
Towards A Dependency-Driven Taxonomy
of Software Types

Andrea Capiluppi
Department of Computer Science
University of Groningen (NL)

a.capiluppi@rug.nl

Nemitari Ajienka
Department of Computer Science

Edge Hill University (UK)
nemitari.ajienka@edgehill.ac.uk

ABSTRACT
Context: The evidence on software health and ecosystems could
be improved if there was a systematic way to identify the types of
software for which empirical evidence applies. Results and guide-
lines on software health are unlikely to be globally applicable: the
context and the domain where the evidence has been tested are
more likely to influence the results on software maintenance and
health.

Objective: The objectives of this paper are (i) to discuss the im-
plications of adopting a specific taxonomy of software types, and
(ii) to define, where possible, dependencies or similarities between
parts of the taxonomy.

Method: We discuss bottom-up and top-down taxonomies, and
we show how different taxonomies fare against each other. We also
propose two case studies, based on software projects divided in
categories and sub-categories.

Results: We show that one taxonomy does not consistently repre-
sent another taxonomy’s categories. We also show that it is possible
to establish directional dependencies (e.g., ‘larger than’) between
attributes of different categories, and sub-categories.

Conclusion: This paper establishes the need of directional-driven
dependencies between categories of software types, that have an
immediate effect on their maintenance and their relative software
health.

KEYWORDS
FOSS, Application Domains, Latent Dirichlet Allocation, Machine
Learning, Expert Opinions, OO (object-oriented)
ACM Reference Format:
Andrea Capiluppi and Nemitari Ajienka. 2020. Towards A Dependency-
Driven Taxonomy of Software Types. In IEEE/ACM 42nd International
Conference on Software Engineering Workshops (ICSEW’20), May 23–29,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3387940.3392206

1 INTRODUCTION
According to Hindle et al. [15], software projects do not exist in
isolation and projects belonging to similar domains share some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05.
https://doi.org/10.1145/3387940.3392206

similarities. That assumption was used as a stepping stone in a pre-
vious work [6]: in that paper, we detected that application domains
played a role in how projects could be grouped, and how struc-
tural characteristics vary across (but stay regular within) groups of
software systems.

Moreover, the empirical evidence on software health and ecosys-
tems could be improved if there was a systematic way to identify the
types of software for which empirical evidence applies [2, 19, 27].
Results and guidelines on software health are unlikely to be glob-
ally applicable: the context and the domain where the evidence
has been tested are more likely to influence the results on software
maintenance and health [25].

This work stems from the need to put those earlier findings in
the context of a taxonomy of software types. As a matter of fact,
and once it becomes clear that groups of software systems differ
from each other, two research questions naturally emerge:

(1) what and how many categories should be considered in a
taxonomy of software types? and most importantly,

(2) are there directional dependencies (e.g., ‘larger than’, ‘smaller
than’) between groups of software types?

The investigation of past research on taxonomies of software
types reveals many attempts to address the first research question.
Glass and Vessey [11] found some 12 existing taxonomies, already
in 1995, and at different level of granularity (whole systems or
software components), while Forward [9] discovered 22 complete
or partial taxonomieswhile surveying the field.What remains vastly
unanswered is how taxonomies fare against each other: when using
different taxonomies, will groups of systems be clustered in the
same way?

The second research question has also started to be investigated:
as one of the latest examples, [25] has shown that design patterns
are more prevalent in one category of systems than others. Need-
less to say, there should be a systematic approach to detect and
summarise these findings, and produce a full spectrum of such
directional relationships.

In this paper we offer three contributions: first, we discuss how
different taxonomies for software systems have been designed and
used in past research, and we show how mapping taxonomy ele-
ments has an effect on the sample representation (section 2). Second,
we provide two empirical case studies (sections 3.1 and 3.2), that
show how the directional relationship between elements contained
in different categories. These case studies reinforce the need for de-
pendencies and relationships between elements of the taxonomy: we
propose our third contribution as a dependency-driven taxonomy
in section 4. Section 5 gives the conclusion of this work.

https://doi.org/10.1145/3387940.3392206
https://doi.org/10.1145/3387940.3392206
https://doi.org/10.1145/3387940.3392206

2 TYPES OF TAXONOMY
There are in general, two ways of coming up with a new taxonomy:
the first is super-imposed by a standards body (professionals and/or
practitioners); the second is derived from experience, observations
or past data by researchers and practitioners. Below we explore the
two types, with motivating examples.

2.1 Top-down Taxonomies
As a top-down taxonomy, and oriented to the practicality of or-
ganising thousands (let alone millions) of software systems, the
Ubuntu flavour of Linux divides its packages into over 50 sections
(or categories), ranging from very specific, task-driven types of soft-
ware (‘Editors’: Software to edit files. Programming environments.1)
to generic, attribute-wide systems that might have very different
characteristics (‘Java’: Everything about Java..2). This categorisation
was directly created, and currently used, by the Canonical company
to organise the Ubuntu packages into similar systems.

A similar approach is currently in use in the GitHub repository,
in the form of ‘topics’3. As for the Ubuntu case, the categories are
pre-set and provided as a filtering mechanism to search within
hosted projects.

A slightly different top-down taxonomy was originally created
to categorise the projects hosted on the SourceForge (SF) portal4.
The difference with the Ubuntu or GitHub categorisations is that
the (SF) categories are chosen by the developers themselves, who
select one or more of those categories when hosting a new project
for the first time. Currently, the available categories in SourceForge
are shown in the Listing 1 below. A subset of this categorisation is
been adopted by Paschali et al. [24] including video, games, busi-
ness and enterprise, home and education, science and engineering,
communications, development tools, graphics, security and utilities,
and systems administration.

2.2 Bottom-up Taxonomies
Bottom-up categories are based on the practitioners and researchers’
state of the art, and formulated in a way to group software systems
around domains. An example is given in [9]: the process of obtaining
the taxonomy was openly documented, and starting from a subset
of the SourceForge taxonomy of categories5. As one of the steps
used to validate their taxonomy, the authors requested feedback on
its latest version from six software engineering practitioners.

The resulting taxonomy is composed of 4 macro-categories:
A. Data-dominant software
B. Systems software
C. Control-dominant software
D. Computation-dominant software
These four categories have been adopted in prior empirical soft-

ware engineering research. Firstly, data-dominant software are
software that rely heavily on the use of data. For example enter-
prise resource planning (ERP) software, customer-facing software,
as well as software used for information display and entry [2, 27].

1https://packages.ubuntu.com/bionic/editors/
2https://packages.ubuntu.com/bionic/java/
3https://github.com/topics
4https://sourceforge.net/directory/development/development/os:linux/
5Parts of the GoogleCode and ACM classifications were also used as seeds.

Secondly, systems software include software focused on the devel-
opment or creation of computing systems components, for example
operating systems, middle-ware, networking and communication
software and other device or peripheral drivers [9].

Listing 1: categories used in SourceForge.net

(1) Communications
(2) Database
(3) Desktop Environment
(4) Education
(5) Formats and Protocols
(6) Games/Entertainment
(7) Internet
(8) Mobile
(9) Multimedia
(10) Office/Business
(11) Other/Nonlisted Topic
(12) Printing
(13) Religion and Philosophy
(14) Scientific/Engineering
(15) Security
(16) Social sciences
(17) Software Development
(18) System
(19) Terminals
(20) Text Editors

Thirdly, control-dominant software relates to software devel-
oped for the purpose of controlling other appliances and software.
Examples include hardware control, embedded software, process
control software (such as air traffic control), and others [10]. Lastly,
computation-dominant software include software that manage and
manipulate information, scientific software and artificial intelli-
gence software [2]. In prior studies, practitioners were found to be
more familiar with data-dominant software [10, 26] compared to the
other three categories. With regards to cloud usage patterns, data-
dominant software have also been found to be the most deployed
software in the cloud [22].

Bottom-up taxonomies have also been derived by researchers
using newly designed categories: as an example, Borges and Va-
lente [4] collected some 5,000 GitHub systems (comprising of sys-
tems developed in different programming languages including
JavaScript, Python, Java and others) and created 6 categories. Read-
ing through the documentation of each system, they assigned each
to one of these categories. Table 1 shows the results of such cate-
gorisation: although three (out of six) categories overall cover for
some 4/5 of the sample, the percentage of Non Web Libraries &
Frameworks systems is clearly dominant when focusing on Java
systems.

Silva et al. [25] adopted this categorisation6 in their empirical
study on software co-change patterns, investigating if co-change
patterns occur across programming languages (i.e., C/C++, Java,
PHP, JavaScript, Ruby and Python) and whether different co-change

6Although only 5 of the categories were used to cluster their study sample, with the
exclusion of the documentation category.

2

https://packages.ubuntu.com/bionic/editors/
https://packages.ubuntu.com/bionic/java/
https://github.com/topics
https://sourceforge.net/directory/development/development/os:linux/
SourceForge.net

Category Projects
(ALL)

Projects
(Java)

Application Software (AS) 437 30
Documentation (D) 433 48
Non Web Libraries & Frameworks (NW) 1,439 342
Software Tools (ST) 972 49
System Software (SS) 184 26
Web Libraries & Frameworks (WL) 1,535 25

Table 1: Number of projects in the categories extracted in [4].

patterns share similarities in terms of team diversity, rippling and
other trends.

The authors described the categories as follows [25]: application
software (software implemented for end-users, e.g., web browsers);
non web libraries and frameworks (software implementing appli-
cation components); software tools (software that supports devel-
opment tasks such as IDEs and source code repositories); system
software (software providing infrastructure and services such as
operating systems); and web libraries and frameworks (software
used to implement web application interfaces) [4]. Their empirical
results showed that different change patterns are more prevalent
depending on the programming language or software category in
focus.

Similar categorisation was adopted in a study on identifying and
characterising unmaintained software projects hosted on GitHub
[7] investigating areas such as reasons motivating developers to
abandon projects. The outcome of the study is a model that can
identify projects that are not maintained using a set of 13 features
about GitHub hosted projects. The libraries and frameworks cate-
gories accounted for the highest number of unmaintained projects
(e.g., projects without a commit in the last year) followed by the ap-
plication software category. Within the studied sample of projects,
the authors found that the category with the least number of main-
tained projects is the system software category.

2.3 Comparing Taxonomies
There has not been an effort yet in the literature to see how tax-
onomies fare against each other. Using an LDA-based approach
designed to detect categories of software systems [6], we used the
SourceForge categories (i.e., top-down) to classify the subset of 500
Java systems out of the 5,000 systems described in Section 2.2 (i.e.,
bottom-up). Figure 1 shows how the original six categories defined
by Borges and Valente [4] can be broken down into the SourceForge
categories outlined in Listing 1.

As visible, each ‘manual’ category contains more than one of the
SourceForge categories, when analysing it via the LDA technique.

2.4 Cross-Cutting vs Leaf Domains
From the gathered results it is possible to notice that some cate-
gories (e.g., Religion, Social Sciences, Formats and Protocols) are not
detectable via the LDA-based technique, whereas other categories
(e.g., Software Development, Mobile) are most easily found. This
means that also the SourceForge taxonomy is too coarse in some

Figure 1: Original manually extracted categories broken
down by the LDA-based technique. "AS" stands for Applica-
tionSoftware, "D" stands for Documentation, "NW" stands
for NonWebLibrariesAndFrameworks, "ST" stands for Soft-
wareTools, "SS" stands for SystemSoftware, "WL" stands for
WebLibrariesAndFrameworks. 1 to 20 are the SourceForge
categories, available in the list in Section 2.2.

parts (e.g., System, Software Development, etc), and too fine in others
(e.g., Religion).

Discarding the categories containing less than 3 projects, we
plotted the distribution of projects along the SF categories in Fig-
ure 2. It becomes therefore possible to discuss whether certain
categories could be ‘cross-cutting’ for many sub-categories of soft-
ware types (e.g., ‘Mobile’ -> ‘Software Development’, or ‘Mobile’ ->
‘Education’). At the same time, Figure 2 shows that some categories
might be considered as sub-categories only, in specific branches (i.e.,
leaf) of the taxonomy tree (e.g., ‘Religion and Philosophy’ could
be a sub-category of either ‘Desktop Environment’, ‘Internet’ or
‘Mobile’).

2.5 Partial Taxonomies and mapping between
taxonomies

Past literature has sometimes provided partial taxonomies, based
on experts opinion, or available classifications. The paper in [15],
for example, analyses, by category, the software projects contained
within the Ubuntu operating system. In Figure 3, we display the
categories studied as boxes, while we also apply the labels of the
taxonomy derived in [9].

While several research papers have hinted at Ubuntu as an
ecosystem, it is possible to observe how the types of software con-
tained in Ubuntu, as an overarching project, are diverse, in the
spectrum of a taxonomy.

3 CASE STUDIES
In this section we present two case studies, where we show how
groups of systems show different behaviours, when they are gath-
ered under the same category. For the first case study (sect 3.1),
we discuss a group of specialised, blockchain-oriented software
projects, and how sub-categories can be identified to drive discus-
sion on different software maintenance and varying health. For the

3

Figure 2: SF categories for the 520 Java systems. 1 represents the “Communications” category, 2 = “Database”, 3 = “Desktop
Environment”, 7 = “Internet”, 8 = “Mobile”, 9 = “Multimedia”, 14 = “Scientific/Engineering”, 17 = “Software Development”, 18
= “System”. Categories with less than 5 projects are excluded.

second case study (sect 3.2), we use the sample of 500 Java systems
(and 6 categories) that was discussed in Section 2.2.

3.1 Case study 1: Sub-categories of one
software type

As the first case study, we consider one specific category of software
types, namely Smart Contracts that implement features related to
the Ethereum Blockchain. The original objective was to study this
specific category of software projects, but the findings went beyond
the research questions.

3.1.1 Project selection and sampling. For sampling projects, we
used GitHub as the preferred platform: Kalliamvakou et al., inves-
tigated the quality of data available from GitHub [16] and found
certain issues to take note of when extracting software repository
information or data from GitHub. Based on their study, we have
made use of the following search criteria when selecting the projects
from this category:

• The repository should not be a tutorial or library and should
be aimed at the Ethereum blockchain (with Solidity being
the main programming language).

• The project should have a minimum of between 5 to 10
commits. A similar filtering requirement has been adopted
in previous research [28], [17] to make sure that projects
investigated have some development activity.

• It should have at least 2 active contributors to avoid it being
a personal project. Similar filtering requirement is adopted
in previous research [1].

• To exclude un-maintained or less active projects [7], the
projects should feature a minimum of one commit in the 12
months prior to the data collection from GitHub [18].

Given the outlined case study selection requirements, the se-
lected software projects from GitHub are listed in Table 2 showing
the number of contributors in each project.

3.1.2 Project clustering and categories. We clustered the projects
into two enveloping categories7: (i) tokens8 and (ii) others9. This is
because a large number of the smart contract projects developed for
use on the Ethereum blockchain network have the goal of creating
a new crypto or digital currency [5, 30].

Out of the eleven projects selected, four projects (Monerium,
Grapevine Token and Crowdsale, Airbloc Token and TrueUSD token)
were assigned to the Token domain. Based on the project description
in their READMe file, they all share the goal of creating a digital
currency. The remaining seven projects (Gnosis, DEXY, Synthetix,
Decentralised Microinsurance, Kleros, Token-curated Registry and
Realitio) were allocated to the Others group.

3.1.3 Internal and external attributes, null hypothesis. All the
projects are implemented in Solidity: the (internal) attributes ex-
tracted include the number of lines of code (SLOC), coupling be-
tween objects (CBO), number of ancestors (NOA), number of out-
going invocations (NOI), number of statements (NOS), depth of

7Also, considering the sample size.
8The main domain discussed in the blockchain field and the original use case for the
blockchain technology [23]
9Covering other decentralised applications such as decentralised insurance, gaming,
escrows, etc.

4

Figure 3: Dependencies between categories of software types (adapted from [15]). The red labels are the corresponding types
as proposed in [9].

Table 2: Selected Ethereum Blockchain-Oriented Software Sample

Project GitHub Repository # SCs # Contributors
https://github.com/

Airbloc token airbloc/token 4 3
Decentralized microinsurance Denton24646/LDelay 2 2
DEXY token exchange DexyProject/protocol 2 5
Gnosis prediction market gnosis/pm-contracts 22 10
Grapevine World token and crowdsale GrapevineWorld/crowdsale-contracts 4 2
Kleros kleros/kleros 1 14
Monerium monerium/smart-contracts 15 2
Realitio (crowd-sourced SC verification) realitio/realitio-contracts 2 2
Synthetix Synthetixio/synthetix 3 12
Token-curated registry kangarang/is-tcr 5 11
TrueUSD token trusttoken/trueUSD 6 4

inheritance tree (DIT), and comment only lines of code (CLOC).
Software attributes were extracted using the SolMet tool [14].

The external attribute that was measured, per project, is the
gas required to deploy the smart contract of those projects to
the blockchain network. Gas is the resource which users of the
decentralised blockchain network pay for computation power or
resources. Gas is described by Grech et al. [12] as the fuel for com-
putation on the Ethereum blockchain network and the amount of
gas to be consumed for each computation or transaction is paid for
in the native digital currency in Ethereum (i.e, the Ether).

Using the Spearman’s Rank Correlation, we test for the following
null hypothesis H0: ‘the application domains of the smart contracts
do not play a role in the correlations between OO metrics and
gasUsed’.

3.1.4 Results. Table 3 displays the summary statistics of the
correlated metrics in the two categories. It is evident that while

the smart contracts in the Token domain heavily rely on inherited
attributes (DIT and NOA), the smart contracts in the Others do-
main consist of a higher number of statements (NOS) and outgoing
functionality dependencies or invocations (NOI).

In order to increase security, specific audited token projects ex-
ist which provide the security of token-oriented projects, most
especially as these projects deal with a high volume of funds (equiv-
alent to millions or sometimes billions worth of US dollars [8, 13]).
Prior to deployment, developers in these domains tend to inherit
features from secure and audited smart contracts instead of devel-
oping theirs from scratch. For example, OpenZeppelin is a publicly
available smart contract security framework on GitHub10 offering
a suite of secure smart contracts that can be extended.

This can provide an explanation for the high correlation between
inheritance based metrics and the gas used for deployment in the

10https://github.com/OpenZeppelin/openzeppelin-contracts

5

https://github.com/
airbloc/token
Denton24646/LDelay
DexyProject/protocol
gnosis/pm-contracts
GrapevineWorld/crowdsale-contracts
kleros/kleros
monerium/smart-contracts
realitio/realitio-contracts
Synthetixio/synthetix
kangarang/is-tcr
trusttoken/trueUSD
https://github.com/OpenZeppelin/openzeppelin-contracts

Table 3: Descriptive statistics of highest correlated metrics
(Token and Others categories)

Descriptive Statistics
Token

OO metrics Mean Median Mode Min Max
NOS 16.5 9 12 0 81
DIT 2.5 2 1 0 8
NOA 4.3 2 2 0 12
NOI 6.5 4.5 0 0 28

Others
NOS 28.7 17 3 2 183
DIT 0.7 0 0 0 3
NOA 1.3 0 0 0 6
NOI 10.9 6 1 1 46

Token-based domain as shown in Table 4. The results in Table 4
demonstrate (statistically significant) large correlations between
the inheritance-based metrics (DIT and NOA) and the gasUsed
metric when considering only the projects in the Tokens domain.
On the other hand, the correlation results have shown moderate
correlations when looking at the non inheritance-based attributes
(NOS and NOI) when evaluating the smart contracts from the 7
projects in the Others domain.

Table 4: Spearman’s Rank Correlation of highest correlated
metrics across domains and p-values (α = 0.01)

Spearman’s Rank Correlation ρ
OO metrics Tokens Others
NOS 0.4 (p = 0.07971) 0.5 (p = 0.00326)**
DIT 0.7 (p = 0.0002)** 0.4 (p = 0.00634)
NOA 0.7 (p = 0.0001)** 0.4 (p = 0.02041)
NOI 0.3 (p = 0.09614) 0.5 (p = 0.00034)**

Based on these observed results we can reject the second null
hypothesis H0 and fail to reject the second alternative hypothesis
H1: the application domains of the smart contracts do play a role
in the correlations between OO metrics and gasUsed. Developers
who want to implement IDE (integrated development environment)
plugins or tools for optimising gas costs for smart contracts prior
to deployment can also learn from these empirical results.

3.2 Case study 2: many categories of software
types

As the second case study, we consider again the sample of 520 Java
systems (and 6 categories) mentioned above, and analysed in [3, 4].
Their overall dataset contains 5,000 project URI’s hosted on GitHub.
The sampled projects represent the Java subset of that data set11.

3.2.1 Empirical set-up. This case study is an extension, to a
different data set, of the approach that we proposed in [6]. Similarly
to that study, in order to detect similarities between the categories,
we performed an empirical evaluation of a suite of metrics, and
a subsequent hypothesis testing. The metrics that were extracted
11The list of projects is available at https://zenodo.org/record/804474#.XDi1S9_njCK

for all the Java projects are 9, well-known structural OO attributes
(NOC, DIT, CBO, RFC, WMC, LCOM, NIM, IFANIN, NIV12) [21].

Also similarly to [6], we adopted the Kolgomorov Smirnov (KS)
test [20] to investigate the null hypothesis H0: ‘the distribution of
software metrics in the compared categories are from the same
population’. In addition to the original study, we also evaluated the
direction of the test, in order to test if the distribution of values had
higher values in one of the categories. Due to the multiple tests
being carried out at the same time, the Bonferroni correction [29]
was applied.

3.2.2 Results. Table 5 shows the results of the statistical anal-
ysis: as above, each cell contains the p-value of the Kolgomorov-
Smirnov (KS) test between two subsets of the dataset. For example,
the ‘AS v D’ row contains the results of both the one-sided (e.g.,
directional) and two-sided KS tests between the projects in the Ap-
plication Software domain, and the projects in the Documentation
domain. For each pair of categories, the table provides four types
of possible (colour-coded) results:

• H1 , when we could not reject the null hypothesis ‘the sam-
ples are drawn from the same population’, but only the alter-
native hypothesis H1;

• , , when we could reject the basic H0 (‘the samples are
drawn from the same population’), but no further direction
of the relationship (‘larger than’ or ‘less than’) could be
established (i.e., a two-tailed KS test was performed);

• > , when we could reject H0, and a ‘X greater than Y’ rela-
tionship could not be rejected (i.e., a one-tailed KS test was
performed, and alternative = “g” as the option for the R test);

• < , when we could reject H0, and a ‘X less than Y’ relation-
ship could not be rejected (again as a one-tailed KS test, and
alternative = “l” as the option for the R test);

All the tests were carried out using the relative p-value, and cor-
rected with the Bonferroni correction, due to the multiple parallel
tests performed.

Considering the results reported in Table 5, we observed the
following:

• for most of the comparisons (e.g., cells), the KS tests reported
a substantial difference between distribution of values. In
only three cases, and all observed in the comparison of the
AS and SS categories, the KS tests did not detect a difference
in the distribution of values (the H1 cells, relatively to the
CBO, DIT and LCOM attributes).

• around 1
3 of the comparisons rejected the null hypothesis

only for the two-tailed test (e.g., the, cells), but no directions
(‘greater than’ or ‘less than’) could be established.

• the projects in the Documentation (D) category tend to have
larger OO attributes as compared to any other category.

• Overall, the projects in the WL category have higher values
in all the OO attributes, than other categories, apart from
the D category.

• The AS projects show higher values than the NW, SS and ST
projects, but not against the D and WL projects.

12Differently from the Solidity language of the first case study, there are several tools
that can extract the OO attributes that are needed.

6

https://zenodo.org/record/804474#.XDi1S9_njCK

IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM
AS v D , < < < , < < , >
AS v NW , > < , , , , > >
AS v SS < > H1 > < > > H1 H1
AS v ST , > < > , > > > >
AS v WL > , < < < < , , ,
D v NW > > > > > > , > >
D v SS , > > > , > > , >
D v ST > > < > > > > > >
D v WL , > > , < , , , >
NW v SS , > > , < , > < <
NW v ST , > < , > > , > >
NW v WL , , < , < , , , ,
SS v WL > , < < < < < , ,
ST v SS , < > , < , , , <
ST v WL , < > , < < < , ,

Table 5: Results of the pair-wise statistical tests of the OO metrics analysed: AS refers to Application Software, D to Documen-
tation, NW to Non Web Libraries And Frameworks, ST to Software Tools, SS to System Software, and WL to Web Libraries And
Frameworks. The , sign defines dissimilar distributions; the < shows distribution X “lower than” distribution Y; while > shows
X “greater than” Y.

• The NW, SS and ST projects are in a blurred category, with
NW projects at higher values than the SS and ST projects.

4 A DEPENDENCY-INFORMED TAXONOMY
Based on the findings of the second case study, it becomes possible
to establish directional dependencies between categories of projects,
and given a taxonomy. In the taxonomy that was used in 3.2 we
found that:

Directional dependencies between categories of the taxon-
omy

D >WL > AS > NW > SS ≈ ST

5 CONCLUSION
In this paper we have discussed categories of software types, and
taxonomies, as variability drivers for software maintenance and
health. Taxonomies have been divided in top-down and bottom-up,
and we have shown how categories might be cross-cutting, or end-
of-branch leaves. We also compared two existing taxonomies and
shown that categories do not match well transitioning from one
taxonomy to the other.

In order to show the need for relational dependencies between
categories of the same categories, we presented two case studies.
In the first we showed that one sub-category (e.g., ‘Tokens’) of
a software type displays a ‘larger than’ behaviour with respect
to another sub-category (e.g., ‘Others’). In the second case study,
we used a larger sample, and similarly concluded that directional
relationships apply to larger categories.

These case studies show that a holistic version of the taxonomies
of software types is needed, and more precise relationships between
categories. These results have an immediate impact on software

maintenance of software types, as well as their health, that needs
to be distinguished from other software types.

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why do developers use trivial packages? an empirical case study
on npm. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 385–395.

[2] Adewole Adewumi, Sanjay Misra, Nicholas Omoregbe, Broderick Crawford, and
Ricardo Soto. 2016. A systematic literature review of open source software quality
assessment models. SpringerPlus 5, 1 (2016), 1936.

[3] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the factors that impact the popularity of GitHub repositories. In 2016 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
334–344.

[4] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? un-
derstanding repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[5] Efe Caglar Cagli. 2019. Explosive behavior in the prices of Bitcoin and altcoins.
Finance Research Letters 29 (2019), 398–403.

[6] Andrea Capiluppi and Nemitari Ajienka. 2019. The relevance of application
domains in empirical findings. In Proceedings of the 2nd International Workshop
on Software Health. IEEE Press, 17–24.

[7] Jailton Junior de Sousa Coelho et al. 2019. Identifying and characterizing un-
maintained projects in GitHub. (2019).

[8] Qi Feng, Debiao He, Sherali Zeadally, Muhammad Khurram Khan, and Neeraj
Kumar. 2018. A survey on privacy protection in blockchain system. Journal of
Network and Computer Applications (2018).

[9] Andrew Forward and Timothy C Lethbridge. 2008. A taxonomy of software types
to facilitate search and evidence-based software engineering. In Proceedings of
the 2008 conference of the center for advanced studies on collaborative research:
meeting of minds. ACM, 14.

[10] Ahmad Nauman Ghazi, Jesper Andersson, Richard Torkar, Kai Petersen, and
Jürgen Börstler. 2014. Information sources and their importance to prioritize test
cases in the heterogeneous systems context. In European Conference on Software
Process Improvement. Springer, 86–98.

[11] Robert L Glass and Iris Vessey. 1995. Contemporary application-domain tax-
onomies. IEEE Software 12, 4 (1995), 63–76.

[12] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1–27.

[13] John Hargrave, Navroop Sahdev, Olga Feldmeier, et al. 2018. How value is created
in tokenized assets. In Blockchain Economics: Implications Of Distributed Ledgers-
Markets, Communications Networks, And Algorithmic Reality. World Scientific.

7

Figure 4: Model of dependencies-informed taxonomy for case study 1

[14] Péter Hegedűs. 2019. Towards analyzing the complexity landscape of solidity
based ethereum smart contracts. Technologies 7, 1 (2019), 6.

[15] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 837–847.

[16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories. ACM,
92–101.

[17] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2016. Using dynamic and con-
textual features to predict issue lifetime in GitHub projects. In Proceedings of the
13th International Conference on Mining Software Repositories. ACM, 291–302.

[18] Bin Lin, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. On the Impact
of Refactoring Operations on Code Naturalness. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
594–598.

[19] Mario Linares-Vásquez, Sam Klock, Collin McMillan, Aminata Sabané, Denys
Poshyvanyk, and Yann-Gaël Guéhéneuc. 2014. Domain matters: bringing further
evidence of the relationships among anti-patterns, application domains, and
quality-relatedmetrics in Javamobile apps. In Proceedings of the 22nd International
Conference on Program Comprehension. 232–243.

[20] Raul HC Lopes. 2011. Kolmogorov-smirnov test. International encyclopedia of
statistical science (2011), 718–720.

[21] Mark Lorenz and Jeff Kidd. 1994. Object-oriented software metrics. Vol. 131.
Prentice Hall Englewood Cliffs.

[22] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs, Piotr Ry-
gielski, Jason Ding, Walfredo Cirne, and Florian Rosenberg. 2014. Cloud usage
patterns: A formalism for description of cloud usage scenarios. arXiv preprint
arXiv:1410.1159 (2014).

[23] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Technical
Report. www.bitcoin.org.

[24] Maria-Eleni Paschali, Apostolos Ampatzoglou, Stamatia Bibi, Alexander Chatzi-
georgiou, and Ioannis Stamelos. 2017. Reusability of open source software across
domains: A case study. Journal of Systems and Software 134 (2017), 211–227.

[25] Luciana L Silva, Marco Tulio Valente, and Marcelo A Maia. 2019. Co-change
patterns: A large scale empirical study. Journal of Systems and Software 152
(2019), 196–214.

[26] Adam Solinski and Kai Petersen. 2016. Prioritizing agile benefits and limitations
in relation to practice usage. Software quality journal 24, 2 (2016), 447–482.

[27] Nirnaya Tripathi, Eriks Klotins, Rafael Prikladnicki, Markku Oivo, Lean-
dro Bento Pompermaier, Arun Sojan Kudakacheril, Michael Unterkalmsteiner,
Kari Liukkunen, and Tony Gorschek. 2018. An anatomy of requirements engi-
neering in software startups using multi-vocal literature and case survey. Journal
of Systems and Software 146 (2018), 130–151.

[28] Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. 2015. A data set
for social diversity studies of GitHub teams. In Proceedings of the 12th Working
Conference on Mining Software Repositories. IEEE Press, 514–517.

[29] Eric W Weisstein. 2004. Bonferroni correction. (2004).
[30] Georgy Yuryev. 2018. What can explain the performance of Initial Coin Offerings?

Master’s thesis. University of Stavanger, Norway.

8

