2004.14036v1 [quant-ph] 29 Apr 2020

arXiv

Insights on Training Neural Networks for QUBO Tasks

Thomas Gabor, Sebastian Feld, Hila Safi, Thomy Phan, Claudia Linnhoff-Popien
thomas.gabor@ifi.lmu.de
LMU Munich

ABSTRACT

Current hardware limitations restrict the potential when solving
quadratic unconstrained binary optimization (QUBO) problems via
the quantum approximate optimization algorithm (QAOA) or quan-
tum annealing (QA). Thus, we consider training neural networks in
this context. We first discuss QUBO problems that originate from
translated instances of the traveling salesman problem (TSP): An-
alyzing this representation via autoencoders shows that there is
way more information included than necessary to solve the origi-
nal TSP. Then we show that neural networks can be used to solve
TSP instances from both QUBO input and autoencoders’ hidden
state representation. We finally generalize the approach and suc-
cessfully train neural networks to solve arbitrary QUBO problems,
sketching means to use neuromorphic hardware as a simulator or
an additional co-processor for quantum computing.

CCS CONCEPTS

« Hardware — Quantum computation; - Computing method-
ologies — Artificial intelligence; Neural networks; « Theory of
computation — Problems, reductions and completeness.

KEYWORDS

QUBO, quantum annealing, neural network, autoencoder

ACM Reference Format:

Thomas Gabor, Sebastian Feld, Hila Safi, Thomy Phan, Claudia Linnhoff-
Popien. 2020. Insights on Training Neural Networks for QUBO Tasks. In
IEEE/ACM 42nd International Conference on Software Engineering Workshops
(ICSEW20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3387940.3391470

1 INTRODUCTION

Quadratic unconstrained binary optimization (QUBO) is a standard
model for optimization problems (not only) in the quantum world as
it can be used as input for algorithms like the quantum approximate
optimization algorithm (QAOA) [4] or quantum annealing (QA) [9].
A QUBO instance of size n is given as an nXn matrix Q with Q;; € R
foralli,j € {1,...,n} € N. A solution to a QUBO instance Q is a
vector x* € {0, 1}" so that

x* = argmin Z Qijxixj.

x i<j

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05....$15.00
https://doi.org/10.1145/3387940.3391470

Note that QUBO instances can trivially be derived from instances
of Ising spin glasses [14]. Translations to QUBO and/or Ising models
exist for a multitude of common optimization problems [6, 12],
including many important NP-hard problems like 3-SAT [3] or
scheduling problems [16].

In this paper, we focus on the well-known Traveling Salesman
Problem (TSP): A TSP instance for m cities is given as an m X m
matrix D with Dy; € RU {+o0} forall k,/ € N,;1 < k < m,1 <
I < m. A solution to a TSP instance D is a vector p* € N thatis a
permutation of (1, ..., m) and fulfills

m—1
p* = argmin Dp,upr + Z Dprprest -
P k=1

Despite apparent parallels in the formulation of a QUBO and TSP
instances, the best translation from a TSP instance D for m cities
produces a QUBO instance Q of size n = m?, resulting roughly in a
m? x m?® QUBO matrix with m* matrix cells in total [5]. This boost
in size makes the QUBO translation rather inefficient for many
practical applications and sometimes prohibits the resulting QUBO
instances from being solved using quantum hardware at all, since
current machines running QAOA or QA are severely limited in the
amount of available qubits. However, since the computed QUBO
instances originate from the smaller TSP instances, they clearly
contain some redundant information.

In order to assess alternative approaches to using the limited
quantum hardware for solving QUBO problems, we apply neural
networks (NNs) in this paper. These can help to bridge the gap
until sufficiently large quantum hardware becomes available, but
also may provide hooks for additional analysis. From a black-box
perspective, a NN solving QUBOs can be treated like quantum
annealer by the calling modules. Having such a mockup helps to
identify which aspects of software engineering are really quantum-
specific solution and which originate from the problem definition.

We explain the considered variants of NNs and how to apply
them to work with problems formulated as QUBOs along the way.
Using these NNs, we provide first empirical evidence for the fol-
lowing four hypotheses:

(1) Autoencoding QUBO instances generated from TSP instances
is possible resulting in a hidden space having the size of the
original TSP encoding (Fig. 1a, Sec. 2).

(2) NNs can be trained to solve QUBO instances generated from
TSP instances (Fig 1b, Sec. 3).

(3) NNs can be trained to solve the encoded hidden spaces of
these QUBO instances (Fig 1c, Sec. 4).

(4) NNs can be trained to solve arbitrary QUBO instances (Fig. 1d,
Sec. 5).

An overview over the tested network architectures and setups
is given in Figure 1. We discuss the lessons learned from these
experiments and motivate further research in Sec. 6.

This is a preprint of a paper accepted at the Ist International Workshop on Quantum Software Engineering (Q-SE 2020) at ICSE 2020 and soon to be published in the corresponding proceedings.

https://doi.org/10.1145/3387940.3391470
https://doi.org/10.1145/3387940.3391470

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

QUBO encoder decoder QUBO QuBO solver net

£8
for TSP 28 for TSP for TSP

(a) Autoencoder (b) TSP QUBO solver

solution

Gabor et al.

QuBO solver net
(arbitrary)

QUBO encoder €8
for TSP 28

(d) Any-QUBO solver

solver net

solution
solution

(c) TSP QUBO encoded solver

Figure 1: Setups for testing the hypotheses.

2 AUTOENCODING QUBO FORMULATIONS
OF TSP

Autoencoders (AEs) are NNs that typically possess an hourglass
form: In the center they feature a hidden layer that is substantially
smaller than the same-sized input and output layer. An AE is trained
to reproduce its input data, but as the hidden layer is smaller than
the input samples, they cannot simply “pass through” their inputs.
Instead, the AE’s first half (called encoder) needs to learn to abstract
the most relevant features so that it can populate the latent space.
This is the space of information that can be contained in the smallest
hidden layer as densely as possible. Then, the second half (called
decoder) will use this representation to reconstruct the original
input as closely as possible. [7]

Once trained, AEs can be used to compress and decompress infor-
mation by using the encoder and decoder part separately or to detect
anomalies (i.e., input data not fitting the previously constructed la-
tent space is assumed to substantially differ from previous training
data). In our case, we use the process of training various AEs to
estimate the entropy contained within the input data: the smallest
latent space that still allows for almost no loss in autoencoding
gives an estimate of the contained entropy in the data set, given
that the encoder and decoder have been trained perfectly (if they
have not, the estimate becomes rougher).

2.1 Setup

We have trained, tested and validated the network using different
data sets. The training data consists of 11,000 randomly generated
TSP instances that have been translated to QUBO; the test and
validation data sets each consist of 1,000 samples.

There are different types of AEs, each with different advantages
and disadvantages. The vanilla autoencoder represents the simplest
form and consists of a network with three layers. After the in-
put layer, a dense layer with a ReLU activation function reduces
the input’s dimensionality, followed by a second dense layer us-
ing sigmoid as an activation function that reconstructs the input.
The multilayer autoencoder extends the previously described ver-
sion by two more layers in both the encoder and decoder part.
All layers use the ReLU activation function except the last layer,
where the sigmoid activation function is used again. Finally, the
convolutional autoencoder uses three-dimensional vectors instead of
one-dimensional vectors, which is designed to be more suitable for
compressing images and tested here for compressing matrices. Our
setup consists of eleven layers: starting with an input layer, there
are four encoder layers, two of which are pooling layers and the

other two are convolutional layers with ReLU activation function.
The decoder part consists of six layers: three convolutional layers
with ReLU activation function, two upsampling layers and finally
an output layer that uses the sigmoid activation function.

The initial layer set for each of the AEs is inspired by [7]. De-
pending on the type of layer (convolutional or dense), the input
data’s form must be adjusted. For the convolutional layer, a QUBO
matrix is represented by an array of arrays. For the dense layer, the
arrays have to be flattened, so QUBO problems are represented as
a one-dimensional array in order to enable the network to recog-
nize different problems. The final settings for each network were
determined using various experiments and evaluations, which are
presented in the following subsection.

The mean squared error (MSE) was used as a loss function for
each AF since it shows a higher sensitivity to outliers than, for
example, the absolute error. MSE calculates the average of the
squared errors between predicted and actual output vectors.

The optimizers adam and stochastic gradient descent (SGD) were
used to optimize the AE networks. Compared to SGD, adam, which
was specially developed for training NNs, has the advantage that
its learning rates are adaptive and potentially specific for each
parameter. While adam uses little memory and converges faster,
SGD is usually better at generalizing [11].

We measured accuracy using two methods: The default accu-
racy compares each predicted output with the actual output and
returns the percentage of correctly predicted outputs. This process
is repeated after each episode, with one episode corresponding to a
training session on the entire input data set. However, this accu-
racy is of limited interest for our motivation, since we are rather
interested in whether the shortest path is returned after encoding
and decoding the QUBO matrix. Therefore, the after-evaluation
accuracy was also used for training, test and evaluation. This con-
sideration is necessary because there are at least two shortest tours
in an undirected graph as for each tour there exist an opposite
tour of the same length. Thus, the second accuracy uses the energy
values of the solved QUBO problems, both regarding the actual
qubit configuration and with the predicted ones. Accuracy is then
calculated from the relationship between corresponding and all
energies.

Each AE was trained for 600 epochs. Various learning rates
were tries for the SGD optimizer, starting with a learning rate of
0.0001, 5,000 decay steps and a decay rate of 0.96. There were
two further training setups with an initial training rate of 0.001
and 0.01, respectively [13]. For each network type, the best results
were achieved using a learning rate of 0.001. Adam optimizer was

Insights on Training Neural Networks for QUBO Tasks

configured with no initial learning rate and in the event of poor
optimization, the mentioned configurations for learning rate and
decay were set. Batch size was set to 128. It turned out the AE using
adam optimizer showed better results than the one using SGD.

2.2 Evaluation

Evaluating the AEs should identify whether (and to what extent)
the QUBO representation of TSP instances can be reduced while at
the same time being able to reconstruct the input. For this purpose,
the NNs were trained and evaluated differently, starting with no
reduction in dimensionality to a reduction of one fourth of the
original size. The experiments started with TSP instances with 4
cities (4-TSP), i.e., a 16 X 16-sized QUBO matrix. Even though this
problem size is not challenging for computers or humans, it served
as a baseline for determining the best solution.

The vanilla AE has reconstructed the QUBO well up to a size
of 50%. After that, the (after-evaluation) accuracy was below 40%.
The accuracy of the multilayered autoencoder (MLAE) and the
convolutional autoencoder (CAE) was at least 90%, even with a
reduction to a quarter of the original size. For this reason, the
vanilla AE was not evaluated further.

When encoding TSP instances with 8 cities (8-TSP), both AEs
performed well; the CAE was slightly better. The after-evaluation
accuracy of the MLAE is 0.95 for 4-TSP and 0.92 for 8-TSP. The CAE
achieves an accuracy of 0.98 (4-TSP) and 0.95 (8-TSP). The default
accuracy was 0.85 (MLAE) and 0.875 (CAE). The average energy
difference of predictions that did not correspond to the actual energy
was 5.2 for MLAE and 2.0 for CAE. Since CAE was best able to
reconstruct the input, MLAE will not be further evaluated.

As CAE in combination with adam as the optimization function
achieved the best results, this setup was chosen for the following
experiments involving an encoder part.

In summary, it can be said that it is indeed possible to reduce the
dimensionality of TSP instances represented as QUBO problems.
A reduction to a size of one fourth shows that the QUBO matrices
contain lots of redundant information. If a network for outputting
the correct qubit configuration can be trained just using reduced
input, training time can be drastically reduced. Fig. 2a and Fig. 2b
show that the reduction task is quite simple for the AEs, since
training converges already in early epochs.

3 SOLVING QUBO FORMULATIONS OF TSP

The next step is to check whether a NN can be trained to solve a
given QUBO problem. More specifically: is it possible to learn a
qubit configuration that optimally solves a given problem.

The networks were again trained with a QUBO representation of
TSP instances. However, since the required output differs from that
of the AE part, new output data had to be generated accordingly. The
required output for the NN is the qubit configuration for the shortest
tour within the TSP instance. Corresponding qubit configurations
were determined using gbsolv, a tool for operating the quantum
annealing hardware by D-Wave Systems [8]. Qbsolv can also be
used as a classical solver for QUBO problems.The functionality of
gbsolv regarding the solution of TSP instances up to a size of 17
cities was checked and verified by comparing the tours returned

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

model loss
— train
0.004 test
0.003
»
2
< 0.002
0,001
0.000
0 100 200 300 400 500 600
epech
(a) Multilayer
model loss
0012] — wain
test
0,010
0,008 -
»
8 0.006 4
0,004 1
0,002 -
0.000 -
0 100 200 300 400 500 600

epoch

(b) Convolutional
Figure 2: Autoencoder model loss for 4-TSP.

with those calculated using Google’s OR-Tools [8] as well as with
the solutions of the data sets by [2].

In order to determine a suitable NN for solving TSP instances,
a recurrent neural network (RNN) and a convolutional neural net-
work (CNN) were implemented. The results of both networks were
compared, whereby again all networks were trained with a data
set of size 11,000, and 1,000 samples each were used for test and
validation.

3.1 Recurrent Neural Network

Our initial network model was inspired by [1]. They used one
network architecture that solves both TSP and the likewise NP-
complete knapsack problem. Their network uses the two-dimensional
coordinates of the cities as input and the sequence of the cities to be
visited as output. In our work, however, the input are TSP instances
represented as QUBO matrices and the output is the shortest tour
coded as a qubit configuration.

We use a pointer network consisting of two recurrent NN mod-
ules (encoder and decoder). As in [1], we implement attention using
long short-term memory (LSTM) cells [10].

The loss is calculated using binary cross-entropy. This loss func-
tion is suitable for problems with a yes/no decision, which is the
case with our 0/1 output representing the qubit configuration.

With regard to the optimizer function for training the RNN,
we have strictly adhered to the structure of [1]. They propose to
use optimization via policy gradients instead of a supervised loss

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

function (as for the AE mentioned above). The reason for this is
that the model’s performance may be linked to the label’s quality.
For this, a Monte Carlo approach was implemented in the rein-
forcement algorithm in order to implement the policy parameters
update using random sampling [15]. In addition to this model-
free approach, adam was used as an optimization approach. Again,
default accuracy was used during training and subsequently after-
evaluation accuracy was used for evaluating the QUBO data.

3.2 Convolutional Neural Network

Any QUBO data can be represented as a two-dimensional matrix,
which is why we also implemented a convolutional neural network
(CNN). Our CNN consists of six convolutional layers and two dense
layers. All but the final layer are paired with a ReLU activation.
The final layer includes a softmax activation function. The CNN’s
training was optimized with adam.

The first round of experiments was trained using binary cross-
entropy as loss function. The network loss decreased as desired, but
the accuracy did not increase. After analyzing the predicted outputs,
it was found that the qubit configuration was incomplete. Most of
the time, only two or three cities were visited within a TSP instance
of 4 cities (4-TSP), or three to four cities with a TSP instance of 8
cities (8-TSP). This observation led to changing the loss function.
The binary cross-entropy function has been extended by a function
that checks how many qubits are set to 1. The function increases
the loss if the number of qubits set does not match the number of
cities. In addition, the loss is increased if not every city was visited,
but a certain city several times.

3.3 Setup

The RNN TSP solver was first trained with coordinates of the cities.
This was to check whether the network, which was inspired by
[1], gave similar results. It was trained on 10-TSP and 20-TSP and
actually delivered similar results.

Then problems in QUBO representation were used as input and
the resulting qubit configuration as output. Batch size was set to
128 and the network was tested with 128 and 256 hidden units
per layer. The range of learning rates has been as with the AE. To
save training time, the RNN was first tested with 128 hidden units
and three learning rates. The loss was best at learning rate 0.001
with a decay of 0.96 at 5,000 steps. However, training with 128
hidden units resulted in a network that was not able to recognize
the hidden logic within the qubits for problems with more than 4
cities. Accordingly, the hidden units were increased to 256. This
lengthened the training time, but the entire logic of QUBO, which
represents the TSP, could still not be learned.

We suspect that the problem lies in the layers used, because —
as can also be seen with the AEs — convolutional layers process
QUBOs better. Since a further increase in the hidden dimensions
would lead to a further increase in training time, we just focused
on CNN for further analysis.

The CNN was trained and compared with 128 and 256 units
per layer. Training the network containing 128 units with 4-TSP
instances worked well, but the model overfitted. This is because
the network is designed for complex problems, but a TSP with 4
cities is just too simple. To prevent overfitting, dropout layers that

Gabor et al.

randomly ignore units were added to the model when training with
4-TSP instances.

4-TSP instances were used to train the 128 units model, while
8-TSP instances were used for models having 128 and 256 units (but
no dropout layer).

3.4 Evaluation

Before the loss function was adjusted as already described, the
forecast did not set n qubits to 1, but only two or three. The network
afterwards learned that the goal is to minimize the energy and
therefore has to consider all constraints.

The 4-TSP setup was trained with 600 epochs. However, the
training itself only required 400 epochs for the ideal result. After
the dropout layer was added, the network no longer overfitted
and showed a loss of around 0.44 (see Fig. 3a). In 88% of the cases,
the predicted values matched the actual values. In cases where
they did not match, the average difference between the actual and
calculated distance of the shortest tour was 9.36. If one considers
that the distances were chosen randomly between 1 and 10,000, the
network did understand its task.

When training the 8-TSP, the dropout layer was not used. 128
units were not sufficient to achieve good results: a default accuracy
of 0.14 was achieved. After an update to 256 hidden units and still
no dropout layer, an after-evaluation accuracy of 0.65 was achieved.
The average distance for non-matching actual and predicted data
was 20.15.

Fig. 3b shows the training of 8-TSP. One recognizes that the
loss starts lower than with the 4-TSP. A major disadvantage of
convolutional neural layers is the training time. In order to save
processing time, all 8-TSP instances were trained with pre-trained
networks. The pre-trained networks are networks that were trained
using 4-TSP. This procedure helps to reduce the processing time,
since the loss starts at a lower point because only the last layers have
to be trained. It also leads to fewer epochs for training convergence.
In this specific case, 200 epochs were sufficient. We also checked
that these results are similar to a CNN that was trained on 8-TSP
without pre-trained layers. The training took four times longer, the
results were worse after 200 epochs, but approximately the same
after 600 epochs.

4 SOLVING ENCODED STATES OF QUBO
FORMULATIONS OF TSP

We now present a network architecture for solving NP-complete
problems that uses the encoder part of the CAE combined with the
CNN TSP solver (see Fig. 1c). The idea is to reduce the dimension-
ality of the QUBO problems and use this representation to train
the network solving the problem. The networks mentioned were
chosen because the CAE showed best results on reconstructing
QUBOs and the CNN TSP solver accordingly performed best when
solving TSP instances. When combining the networks, the setup as
described in the previous sections was used.

Training the CNN with compressed QUBO data from 4-TSP
instances again led to overfitting. Thus, dropout layer were added
to address this problem. Instances of 4-TSP were only tested with
128 units because the results were good enough. The training of
the combinatorial NN had very similar results to the CNN. The

Insights on Training Neural Networks for QUBO Tasks

model loss

—— train
test

loss

o
Ny) NP NSRRI 1 P T

0 100 200 300 400 500 600
epoch

(a) 4-TSP, 128 units, dropout layer

model loss

— ftrain
0.498 test

0.496 -

0.494 4

0.492 4

loss

0.490 +

0.488 -

0.486

0.484 1

0 25 50 75 100 125 150 175 200
epoch

(b) 8-TSP, 256 units, pre-trained

Figure 3: Convolutional neural network model loss.

loss converged at 0.46 and had a default accuracy of 0.75 and an
after-evaluation accuracy of 0.85. The average difference between
all non-matching and actual results was 9.56. The network was
trained over 600 epochs.

The compression of the input had almost no effect on the net-
work’s ability to learn qubit configurations. The network’s training
time was highly reduced when only compressed input was used.
The CNN used about 9 — 10 hours of training time, while the com-
binatorial NN only used about 4 — 5 hours.

In order to learn 8-TSP instances, the combinatorial NN has again
used pre-trained layers, i.e., those of the 4-TSP combinatorial NN.
Again, there are only minor differences from the CNN results. The
loss was 0.48 (see Fig. 4), which is identical to the CNN’s loss. The
network was trained for 200 epochs, had a default accuracy of 0.55,
an after-evaluation accuracy of 0.64, and a mean difference between
non-matching and actual results of 27.5. This value is 7.35 higher
than that of the CNN, but still acceptable as the cities’ distances
were randomly chosen between 1 and 10,000.

5 SOLVING ARBITRARY QUBO INSTANCES

Finally, we want to take another step towards generalization and
train NNs to solve arbitrary QUBOs. In this way, they can be func-
tionally used in place of a quantum annealing solver.

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

model loss

— frain
0.496 - test

0.494 1

0.492 4

loss

0.490 1

0.488 1

0.486 4

0.484 4

o 25 50 75 100 125 150 175 200
epoch

Figure 4: Combinatorial NN model loss, 8-TSP, 256 units, pre-
trained.

5.1 Setup

Random QUBOs have no inherent structure that could be exploited
by an AE, so we only trained CNNs for this task. The input data
was generated by filling the upper triangular matrix with random
numbers between —10,000 and 10,000. The output was generated by
labeling given input with the qubit configurations that were created
using gbsolv. The training data set consisted of 11,000 samples, the
validation and test data set each consisted of 1,000 samples.

5.2 Evaluation

We want to show that a single NN can solve not only a specific NP-
complete problem, but a generic one. In order to obtain comparabil-
ity, random QUBOs were created that have the same dimensionality
as 4-TSP and 8-TSP QUBOs.

The CNN was able to learn from the random QUBOs: 16 X 16-
dimensional matrices (equivalent to 4-TSP) were trained using 256
units per layer over 400 epochs and had a loss of 1.06. The default
accuracy was 0.45, the after-evaluation accuracy 0.48. The mean
energy difference between non-matching actual and predicted re-
sults was 230.32, which is much higher than with TSP. However,
the qubit configuration was correct for almost every second result.

Training using random data is far more complex than training
a specific problem (see Fig. 5a and Fig. 5b). The network did not
overfit, not even with twice as many units. The random 64 X 64-
sized QUBO problems (equivalent to 8-TSP) were trained with a
network having 256 units per layer over 1, 800 epochs and had a
loss of 9.05. Default accuracy and after-evaluation accuracy were
around 0.2 and the average energy difference of the non-matching
outputs was 345.45.

Training with random values took a lot of time for relevant
QUBO sizes, the accuracy fell faster with the increase in the QUBOSs’
dimensionality than with TSP. The use of a network pre-trained on
16Xx16-sized random QUBO problems inside a 64x64 random QUBO
network had an accuracy of 0.12 and did not work comparable to
the CNN. In addition to the fact that an energy minimum is sought,
the larger network cannot reuse much information.

6 CONCLUSION

We provided empirical evidence for four hypotheses. (1) AEs are
able to filter the overhead induced by a QUBO translation of TSP to

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

model loss

— train

—— test

loss

0 50 100 150 200 250 300 350 400
epoch
(a) 16 X 16

—— train
200 h test

150

e
e —————

o 250 500 750 1000 1250 1500 1750

(b) 64 X 64
Figure 5: Random QUBO Solver model loss.

some extent. They can thus be used to guess the original complexity
of a problem from its QUBO formulation. (2) NNs can be trained to
return the qubit configuration resulting in minimum energy for a
QUBO problem generated from a TSP instance. They are thus able
to solve TSP even in a larger QUBO translation. (3) Accordingly,
NN can also solve QUBO problems originating from TSP given
their latent space representation (instead of the full QUBO matrix).
(4) NN can be trained to solve QUBO problems in general. The fact
that CNNs appear most effective implies that QUBO problems can
be treated more like a somewhat local graph problem and less like
combinatorial optimization.

These first steps call for immediate follow-up research. Most
importantly, a thorough study of the various impact of overhead
from the QUBO translation is necessary: How do networks that
have been trained for (a) solving TSP in native encoding, (b) solving
QUBO translations of TSP, and (c) solving QUBO in general com-
pare on the same set of problems regarding various performance
metrics? Are there cases where a QUBO translation may actually be
easier to solve than other representations of TSP? Does specialized
training on just one type of QUBO bring any advantage over train-
ing on random QUBOs? How do the results on TSP (whose QUBO
translation introduces a quadratic overhead) compare to problems
with more (or less) efficient QUBO translations?

From this experience report, a strong argument can be made for
mathematically solid interfaces in quantum computing: The NNs we
trained should be able to replace any other means of solving QUBOs
fully transparent to the provider of the problem instances. A diverse
pool of mechanisms for solving QUBOs should prove useful to
establish QUBO as a suitable formulation for optimization problems

Gabor et al.

and thus prepare for the eventual deployment of quantum-based
machines. Current breakthrough technology like neuromorphic
hardware may thus serve as a bridge to the quantum age.

We argue that for some time to come, quantum software will
usually only be shipped as a module within larger, mostly classi-
cal software applications. Furthermore, these modules will usually
come with fully classical counterparts as quantum resources will
remain comparatively limited and thus should not be used up un-
necessarily, for example when testing other parts of the software
where a good enough approximation of the quantum module suf-
fices. We think that NNs may provide a very generic tool to produce
such counterparts as it has been done in this case study for quan-
tum annealing or QAOA, even though their rather black-box nature
opens up a new field of testing issues. Effectively, we argue that
any approach to the integration of quantum modules should aim
to include similar classical approximation models at least for the
near future.

We would like to point out that even in the presence of large-
scale quantum hardware, handling QUBO problems with NNs might
still be useful for pre- and post-processing of problem instances,
dispatching instances to various hardware platforms, or providing
estimates of the inherent complexity of a specific problem or prob-
lem instance. As we have shown that NNs can handle the structure
of QUBO matrices well, they may also be able to learn transforma-
tions (ideally with automatic reduction of size) on them or help with
introspection of the optimization process and effectively the debug-
ging of optimization problem formulations or quantum hardware
platforms.

REFERENCES

[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[2] John Burkardt. 2019. TSP - Data for the Traveling Salesperson Problem. people.sc.
fsu.edu/~jburkardt/datasets/tsp/tsp.html

[3] Vicky Choi. 2010. Adiabatic quantum algorithms for the NP-complete Maximum-
Weight Independent set, Exact Cover and 3SAT problems. arXiv preprint
arXiv:1004.2226 (2010).

[4] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[5] Sebastian Feld, Christoph Roch, Thomas Gabor, Christian Seidel, Florian Neukart,

Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-Popien. 2018. A hybrid
solution method for the capacitated vehicle routing problem using a quantum
annealer. arXiv preprint arXiv:1811.07403 (2018).
[6] Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and
using QUBO models. arXiv preprint arXiv:1811.11538 (2018).
[7] Nathan Hubens. 2018. Deep inside: Autoencoders. tinyurl.com/ucu9ump
[8] D-Wave Systems Inc. 2019. gbsolv — gbsolv documentation. docs.ocean.dwavesys.
com/projects/qbsolv/en/latest/
[9] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the
transverse Ising model. Physical Review E 58, 5 (1998), 5355.
[10] Anusha Lihala. 2019. Attention and its Different Forms. towardsdatascience.com/
attention-and-its- different-forms-7fc3674d14dc
[11] Shao-Anb Lu. 2017. SGD > Adam?? Which One Is The Best Optimizer: Dogs-VS-Cats
Toy Experiment. tinyurl.com/sanjtd4
[12] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014), 5.
[13] David Mack. 2018. How to pick the best learning rate for your machine learning
project. tinyurl.com/rtnglcu
[14] Catherine C McGeoch. 2014. Adiabatic quantum computation and quantum
annealing: Theory and practice. Synthesis Lectures on QC 5, 2 (2014), 1-93.
Madhu Sanjeevi. 2018. Model Free Reinforcement learning algorithms (Monte Carlo,
SARSA, Q-learning). tinyurl.com/rooumla
Tobias Stollenwerk and Achim Basermann. 2016. Experiences with scheduling
problems on adiabatic quantum computers. In Ist Int’l Workshop on Post-Moore
Era Supercomputing (PMES). Future Technologies Group, 45-46.

[15

[16

people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html
people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html
tinyurl.com/ucu9ump
docs.ocean.dwavesys.com/projects/qbsolv/en/latest/
docs.ocean.dwavesys.com/projects/qbsolv/en/latest/
towardsdatascience.com/attention-and-its-different-forms-7fc3674d14dc
towardsdatascience.com/attention-and-its-different-forms-7fc3674d14dc
tinyurl.com/sanjtd4
tinyurl.com/rtnglcu
tinyurl.com/rooumla

	Abstract
	1 Introduction
	2 Autoencoding QUBO formulations of TSP
	2.1 Setup
	2.2 Evaluation

	3 Solving QUBO formulations of TSP
	3.1 Recurrent Neural Network
	3.2 Convolutional Neural Network
	3.3 Setup
	3.4 Evaluation

	4 Solving encoded states of QUBO formulations of TSP
	5 Solving arbitrary QUBO instances
	5.1 Setup
	5.2 Evaluation

	6 Conclusion
	References

