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Figure 1: Images generated by the conditional Two-stage VAEs: sampled randomly from the second-stage manifold space.
Images in each row are conditioned by the same class label (no cherry-picking).
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1 SUMMARY
Neural network image classifiers are being adopted in safety-critical
applications, and they must be tested thoroughly to inspire confi-
dence. In doing so, twomajor challenges remain. First, the thorough-
ness of testing needs to be measurable by an adequacy criterion
that shows a strong correlation to the semantic features of the
images. Second, a large amount of diverse test cases needs to be pre-
pared, either manually or automatically. The former can be aided by
neural-net-specific coverage criteria such as surprise adequacy [3]
or neuron coverage [4], but their correlation to semantic features
had not been evaluated. The latter is attempted through metamor-
phic testing [5], but it is limited to domain-dependent metamorphic
relations that requires explicit modeling.

This presentation discusses a framework which can address the
two challenges together. Our approach is based on the premise
that patterns in a large data space can be effectively captured in a
smaller manifold space, from which similar yet novel test cases—
both the input and the label—can be synthesized. This manifold
space can also serve as a basis for judging the adequacy of a given
test suite, since the manifold encodes all the necessary informa-
tion for distinguishing among different data points. For modeling
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this manifold and creating a pair of encoder and a decoder that
maps between manifold space and input space, we utilized a condi-
tional variational autoencoder (VAE). The conditional VAE learns
class-dependent manifold which enables class-conditioned test gen-
eration, solving the oracle problem by construction. For generating
novel test cases, we applied search on the manifold to effectively
find fault-revealing test cases. Experiments for test case generation
show that this approach enables generation of thousands of real-
istic yet fault-revealing test cases efficiently even for well-trained
models that achieve a high validation accuracy. Experiments for
coverage measurement shows that manifold-based coverage ex-
hibits higher correlation to semantic features—represented by class
label—compared to neuron coverage or neuron boundary coverage.
These results suggest that the concept of manifold-based testing is
a promising direction for machine learning testing, and calls for a
further investigation.

The original work is accepted to be presented in AI Test 2020 [2],
and a part of the idea will also be presented in ICSE–NIER 2020 [1].
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