

The graph explains well the end-to-end performance results. For
1K rule-sets, the original classifiers fit into the L1 cache, so nm is
not effective. For 10K sets, even though the remainder index fits
in L1, the ratio between L1 and L2 performance is insufficient to
cover the RQ-RMI overheads. For 100K, the situation is similar for
cs; however, for nc, the remainder fits in L1, whereas the original
nc spills to L3. For tm, the remainder is already in L2, yielding a
lower overall speedup compared to nc. Last, for 500K rule-sets, all
the original classifiers spill to L3, whereas the remainder fits well
in L2, yielding clear performance improvements.

Performance under L3 cache contention. The small memory
footprint of nm plays an important role even when the rule-index
fits in the L3 cache (16MB in our machine). L3 is shared among all
the CPU cores; therefore, cache contention is not rare, in particular
in data centers. nm reduces the effects of L3 cache contention on
packet classification performance. In the experiment we use the
500K̇ rule-set (1) and compare the performance of cs and nm (with
cs) while limiting the L3 to 1.5MB. cs loses half of its performance,
whereas nm slows down by 30%, increasing the original speedup.

1K 10K 100K 500K
102
103
104
105
106
107

32KB L1 Cache Size

1024KB L2 Cache Size

Number of rules

Si
ze

(B
yt
es
)

NuevoMatch: Remainder CutSplit NeuroCuts

NuevoMatch: iSets TupleMerge

Figure 13: Memory size for CutSplit, NeuroCuts, Tuple-

Merge vs. NuevoMatch with them indexing the remainder.

Each bar is a geometric mean of 12 applications.

Table 2: iSet coverage.

1 iSet 2 iSets 3 iSets 4 iSets

1K 20.2 ± 18.6 28.9 ± 22.3 34.6 ± 25.6 38.7 ± 27.2
10K 45.1 ± 31.6 59.6 ± 38.9 62.6 ± 37.1 65.1 ± 35.7
100K 80.0 ± 14.5 96.5 ± 8.3 98.1 ± 4.8 98.8 ± 2.7
500K 84.2 ± 10.5 98.8 ± 1.5 99.4 ± 0.6 99.7 ± 0.2

183,376 57.8 91.6 96.5 98.2

0 1 2 3 4 5 6
0

200

400

600

800

1,000

Number of iSets

T
im

e
(n
s)

C
ov
er
ag
e
(%
)

Remainder Secondary Search Validation

Inference Coverage

Figure 14: Coverage and execution time breakdown of

NuevoMatch vs. varying number of iSets.

5.3 Performance analysis

5.3.1 iSet coverage. Table 2 shows the cumulative coverage
achieved with up to 4 iSets averaged over 12 rule-sets (ClassBench)
of the same size. The coverage of smaller rule-sets is worse on av-
erage, but improves with the size of the rule-set.

The last row shows a representative result for the Stanford back-
bone rule-set (the other three differ within 1%). Two iSets are
enough to achieve 90% coverage and three are needed for 95%. This
data set differs from ClassBench in that it contains only one field,
providing fewer opportunities for iSet partitioning.

5.3.2 Impact of the number of iSets. We seek to understand the
tradeoff between the iSet coverage of the rule-set and the computa-
tional overheads of adding more RQ-RMI. All computations were
performed on a single core to obtain the latency breakdown. We
use cs for indexing the remainder.

Table 3: Throughput and a single iSet coverage vs. the frac-

tion of low-diversity rules in a 500K rule-set.

% Low diversity rules % Coverage Speedup (throughput)

70% 25% 1.07×
50% 50% 1.14×
30% 70% 1.60×

Figure 14 shows the geometric mean of the coverage and the
runtime breakdown over 12 rule-sets of 500K. The breakdown
includes the runtime of the remainder classifier, validation, sec-
ondary search, and RQ-RMI inference. Zero iSets implies that cs
was run alone. Adding more iSets shows diminishing returns be-
cause of their compute overhead, which is not compensated by the
remainder runtime improvements because the coverage is already
saturated to almost 100%. Using one or two iSets shows the best
trade-off. nc shows similar results.

tm behaved differently (not shown). tm occupies much more
memory than cs; therefore, using more iSets to achieve higher cov-
erage allowed us to further speed up the remainder by fitting it into
an upper level cache. Thus, 4 iSets showed the best configuration.

We note that the runtime is split nearly equally between model
inference and validation (which are compute-bound parts), and
the secondary search and the remainder computations (which are
memory-bound). We expect the compute performance of future
processors to scale better than their cache capacity and memory
access latency. Therefore, we believe nm will provide better scal-
ing than memory-bound state-of-the-art classifiers.

5.3.3 Partitioning effectiveness. We seek to understand how
low diversity rule-sets affect NuevoMatch. To analyze that, we syn-
thetically generated a large rule-set as a Cartesian product of a
small number of values per field (no ranges). We blended them into
a 500KClassBench rule-set, replacing randomly selected rules with
those from the Cartesian product, while keeping the total number
of rules the same.

Table 3 shows the coverage and the speedup over tm on the
resulting mixed rule-sets for different fractions of low-diversity
rules. The partitioning algorithm successfully segregates the low-
diversity rules the best, achieving the coverage inversely propor-
tional to their fraction in the rule-set. Note that NuevoMatch be-
comes effective when it offloads the processing of about 25% of the
rules.

5.3.4 Training time and secondary search range. RQ-RMIs are
trained to minimize the prediction error bound to achieve a small
secondary search distance. Recall that a secondary search involves
a binary search within the error bound, where each rule is vali-
dated to match all the fields.

The tradeoff between training time and secondary search perfor-
mance is not trivial. A larger search distance enables faster train-
ing but slows down the secondary search. A smaller search dis-
tance results in a faster search but slows down the training. In ex-
treme cases, the training does not converge, since a higher preci-
sion might require larger submodels. However, increasing the size
of the submodels leads to a larger memory footprint and longer
computations.

64 128 256 512 1024
0
10
20
30
40

Search Distance Bounds

T
ra
in
in
g

T
im

e
(m

in
ut
es
) 500K rules

100K rules

10K rules

Figure 15: RQ-RMI training time in minutes vs. maximum

search range bound.

Figure 15 shows the average end-to-end training time in min-
utes of 500 models as a function of the secondary search distance
and the rule-set size. The measurements include all training itera-
tions as described in §3.5. As mentioned (§4), our training imple-
mentation can be dramatically accelerated, so the results here in-
dicate the general trend.

Training with the bound of 64 is expensive, but is it really neces-
sary? To answer, we evaluate the performance impact of the search
distance on the secondary search time. We measure 40ṅs for re-
trieving a rule with a precise prediction (no search). For 64, 128 and
256 distances the search time varies between 75 to 80ṅs thanks to
the binary search. Last, it turns out that the actual search distance
from the predicted index is often much smaller than the worst-case
one enforced in training. Our analysis shows that in practice, train-
ing with a relatively large bound of 128 leads to 80% of the lookups
with a search distance of 64, and 60% with 32.

We conclude that training with larger bounds is likely to have
a minor effect on the end-to-end performance, but significantly ac-
celerate training. This property is important to support more fre-
quent retraining and faster updates (§3.9).

5.3.5 Performancewithmore fields. Adding fields to an existing
classifier will not harm its coverage, so it will not affect the RQ-
RMI performance. Nonetheless, more fieldswill increase validation
time.

Unfortunately, we did not find public rule-sets that have a large
number of fields. Thus, we ran a microbenchmark by increasing
the number of fields and measuring the validation stage perfor-
mance. As expected, we observed almost linear growth in the val-
idation time, from 25ns for one field to 180ns for 40 fields.

6 RELATED WORK

Hardware-based classifiers. Hardware-based solutions for clas-
sification such as TCAMs and FPGAs achieve a very high through-
put [6, 35]. Consequently, many software algorithms take ad-
vantage of them, further improving classification performance
[13, 20, 23, 24, 28, 32, 37]. Our work is complementary, but can
be used to improve scaling of these solutions. For example, if the
original classifier required large TCAMs, the remainder set would
fit a much smaller TCAM.

GPUs for classification.Accelerating classification on GPUs was
suggested by numerous works. PacketShader [10] uses GPU for
packet forwarding and provides integration with Open vSwitch.
However, packet forwarding is a single-dimensional problem, so it

is easier thanmulti-field classification [9]. Varvello et al. [42] imple-
mented various packet classification algorithms in GPUs, includ-
ing linear search, Tuple Space Search, and bloom search. Nonethe-
less, these techniques suffer from poor scalability for large classi-
fiers with wildcard rules, which NuevoMatch aims to alleviate.

ML techniques for networking. Recent works suggest usingML
techniques for solving networking problems, such as TCP conges-
tion control [4, 12, 45], resource management [25], quality of expe-
rience in video streaming [26, 43], routing [40], and decision tree
optimization for packet classification [22]. NuevoMatch is different
in that it uses an ML technique for building space-efficient repre-
sentations of the rules that fit in the CPU cache.

7 CONCLUSIONS

Wehave presented NuevoMatch, the first packet classification tech-
nique that uses Range-Query RMI machine learning model for ac-
celerating packet classification. We have shown an efficient way of
training RQ-RMI models, making them learn the matching ranges
of large rule-sets, via sampling and analytical error bound com-
putations. We demonstrated the application of RQ-RMI to multi-
field packet classification using rule-set partitioning.We evaluated
NuevoMatch on synthetic and real-world rule-sets and confirmed
its benefits for large rule-sets over state-of-the-art techniques.

NuevoMatch introduces a new point in the design space of
packet classification algorithms and opens up new ways to scale
it on commodity processors. We believe that its compute-bound
nature and the use of neural networks will enable further scaling
with future CPU generations, which will feature powerful compute
capabilities targeting faster execution of neural network-related
computations.

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers of SIGCOMM’20 and our shep-
herd Minlan Yu for their helpful comments and feedback. We
would also like to thank Isaac Keslassy and Leonid Ryzhyk for their
feedback on the early draft of the paper.

This work was partially supported by the Technion Hiroshi Fu-
jiwara Cyber Security Research Center and the Israel National Cy-
ber Directorate, by the Alon fellowship and by the Taub Family
Foundation. We gratefully acknowledge support from Israel Sci-
ence Foundation (Grant 1027/18) and Israeli Innovation Authority.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, MartinWicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In USENIX OSDI.

[2] CAIDA. [n.d.]. The CAIDA UCSD Anonymized Internet Traces 2019. Retrieved
June 15, 2020 from http://www.caida.org/data/passive/passive_dataset.xml

[3] James Daly, Valerio Bruschi, Leonardo Linguaglossa, Salvatore Pontarelli, Dario
Rossi, Jerome Tollet, Eric Torng, and Andrew Yourtchenko. 2019. TupleMerge:
Fast Software Packet Processing for online Packet Classification. IEEE/ACM
Transactions on Networking (TON) 27, 4 (2019), 1417–1431.

[4] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten God-
frey, and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Con-
trol. In USENIX NSDI.

[5] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in the
Public Cloud. In USENIX NSDI.

http://www.caida.org/data/passive/passive_dataset.xml

[6] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt
Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye,
Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Mad-
han Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak
Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.
2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In USENIX
NSDI.

[7] Pankaj Gupta and NickMcKeown. 1999. Packet Classification onMultiple Fields.
In ACM SIGCOMM.

[8] Pankaj Gupta and Nick McKeown. 2000. Classifying Packets with Hierarchical
Intelligent Cuttings. IEEE Micro 20, 1 (2000), 34–41.

[9] Pankaj Gupta and Nick McKeown. 2001. Algorithms for Packet Classification.
IEEE Network 15, 2 (2001), 24–32.

[10] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader:
A GPU-accelerated software router. In ACM SIGCOMM.

[11] Intel. 2019. Intel Nervana Neural Network Processors. Retrieved September 25,
2019 from https://www.intel.ai/nervana-nnp/

[12] Nathan Jay, Noga H. Rotman, Philip Brighten Godfrey, Michael Schapira, and
Aviv Tamar. 2018. Internet Congestion Control via Deep Reinforcement Learn-
ing. arXiv preprint arXiv:1810.03259 (2018).

[13] Naga Praveen Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
2016. CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Net-
works. In ACM SOSR.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 (2014).

[15] Jon M. Kleinberg and Éva Tardos. 2006. Algorithm Design. Addison-Wesley,
116–125.

[16] Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane, and Patrick
Eugster. 2014. SAX-PAC (Scalable and expressive packet classification). In ACM
SIGCOMM.

[17] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
2019. SageDB: A Learned Database System.

[18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In ACM SIGMOD.

[19] Habana Labs. 2019. Habana AI Processors. Retrieved September 25, 2019 from
https://habana.ai/product

[20] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkatachary.
2005. Algorithms for Advanced Packet Classification with Ternary CAMs. In
ACM SIGCOMM.

[21] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. CutSplit: A Decision-
Tree Combining Cutting and Splitting for Scalable Packet Classification. In IEEE
INFOCOM.

[22] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural Packet Classification.
In ACM SIGCOMM.

[23] Alex X Liu, Chad R Meiners, and Yun Zhou. 2008. All-Match Based Complete
Redundancy Removal for Packet Classifiers in TCAMs. In IEEE INFOCOM.

[24] Yadi Ma and Suman Banerjee. 2012. A Smart Pre-classifier to Reduce Power
Consumption of TCAMs for Multi-dimensional Packet Classification. In ACM
SIGCOMM.

[25] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In ACM SIGCOMM
HotNets Workshop.

[26] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In ACM SIGCOMM.

[27] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM CCR 38, 2 (2008),
69–74.

[28] Nina Narodytska, Leonid Ryzhyk, Igor Ganichev, and Soner Sevinc. 2019. BDD-
Based Algorithms for Packet Classification. In Formal Methods in Computer
Aided Design FMCAD.

[29] Nvidia. 2019. Nvidia Deep Learning Inference Plat-
form. Retrieved September 25, 2019 from
https://www.nvidia.com/en-us/deep-learning-ai/solutions/inference-platform/

[30] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. 2015. The Design and Implementation of Open vSwitch. In
USENIX NSDI.

[31] Alon Rashelbach. 2020. NeuvoMatch source code. Retrieved June 21, 2020 from
https://github.com/acsl-technion/nuevomatch

[32] Ori Rottenstreich and János Tapolcai. 2015. Lossy Compression of Packet Clas-
sifiers. In ACM/IEEE ANCS.

[33] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang. 2012.
Leveraging Zipf’s law for traffic offloading. Computer Communication Review

42, 1 (2012), 16–22.
[34] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003. Packet

Classification Using Multidimensional Cutting. In ACM SIGCOMM.
[35] Ed Spitznagel, David E Taylor, and Jonathan S Turner. 2003. Packet classification

using extended TCAMs. In IEEE ICNP.
[36] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999. Packet Clas-

sification Using Tuple Space Search. In ACM SIGCOMM.
[37] David E Taylor. 2005. Survey and Taxonomy of Packet ClassificationTechniques.

ACM Computing Surveys (CSUR) 37, 3 (2005), 238–275.
[38] David E. Taylor and Jonathan S. Turner. 2005. Scalable packet classificationusing

distributed crossproducing of field labels. In IEEE INFOCOM.
[39] David E Taylor and Jonathan S Turner. 2007. Classbench: A Packet Classification

Benchmark. IEEE/ACM Transactions on Networking (TON) 15, 3 (2007), 499–511.
[40] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learn-

ing to Route with Deep RL. In NIPS Deep Reinforcement Learning Symposium.
[41] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2010. EffiCuts:

Optimizing Packet Classification for Memory and Throughput. In ACM SIG-
COMM.

[42] Matteo Varvello, Rafael Laufer, Feixiong Zhang, and T. V. Lakshman. 2016. Mul-
tilayer Packet Classification with Graphics Processing Units. IEEE/ACM Trans-
actions on Networking (TON) 24, 5 (2016), 2728–2741.

[43] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, andDongsu Han. 2018.
Neural Adaptive Content-aware Internet Video Delivery. In USENIX OSDI.

[44] Sorrachai Yingchareonthawornchai, James Daly, Alex X. Liu, and Eric Torng.
2018. A Sorted-Partitioning Approach to Fast and Scalable Dynamic Packet Clas-
sification. IEEE/ACM Transactions on Networking (TON) 26, 4 (2018), 1907–1920.

[45] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular
Networks. In ACM SIGCOMM.

[46] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Automatic Test Packet Generation. In ACM CoNEXT.

Appendices are supporting material that has not been peer-
reviewed.

A RQ-RMI CORRECTNESS

A.1 Responsibility of a submodel

Denote the input domain of an RQ-RMI model as D ⊂ R and its
number of stages as n.

Theorem A.1 (Responsibility Theorem). Let si be a trained

stage such that i < n − 1. The responsibilities of submodels in si+1
can be calculated by evaluating a finite set of inputs over the stage

si .

The intuition behind Theorem A.1 is based on Corollary 3.2,
namely that submodels output piecewise linear functions. Proving
it requires some additional definitions.

Definition A.2 (Stage Output). The output of stage si is defined
for x ∈ D as Si (x) = Mi, fi (x)(x) where fi (x) is the index of the
submodel in si that is responsible for input x , and defined as

fi (x) =

{
0 i = 0⌊
Si−1(x) ·Wi

⌋
i = {1, 2, ...,n − 1}

Definition A.3 (Submodel Responsibility). The responsibility of a
submodelmi, j is defined as

Ri, j =

{
D i = 0{
x
�� fi (x) = j

}
i = {1, 2, ...,n − 1}

Note that the responsibilities of every two submodels in the same
stage are disjoint.

Definition A.4 (Left and Right Slopes). For a range R, if points
minx ∈R x or maxx ∈R x are defined, we refer to them as the bound-
aries of the range. For all other points, we refer to as internal points
of the range. For a piecewise linear function defined over some

https://www.intel.ai/nervana-nnp/
https://habana.ai/product
https://www.nvidia.com/en-us/deep-learning-ai/solutions/inference-platform/
https://github.com/acsl-technion/nuevomatch

x

Mi, j (x)

1

0.75

0.5

0.25

0 д0 д1 д2 д3 д4 д5

(a) Trigger InputsGi, j

x

Mi, j (x),
⌊
Mi, j (x) ·Wi+1

⌋

1, 4

0.75, 3

0.5, 2

0.25, 1

0, 0
t0 t1 t2 t3 t4

(b) Transition Inputs Ti, j

Figure 16: Illustration of the trigger inputs (д0, ...,д5) and

transition inputs (t0, ..., t4) for graphMi, j (x) of submodelmi, j .

Note thatWi+1, namely the number of submodels in stage

i + 1, affects the transition inputs ofmi, j and equals 4.

range R, for every internal point x ∈ R, there exists δ > 0 such
that the function is linear in each of (x − δ ,x), (x, x + δ). Accord-
ingly, we can refer to the left slope and the right slope of a point,
defined as those of the two linear functions.

Definition A.5 (Trigger Inputs). We say that an input д ∈ D is a
trigger input of a submodelmi, j if one of the following holds: (i) д
is a boundary point ofD (namely, д = miny∈D y or д = maxy∈D y).
(ii)д is an internal point ofD and the left and right slopes ofMi, j (д)

differ.

DefinitionA.6 (Transition Inputs). We say that an input t ∈ D is a
transition input of a submodelmi, j if it changes submodel selection
in the following stage. Formally, there exists ϵ > 0 such that for all
0 < δ < ϵ :

⌊
Mi, j (t − δ) ·Wi+1

⌋
,

⌊
Mi, j (t + δ) ·Wi+1

⌋

Definition A.7 (The function Bi (x)). We define the function Bi
for i ∈ {0, 1, ...,n−1}. Bi is a staircase function of values [0,Wi+1−

1], and defined as Bi (x) = ⌊x ·Wi+1⌋ for x ∈ [0, 1).

For a submodelmi, j , we term the set of its trigger inputs asGi, j

and the set of its transition inputs asTi, j . See Figure 16 for illustra-
tion. From submodel definition and Corollary 3.2, we can tell that
a submodel’s ReLU operations determine its trigger inputs. Con-
sequently, any set of trigger inputs is finite and can be calculated
using a few linear equations. Nonetheless, calculating the transi-
tion inputs of a submodel is not straightforward. We show a fast
and efficient way for doing so in the following lemma:

Lemma A.8. Letmi, j be an RQ-RMI submodel, and a < b ∈ Gi, j

two adjacent trigger inputs ofmi, j . Then the set S = [a,b] ∩Ti, j is

finite and can be calculated using the inputs a and b alone.

Proof. We divide the construction of S to two subsets S = S0 ∪

S1. First we handle S0. For each x ∈ {a,b}, x ∈ S0 if and only if
there exists ϵ > 0 such that for all 0 < δ < ϵ :

Bi
(
Mi, j (x − δ)

)
, Bi

(
Mi, j (x + δ)

)

Now to S1. Without loss of generality, Mi, j (a) ≤ Mi, j (b).
From Corollary 3.2 and Definition A.5, Mi, j is linear in [a,b]. If
Bi (Mi, j (a)) = Bi (Mi, j (b)), then S1 = ∅. Otherwise, Mi, j (a) ,

Mi, j (b). Bi (x) outputs discrete values between Bi (Mi, j (a)) and

Bi (Mi, j (b)) for all x ∈ (a,b). Denote this finite set of discrete val-
ues as M . For any y ∈ M there exists a value d ∈ (a,b] such that
Mi, j (d) ·Wi+1 = y. By the linearity ofMi, j in [a,b]:

d =
(y

Wi+1
−Mi, j (a)

)
·

b − a

Mi, j (b) −Mi, j (a)
+ a

We construct S1 as follows:

S1 =

{(y

Wi+1
−Mi, j (a)

)
·

b − a

Mi, j (b) −Mi, j (a)
+ a

��� ∀y ∈ M
}

�

Corollary A.9. The set of transition inputsTi, j can be calculated

usingGi, j and its size is bounded such that |Ti, j | ≤Wi+1 · |Gi, j |.

Not all transition inputs of all submodels are reachable, as
some exist outside of their corresponding submodel’s responsibil-
ity. Therefore, we define the set of reachable transition inputs of a
stage si as the transition set of a stage:

Definition A.10 (Transition Set). The transition set Ui of a stage
si is an ordered set, defined as:

Ui = {min(D)} ∪ {
Wi−1⋃

j=0

Ti, j ∩ Ri, j } ∪ {max(D)}

The proof of Theorem A.1 directly follows from the next two
lemmas:

Lemma A.11. Let si , si+1 be two adjacent stages. For any two ad-

jacent values u0 < u1 ∈ Ui there exists a submodelmi+1, j such that

Si+1(x) is piecewise linear and equal toMi+1, j (x) for all x ∈ (u0,u1).

Proof. We show that there exists a submodelmi+1, j such that
any x ∈ (u0,u1) satisfies x ∈ Ri+1, j , which implies fi+1(x) = j and
so Si+1(x) = Mi+1, j (x). By Corollary 3.2, Si+1 is piecewise linear
for all x ∈ (u0,u1).

Let x < y ∈ (u0,u1). Assume by contradiction there exist
two submodels mi+1, j0 and mi+1, j1 such that x ∈ Ri+1, j0 and
y ∈ Ri+1, j1 . From Definition A.3, fi+1(x) , fi+1(y) implies
Bi (Si (x)) , Bi (Si (y)). Thus, there exists an input z ∈ (x,y] and
ϵ > 0 such that for all 0 < δ < ϵ :

Bi
(
Si (z − δ)

)
, Bi

(
Si (z + δ)

)

Since Si consists of the outputs of submodels in si , there exists a
submodelmi,k such that Si (z) = Mi,k (z). Therefore, z ∈ Ti,k and
z ∈ Ri,k , which means z ∈ Ui , in contradiction to definition of u0
and u1. �

LemmaA.12. Let si be an RQ-RMI stage such that i ∈ {0, 1, ...,n−
2}. The function fi+1 defined over the spaceD can be calculated using

the inputsUi over Si .

Proof. Let u0 < u1 ∈ Ui be two adjacent values. By Lemma
A.11 there exists a submodelmi+1, j such that Si+1(x) = Mi, j (x) for
all x ∈ (u0,u1). From Definition A.2, fi+1(x) = j for all x ∈ (u0,u1).
By calculating Bi (Si (u0)) and Bi (Si (u1)), fi+1(x) is known for all
x ∈ [u0,u1]. Since min{D} ∈ Ui and max{D} ∈ Ui , fi+1(x) is
known for all x ∈ D. �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0
1
2
3
4
5
6

1K Rules 10K Rules
L
at
en
cy

Sp
ee
du

p

NuevoMatch w/ CutSplit NuevoMatch w/ TupleMerge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2
1K Rules 10K Rules

T
h
ro
u
gh

pu
t

Sp
ee
du

p

Figure 17: A detailed versionof end-to-endperformance for small rule-sets. Speedup in throughput and latency of NuevoMatch

against stand-alone versions of CutSplit and TupleMerge. Classifiers with no valid iSets are not displayed.

A.2 Submodel prediction error

Theorem A.13 (Submodel Prediction Error). Let sn−1 be the

last stage of an RQ-RMI model. The maximum prediction error of any

submodel in sn−1 can be calculated using a finite set of inputs over

the stage sn−1.

The intuition behind TheoremA.13 is to address the set of range-
value pairs as an additional, virtual, stage in the model.

Definition A.14 (Range-Value Pair). A range-value pair 〈r ,v〉 is
defined such that r is an interval inD andv ∈ {0, 1, 2, ...} is unique
to that pair.

We termWn the number of range-value pairs an RQ-RMI model
should index. Similar to the definitions for submodels,we extend fi
such that fn (x) = ⌊Sn−1(x)·Wn⌋, and say that the responsibility Rp
of a pairp = 〈r ,v〉 is the set of inputs {x | fn (x) = v}. Consequently,
we make the following two observations. First, all inputs in the
range r \ Rp should have reached p but did not. Second, all inputs
in the range Rp \ r did reach p but should not.

Definition A.15 (Misclassified Pair Set). Letm be a submodel in
sn−1 with a responsibility Rm . Denote Pm as the set of all pairs such
that a pair p = 〈r ,v〉 ∈ Pm satisfies (r \Rp) ∪ (Rp \ r) ∩Rm , ∅. In
other words, Pm holds all pairs that were misclassified bym, and
termed the misclassified pair set ofm.

Definition A.16 (Maximum Prediction Error). Let m be a sub-
model in sn−1 with a responsibility Rm and a misclassified pair
set Pm . The maximum prediction error ofm is defined as:

max
{
| fn(x) −v |

�� 〈r ,v〉 ∈ Pm ,x ∈ Rm
}

Lemma A.17. The misclassified pair sets of all submodels in sn−1
can be calculated using Un−1 over Sn−1.

Proof. Let q0 < q1 be two adjacent values in Un−1. From
Lemma A.11 there exists a single submodelmn−1, j , j ∈ Wn−1 s.t
Sn−1(x) = Mn−1, j (x) for all x ∈ (q0,q1). Hence, using Corollary 3.2,
Sn−1 is linear in (q0,q1). Therefore, the values of Sn−1 in [q0,q1]
can be calculated using q0 and q1 alone. Consequently, according
to the definitions of fn and the responsibility of a pair, the set of
pairs Pj with responsibilities in [q0,q1] can also be calculated using

q0 and q1. Calculating the responsibilities of all pairs is performed
by repeating the process for any two adjacent points in Un−1.

At this point, as we know Rp for all p = 〈r ,v〉, calculating the
set (r \ Rp) ∪ (Rp \ r) is trivial. Acquiring the responsibility of any
submodel in sn−1 using Theorem A.1 enables us to calculate its
misclassified pair set immediately. �

Proof of Theorem A.13

Proof. Let m be a submodel in sn−1 with a responsibility Rm .
For simplicity, we address the case where Rm is a continuous range.
Extension to the general case is possible by repeating the proof for
any continuous range in Rm .

Denote the submodel’s finite set of trigger inputs asGm . Define
the set Q as follows:

Q = min Rm ∪ (Gm ∩ Rm) ∪maxRm

Let q0 < q1 be two adjacent values in Q . From the definition of
trigger inputs, m outputs a linear function in [q0,q1]. Hence, the
set of values S0 = { fn(x)|x ∈ [q0,q1]} can be calculated using only
q0 and q1 over Sn−1. From Lemma A.17, the misclassified pair set
Pm can be calculated using the finite set Un−1. Denote the set

P̂0 = {〈r ,v〉 | 〈r ,v〉 ∈ Pm , r ∩ [q0,q1] , ∅}

Calculating max{s − v |s ∈ S0, 〈r ,v〉 ∈ P̂0} yields the maximum
error ofm in [q0,q1]. Repeating the process for any two adjacent
points in Q yields the maximum error ofm for all Rm . �

Rule-set names in Figures 8 and 17, by order: ACL1, ACL2, ACL3,
ACL4, ACL5, FW1, FW2, FW3, FW4, FW5, IPC1, IPC2.

Table 4: RQ-RMI configurations for different input rule-set

sizes.

#Rules #Stages Stage Widths

Less than 103 2 [1, 4]
103 to 104 3 [1, 4, 16]
104 to 105 3 [1, 4, 128]

More than 105 3 [1, 8, 256] or [1, 8, 512]

	Abstract
	1 Introduction
	2 Background
	2.1 Classification algorithms
	2.2 Poor performance with large rule-sets

	3 NuevoMatch construction
	3.1 Recursive Model Index
	3.2 RMI limitations
	3.3 One-dimensional RQ-RMI
	3.4 Using a neural network as a submodel
	3.5 RQ-RMI training
	3.6 Handling multi-dimensional queries with range overlaps
	3.7 Remainder set and external classifiers
	3.8 Putting it all together
	3.9 Rule Updates

	4 Implementation details
	5 Evaluation
	5.1 Methodology
	5.2 End-to-end performance
	5.3 Performance analysis

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References
	A RQ-RMI Correctness
	A.1 Responsibility of a submodel
	A.2 Submodel prediction error

