skip to main content
10.1145/3387940.3391469acmconferencesArticle/Chapter ViewAbstractPublication PagesicseConference Proceedingsconference-collections
research-article

The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Accelerating the Machine Learning Pipeline

Published:25 September 2020Publication History

ABSTRACT

We discuss the synergetic connection between quantum computing and artificial intelligence. After surveying current approaches to quantum artificial intelligence and relating them to a formal model for machine learning processes, we deduce four major challenges for the future of quantum artificial intelligence: (i) Replace iterative training with faster quantum algorithms, (ii) distill the experience of larger amounts of data into the training process, (iii) allow quantum and classical components to be easily combined and exchanged, and (iv) build tools to thoroughly analyze whether observed benefits really stem from quantum properties of the algorithm.

References

  1. [n. d.]. HHL implementation. https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/linear_systems_of_equations.ipynb.Google ScholarGoogle Scholar
  2. [n. d.]. QAOA implementation. https://pennylane.ai/qml/app/tutorial_qaoa_maxcut.html.Google ScholarGoogle Scholar
  3. [n. d.]. QGAN Pennylane implementation. https://pennylane.ai/qml/app/tutorial_QGAN.html.Google ScholarGoogle Scholar
  4. [n. d.]. QGAN Qiskit implementation. https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb.Google ScholarGoogle Scholar
  5. [n. d.]. SVM implementation. https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/artificial_intelligence/qsvm_classification.ipynb.Google ScholarGoogle Scholar
  6. Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. 2007. Quantum clustering algorithms. Proceedings of the 24th int'l conference on machine learning (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. DJ Albers, JC Sprott, and WD Dechert. 1996. Dynamical behavior of artificial neural networks with random weights. Intelligent Engineering Systems Through Artificial Neural Networks 6 (1996), 17--22.Google ScholarGoogle Scholar
  8. Md Zahangir Alom, Tarek M Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C Van Essen, Abdul AS Awwal, and Vijayan K Asari. 2019. A state-of-the-art survey on deep learning theory and architectures. Electronics 8, 3 (2019), 292.Google ScholarGoogle ScholarCross RefCross Ref
  9. Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko. 2018. Quantum boltzmann machine. arXiv:1601.02036 (2018).Google ScholarGoogle Scholar
  10. Dario Amodei and Danny Hernandez. 2018. AI and Compute. https://openai.com/blog/ai-and-compute/.Google ScholarGoogle Scholar
  11. Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. 2016. Concrete problems in AI safety. arXiv:1606.06565 (2016).Google ScholarGoogle Scholar
  12. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505--510.Google ScholarGoogle Scholar
  13. Lenz Belzner, Michael Till Beck, Thomas Gabor, Harald Roelle, and Horst Sauer. 2016. Software engineering for distributed autonomous real-time systems. In Proceedings of the 2nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. ACM, 54--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Tomas Bures, DannyWeyns, Bradley Schmer, Eduardo Tovar, Eric Boden, Thomas Gabor, Ilias Gerostathopoulos, Pragya Gupta, Eunsuk Kang, Alessia Knauss, et al. 2017. Software Engineering for Smart Cyber-Physical Systems: Challenges and Promising Solutions. ACM SIGSOFT Software Eng. Notes 42, 2 (2017), 19--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. 2012. Self-adaptive software needs quantitative verification at runtime. Commun. ACM 55, 9 (2012), 69--77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. 2019. Playing atari with six neurons. In Proceedings of the 18th international conference on autonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems, 998--1006.Google ScholarGoogle Scholar
  17. Pierre-Luc Dallaire-Demers and Nathan Killoran. 2018. Quantum generative adversarial networks. arXiv:1804.08641v2 (2018).Google ScholarGoogle Scholar
  18. Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. 2008. Quantum reinforcement learning. arXiv:0810.3828 (2008).Google ScholarGoogle Scholar
  19. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv:1411.4028 (2014).Google ScholarGoogle Scholar
  20. Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian Marquardt. 2018. Reinforcement learning with neural networks for quantum feedback. Physical Review X 8, 3 (2018), 031084.Google ScholarGoogle Scholar
  21. Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. 2018. Adapting quality assurance to adaptive systems: the scenario coevolution paradigm. In International Symposium on Leveraging Applications of Formal Methods. Springer, 137--154.Google ScholarGoogle ScholarCross RefCross Ref
  22. Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, Jan Wieghardt, Marc Zeller, and Claudia Linnhoff-Popien. 2020. The Scenario Co-Evolution Paradigm: Adaptive Quality Assurance for Adaptive Systems. International Journal on Software Tools and Technology Transfer (2020).Google ScholarGoogle Scholar
  23. Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and using qubo models. arXiv preprint arXiv:1811.11538 (2018).Google ScholarGoogle Scholar
  24. Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. arXiv:0811.317v3 (2009).Google ScholarGoogle Scholar
  25. Vojtěch Havlicek, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. 2018. Supervised learning with quantum-enhanced feature spaces. arXiv:1804.11326v2 (2018).Google ScholarGoogle Scholar
  26. Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco Zambonelli. 2015. The ensemble development life cycle and best practices for collective autonomic systems. In Software Engineering for Collective Autonomic Systems. Springer, 325--354.Google ScholarGoogle Scholar
  27. Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Physical Review E 58, 5 (1998), 5355.Google ScholarGoogle ScholarCross RefCross Ref
  28. Iordanis Kerenidis and Anupam Prakash. 2016. Quantum recommendation systems. arXiv:1603.08675v3 (2016).Google ScholarGoogle Scholar
  29. Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, Hossein Sadeghi, and Mohammad H Amin. 2018. Quantum variational autoencoder. arXiv:1802.05779v2 (2018).Google ScholarGoogle Scholar
  30. James King, Masoud Mohseni, William Bernoudy, Alexandre Fréchette, Hossein Sadeghi, Sergei V Isakov, Hartmut Neven, and Mohammad H Amin. 2019. Quantum-Assisted Genetic Algorithm. arXiv:1907.00707 (2019).Google ScholarGoogle Scholar
  31. Frank Leymann, Johanna Barzen, and Michael Falkenthal. 2019. Towards a Platform for Sharing Quantum Software. Proceedings of the 13th Advanced Summer School on Service (2019), 70--74.Google ScholarGoogle Scholar
  32. Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013).Google ScholarGoogle Scholar
  33. Seth Lloyd and Christian Weedbrook. 2018. Quantum generative adversarial learning. arXiv:1804.09139 (2018).Google ScholarGoogle Scholar
  34. Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in Physics 2 (2014), 5.Google ScholarGoogle ScholarCross RefCross Ref
  35. A Manju and Madhav J Nigam. 2014. Applications of quantum inspired computational intelligence: a survey. Artificial Intelligence Review 42, 1 (2014), 79--156.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Catherine C McGeoch. 2014. Adiabatic quantum computation and quantum annealing: Theory and practice. Synthesis Lectures on Quantum Computing 5, 2 (2014), 1--93.Google ScholarGoogle ScholarCross RefCross Ref
  37. Catherine C McGeoch and Cong Wang. 2013. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proceedings of the ACM International Conference on Computing Frontiers. 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-efficient hierarchical reinforcement learning. In Advances in Neural Information Processing Systems. 3303--3313.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Florian Neukart, David Von Dollen, Christian Seidel, and Gabriele Compostella. 2018. Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces. arXiv:1708.09354v3 (2018).Google ScholarGoogle Scholar
  40. Oscar Nierstrasz, Marcus Denker, Tudor Gîrba, Adrian Lienhard, and David Röthlisberger. 2008. Change-enabled software systems. In Software-Intensive Systems and New Computing Paradigms. Springer, 64--79.Google ScholarGoogle Scholar
  41. PennyLane. [n. d.]. VQE implementation. https://pennylane.ai/qml/demos/tutorial_vqe.html.Google ScholarGoogle Scholar
  42. Alejandro Perdomo-Ortiz, Marcello Benedetti, John Realpe-Gómez, and Rupak Biswas. 2018. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Science and Technology 3, 3 (2018), 030502.Google ScholarGoogle ScholarCross RefCross Ref
  43. Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O'brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature commun. 5 (2014).Google ScholarGoogle Scholar
  44. Riccardo Porotti, Dario Tamascelli, Marcello Restelli, and Enrico Prati. 2019. Coherent transport of quantum states by deep reinforcement learning. Communications Physics 2, 1 (2019), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  45. John Preskill. 2018. Quantum Computing in the NISQ era and beyond. arXiv:1801.00862v3 (2018).Google ScholarGoogle Scholar
  46. Jonathan Romero and Alan Aspuru-Guzik. 2019. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. arXiv:1901.00848 (2019).Google ScholarGoogle Scholar
  47. Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. 2017. Quantum autoencoders for efficient compression of quantum data. arXiv:1612.02806v2 (2017).Google ScholarGoogle Scholar
  48. Sukin Sim, Evan Anderson, Eric Brown, and Jonathan Romero. [n. d.]. Autoencoder implementation. https://github.com/hsim13372/QCompress-1.Google ScholarGoogle Scholar
  49. Richard Sutton. 2019. The Bitter Lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html.Google ScholarGoogle Scholar
  50. The AlphaStar team. 2019. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii.Google ScholarGoogle Scholar
  51. Danny Weyns. 2017. Software engineering of self-adaptive systems: an organised tour and future challenges. (2017).Google ScholarGoogle Scholar
  52. Nathan Wiebe, Ashish Kapoor, and Krysta Svore. 2014. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv:1401.2142v2 (2014).Google ScholarGoogle Scholar
  53. Nathan Wiebe and Leonard Wossnig. 2019. Generative training of quantum Boltzmann machines with hidden units. arXiv:1905.09902 (2019).Google ScholarGoogle Scholar
  54. D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen. 2019. Support vector machines on the D-Wave quantum annealer. arXiv:1906.06283 (2019).Google ScholarGoogle Scholar
  55. Stephen Wolfram. 2018. Buzzword Convergence: Making Sense of Quantum Neural Blockchain AI. https://writings.stephenwolfram.com/2018/04/buzzword-convergence-making-sense-of-quantum-neural-blockchain-ai/.Google ScholarGoogle Scholar
  56. Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. 2019. Quantum generative adversarial networks for learning and loading random distributions. arXiv:1904.00043 (2019).Google ScholarGoogle Scholar

Index Terms

  1. The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Accelerating the Machine Learning Pipeline

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops
            June 2020
            831 pages
            ISBN:9781450379632
            DOI:10.1145/3387940

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 September 2020

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Upcoming Conference

            ICSE 2025

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader