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ABSTRACT
Code based cryptosystems often need to encode either a message
or a random bitstring into one of fixed length and fixed (Hamming)
weight. The lack of an efficient and reliable bijective map presents
a problem in building constructions around the said cryptosystems
to attain security against active attackers. We present an efficiently
computable, bijective function which yields the desired mapping.
Furthermore, we delineate how the said function can be computed
in constant time. We experimentally validate the effectiveness and
efficiency of our approach, comparing it against the current state
of the art solutions, achieving three to four orders of magnitude im-
provements in computation time, and validate its constant runtime.
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1 INTRODUCTION
The strong push toward improving the current capabilities of quan-
tum computers, with the aim of tackling significant computational
problems in operating research and computational chemistry, car-
ries the drawback of opening an avenue to breaking the integer fac-
toring and discrete logarithm trapdoors onwhichmost of thewidely
adopted asymmetric cryptographic algorithms rely. The need to
design and efficiently engineer post-quantum cryptographic primi-
tives and the related building blocks is witnessed by the activities of
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the US NIST with its post-quantum cryptography standardization
process, started on November 2017 [13], and the EU ETSI with its
working group for quantum safe cryptography, started in March
2017 [1]. Among the mathematical trapdoors resistant to attacks
with quantum computers, decoding an error-affected codeword of
a general linear error correcting code occupies a prominent place.
Since the first use of such a trapdoor to build a public-key cryp-
tosystems by Robert McEliece in 1978 [12], a significant amount
of research developments has culminated in code-based schemes
being roughly half of the encryption algorithms selected by the
US NIST for the second round of its post-quantum cryptography
standardization process [13].

The trapdoor function in code-based cryptosystems is built pick-
ing a linear block code admitting efficient decoding (i.e., non ran-
dom) and providing an obfuscated representation of the said code as
the public key. To encrypt a message, the sender either encodes it in
a codeword of the obfuscated code, and intentionally adds as many
errors as the code corrects, or it encodes the message as an error
vector, i.e., a binary vector as long as a codeword and with a fixed
Hamming weight equal to the correction power of the code. The
former approach is the one proposed by McEliece in its work [12],
while the latter variant was proposed by Niederreiter in 1986 [14],
and proven to be as secure, provided the same obfuscated code
family is employed.

These code-based trapdoors can be effectively wrapped within
formal constructions to obtain either a key encapsulation mech-
anism (KEM) or a public key encryption scheme (PKC) with the
strong guarantee of indistinguishability (of the ciphertext content)
against an adaptive chosen-ciphertext attack (IND-CCA2). The
most bandwidth efficient among such constructions [11] requires
the PKC encryption of a McEliece cryptosystem to convert any
binary stream of plaintext into the form of a predetermined Ham-
ming weight codeword. Therefore, the McEliece cryptosystems
employing such a construction share the need for a building block
performing the encoding of an arbitrary, fixed length, bitstring onto
a bitstring which has predetermined length and Hamming weight.
The current state of the art comprises two approaches. The first
solution allows a bijective mapping, which relies on the computa-
tion of large binomial coefficients [10, 15], at a cost quadratic in
the input string length. The second solution, proposed by Sendrier
in [17] relies on a run-length compression algorithm proposed by
Golomb [9], obtaining a procedure which has linear complexity
in the input string length. However, the proposal by Sendrier is
affected by hard-to-predict encoding failures which force the sender
to change the message being encrypted to successfully encode it in
a constant weight string.
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Contributions. We define a new pair of maps, computing the en-
coding of a random binary string in a fixed-length, constant weight
one, and vice-versa, both having linear computational complex-
ity in the size of the input string length, and free from encoding
failures. We prove our constructions functional, and define con-
straints for the parameters of the said maps stemming from the
length and weight of the constant weight output string. Tackling
the concerns on timing side channels present in other building
blocks for post-quantum cryptosystems, we describe a constant-
time implementation of the proposed maps.
Finally, we experimentally validate the constant time computa-
tion property of our maps and compare their efficiency against the
failure-free alternative present in the state of the art.

2 PRELIMINARIES AND RELATED WORK
A partial function is a map between two sets where some elements
of the domain may not have an image, or some elements of the
codomain may not have a preimage. By contrast, a total function
is a map between two sets where each element of the domain is
mapped to at least an element of the codomain and each element of
the codomain is mapped back to at least one element in the domain.
These definitions are employed in computability theory to frame
the problem of stating if the result of computing a map (resp., its
inverse) on an arbitrary element of the domain (resp., of the co-
domain) yields a result or not. Thus, the notions of injectivity and
bijectivity for an arbitrary map (partial or total) are meant to hold
only over the subsets of the domain and the codomain for which
the map is computable.

Definition 2.1 (String to Combination). Consider a set of binary
strings S , two integers n>t≥1, and a set C of combinations of t
distinct elements out of n possible ones. Each element c∈C is repre-
sented as an ordered sequence of t integers c=[γ0, . . . ,γt−1], each of
which in {0, 1, . . . ,n−1}, with γi−1 < γi and 1≤i≤t−1. A string to
combinationmap (StCmap)φ:S→C is defined as a (partial) bijective
function from S to C .

Definition 2.2 (Ideal String to Combination). An ideal StC map is
a StC map φ(·) having the following four properties:

i) it is total over the input string set S , i.e., ∀ s∈S , φ(s),⊥ ∧
∃ ! c∈C s.t. c=φ(s), and ∀ c∈C , ∃ ! s̄∈S s.t. s̄ = φ−1(c);

ii) it has a complexity linear in the length of the string s∈S ;
iii) it is possible to perform a uniform random sampling of the

domain S with a computation complexity O(loд(|S |));
iv) the entropy of a random variableZ over the set of bitstrings

in S , is lesser or equal to the entropy of the random variable
W = φ(Z), i.e., H(Z) ≤ H(W).

As a consequence of bijectivity and property i), an ideal StC map
should have one and only one image for each element s∈S , thus
yielding |S |=|C |=(nt ) . Moreover, since any combination c∈C , with
c=[γ0, . . . ,γt−1], can be put in one-to-one correspondence with an
n-bit binary stringwith t asserted bits in positionsγi∈{0, 1, . . . ,n−1},
0≤i≤t−1, an ideal StC map can be employed to derive a constant
weight encoding (CWE) procedure and, analogously, its inverse can
be employed as a constant weight decoding (CWD) procedure; where
the “weight” refers to the number of asserted bits t ≥ 1, which is
decided a-priori (and hence “constant”).

A total string to combinationmap. Given n, t , with n>t≥1, con-
sider a set of binary strings S (of variable length) with |S |=(nt ) en-
dowed with the total order relation induced by the lexicographic
order of their encoding in natural binary with the minimum number
of bits. Moreover, consider the set of combinations C of t elements
out of n, |C |=(nt ) , with the lexicographic order relation.

Definition 2.3 (Rank and Unrank functions). Given a finite set X
with a total order relation, the rank function RX :X→{0,. . . ,|X |−1}
is defined as a total bijective function between an element and its
index (ordinal position) as established by the order relation. Con-
versely, the unrank function of the finite setX ,R−1

X :{0,. . . ,|X |−1}→X
is defined as the total function that is the inverse of RX (·) and maps
each index back to its corresponding element in the set X .

The CWE of an element s∈S evaluates the index of s , i.e., the
integer i∈{0,. . . ,(nt )−1} obtained as the natural number encoded
by s: i=RS (s), and subsequently computes the combination c∈C
such that c=R−1

C (i). Thus, the StC map φ(·) implemented by the
CWE procedure is such that: ∀ s∈S, φ(s)=R−1

C (RS (s)). Viceversa,
the CWD of an element c∈C evaluates the index of the combina-
tion c , i.e., j=RC (c), j∈{0,. . . ,

(n
t
)−1}, and computes the string s∈S

representing the integer j in binary encoding: s=R−1
S (j). Thus, the

inverse of the StC map φ−1(·) implemented by the CWD procedure
is such that: ∀ c∈C, φ−1(c)=R−1

S (RC (c)).
This strategy requires a way to compute the rank and unrank

functions. To this end, whileRS (·) andR−1
S (·) are trivial to compute,

the computation of RC (·) and R−1
C (·) was first described in [15],

where it is shown that the so-called combinatorial number system
in positional notation, is obtained from the sequence of binomial
coefficients,

( base
choose

)
, with their bases sorted in increasing order

and their chooses taken as consecutive natural numbers [10].
Using the elements of c=[γ0, . . . ,γt−1] as the bases of a sequence

of binomials with the numbers {1, . . . , t} as their chooses, we can
compute the rank of c as RC (c)=

∑t
a=1

(γa−1
a

)
. Viceversa, given a

natural number j∈{0,. . . ,(nt )−1}, the computation of the unrank
functionR−1

C (·), derives the valuesγ0, . . . ,γt−1, for which the equal-
ity j=

∑t
a=1

(γa−1
a

)
holds as described in Alg. 1.

Alg. 1 finds the largest binomial base for which
(base

t
) ≤ j holds

(lines 2–4), and employs it as the value of the last integer γt−1 to be
found (line 5). Then, Alg. 1 computes the sequence of the largest
integers γt−a , for all 1<a≤t , such that

(γt−a−1
t−a

) ≤ a −∑a−1
l=1

(γt−l−1
t−l

)
holds, deriving c=[γt−1, . . . ,γ0]. The aforementioned unrank func-
tion R−1

C (·), yields a StC map φ(s)=R−1
C (RS (s)) having only three

of the four properties desired for an ideal StC map (Def. 2.2). In-
deed, the said function is total (prop. i) in Def. 2.2) over the set
S of binary strings encoding in natural binary the integer values
0≤j< (nt ) . This, in turn, allows to efficiently sample elements in S
(prop. iii) in Def. 2.2), as it suffices to uniformly draw an integer in
{0,. . . ,(nt )−1}. Finally, the said φ(·) map also provides prop. iv) in
Def. 2.2, as it is a bijection between S and C .

As far as Def. 2.2, prop. ii) is concerned, Alg. 1 shows that the
computational cost of the unrank function R−1

C (·) is O
(
t · log2 (n

t
) )
,

thus not providing the required efficiency. Indeed, while such com-
putational complexity does not make Alg. 1 unusable to compute
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Algorithm 1: R−1
C : {0,. . . ,(nt )−1}→C

Input: n, t : positive integers n>t ≥1
j : an integer number such that 0 ≤ j <

(n
t
)

Output: a combination of t items out of n denoted as
c=[γ0, . . . , γt−1], where γa ∈{0, 1, . . . , n−1},
γa−1 < γa and 1≤a≤t−1

1 base← t − 1
2 while

(base
t

) ≤ j do
3 base← base + 1
4 base← base − 1; γt−1 ← base

5 j ← j − (base
t

)
6 for a ← t − 1 to 1 do
7 while

(base
a

) ≥ j do
8 base← base − 1
9 γa−1 ← base; j ← j − (base

a
)

10 return [γ0, . . . , γt−1]

the map R−1
C (·), it represents a significant performance hog for val-

ues of n and t employed for cryptographic purposes on both general
purpose and embedded platforms, e.g., 103<n<105, 50<t<250.

Approximated bitstring to combinationmap. In [17], Sendrier
proposes an approximated StC map between the set of all binary
strings S={0, 1}∗, and the finite setC of combinations of t elements
chosen out of n ones (with n>t≥1). The map described in [17],
while being a partial function from S to C , is also bijective (on the
elements which do have an image). However, its definition does
not match the one of an ideal StC map. In [17], the only way to
determine an element s∈S for which φ(s),⊥ is to enumerate all the
elements in

{
∀ c ∈ C, φ−1(c)}, i.e., computing the inverse StC map

on all combinations.
The algorithm reported in [17] to compute φ−1(c), c∈C relies

on representing c=[γ0, . . . ,γt−1] with γi∈{0, 1, . . . ,n−1}, γi−1<γi ,
1≤i≤t−1, as an n-bit string, str(c), with t asserted bits in the po-
sitions specified by [γ0, . . . ,γt−1], and maintains that, in practi-
cal cases, 1<t≪n. In these cases, str(c) contains long sequences
(a.k.a. runs) of null bits, thus the run-length encoding technique
by Golomb [9] can be used to represent str(c) in a more compact
way. Since the technique in [9] is optimal in terms of compression
ratio, the work in [17] assumes that the compact representation
of the elements str(c), c∈C will allow the map φ−1(·) to somehow
densely cover a subset of S={0, 1}∗ containing binary strings up to
some length. This intuition is used to justify the fact that drawing
a random binary string, ŝ∈S , shorter than the said length will likely
yield φ (̂s),⊥.

To compute the inverse StC map φ−1(·), Golomb in [9] puts in
one-to-one correspondence str(c) with the sequence of integers,
[λ0, . . . , λt−1], λi∈{0,. . . ,n−t}, representing the counting of null
bits preceding each asserted bit, in a scan of str(c) from left to
right. Each integer value in [λ0, . . . , λt−1] is subsequently encoded
with the aim of obtaining a bitstring shorter than str(c).

For example, consider the combination c=[0, 4, 7, 8] of t=4 ele-
ments chosen among the ones in {0, 1, 2, 3, . . . , 8} (n=9).

Algorithm 2: Non ideal φ−1 : C → S as in [17]
Input: c=[γ0, . . . , γt−1]: combination in C , γi ∈{0, . . . , n−1},

0≤i≤t−1.
Output: s: binary string in S={0, 1}∗

1 offset← 0
2 for i ← 0 to t − 1 do
3 d ←

⌊
n−offset

2(t−i ) log(2)
⌉
, u ← ⌈

log2(d )
⌉

4 λi ← γi − offset
5 q ←

⌊
λi
d

⌋
, r ← λi mod d

6 s← Concat(s, 1q0)
7 if r < 2u then
8 s ← Concat(s, IntegerToNaturalBinary(r, u − 1))
9 else

10 s ← Concat(s, IntegerToNaturalBinary(r + 2u, u))
11 offset← offset + λi + 1
12 return s

The combination c is associated to the binary string 100010011,
for which the sequence of the zero-run-lengths to be efficiently
encoded is [0, 3, 2, 0].

To achieve the best possible compression, Golomb in [9] suggests
to choose a positive integer d and to encode each zero-run-length
λi as a string Gol(λi ) obtained as the concatenation of two binary
strings corresponding to the quotient and the remainder of the
zero-run-length value divided by d , i.e., given λi with 0≤λi≤n−t ,
the quotient and remainder are: qi=⌊ λid ⌋, ri=λi−qi ·d .

The quotient qi is encoded in unary with a trailing zero as a de-
limiter (i.e., unary(qi )=111 . . . 110, withqi 1s), while the remainder
ri (with 0≤ri<d) is encoded employing the prefix-free truncated
binary notation, i.e., assuming u=⌈log2(d)⌉; if ri<2u−d then the
string str(ri ) is computed as the natural binary encoding of ri with
u−1 bits; otherwise, being r≥2u−d , the string str(ri ) is obtained
as the natural binary encoding of ri+2u−d with u bits. Note that
the truncated binary encoding, in case the value of d is a power of
two coincides with the natural binary encoding over log2(d) bits.

In [9] Golomb states that the value of d , should be chosen as
the median value of the random variable modeling the lengths of
the zero-runs. In [17], the author picks d= n

2t log(2) , showing that
it minimizes the expected length of the binary string computed
by φ−1(·). Indeed, [17] assesses the compression efficiency of the
approach considering the ratio between the entropy of a uniformly
distributed variable modeling the choice of a combination in C and
the entropy of the random variable L=length(φ−1(C)), defined
over the lengths of elements in a subset of S={0, 1}∗.

In a further attempt to improve this figure of merit, i.e., bring-
ing it closer to one, [17] suggests to recompute d= n

2t log(2) after
encoding each run-length λi in [λ0, . . . , λt−1] – replacing n with
the number of remaining bits and t with the remaining asserted bits.
An operative description of the inverse StC map, φ(·)−1, is showed
by Alg. 2.

The StC map φ:S→C , with S={0, 1}∗ proposed in [17] is thus
derived as Golomb’s zero-run-length decoding of an element s∈S
and showed by Alg. 3, where the input binary string s is scanned
as the sequence of t Golomb-encoded zero-run-lengths.
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Algorithm 3: Non ideal φ : S → C as in [17]
Input: s: binary string in S={0, 1}∗.
Output: c=[γ0, . . . , γt−1]: combination in C , or ⊥ (error)
Data: SplitAndPad(arg1, x ) takes a binary string arg1 and a

number x and splits arg1 in a x long prefix and the
remaining suffix, returning them. If the length of arg1 is
insufficient, it adds arbitrary padding to arg1.

1 offset← 0
2 for i ← 0 to t − 1 do
3 q ← 0 // decode of the unary encoded part of i-th zero-run-length

4 do
5 (f, s) ← SplitAndPad(s, 1)
6 q ← q + NaturalBinaryToInteger(f)
7 while f = 1
8 d ←

⌊
n−offset

2(t−i ) log(2)
⌉
, u ← ⌈

log2(d )
⌉

9 r ← 0 // decode of the trunc. bin. part of i-th zero-run-length

10 if u − 1 > 0 then
11 (f, s) ← SplitAndPad(s, u − 1)
12 if NaturalBinaryToInteger(f) < 2u − d then
13 r ← NaturalBinaryToInteger(f)
14 else
15 (f′, s) ← SplitAndPad(s, 1)
16 f← Concat(f, f′)
17 r ← NaturalBinaryToInteger(f′) − (2u − d )
18 λ ← q · d + r
19 γi ← offset + λ
20 if γi ≥ n then return ⊥
21 offset← γi + 1
22 return [γ0, . . . , γt−1]

To this end, Alg. 3 iteratively decodes the unary representation
of a quotient q (lines 3–7), estimates the value of d according to the
said improved criterion (line 8) and decodes the truncated binary
representation of the following remainder r (lines 9–17). Finally,
the value of the zero-run-length λ is reconstructed (line 18) and
employed to derive the element γi of the combination c at the i-th
iteration (line 19). If γi ≥ n the computation of the combination
fails (lines 20–21).

As shown by Alg. 3, the StC map proposed φ(·) in [17] is effi-
ciently computable, as it has a linear computation complexity in
the lenght of the input binary string (prop. ii) in Def. 2.2).

However, we mantain that such a map is characterized by two
issues providing a hindrance to its practical use.

Issue a) Note that Alg. 3 does not need to read the entire input
string before a combination is returned. Indeed, it is possible that
only a proper prefixp of a binary input string s = Concat(p,u),u ∈
{0, 1}+ is a valid encoding of t zero-run-lengths. In this case, all
the binary input strings sharing the same prefix p will be mapped
to the same combination, effectively breaking the injectivity of
the map. In other words, φ(·) in [17] is non computable for all the
strings s=Concat(p,u), with p∈{0, 1}∗, u={0, 1}+ for which one
of their proper prefixes, p, is computable: φ(p),⊥,p∈S={0, 1}∗ ⇒
∀u∈{0, 1}+,φ(Concat(p,u))=⊥.
This, in turn, increases the difficulty of efficiently and uniformly
sampling from the domain S (prop. iii) in Def. 2.2), since it is hard to
test, at sampling time, for the potential encodability of the prefixes

of the string that would lead to a non-encodability of the string itself.
Note that, if this injectivity preserving measure is not applied, and
the result of φ(Concat(p,u)) is defined as φ(Concat(p,u))=φ(p),
a violation of prop. iv) in Def. 2.2 will happen, as all Concat(p,u)
strings have the same image.

Issue b) Picking an arbitrary bitstring s∈{0, 1}∗ as input to φ(·),
may result in the values γi , 0≤i≤t−1, of the output combination
c=[γ0, . . . ,γt−1] exceedingn−1 (lines 20–21, in Alg. 3). This, in turn,
makes the map non ideal due to the lack of prop. i) in Def. 2.2. We
note that, even if the map is defined to be total over a subset of
S⊂{0, 1}∗ by rejecting the elements for which it is not computable,
there will still be no efficient method to randomly and uniformily
sample an element in S , implying the lack of prop. iii) in Def. 2.2.

3 IDEAL STRING TO COMBINATION MAP
CONSTRUCTION

We define our StC map χ : S ′⇝ C as a randomized total bijective
function from the set of binary strings S ′={0, 1}l having length l≥1,
to the set of combinations, C , of t elements out of n, with n>t≥1.

To reconcile the bijectivity property with the fact that |S ′ |= 2l ,
|C |=(nt ) , and |S ′ |,|C | for most choices of the n, t parameters, the
definition of χ (·) is obtained composing two maps ψ and φ, and
keeping 2l<

(n
t
)
.

Specifically, the StC map χ and its inverse χ−1 are obtained
as: χ = ψ ◦ φ, that is χ (·)=φ(ψ (·)), and χ−1 = φ−1 ◦ ψ−1, that is
χ−1(·)=ψ−1(φ−1(·)).

The total bijective map φ:S ̸⊥→C , S ̸⊥={s∈{0, 1}∗ s.t.φ(s),⊥}, is
obtained as the Golomb’s zero-run-length decoding of an element
s∈S ̸⊥, i.e., feeding Alg. 3 with an input binary string interpreted as
a sequence of t Golomb-encoded zero-run-lengths.

The total and invertible mapψ : S ′⇝ S ̸⊥, with S ′⊂S ̸⊥, from the
set S ′ of l-bit strings (l≥1) to the set S ̸⊥ is a randomized function
yielding a different element of S ̸⊥ each time it is computed. Each
s ′∈S ′ is mapped to an element of S ̸⊥ concatenating a randomly
chosen binary suffix to it. The invertibility of ψ is obtained by
mapping any s∈S ̸⊥ onto an s ′∈S ′, by truncating s to its first l bits.

As far as the properties of an ideal StC map stated in Def. 2.2 are
concerned, we note that property i) is achieved with our definition
by ensuring that ϕ and φ are total functions and by devising
χ : S ′⇝ S ̸⊥ → C as χ = ψ ◦ φ, withψ : S ′⇝ S ̸⊥ and
φ : S ̸⊥ → C . Furthermore, it is easy to recognize that, the proposed
definition satisfies also property iii) as the domain S ′ of χ (·) and
ψ (·) is the set of constant-length strings with l≥1 bits. Indeed, a
simple method to draw a string in S ′ with uniform distribution can
be easily implemented with a computational complexity linear in
l . Finally, properties ii) and iv) will be proven after the operative
definitions ofψ and φ reported below.

3.1 Designingψ (·) and φ(·)
The key issue in designing the total mapψ : S ′⇝ S ̸⊥ is to guaran-
tee that its codomain matches S ̸⊥={s∈{0, 1}∗ s.t.φ(s),⊥}. To this
end, we note that Alg. 3 may fail to compute a valid combina-
tion starting from randomly drawn l-bit string in {0, 1}∗ as high-
lighted at the end of Section 2 namely when a), a proper prefix p
of s = Concat(p,u) admits an image under φ (i.e., φ(s),⊥), and b),
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Gol(λ0) . . . Gol(λ̄) . . . Gol(λt−1)

1q0 0 r0 1q̄ 0 r̄ 1qt−1 0 rt−1

s ′pre s ′
suf xpre xsuf

Figure 1: Diagram of an element of Concat(s ′,x) ∈ S ̸⊥ and
the corresponding interpretation by φ, with λi = qid + ri

when the sum of the zero-run-lengths λi , 0≤i≤t−1, in the string
str(c), c=φ(s), exceeds ∑t−1

i=0 λi>n−t .
We design the randomizedmapψ :S ′⇝S ̸⊥ as s = ψ (s ′)=Concat(s ′,x),
where s ′∈S ′={0, 1}l and x∈⋃m

a=0{0, 1}a is a randomly picked bi-
nary string with length at mostm, withm≥0. For such aψ to exist
we need to determine an appropriate range for the values of l ,
such that it is possible, for any s ′∈S ′ to find at least one suffix x

such that s=Concat(s ′,x)∈S ̸⊥, where S ̸⊥={s∈{0, 1}∗ s.t.φ(s),⊥}.
To this end, we consider the string s as the concatenation of the
strings Gol(λi ), 0≤i≤t−1 as depicted in Fig. 1. Each Gol(λi ) is the
binary string containing the Golomb encoding for the i-th zero-
run length of str(c), c=φ(s). We denote with Λ(s), s∈S ̸⊥ the sum∑t−1
i=0 λi , obtained performing the Golomb decoding of each binary

sequence Gol(λi ), 0≤i≤t−1 composing s (i.e., the zero-run-lengths
obtained during the computation of φ(s)).

Our constraint to fix the first issue, named constraint-a requires
to pick a value l lesser or equal to the minimum length of an element
in S ̸⊥, while we remedy the second issue imposing constraint-b, i.e.,
requiring that, for any s ′ ∈ S ′ theremust be at least a suffix such that
Concat(s ′,x) ∈ S ̸⊥, therefore mandating Λ(Concat(s ′,x))≤n−t .
To determine the effect of constraint-a on the value of l , given a
choice of n, t and d (a whished median run-length value), we prove:

Lemma 3.1. The length of the shortest element in S ̸⊥ as a function
of d is t · (1 + ⌊log2(d)⌋) bits long.

Proof. Consider one of the t binary sequences Gol(λi ) com-
posing s ∈ S ̸⊥. Such a sequence can be split into three portions:
the quotient qi encoded in unary as 1 ⌊

λi
d ⌋ , the 0 stopbit and the

remainder r0 encoded in truncated binary over either ⌊log2(d)⌋ or
⌊log2(d)⌋+1 bits. Therefore, the shortest possible valid binary se-
quence representing Gol(λi ) is 1 + ⌊log2(d)⌋ bits long and encodes
a null q0 and r0<2 ⌊log2(d )⌋ . Since s is obtained as the concatenation
of t Gol(λi ) sequences, a lower bound on the length of s ∈ S ̸⊥
is t · (1 + ⌊log2(d)⌋). To show that at least an s ∈ S ̸⊥ matches the
lower bound on the length, we observe that s=01+ ⌊log2(d )⌋ complies
with the constraint Λ(s)≤n−t , since Λ(s)=0 and is the sequence of
Golomb encodings of all null zero-run-lengths λi , 0≤i≤t−1. □

As a consequence of Lemma 3.1 the following relation must hold:
l ≤ t · (1 + ⌊log2(d)⌋) (1)

From now on, we denote with σ the number of zero-run-lengths
which have their Golomb encodings entirely contained in s ′ (in blue
in Fig. 1), and with λ̄ the value of the zero-run-length which has
its Golomb encoding, Gol(λ̄), split across a suffix of s ′ and a prefix

of x . As shown in Fig. 1, considering s ′=Concat(s ′pre, s ′suf) and
x=Concat(xpre,xsuf), Gol(λ̄) = Concat(s ′

suf
,xpre). Note that it

may be possible for such a λ̄ to be missing, in case the Golomb
encoding, Gol(λi ), of each one of the zero-run-lengths, λi , 0≤i≤t−1,
is fully contained in either s ′ or x .
To determine the effect of constraint-b on the value of l , given a
choice of n, t ,d , we prove that for all s ′∈S ′ there is at least a suf-
fix x such that the inequality Λ(Concat(s ′,x))≤n−t holds. To this
end, we consider the suffixes x entirely constituted of null bits,
x=0m ,m≥0, noting that Λ(Concat(s ′,x))≤n−t can be rewritten as
Λ(Concat(s ′, 0m ))=∑σ−1

i=0 λi+λ̄≤n−t since all the Golomb encod-
ings Gol(λi ), i>σ (or Gol(λi ) following Gol(λ̄)) are filled with null
bits (thus encoding λi=0). Therefore, the only non null contribu-
tion to Λ(Concat(s ′,x)) comes from Gol(λ0), . . . , Gol(λσ−1) and
Gol(λ̄). We now find the element s ′ ∈ S ′={0, 1}l with the maximum
value of Λ(Concat(s ′, 0m )). Thus,
Λ(Concat(s ′′, 0m ))≤Λ(Concat(s ′, 0m ))≤n−t for any other s ′′∈S ′.

Lemma 3.2. Assuming s ′∈S ′={0, 1}l , l≥1, the value of s ′ maxi-
mizing Λ(Concat(s ′, 0m )) is s ′=1l .

Proof. Picking s ′ ∈ S ′ = {0, 1}l so that Concat(s ′, 0m ) =
Concat(Gol(λ0), . . . , Gol(λσ−1), Gol(λ̄), . . . , Gol(λt−1)) has σ=0
leads to consider Concat(s ′, 0m ) = Gol(λ̄) = Gol(λ0) and conse-
quentially Λ(Concat(s ′, 0m ))=λ̄=q̄·d+r̄ .
To show that Λ(Concat(1l , 0m )) ≥ Λ(Concat(s ′, 0m )), we dis-
tinguish three possible cases: s ′ contains only part of the unary
encoding of q̄, s ′ contains the full encoding of q̄ including the
stopbit and s ′ contains the full unary encoding of q̄ plus part of
the encoding of r̄ . In the first case, 1l coincides with s ′, hence
trivally Λ(Concat(1l , 0m ))=Λ(Concat(s ′, 0m ))=l ·d . In the second
case, s ′=1l−10, thus Λ(Concat(s ′, 0m ))=(l−1)·d<l ·d . In the third
case, s ′=Concat(1q̄ , 0, {0, 1}a ), 0<a≤⌊log2(d)⌋, therefore we can
rewrite l=q̄+1+a. We thus have Λ(Concat(1l , 0m ))=d ·(q̄+1+a)>
q̄·d+(d−1)≥q̄·d+r .

Now, picking s ′ ∈ S ′ = {0, 1}l such that Concat(s ′, 0m ) =
Concat(. . . , Gol(λσ−1), Gol(λ̄), Gol(λσ+1), . . . , Gol(λt−1)) exhibits
σ>0 allows to prove thatΛ(Concat(1l , 0m )) ≥ Λ(Concat(s ′, 0m ))
by showing that Λ(Concat(s ′′, 0m )) ≥ Λ(Concat(s ′, 0m )) for any
s ′′ obtained replacing one or more portions of s ′ identified as
Gol(λi ) 0≤i≤σ−1 with a corresponding string 1length(Gol(λi )), or
in the case of Gol(λ̄) which is split across s ′ and 0m , s ′′ is equal
to s ′ up to Gol( ¯λσ−1) and differs from it in the value of s ′

suf
(see

Fig. 1), which is replaced 1length(s
′
suf).

The latter case is a straightforward consequence of the case
σ=0 since s ′

suf
with 1length(s

′
suf) has no impact on the values λi ,

0≤i≤σ−1 therefore Λ(Concat(s ′′, 0m )) =∑σ−1
i=0 λi + d · length(s ′suf)≥

∑σ−1
i=0 λi+λ̄ = Λ(Concat(s ′, 0m )).

The former case is proven analyzing the value Λ(Concat(s ′′, 0m )).
Consider the case where the Golomb encoding being replaced
with a sequence of ones is Gol(λj ), 0≤j≤σ−1. Replacing Gol(λj )
with 1length(Gol(λj )) results in an alteration of the value of λj+1,
which is increased by d · length(Gol(λj )) since the sequence of
ones replacing Gol(λj ) is interpreted as part of the unary encoded
quotient qj+1. Besides incrementing the value of λj+1, the string
replacement has also the effect of reducing σ by one, since re-
placing Concat(Gol(λj ), Gol(λj+1)) with the string obtained as
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Concat(1length(Gol(λi )), Gol(λj+1)) replaces a string interpreted
as two Golomb encodings by one interpreted as a single one, thus
Λ(Concat(s ′′, 0m ))=∑j−1

i=0 λi+d ·length(Gol(λj ))+
∑σ−1
i=j+1 λi .

Noting that Λ(Concat(s ′′, 0m )) − Λ(Concat(s ′, 0m )) =
d ·length(Gol(λj ))−λj , the statement would be proven if the previ-
ous quantity is greater or equal to zero. To this end, it is sufficient to
observe that λj=qj ·d+r j (with r j<d) and that length(Gol(λj )) is at
leastqj+1+⌊log2(d)⌋ to conclude thatd ·qj+d+d ·⌊log2(d)⌋−d ·qj+r j≥0.

□

Since s ′=1l implies Λ(Concat(s ′, 0m ))=l ·d , the following holds:
l · d ≤ n − t (2)

Given the integers n>t≥1, keeping into account Eq. 1 and Eq. 2
the choice of the integer parameter d , employed in the computation
of the map φ, must satisfy the following relation:

2l/t−1 − 1 ≤ d ≤ n − t
l

(3)

Therefore, given the n, t , l parameters chosen by the use case, em-
ploying the aforementioned constraint, we obtain a range of val-
ues for d , guaranteeing that at least a suffix x exists such that
φ(Concat(s ′,x)) is computable. This fact jointly with the bijectiv-
ity of φ : S ̸⊥ → C guarantees that it is total. Furthermore, the
existence of a suffix x for any string s ′ in S ′ = {0, 1}l such that
φ(Concat(s ′,x)) ∈ S ̸⊥, proves that building a total ψ : S ′ ⇝ S ̸⊥
is possible. As a consequence, the map χ : S ′ ⇝ C , χ = ψ ◦ φ is
total, since it is defined as composition of total functions (prop. i)
in Def. 2.2), and it is also efficiently samplable given the constant-
length nature of strings in S ′ (prop. iii) in Def. 2.2.

To complete the definition ofψ : S ′⇝ S ̸⊥, we detail how to pick
uniformly at random a suffix x for a string s ′ among the ones such
that Concat(s ′,x)∈S ̸⊥. To this end, the only requirement which x
must satisfy is that Λ(Concat(s ′,x))≤n−t . Given s ′, we compute
the value of x one Gol(λi ) at a time, starting from Gol(λ̄).

For all Gol(λj ), σ + 1 ≤ j ≤ t − 1, that are fully contained
in x , the value of each λj can simply be randomly drawn over
{0, . . . , (n − t) − ∑j−1

i=0 λi }, as this complies with the constraint
Λ(Concat(s ′,x)) ≤ n − t . The value for λ̄ cannot be freely drawn
over {0, . . . , (n − t) −∑σ−1

i=0 λi }, since part of the value of λ̄ is de-
termined by the trailing part of s ′, i.e., s ′

suf
.

We draw a value uniformly over the interval {0, . . . , (n − t) −(∑σ−1
i=0 λi

)
− y, where y is the value Golomb encoded as

Concat(s ′
suf
, 0 |xpre |) = Gol(y) and add it to y to obtain λ̄.

Depending on the value of s ′
suf

, we derive the upper bound of the
former interval in three different ways: if s ′

suf
= 1b , then y = bd ;

if s ′
suf
= Concat(1b , 0), then the upper bound of the interval is

min(d − 1,n − t − (∑σ−1
i=0 λi ) − bd) since s ′suf contains the unary

encoding of the entire q̄ and thus the randomly drawn value must
be a valid remainder modulo d . Finally, if s ′

suf
= Concat(1b0z),

where z ∈ {0, 1}c , c ∈ {0, . . . , ⌊log2(d)⌋}, then the upper bound
is determined considering that the c most significant bits of the
remainder are contained in s ′

suf
, therefore the bound is min(2c −

1,n − t − (∑σ−1
i=0 λi ) − bd − BinToInt(z)2c ).

The suffix x required for ψ (s ′)=Concat(s ′,x) is obtained as
Gol(λ̄) concatenated with Gol(λj ), σ + 1 ≤ j ≤ t − 1, in turn

making ψ pick randomly the suffix x among the ones for which
Concat(s ′,x) ∈ S ̸⊥ holds. As a consequence of the operative de-
scription to compute the map ψ , it is now possible to prove also
prop. iv) in Def. 2.2. Let Z be a random variable over the set S ′,
andW = χ (Z) a random variable over the combinations C (or
equivalently, over the strings in S ̸⊥, given the bijectivity of φ(·)).
The design of the ψ procedure allows to observe that the condi-
tional entropy H(W|Z = s ′) is always greater than or equal to
zero (it is zero, only if a single admissible suffix exists). From this,
recalling that the entropies of two random variables are bound by
the following relation: H(W) = H(Z) + H(W|Z = s ′), it is easy
to conclude that the proposed StC map χ (·) is entropy preserving
as H(W) ≥ H(Z). From a practical standpoint, we will not ma-
terialize Gol(λ̄), nor of Gol(λj ), σ + 1 ≤ j ≤ t − 1}; instead we
will simply draw them according to the rules described above, and
directly employ them to derive the output combination c ∈ C .

3.2 Constant Time Algorithm for χ (·), χ−1(·)
We report in Alg. 4 a constant time algorithm computing λi ,0≤i≤t−1
from a binary string s ′ ∈ S ′. We consider, for the sake of simplicity
and efficiency, the choice of d as a power of two, and thus encode
the remainders of the divisions ri = λi mod d in natural binary. In
particular, the algorithm details the entire process which outputs
the sequence of λi , since this sequence can easily be transformed
in the required combination c = [γ0, . . . ,γt−1] through a simple
fixed-iteration loop, represented by the opaque function at line 38.
The algorithm is logically split in three phases.

The first phase of the algorithm (lines 4–18) computes all the
value λi preceding λ̄ in constant time updating the current value (λ
in the algorithm) overwriting the location in the destination vector
lambdaVec at position idx (line 11) with a constant-time store
primitive at each iteration. The computation of the quotient value
q is performed employing a boolean mask value, qdone, which is
updated inclusive-or-ing the complement of the read bit value. This
in turn causes the value of qdone to transition to one as soon as the 0
bit which delimits the unary representation ofq is read.We thus rely
(at line 6) on the value of qdone to perform a predicated addition
of the read bit onto q. The same predicated addition approach is
employed to count how many of the remainder bits have been read,
(line 7), and determine if we are done reading an entire remainder
value (line 8). Whenever the correct value for λi has been read
from the input bitstream, computed and stored, the two boolean
variables qdone and rdone will both be set, allowing the algorithm
to update the position of the destination vector in which the data
store is performed (line 13), exploiting again a predicated addition.
In a similar fashion, the values of q and r are reset, and the counter
of the decoded positions is updated (lines 14–18).

The second phase of the algoritm is dedicated to the computation
of λ̄ (lines 19–31). This portion of the algorithm, due to the need
of being performed in constant time, employs the current, partial
values stored in q and, possibly, r compute the appropriate value y,
randomly drawing it in the correct interval, depending on whether
part of the quotient (lines 19–21), the whole quotient (lines 22–
25), or the whole quotient plus part of the remainder (lines 26–28)
was read out from s ′. All the three possible values are randomly
drawn in their appropriate intervals (lines 20, 24 and 27 for the
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Algorithm 4: Constant time computation of χ : S ′ → C

Input: s ′: an l -bit binary string
d : positive integer employed to derive the encodings of the zero-run

lengths present in s ′

Output: c=[γ0, . . . , γi , . . . , γt−1]: combination in C , γi ∈{0, . . . , n−1}
Data: Extend(v) : replicates the l.s.b. in all other bits of register v

CTCond(cond, t, f ) computes (Extend(c)∧t )∨(Extend(¬c)∧f ),
returns the register values t or f if cond is true or false, respectively.
CTStore(array, pos, v): constant-time store of the register v in the
array cell with index 0 ≤pos ≤t−1
CTLoad(array, pos): returns the value in the array cell with index
0 ≤pos ≤t−1 in constant-time
CTRand(v): returns a randomly and uniformily picked integer in
{0, . . . , v } in constant-time

1 qdone← 0, rdone← 0, lambdadone← 0 // Bit variables

2 q ← 0, r ← 0, λ ← 0 // register variables

3 idx←0, rbitctr←0, remainingPos←n−t
// Golomb decoding of λ0, . . . , λσ−1

4 foreach bit in s ′ do
5 qdone← qdone ∨ ¬bit
6 q ← q + (bit ∧ qdone)
7 rbitctr← rbitctr + qdone // count read bits in r
8 rdone← (rbitctr = d + 1) // stopbit in remainder

9 r ← 2r + (bit ∧ qdone)
10 λ ← qd + r
11 CTStore(lambdaVec, idx, λ)
12 lambdadone← qdone ∧ rdone
13 idx← idx + CTCond(lambdadone, 1, 0)
14 remainingPos←remainingPos−CTCond(lambdadone, λ, 0)
15 q ← CTCond(lambdadone, 0, q)
16 qdone← CTCond(lambdadone, 0, qdone)
17 r ← CTCond(lambdadone, 0, r )
18 rbitctr← CTCond(lambdadone, 0, rbitctr)

// Recomputation of λ̄
19 casePQ← ¬qdone // incomplete q
20 r-pq← CTRand(remainingPos − λ)
21 λ ← λ + CTCond(casePQ, r-pq, 0)
22 caseCQ← qdone ∧ (rbitctr = 1) // comp. q, missing r
23 r-cq← ((r-pq > (d − 1)) ∧ (d − 1)) ∨ (¬(r-pq > (d − 1)) ∧ (r-pq)
24 r-cq← CTRand(r-cq)
25 λ ← λ + CTCond(caseCQ, r-cq, 0)
26 casePR← qdone ∧ ¬rdone ∧ (rbitctr > 1) // incomp. r
27 r-pr← qd + r2log2(d )−rbitctr + CTRand(2log2(d )−rbitctr − 1)
28 λ ← CTCond(casePR, r-pr, 0)
29 CTStore(lambdaVec, idx, λ)
30 idx← idx + CTCond(lambdadone, 0, 1)
31 remainingPos← remainingPos − CTCond(lambdadone, λ, 0)

// Random drawing of λσ . . . λt−1
32 for i ← 0 to t − 1 do
33 r ← CTRand(remainingPos)
34 λ ← CTLoad(lambdaVec, i)
35 λ ← CTCond((i > idx), r, λ)
36 CTStore(lambdaVec, i, λ)
37 remainingPos←remainingPos−CTCond((i > idx), λ, 0)
38 return CTRunLengthsToCombination(lambdaVec)

three aforementioned cases), and conditionally added via boolean
predication to the current value of λ (lines 21, 25 and 28, respec-
tively). Having reached line 31 the algorithm has computed all the
run-lengths up to λ̄ included, and the value of remainingPos is
updated accordingly.

In the third phase, (lines 32–37), the algorithm needs to draw
completely at random the remaining (if any) values of run-lengths.
In order to avoid a computation time depending on the number of
remaining run-lengths to be drawn at random, a random value, in

the range of the remaining sum of run-lengths is always drawn
(line 33), and conditionally replaces the value in an entry of the
vector lambdaVec holding the run-lengths themselves (lines 33-35).
Finally, the sum of the remaining run-lengths, remainingPos, is
updated with a constant time predicated subtraction.

The reported algorithm runs in O(l + t) constant time as it is
constituted of two countable loops with fixed trip count, and simple
arithmetic-logic operations, achieving (prop. ii) in Def. 2.2).

The computation of χ−1 in constant time is significantly more
straightforward. Indeed, the first step is to Golomb-encode all the
zero runs with a fixed trip-count loop, performing exactly t iter-
ations, and encoding a value of λi at each iteration. The Golomb
encoding of a single λi can be performed in constant time knowing
that the value of q and r are naturally upper bounded by n − t . This
allows to perform a constant time writeout of q, simply performing
a predicated substitution of its value in memory, with one having
an extra set bit or not. The value of r , instead, encoded in natural bi-
nary can be computed in constant time by means of a boolean mask,
recalling that d is a power of two. To perform the aforementioned
computation, Golomb-encoding the zero-run-lengths present in
str(c), a memory amount equal to the to the maximum admissible
length for an element s ∈ S ̸⊥ should be reserved. Such a length is
⌊ n−td ⌋ + t(1 + log2(d)) and is matched by the string having λ0 with
q0 = ⌊ n−td ⌋, r0 = (n − t) mod d and all λi = 0, 1≤i≤t−1.

4 EXPERIMENTAL EVALUATION
We report the results of the experimental evaluation of our constant-
time C99 implementation of χ (·).We compare it with the one relying
the combinadics number system, as it is the only other one guaran-
teeing that a given bitstring of length l will be encoded in a constant
weight bitstring. We realized both a straightforward, variable time
version of our proposed χ , where branches in the algorithm are
actual branching constructs, and the constant time version follow-
ing Alg. 4 in Section 3. We also implemented the method by [17],
which cannot run in constant time due to the encoding failures,
and report that its performances match the ones of the variable-
time implementation of our χ , when it is able to constant-weight
encode the input. All timing results were collected on an Intel
Core i5-6500 CPU clocked at 3.2 GHz, with 32 GiB DDR-4 at 2133
MHz. Frequency scaling was disabled, the frequency locked to 3.2
GHz, and the Turbo Boost feature was disabled. All benchmarks
were compiled and run on Debian GNU/Linux 10.2 with GCC 8.3.0,
compilation options -march=native -O3. We employed Intel’s
rdrand instruction as a random number source, and Intel’s movnti
instruction to obtain a constant time store, as it forces a writeback
to memory regardless of the state of the caches. The clock cycle
count was obtained with of Intel’s rtdscp instruction, measuring
the number of cycles taken by 100k runs of the CWE and CWD
over random l-bit strings for our approach, and by 100 runs of the
combinadics based CWE/CWD on random integers in {0, . . . , (nt )}.

To validate experimentally the fact that our implementation is
actually running in constant time, we employ a well established
statistical testing methodology proposed in [7] and applied to the
timing side channel leakage in [16] relying on Student’s t test. This
testing methodology collects two set of measurements from the
running time of the implementation acting on input sets having
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Table 1: Number of required clock cycles×103 to compute CWE and CWD, with d = 28. Parameters for
Category 1: (n; t ; l) = (71, 798; 136; 256); Category 3: (n; t ; l) = (115, 798; 199; 384); Category 5: (n; t ; l) = (178, 102; 267; 512)

Category 1 Category 3 Category 5
StC map CWE (kcycles) CWD (kcycles) CWE (kcycles) CWD (kcycles) CWE (kcycles) CWD (kcycles)

avg. std.dev. avg. std.dev. avg. std.dev. avg. std.dev. avg. std.dev. avg. std.dev.

Combinadics 51×104 1.3×104 18×104 0.6×104 144×104 2×104 49×104 1.7×104 366×104 5×104 119×104 4.8×104

Ours (CTime) 114.5 1.3 28.2 0.1 166.5 1.6 43.5 0.2 224.0 1.8 61.8 0.2
Ours (VTime) 50.3 0.6 3.0 0.2 72.6 0.7 4.6 0.2 98.2 1.0 5.9 0.2

different distribution. If the implementation at hand is actually con-
stant time, no choice of the input set distribution should influence
its running time. To detect whether or not the inputs influence the
running time, a t test, having as null hypothesis the fact that the
average running time of the implementation on the first input set is
different from the average running time on the second is performed.
The choice of the null hypothesis minimizes the probability of stat-
ing that the average running time of the implementation on the
two input sets is the same, when it actually is not.

We collected 105 measurements of the number of clock cycles
taken to compute χ (χ−1), taking as a first set of inputs, a set of
randomly generated bitstring of the appropriate length to guarantee
the encoding. We took as the second set of inputs a set of all-zero
bit strings: such a choice is meant to elicit any timing difference due
to the fact that the all-zero bit string is both one among the shortest
which can be encoded (eliciting potential timing differences due
to the input length), and the one yielding the minimum value of
the run lengths (eliciting potential differences due to the arithmetic
computations). The obtained t-statistic is < 4.5 corresponding to
a confidence in rejecting the null hypothesis of the running times
differing between the two input sets of > 99.999%. By contrast
the same test run on the variable time implementation of χ and
χ−1 yields a t-statistic in the hundreds range, corresponding to a
negligible confidence (≈ 10−7%) in the means being the same.

Table 1 reports the results collected choosing values for n, t and
l from the specification of LEDACrypt [2–5], a current round 2
candidate in the NIST post-quantum standardization process, em-
ploying the IND-CCA2 conversion of [11] which needs a constant
weight encoding primitive. The parameters match security levels
equivalent to AES-128 (Category 1), AES-192 (Category 3), and
AES-256 (Category 5). The results in Table 1 highlight how our
approach is between 3 and 4 orders of magnitude faster than the
one based on the combinatorial number system. While our constant
time implementation of the χ and χ−1 maps are between 1.5× and
2.2× slower than their variable time counterparts, that the absolute
values of the clock cycles correspond to timings in the tenths of µs
range. To further put things in perspective, we compare our imple-
mentation of the χ function with the constant time techniques to
directly generate a random, constant weight binary string reported
in [8]. The results in [8] report the number of clock cycles taken to
to generate a 20, 326-bit string with weight 134 on an Intel i7-7700
clocked at 3.6 GHz with three different approaches. The figures
reported show that 45–390 kcycles are needed, depending on which
of the algorithms proposed by the authors is chosen, while our
constant time implementation of χ takes 128.3 kcycles to generate

a constant weight string of the same length and weight (we obtain
l = 256,d = 26), further showing the practicality of the approach.

5 CONCLUSION
We introduced a novel technique to reliably perform the constant
weight encoding of a random binary string. The proposed tech-
nique is an enabler for the use of the currently most bandwidth effi-
cient IND-CCA2 construction that can be applied to post-quantum
code-based cryptosystems. We detailed how our technique can be
efficiently implemented in constant time, allowing a timing side-
channel secure realization of the proposed primitive.

REFERENCES
[1] European Telecommunications Standards Institute (ETSI). 2017. Quantum-Safe

Cryptography (QSC). (March 2017). https://www.etsi.org/technologies/quantum-
safe-cryptography?jjj=1581466327931

[2] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo
Santini. 2018. LEDAkem: A Post-quantum Key Encapsulation Mechanism Based
on QC-LDPCCodes. In Post-QuantumCryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings (Lecture
Notes in Computer Science), Vol. 10786. Springer, 3–24.

[3] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo
Santini. 2019. LEDAcrypt: QC-LDPC Code-Based Cryptosystems with Bounded
Decryption Failure Rate. InCode-Based Cryptography - 7th InternationalWorkshop,
CBC 2019, Darmstadt, Germany, May 18-19, 2019, Revised Selected Papers (Lecture
Notes in Computer Science), Vol. 11666. Springer, 11–43.

[4] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. 2019. LEDACrypt Specification v2.0. https://www.ledacrypt.
org/documents/LEDAcrypt_spec_latest.pdf, last accessed Nov. 2019. (2019).

[5] Alessandro Barenghi, William Fornaciari, Andrea Galimberti, Gerardo Pelosi,
and Davide Zoni. 2019. Evaluating the Trade-offs in the Hardware Design of
the LEDAcrypt Encryption Functions. In 26th IEEE International Conference on
Electronics, Circuits and Systems, ICECS 2019, Genoa, Italy, Nov. 27-29, 2019. IEEE.

[6] Alessandro Barenghi and Gerardo Pelosi. 2020. Constant time, con-
stant weight encoding library and results reproduction framework.
https://doi.org/10.5281/zenodo.3747545. (2020).

[7] Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. 2004. Statistics and
secret leakage. ACM Trans. Embedded Comput. Syst. 3, 3 (2004), 492–508.

[8] Nir Drucker and Shay Gueron. 2019. Generating a Random String with a Fixed
Weight. In CSCML 2019 (LNCS), Vol. 11527. Springer.

[9] Solomon W. Golomb. 1966. Run-length encodings (Corresp.). IEEE Trans. Infor-
mation Theory 12, 3 (1966), 399–401.

[10] Donald Erwin Knuth. 1887. Generating All Combinations and Partitions. The
Art of Computer Programming 4, 3 (1887), 45–49.

[11] Kazukuni Kobara andHideki Imai. 2001. Semantically SecureMcEliece Public-Key
Cryptosystems-Conversions for McEliece PKC. In 4th Int.’l Workshop on Practice
and Theory in Public Key Cryptography, PKC 2001 (LNCS), Vol. 1992. Springer.

[12] R. J. McEliece. 1978. A public-key cryptosystem based on algebraic coding theory.
The Deep Space Network Progress Report, DSN PR 42-44 (1978), 114–116.

[13] National Institute of Standards and Technology. 2017. Post-Quantum Crypto
Project. (Nov. 2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto/

[14] H. Niederreiter. 1986. Knapsack-type cryptosystems and algebraic coding theory.
Probl. Contr. and Inform. Theory 15 (1986), 159–166.

[15] Ernesto Pascal. 1887. Sopra una formola numerica. Giornale di matematiche 25, 1
(1887), 45–49.

[16] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. 2017. Dude, is my code
constant time?. In DATE 2017. IEEE, 1697–1702.

139



Constant Weight Strings in Constant Time CF ’20, May 11–13, 2020, Catania, Italy

[17] Nicolas Sendrier. 2005. Encoding information into constant weight words. In
Proceedings of the 2005 IEEE International Symposium on Information Theory, ISIT
2005, Adelaide, South Australia, Australia, 4-9 September 2005. IEEE, 435–438.

140



CF ’20, May 11–13, 2020, Catania, Italy Alessandro Barenghi and Gerardo Pelosi

A SOFTWARE ARTIFACT EVALUATION AND
RESULT REPLICATION

This is a short appendix on the evaluation and use of the software
artifact related to the paper “Constant Weight Strings in Constant
Time: a Building Block for Code-based Post-quantum Cryptosys-
tems” accepted for publication at the 17th ACM International Con-
ference on Computing Frontiers. The provided software artifact is a
C library implementing both the proposed, constant time software
library to perform constant weight encoding, and the implementa-
tion of the state of the art methods to allow both the reuse of the
software artifact, and the reproduction of the results contained in
the paper.

A.1 Source Code Organization
The software artifact is a standalone C library, implementing the
proposed constant time, constant weight encoding and decoding
techniques, plus the non constant time constant weight encoding
technique, and the combinadic based encoding technique from
the state of the art. The library is organized in two C compilation
units, combinadics_library.c and constant_weight_codec.c.
The former contains the entire combinadics constant weight encod-
ing technique, together with a self-contained, portable C99 arbitrary
precision arithmetic library. The latter contains both the constant
time implementation of our proposed constant weight encoding
technique, and the variable time implementation of the current
state of the art to be used for result reproducibility.

In addition to the library, the software artifact package also
contains a boilerplate main program performing functional tests
on the encoding and decoding techniques of all three methods, and
timing benchmarks on them.

The user, willing to reuse our provided software artifact, will
include constant_weight_codec.h in her own codebase, and em-
ploy the following interface:
• The constant_time_bin_to_cw takes three parameters: i)
an unsigned character vector, containing the dense binary
string to be encoded, with bit ordering going from left to
right, i.e. from the most significant bit of the first element of
the vector, to the least significant bit of the last; ii) an integer
specifying the maximum guaranteed encoding length, de-
noted as l in the paper, and iii) a vector of t unsigned integers,
which will be filled with the positions of the set bits in the
constant weight vector.
• The constant_time_cw_to_bin function takes the same
three parameters as the constant_time_bin_to_cw, acting
on them in a dual fashion, i.e. it reads from the t element inte-
ger vector the positions of the asserted terms in the constant
weight vector, and decodes them, writing the corresponing
dense binary string in the character array provided.

The codebase is available under Public Domain license at [6].

A.2 System Requirements and Reproducibility
of Results

The software library only relies on the the C standard library, and
the availability of a C99 supporting compiler, together with the
headers required to compile the _mm_mfence _mm_stream_si32

and _rdrand32_step intrinsics (both GCC and Clang/LLVM distri-
bution packages are equipped to do so). The building system relies
on CMake, version 3.9 or greater. The software pacakage was tested
on Debian GNU/Linux 10.3 and Gentoo Linux 17.1.

The hardware requirement is an x86_64 CPU supporting the
movnti, mfence, and rdrand instructions to be able to run the
library, plus the and rtdscp instruction to perform the timing mea-
surements. Any Intel CPU starting from the Ivy Bridge generation
fulfills these requirements, and so does any AMDCPU starting from
the Excavator generation, including all the Zen and Zen2 CPUs.

To obtain the binaries to reproduce all the results contained in the
paper, it is sufficient to i) uncompress the code archive, ii) enter the
build subdirectory in the constant_weight_library directory
obtained decompressing the archive, iii) run cmake ../ && make.
This will create four binaries performing the benchmarks recreating
the results in Table 1 of the paper, and the t-statistics reported in
the evaluation section. It is advisable, although not mandatory,
to disable any frequency scaling/boosting mechanism on the test
machine, if possible. The expected running times (dominated by
the combinadics procedure) for the four executables are:
• reproduce_paper_results_nvalue_20326 - 13 s.
• reproduce_paper_results_nvalue_71798 - 47 s.
• reproduce_paper_results_nvalue_115798 - 2 min 7s.
• reproduce_paper_results_nvalue_178102 - 5 min 16 s.
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