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ABSTRACT

Current quantum computer designs will not scale. To scale beyond
small prototypes, quantum architectures will likely adopt a modu-
lar approach with clusters of tightly connected quantum bits and
sparser connections between clusters. We exploit this clustering
and the statically-known control flow of quantum programs to cre-
ate tractable partitioning heuristics which map quantum circuits
to modular physical machines one time slice at a time. Specifically,
we create optimized mappings for each time slice, accounting for
the cost to move data from the previous time slice and using a
tunable lookahead scheme to reduce the cost to move to future time
slices. We compare our approach to a traditional statically-mapped,
owner-computes model. Our results show strict improvement over
the static mapping baseline. We reduce the non-local communica-
tion overhead by 89.8% in the best case and by 60.9% on average. Our
techniques, unlike many exact solver methods, are computationally
tractable.
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1 INTRODUCTION

Quantum computing aims to provide significant speedup to many
problems by taking advantage of quantum mechanical properties
such as superposition and entanglement [6, 53, 59]. Important appli-
cations such as Shor’s integer factoring algorithm [69] and Grover’s
unordered database search algorithm [26] provide potentially ex-
ponential and quadratic speedups, respectively.
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Current quantum hardware of the NISQ era [61], which has on
the order of tens to hundreds of physical qubits, is insufficient to
run these important quantum algorithms. Scaling these devices
even to a moderate sizes with low error rates has proven extremely
challenging. Manufacturers of quantum hardware such as IBM and
IonQ have had only limited success in extending the number of
physical qubits present on a single contiguous piece of hardware.
Issues on these devices such as crosstalk error scaling with the
number of qubits or increased difficulty in control will limit the
size this single-chip architecture can achieve [10, 11].

Due to these challenges, as well as developing technology for
communicating between different quantum chips [7, 75], we ex-
pect quantum hardware to scale via a modular approach similar
to how a classical computer can be scaled increasing the number
of processors not just the size of the processors. Two of the lead-
ing quantum technologies, ion trap and superconducting physical
qubits, are already beginning to explore this avenue and experi-
mentalists project modularity will be the key to moving forward
[3, 9, 18, 22, 32, 43, 44]. One such example for ion traps is shown
in Figure 2 where many trapped ion devices are connected via a
single central optical switch. Technology such as resonant busses
in superconducting hardware or optical communication techniques
in ion trap devices will enable a more distributed approach to quan-
tum computing, having many smaller, well-connected devices with
sparser and more expensive non-local connections between them.
Optimistically, due to current technology in the near term, we ex-
pect these non-local communication operations to be somewhere
between 5-100x higher latency than in-cluster communication.

With cluster-based approaches becoming more prominent, new
compiler techniques for mapping and scheduling of quantum pro-
grams are needed. As the size of executable computations increase
it becomes more and more critical to employ program mappings
exhibiting both adaptivity of dynamic techniques and global opti-
mization of static techniques. Key to realizing both advantages is to
simplify the problem. Since non-local communication is dominant,
we focus on only non-local costs. This simplification, along with
static knowledge of all control flow, allows us to map a program
in many timeslices with substantial lookahead for future program
behavior. This approach would not be computationally tractable
on a non-clustered machine.

For devices with many modular components mapping quan-
tum programs translates readily to a graph partitioning problem
with a goal of minimizing edge crossings between partitions. This
approach is standard in many classical applications such as high


http://crossmark.crossref.org/dialog/?doi=10.1145%2F3387902.3392617&domain=pdf&date_stamp=2020-05-23

CF ’20, May 11-13, 2020, Catania, Italy

Percentage of operations used for non-local communication

M Static-OEE M FGP-rOEE

(‘ o'ﬁéée‘ %&56
Q qsa“

60%
40%
20%

0%

Qe c\eﬁ“ \)\“‘1 60‘“‘2\ 60“‘

Figure 1: Non-local communication overhead in circuits
mapped to cluster-based machines. Our new mapping
scheme FPG-rOEE provides reduces the number of oper-
ations added for non-local communication on all bench-
marks.

performance parallel computing, etc. [34, 66, 70] with the goal of
minimizing total latency. Here latency is approximated by the total
number of times qubits must be shuttled between different regions
of the device. Graph partitioning is known to be hard and heuristics
are the dominant approach [19, 23, 30, 37, 57].

While this problem is related to many problems in distributed or
parallel computing, there are a few very important distinctions. In
a typical quantum program, the control flow is statically known at
compile time, meaning all interactions between qubits are known.
Furthermore, the no-cloning theorem states we cannot make copies
of our data, meaning non-local communication between clusters is
required to interact data qubits. Finally, any additional non-local
operations affect not only latency as they would classically but
are directly related to the probability a program will succeed since
operations in quantum computing are error prone and therefore re-
ducing non-local communication is especially critical for successful
quantum program execution.

Our primary contribution is the development of a complete sys-
tem for mapping quantum programs to near-term cluster-based
quantum architectures via graph partitioning techniques where
qubit interaction in-cluster is relatively free compared to expensive
out-of-cluster interaction. Our primary goal is to minimize the com-
munication overhead by reducing the number of low-bandwidth,
high-latency operations such as moving qubits which are required
in order to execute a given quantum program. Rather than partition-
ing the circuit once to obtain a generally good global assignment
of the qubits to clusters, we find a sequence of assignments, one for
each time slice in the circuit. This fine-grained approach is much
less studied, especially for this class of architectures. With our tech-
niques, we reduce the total number of non-local communication
operations by 89.8% in the best case and 60.9% in the average case;
Figure 1 shows a few examples of circuits compiled statically versus
with our methods.

The rest of the paper is organized as follows: In Section 2, we
introduce the basics of quantum circuits and graph partitioning.
In Section 3, we introduce our proposed methodology for map-
ping qubits to the clusters of these modular systems, specifically
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Figure 2: An example modular architecture of qubits in in-
dividual ion traps connected with optics proposed by Mon-
roe et al [45]. Communication between traps is supported
by photon-mediated entanglement. Similar communication
for superconducting qubits [14] can facilitate modular archi-
tectures for that technology.

a method for fine-grained partitioning. In Section 4, we introduce
a method for applying lookahead weights to tune what is consid-
ered local at each time slice and evaluate their effect on non-local
communication. In Section 5, we introduce the benchmarks we test
on and present our explicit toolflow for taking quantum programs
to a sequence of mappings which guarantee interacting qubits are
moved into the same partition before each time slice using non-local
communication. In Section 6, we present our results and provide a
brief discussion, and in Section 7, we present a summary of related
work for hardware mapping. We conclude in Section 8.

2 BACKGROUND
2.1 Quantum Programs and Architectures

The typical fundamental unit of quantum information is the qubit
(quantum bit). Unlike classical bits which occupy either 1 or 0 at
any given time, quantum bits may exist in a superposition of the
two basis states |0) and |1). Qubits are manipulated via quantum
gates, operations which are both reversible and preserve a valid
probability distribution over the basis states. There is a single irre-
versible quantum operation called measurement, which transforms
the qubit to either |0) or |1) probabilistically. Pairs of qubits are
interacted via two-qubit gates, which are generally much more
expensive in terms of error rates and latency.

There are a variety of competing styles of quantum systems each
with a hardware topology specifying the relative location of the
machine’s qubits. This topology indicates between which pairs of
qubits two-qubit interactions may be performed.

Typical quantum hardware does not readily support long-range
multi-qubit operations but does provide a mechanism for moving
qubits, either by swapping qubits (in the case of nearest neighbor or
2D-grid devices), teleportation via photon mediated entanglement,
physically moving qubits (as in ion-trap devices), or a resonant
bus (as in superconducting devices). Interacting qubits which are
distant generate additional latency which is undesirable for near-
term qubits with limited coherence time (the expected lifetime of a
qubit before an error). These machines have expected error rates
on the order of 1 in every 100-1000 two-qubit gates [33, 78], and
non-local communication has error on average 10-100x worse.

In this paper, we are motivated by a specific set of architectures or
extensions to such architectures, as in [5, 39, 48, 73]. In these devices,
qubits are arranged into several regions of high connectivity with
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Figure 3: (Top) An example of a quantum program with
single-qubit gates not shown. The inputs are on the left and
time flows to the right toward the outputs. The two-qubit
operations here are CNOT (controlled-NOT). (Bottom) The
graph representations of the quantum circuit of the above
circuit. On the far left is the total interaction graph where
each edge is weighted by the total number of interactions
for the whole circuit. To the right is the sequence of time
slice graphs, where an edge is only present if the qubits in-
teract in the time slice. The sum of all time slice graphs is
the total interaction graph.

expensive communication between the clusters, referred to as non-
local communication. These devices naturally lend themselves to
mapping techniques which utilize partitioning algorithms.

Quantum programs are often represented as circuit diagrams, for
example the one in Figure 3a. We define a time slice in a quantum
program as a set of operations which are parallel in the circuit
representation of the program. We express time slices as a function
of both the circuit representation and limitations of the specific
architecture. We also define a time slice range as a set of contiguous
time slices; we also refer to them as slices and when no length is
specified, it will be assumed to be of length 1.

For evaluation, we consider two primary metrics: the width and
the depth of a circuit. The width is the total number of qubits
used and the depth, or the run time, is the total number of time
slices required to execute the program. Qubit movement operations
which are inserted in order to move interacting qubits into the same
partition contribute to the overall depth of the circuit.

We consider two abstract representations of quantum programs:
the total interaction graph and a sequence of time slice interaction
graphs, examples of which are found in Figure 3b. In both represen-
tations, each qubit is a vertex and edges between qubits indicate
two-qubit operations acting on these qubits. In the total interaction
graph, edges are weighted by the total number of interactions be-
tween pairs of qubits. In time slice graphs, an edge with weight 1
exists only if the pair of qubits interact at that time slice.

2.2 Graph Partitioning

Static Partitioning. Finding graph partitions is a well studied
problem [23, 31, 37, 57] and is used frequently in classical archi-
tecture. In this paper, we consider a variant of the problem which
fixes the total number of partitions and bounds the total number of
elements in each partition. Specifically, given a fixed number of par-
titions k, a maximum partition size p, and an undirected weighted
graph G with |V(G)| < k - p we want to find a k-way assignment
of the vertices to partitions such that the weight of edges between
vertices in different partitions is minimized. This can be rephrased
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in terms of statically mapping a quantum circuit to the aforemen-
tioned architectures. Let the total interaction graph be G and let
k and p fixed by the topology of the architecture. Minimizing the
edge weight between partitions corresponds to minimizing the total
number of swaps which must be executed.

Solving for an optimal k-way partition is known to be hard [12],
but there exist many algorithms which find approximate solutions
[23, 37, 57]. There are several heuristic solvers such as in [35, 36]
which can be used to find approximate k-way partition of a graph.
However, they often cannot make guarantees about the size of the
resulting partitions, preventing us from using them for the fixed
size partitioning problem.

Partitioning Over Time. Rather than considering a single graph
to be partitioned we instead consider the problem of generating a
sequence of assignments of qubits to clusters, one for each moment
of the circuit. We want to minimize the total number of differ-
ences between consecutive assignments, naturally corresponding
to minimizing the total number of non-local communications be-
tween clusters. This problem is much less explored than the prior
approach. Partitioning in this way guarantees interacting qubits
will be placed in the same partition making the schedule for the
input program immediate. In the case of a static partition, which
gives only the initial mapping, a further step is needed to generate
a schedule.

Optimal Compilation and Exact Solvers. It is too computation-
ally expensive to find a true optimal solution for even reasonably
sized input programs. Use of constraint-based solvers has been used
recently to look for optimal and near-optimal solutions [47, 51, 52].
Unfortunately, these approaches will not scale in the near-term
let alone to larger, error-corrected devices. We explored the use
of these solvers but found them to be too slow. Finding a static
mapping with SMT is impractical with more than 30 to 40 qubits,
and SMT partitioning over time is impractical when number of
qubits times the depth became more than 40.

3 MAPPING QUBITS TO CLUSTERS

We define an assignment as a set of partitions of the qubits, usually
at a specific time slice. We present algorithms which take a quantum
circuit and output a path, defined as a sequence of assignments of
the qubits with the condition that every partitioning in the sequence
is valid. An assignment is valid if each pair of interacting qubits in
a time slice are located within the same partition. Finally, we define
the non-local communication between consecutive assignments as
the total number of operations which must be executed to transition
the system from the first assignment to the second assignment. The
total communication of a path is the sum over all communication

along the path.

3.1 Computing Non-local Communication

To compute the non-local communication overhead between con-
secutive assignments of n qubits, we first construct a directed graph
with multiple edges where the nodes in the graph are the partitions
and the edges indicate a qubit moving from partition i to partition
J. We extract all 2-cycles from this graph and remove those edges
from the graph. We proceed extracting all 3-cycles, and so on and
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Figure 4: An example of a time slice graph with lookahead
weights based on the circuit in Figure 3. We take the graph
from the left and add weight to the edges of qubits that in-
teract in the future. In this case, we take the weight equal to
the number of times the qubits will interact in the future.

record the number of k-cycles extracted as ci. When there are no
cycles remaining, the total number of remaining edges is r, and the
total communication overhead C is given by

n
C:r+Z(k—l)-ck
k=2

The remaining edges indicate a qubit swapping with an unused
qubit. We repeat this process for every pair of consecutive assign-
ments in the path to compute the total non-local communication
of the path. These cycles specify where qubits will be moved with
non-local communication.

3.2 Baseline Non-local Communication

As a baseline we consider using a Static Mapping using an owner
computes model, which takes into account the full set of qubit in-
teractions for the circuit, providing a generally good assignment of
the qubits for the entire duration of the program, called the static
assignment. At each time step in the circuit, a good static assign-
ment ensures, on average, qubits are not too far from other qubits
they will interact with frequently. We find the assignment which
requires the fewest number of swaps from the static assignment but
has each pair of interacting qubits in a common partition. These as-
signments form a path for the computation. We refer to this method
of path generation in conjunction with a partitioning algorithm,
for example Static Mapping with OEE (Overall Extreme Exchange,
discussed further later) is referred to as Static-OEE.

3.3 Fine Grained Partitioning

The primary approach we developed to dynamically map a circuit
to hardware is Fine Grained Partitioning (FGP). In this algorithm,
we find an assignment at every time slice using the time slice
graphs. By default, these time slice graphs give only immediately
local information about the circuit but have no knowledge about
upcoming interactions. Alone, they only specify the constraints of
which qubits interact in that time slice. The key advantage for this
method is using lookahead weights. The main idea is to construct
modified time slice graphs capturing more structure in the circuit
than the default time slice graphs. We refer to these graphs as time
slice graphs with lookahead weights, or lookahead graphs.

To construct the lookahead graph at time ¢, we begin with the
original time slice graph and give the edges present infinite weight.
For every pair of qubits we add the weight

we(qi» q5) = Z I(m,qi,q;) - D(m —t)

t<m<T
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to their edge, where D is some monotonically decreasing, non-

negative function, which we call the lookahead function, and I(m, g, q;)

is an indicator that is 1 if g; and g; interact in time slice m and 0
otherwise, and T is the number of time slices in the circuit. The new
time slice graphs consider the remainder of the circuit, more heav-
ily weighting sooner interactions. The effectively infinite weight
on edges between interacting qubits is present to guarantee any
assignment will place interacting qubits into the same partition. An
example is shown in Figure 4.

The final mapping of the qubits in our model is obtained by
partitioning each of these time slices. Iteratively, we find the next
assignment with a partitioning algorithm, seeded with the assign-
ment obtained from the previous time slice. The first can choose a
seed randomly or use the static assignment (presented in 3.2). The
new weights in the time slice graphs will force any movement nec-
essary in the partitioning algorithm. Together, these assignments
give us a valid path for the circuit to be mapped into our hardware.

3.4 Choosing the Partitioning Algorithm

We assume full connectivity within clusters and the ability to move
between clusters. These assumptions give us the liberty to tap
into well studied partitioning algorithms. The foundation of many
partitioning algorithms is largely considered to be the Kernighan-
Lin heuristic for partitioning graphs with bounded partition sizes
[23, 37, 57]. The KL heuristic selects pairs of vertices in a graph
to exchange between partitions based on the weights between the
vertices themselves and the total weight between the vertices and
the partitions.

We consider a natural extension of the KL algorithm, Overall
Extreme Exchange presented by Park and Lee [57]. The OEE algo-
rithm finds a sequence of pairs of vertices to exchange and makes
as many exchanges as give it an overall benefit. Using OEE, the
Fine Grained Partitioning scheme often over corrects (see Figure 7).
If a qubit needs to interact in another partition, then it can “drag
along” a qubit it is about to interact with because OEE attempts
to minimize weight between partitions regardless of its relation
to the previous or next time slice graphs. Choosing an optimal
partitioning algorithm would not give better solutions to our non-
local communication based mapping problem. Instead, we consider
a more relaxed version of a partitioning algorithm using the KL
heuristic.

Relaxing the Partitioning Algorithm. We provide relaxed ver-
sion of the algorithm better suited to generating a path over time,
called relaxed-OEE (rOEE). We run OEE until the partition is valid
for the time slice (all interacting qubits are in the same partition)
and then make no more exchanges. This is similar in approach to
finding the time slice partitions in our Static Mapping approaches.
It is critically important we make our exchange choices using looka-
head weights applied to the time slice graphs. Choosing without
information about the upcoming circuit provides no insight into
which qubits are beneficial to exchange. As a side benefit, making
this change strictly speeds up OEE, an already fast heuristic algo-
rithm. Although a strict asymptotic time bound for OEE is difficult
to prove, rOEE never took more than a few seconds on any instance
it was given.
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Figure 5: The effect of different lookahead functions with
various o on non-local communication in the Cuccaro adder,
a very regular circuit, with 76 data and 24 ancilla qubits
using FGP-rOEE. We see the exponential function outper-
forms the others for a circuit of highly regular structure.

With such a significant non-local communication overhead im-
provement (see Figure 7), this relaxed KL partitioning algorithm is
much better suited for the problem at hand. It has the ability to take
into account local structure in the circuit and avoid over correcting
and swapping qubits unnecessarily.

4 LOOKAHEAD WEIGHTS

Finding a suitable lookahead weight function to use in Fine Grained
Partitioning is necessary to maximize the benefit gained from choos-
ing our swaps appropriately between time slices. We only require
the lookahead function to be monotonically decreasing and non-
negative. Throughout this section, we denote our lookahead weight
function as D.

4.1 Natural Candidates

We explore a few natural candidate weighting functions from the
huge space of possible functions. In each of the functions we explore
below, we vary a stretching factor or scale o which can be tuned
for the given circuit, providing a trade-off between local and global
information.

Constant Function.
n<o

D(n) = {1

0 n>o0o

A constant function captures a fixed amount of local information in
the circuit. This is just the number of times the pair of qubits interact
in the next o time slices. For o = 0, this function corresponds to no
lookahead applied.

Exponential Decay.
D(n) =27"/°

An exponential is a natural way to model a decaying precedence.
When ¢ < 1, any interaction will always have a weight at least as
high as the sum of interactions after it.

Gaussian Decay.
D(n) = e /o
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Similar to an exponential, a Gaussian is natural to model decaying
precedence with more weight given to local interactions.

4.2 Evaluating Lookahead Functions

To evaluate the choice of lookahead function as well as choice of o,
we study Fine Grained Partitioning using rOEE with all of the above
candidate functions with varying o on benchmarks of various types:
those with lots of local structure (a quantum ripple carry adder),
those with very little structure (a random circuit), and those which
lie somewhere in between (a Generalized Toffoli decomposition).

In Figure 5, we show an example of a circuit which benefits from
having a large scale o, the Cuccaro Adder [15]. In contrast, all of the
random benchmarks benefit from having small ¢ values, functions
which decay quickly even for small n.

We also compare the different natural lookahead functions we de-
scribed in the previous section on some representative benchmarks
in Figure 6. In these figures, we see the exponential decay has a clear
benefit over the rest in the structured circuits of the Multi-Control
gate and the Cuccaro Adder. In random circuits, there seems to be
no clear benefit to any of the lookahead functions, so long as they
have some small lookahead scaling factor. So, we use exponential
decay with ¢ = 1 for our primary benchmarks in Section 5.

5 EXPERIMENTAL SETUP

All experiments were run on an Intel(R) Xeon(R) Silver 4100 CPU at
2.10 GHz with 128 GB of RAM with 32 cores running Ubuntu 16.04.5.
Each test was run on a single core. Our framework runs on Python
3.6.5 using Google’s Cirq framework for circuit processing and for
implementing our benchmarks [1]. For testing exact solvers, we
used the Z3 SMT solver [16], though results could not be obtained
for the size of benchmarks tested because Z3 never completes on
problems this size.

5.1 Benchmarks

We benchmark the performance of our circuit mapping algorithms
on some common sub-circuits used in many algorithms (for exam-
ple Shor’s and Grovers) and, for comparison, on random circuits.
Our selection of benchmarks covers a wide variety of internal struc-
ture. For every benchmark, we use a representative cluster-based
architecture with 100 qubits with 10 clusters each containing 10
qubits but our methods are not limited to any size. We sweep over
the number of qubits used from 50 to 100, when in the cases of a
few benchmarks the remaining qubits are available for use as either
clean or dirty ancilla! A selected cross section of our benchmarks
is shown in Table 1.

Generalized Toffoli Gate. The Generalized Toffoli gate (C"U) is
an n-controlled U gate for any single qubit unitary U and is well
studied [8, 21, 25, 28, 50, 72]. A C"X gate works by performing
an X gate on the target conditioned on all control qubits being in
the |1) state. There are many known decompositions [4, 24, 29]
both with and without the use of ancilla. A complete description of
generating these circuits is given by [2], which provides a method
for using clean ancilla.

! An ancilla is a temporary quantum bit used often to reduce the depth or gate count of

a circuit. “Clean” indicates the initial state of the ancilla is known while “dirty” means
the state is unknown.
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Figure 6: The non-local communication, measured in number of operations between clusters added, for our representative
benchmark circuits mapped by each FGP-rOEE using different lookahead functions, each with o = 1. The x-axis is the number
of input/output qubits. The remainder are used as ancilla for clean multi-control. The exponential function is better on all
instances of Clean multi-control and Cuccaro adder, and there is no substantial advantage of one function over the others in

the random circuit.

Table 1: Depth and operation counts for a subset of our benchmarks

Clean multi-control | Clean multi-target Dirty multi-target Cuccaro adder

Data Qubits 50 76 87 50 76 100 50 76 100 50 76 100

Depth 82 265 846 17 22 99 26 34 99 435 669 885
Two Qubit Op Count (Unmapped) 760 2040 2488 57 85 99 103 157 99 505 778 1030
Non-local Comm. Ops (Static-OEE) 288 1297 1928 35 60 169 34 31 169 159 243 365

Non-local Comm. Ops (FGP-rOEE expon-1) 55 218 299 21 31 72 17 19 72 19 42 76

QFT adder Random 0.2 Random 0.4 Random 0.8

Data Qubits 50 76 100 50 76 100 50 76 100 50 76 100

Depth 72 111 147 15 23 30 28 41 54 46 67 86
Two Qubit Op Count (Unmapped) 625 1444 2500 246 588 995 477 1156 1997 965 2260 3944
Non-local Comm. Ops (Static-OEE) 512 1144 2542 180 486 863 344 993 1795 682 1944 3462
Non-local Comm. Ops (FGP-rOEE expon-1) 131 329 541 96 275 498 181 552 1028 386 1070 1964

Multi-Target Gate. The multi-target gate performs a single-qubit
gate on many targets conditioned on a single control qubit being in
the |1) state. This is useful in several applications such as one quan-
tum adder design [25] and can also be used in the implementation
of error correcting codes [17]. These circuits can be generated with
different numbers of ancilla (both clean and dirty), as given by [2].

Arithmetic Circuits. Arithmetic circuits in quantum computing
are typically used as subcircuits of much larger algorithms like
Shor’s factoring algorithm and are well studied [21, 25, 41]. Many
arithmetic circuits, such as modular exponentiation, lie either at the
border or beyond the range of NISQ era devices, typically requiring
either error correction or large numbers of data ancilla to execute.
We examine two types of quantum adders - the Cuccaro Adder and
the QFT Adder - as representatives of a class of highly structured
and highly regular arithmetic circuits [15, 63].

Random Circuit. The gates presented above have a lot of regular
structure when decomposed into circuits. We want to contrast this
with circuits with less structure. We create these random circuits
by picking some probability p and some number of samples and
generate an interaction between two qubits with probability p for
each sample. These circuits have the same structure as QAOA solv-
ing a min-cut problem on a random graph with edge probability p,
so these circuits are a realistic benchmark.

103

5.2 Circuit to Hardware

We begin with a quantum program which is specified at the gate
level, consisting of one and two qubit gates. We then generate the
total interaction and time slice graphs, where we assume gates are
inserted at the earliest possible time. Any further optimization, such
as via commutivity or template matching, should be done prior to
mapping the program to hardware. We also take the specifications
of the hardware, such as number of clusters and the maximum size
of the clusters, which constrain possible mappings.

We use our rOEE as our algorithm for Fine Grained Partitioning.
Therefore, we pass the total interaction graph to a static partitioning
algorithm to obtain a good starting assignment. This serves as
a seed to rOEE rather than starting with a random assignment
which may introduce unnecessary starting communication. To the
time slice graphs, we apply the lookahead function to obtain the
lookahead graphs. We run rOEE on this set of graphs to obtain an
assignment sequence such that at every time slice qubits which
interact appear in the same bucket. This assignment describes what
non-local communication is added before each slice. Finally, we
compute the cost and insert the necessary movement operations
into the circuit to move interacting qubits into the same partition,
this is a path. As a byproduct, by generating a partitioning over
time, we obtain a schedule of operations to be performed.
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6 RESULTS AND DISCUSSION

We run our mapping algorithms on each of our benchmark circuits.
The results are shown in Figure 7.

Baseline mapping and the original version of OEE perform worse
than our best scheme on any benchmark tested. Baseline mapping
uses global structure of the graph, but often maintains this struc-
ture too much throughout the execution of the circuit. This lack of
local awareness and rigid nature of the Static Mapping limits its
usefulness. Most out of the box graph partitioning algorithms are
designed to only minimize the edge weight between partitions; this
will tend to over correct for local structure in the circuit. FGP can
overcome this limitation with its choice of partitioning algorithm.
By relaxing the partitioning algorithm and not requiring local opti-
mality, we only move qubits until all interacting pairs are together,
we require far fewer non-local operations.

The most noticeable changes between FGP-OEE and FGP-rOEE
are on the clean multi-control gate with many controls and on
the Cuccaro adder. Here, there are often consecutive, overlapping
operations with little parallelism. With this structure, after the first
operation is performed, the original OEE algorithm will exchange
qubits to comply with the next time slice for the next operation.
OEE is required to separate qubits which will later interact. To
minimize the total crossing weight between partitions, more qubits
are shuffled around, usually towards this displaced qubit. In rOEE,
this reshuffle optimization never takes place because we terminate
once each pair of interacting qubits in a time slice is placed in a
common partition. The reshuffling detriments the overall non-local
communication when running the circuit because of how often
qubits will be displaced from their common interaction partners.
In rOEE, not reshuffling keeps the majority of the qubits in suffi-
ciently good spots and the displaced qubit has the opportunity to
immediately move back with its interaction partners later.

We include the algorithm Fixed Length Slicing as an alternative
not presented in this paper. It is a method with slower computation
which explores grouping time slices at fixed intervals. Fixed Length
Slicing was consistently the best performing time slice range based
mapping algorithm, so we present it in our results. FLS-OEE only
beats FGP-rOEE on some instances of the multi-target benchmarks
and consistently performs worse on all other benchmarks.

In Figure 1, we show the percentage of operations used for non-
local communication for each of the benchmark circuits, and in
Table 2 we show the percent improvement of our algorithm over
the baseline. On average, we save over 60% of the non-local com-
munication operations added. When each non-local communica-
tion operation is implemented in hardware, the amount of time
each takes is significantly longer than the operations between the
qubits in the clusters [46]. Based on current communication tech-
nology, we expect these non-local communication operations to
take anywhere from 5x to 100x longer than local in-cluster opera-
tions. Furthermore, the choice in technology limits how many of
these expensive operations can be performed in parallel.

In Table 3 we compute the estimated running time (two-qubit
gates take 300ns [33] and the multiplier indicates how many times
longer non-local communication operations take) based on this
ratio of costs and show that by substantially reducing the non-local
communication via FGP-rOEE, we can drastically reduce the run
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Table 2: Comparison of Static-OEE against FGP-rOEE

% Reduction min max gmean
Clean multi-control 78.1 84.9 81.9
Clean multi-target 30.8 59.6 44.7
Dirty multi-target 22.6 65.1 39.9
Cuccaro adder 79.1 89.8 85.0
QFT adder 76.6 84.5 81.5
Random 0.2 52.4 57.8 55.3
Random 0.4 53.6 59.0 57.0
Random 0.8 57.0 60.4 59.1
Aggregate 22.6 898 60.9

Table 3: Estimated execution times of the clean multi-
control benchmark with 76 data qubits and 24 ancilla

Sequential Comm. Parallel Comm.
Multiplier | Static-OEE FGP-rOEE | Static-OEE FGP-rOEE
5x 2.0 ms 0.41 ms 0.67 ms 0.26 ms
10x 4.0 ms 0.73 ms 1.3 ms 0.43 ms
100x 39 ms 6.6 ms 12 ms 3.6 ms

time. We compare our algorithm to the baseline when non-local
communication can be performed in parallel (such as in optically
connected ion trap devices) and when it is forced to occur sequen-
tially (as when using a resonant bus in superconducting devices).
Based on current technology, a 5-10x multiplier is optimistic while
100x is realistic in the near term.

7 RELATED WORK

Current quantum hardware is extremely restricted and has prompted
research aimed at making the most of current hardware conditions.
This usually amounts to a few main categories of optimization. Cir-
cuit optimization at a high level to reduce the number of gates or
depth via template matching as in [42, 65] or via other optimization
techniques as in [49, 79]. Other work focuses on optimization at the
device level, such as by breaking the circuit model altogether as in
[68] or by simply improving pulses via Quantum Optimal Control
[76].

At an architectural level, optimization has been studied for many
different types hardware with various topologies. The general strat-
egy in most of these works is to reduce SWAP counts with the
same motivation as this work, as in [27, 56, 71, 74, 77, 79, 80]. Much
of this work focuses primarily on linear nearest neighbor (LNN)
architectures or 2D lattice architectures as in [58, 60, 62, 64, 67].
Some work has focused on ion trap mappings as in [20] though
the architecture of this style of device closely resembles a 2D archi-
tecture. Some work has recently focused on optimization around
specific error rates in near term machines as in [40, 47]. Many of
these techniques promise an extension to arbitrary topologies but
are not specifically designed to accommodate cluster-based archi-
tectures. Work by [13] has explored using graph partitioning to
reduce swap counts in near term machines, but their focus is on
LNN architectures exclusively. Other work focuses on architectures
of the more distant future with error correction [38, 54, 55].
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Figure 7: The non-local communication overhead for our benchmark circuits mapped by each mapping algorithm. The x-axis
is the number of qubits that are used in the circuit. The y-axis is the number of non-local communication operations inserted
to make the circuit executable in our hardware model. In Clean multi-control, Clean multi-target, and Dirty multi-target, the
remainder of the 100 qubits are used as ancilla (clean or dirty determined by the circuit name). FGP-rOEE outperforms all
other mapping algorithms on all but the multi-target circuits, and shows substantial improvement over the static baseline. As
the size of the circuit increases, rOEE tends to outperform by a greater margin, indicating scales better into the future.

8 CONCLUSION

Alternative to using near-optimal graph partitioning algorithms
to find a single static assignment for an entire circuit, we show
considering the locality in a circuit during a mapping gives a reduc-
tion in the total non-local communication required when running
a quantum circuit. There is a natural restriction in using static map-
pings suggesting the problem of mapping qubits to cluster-based
architectures has a different structure than partitioning a single
graph for minimum weight between the partitions. Our modifica-
tion to OEE no longer attempts to optimize the weights at every
time slice. It is much more effective in practice to guide the parti-
tioning based on heuristics and not to find the optimal value for
every time slice. Optimality at every time slice does not correspond
to a global reduction in non-local communication overhead.

We propose to use similar schemes for other cluster-based quan-
tum hardware, especially those based on internally connected clus-
ters. In our model, the different clusters of the architecture are also
very well connected, but is not limited to only this specific instance
of a clustered architecture. Our proposed algorithm produces parti-
tions based on a simplifying assumption about the connectivity of
the clusters because the cost of non-local communication is substan-
tially more expensive than any in-cluster operations. Our method
can be adapted to other cluster-based architectures by first applying
our partitioning algorithm to obtain good clusters of operations and
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then adding a device-specific scheduling algorithm for scheduling
much cheaper in-cluster operations.

A relaxed version with well chosen lookahead functions of a
heuristic outperforms a well selected initial static mapping. Using
lookahead weights has been explored previously, as in [80], and
more can be done to better choose the lookahead function, for
example based on a metric of circuit regularity. Techniques for
mapping which attempt to solve for near optimal mappings will
not scale and instead heuristics will be the dominant approach. Our
approach is computationally tractable and adaptable to changes in
machine architecture, such as additional or varied size clusters.

Non-local communication overhead in quantum programs makes
up a large portion of all operations performed, therefore, minimiz-
ing communication is critical. In recent hardware [46], the cost of
moving between clusters makes non-trivial computation impossible
with current standards for mapping qubits to hardware. Reducing
this bottleneck or finding algorithms to reduce the non-local com-
munication are critical for quantum computation. We reduce this
cost substantially in cluster-based architectures (see Table 3).
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