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ABSTRACT
We propose Knowledge-guided Genetic Improvement as a combi-
nation of Grammar-guided Genetic Programming with Tree-based
Genetic Programming. Instead of utilizing a grammar directly, an
operator graph based on that grammar is created, that is respon-
sible for producing abstract syntax trees. Each operator contains
knowledge about the grammar symbol it represents and returns
only trees valid according to user-de�ned restrictions such as depth,
complexity and approximated run-time performance.

�e expected bene�ts are a search space that excludes invalid
individuals in an evolutionary run, ensuing a reduced overhead
to evaluate invalid solutions and improving overall quality of the
explored search space. �e operator graph supports improvements
based on previously run experiments and extensions towards fur-
ther non-functional features.
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Oliver Krauss∗†, Hanspeter Mössenböck∗, Michael A�enzeller†. 2020. To-
wards Knowledge-guided Genetic Improvement. In Proceedings of ACM
Conference, Washington, DC, USA, July 2017 (Conference’17), 2 pages.
DOI: 10.1145/1122445.1122456

1 INTRODUCTION
We propose a combination of Tree-based Genetic Programming
with Grammar-guided Genetic Programming to be used in Genetic
Improvement (GI) by restricting the search space with knowledge
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about non-functional features of the programming or language be-
ing used. Knowledge is de�ned as measurement of non-functional
features such as branch complexity, run-time performance or code
size, as well as the relations (if - condition - then - else) and required
order between concepts of a language (memory allocation - write -
read sequences).

Grammar-guided Genetic Programming (GGGP) is primarily di-
rected towards improving the original crossover operator designed
by Koza [4] to only consider crossover points that are syntactically
correct according to a provided grammar [5]. Tree Genetic Pro-
gramming (TGP) utilizes a tree structure, o�en an Abstract Syntax
Tree (AST), as a representation for its individuals. �e AST repre-
sentation enables the utilization of useful operators. One example
is the homologous crossover [1]. GGGP and TGP have also been
previously used in combination resulting in Tree-adjunct Grammar
Guided Genetic Programming (T3GP) [2, 3], combining the advan-
tages of both approaches, utilizing the tree representation for the
operators enriched with the syntactic information available from
the grammar.

Our work proposes the combination of GGGP and TGP in a
di�erent way, turning the grammar itself into an operator graph
that is both responsible for selection and creation of AST individu-
als, which remains the representation choice for individuals in the
population. �ese individuals will always be generated in the valid
non-functional search space of the GI experiment, such as maximal
run-time performance, depth or code size. �e operator graph can
be utilized in all three major genetic operators — create, crossover,
mutate — and can be modi�ed during and a�er running GI experi-
ments to further restrict the search space and improve the success
rate of created trees. Our approach, unlike GGGP which uses con-
text free grammars, can also utilize the context of individuals to
improve individual creation even further.

2 METHODS
We propose an operator graph where every single construct in a
grammar has a corresponding operator (see Figure 1). Starting from
an root operator, which links to all operators, every operator maps
to either the root operator in case no restrictions are de�ned, or
alternatively maps to a specialized operator subgraph restricting
its use. In the create and mutate operations the root operator is
responsible for selecting only such operators that will create valid
nodes according to user-de�ned restrictions such as a subtree valid
at a speci�c position in a function. Crossover uses the operator
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Figure 1: Operator graph. Nodes (grey) represent concepts
in a language and contain knowledge about these concepts
(white). �ey contain edges to child nodes.

graph for selection of all valid subtrees in tree A that can replace a
selected crossover point in tree B.

Knowledge is encoded in each operator and the edges between
the operators. Whenever a new individual is created using an
operator, the operator will add its minimal values to a request
(ex. minimal depth) and ask the operators at each child edge (see
Figure 1) if they can create a valid subtree. Only valid child edges
(maximum depth not exceeded) can then be selected to create an
individual. A selected child operator will repeat that process with
its own children. �ese individuals will always be generated in the
valid non-functional search space of the GI experiment, such as
complexity according to McCabe[6], maximal assumed run-time
performance, depth or code size. To measure the assumed run-
time performance each operator is assigned an assumed weight.
�e assignment happens by benchmarking every concept in the
grammar. For if branches, an assertion is taken which branch is
more likely to be selected. For loops, an assertion is taken how
o�en the loop is repeated. While this does not return an accurate
measure, due to compiler optimizations reducing the runtime below
the assumed performance, it does represent a valid maximum. �ese
assumptions can be updated to real measurements when a generated
individual is tested.

An unmanaged operator graph will reference from the root op-
erator to each concept in the grammar. Each concept in turn will
reference the root operator (Figure 1: then branch, else branch,
body). To reduce incorrect individuals the edges in the operator
graph can be pruned or redirected. For example, in Figure 1 the
while loop condition edge excludes any literal node (int, double,
char) from being used as this would result in endless loops or dead
code that is never called.

Each node can also contain additional business logic. For exam-
ple, read operation nodes check if there is a corresponding write
operation to the same Stack/Heap �eld by another node in the AST.
�is prevents individuals failing their execution due to data access
violations.

3 PROPOSED BENEFITS
Our approach increases the percentage of valid generated trees in an
evolutionary search. �e primary reason for this is the knowledge
contained in the operator graph concerning the language semantics,
such as needed allocate-write-read sequences. �is allows the re-
striction of read operations only on validly initialized variables. �e
application of knowledge about non-functional features such as the
assumed run-time performance, prevents the generation of individ-
uals that will not represent an improvement in the non-functional
domain.

Another promising area is the reduction of invalid AST solu-
tions occurring during compile time, such as incorrect function
calls, array index violations and endless-loops. �is is achieved
by pruning or redirecting edges between nodes in the operator
graph, and can happen in preparation of, or during a GI experiment
using the operator graph. For example, in the domain of endless
loops, excluding the option of literal values in the condition of loops
reduces the amount of individuals that have to be aborted due to
endless execution.

�e drawback of knowledge-guided genetic improvement is the
amount of work required to provide that knowledge, such as cre-
ating benchmarking operations for the assumed run-time perfor-
mance or static analysis to determine branching complexity. If the
knowledge in the operator graph is incorrect it presents a threat to
validity for conducted GI experiments.

4 CONCLUSION AND FUTUREWORK
Utilizing an operator graph to create individuals in GI runs is
promising, because it allows restricting the search space to manage-
able levels. It improves the amount of valid abstract syntax trees
generated, and shortens the time required to �nd improvements,
as more valid solutions will be explored.

�e next step with this approach is to test operator graphs on
problems described in literature to compare the quality of the pop-
ulation and its diversity to other approaches.
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