\\QRS'T,q'.

N) Ve
S AR

TN
2N

ﬁ\

e 3 Opin visindi

This is not the published version of the article / betta er ekki utgefna utgdfa greinarinnar

Author(s)/Ho6f.:

Title/Titill:

Year/Utgafuar:

Version/Utgéafa:

Sigurdur Gauti Samuelsson, Matthias Book

Towards Sketch-based User Interaction with Integrated Software
Development Environments

2020

Post-print

Please cite the original version:

Vinsamlega visid til atgefnu greinarinnar:

Rights/Réttur:

Sigurdur Gauti Samuelsson and Matthias Book. 2020. Towards
Sketch-based User Interaction with Integrated Software
Development Environments. In Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering
Workshops (ICSEW'20). Association for Computing Machinery,
New York, NY, USA, 181-184. DOI:
https://doi.org/10.1145/3387940.3392231

© 2020 Copyright held by the owner/authors. This is the authors’
version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published
in ICSEW'20: Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, June 2020,
Pages 181-184, https://doi.org/10.1145/3387940.3392231.

https://doi.org/10.1145/3387940.3392231
https://doi.org/10.1145/3387940.3392231

Towards Sketch-based User Interaction
with Integrated Software Development Environments

Sigurdur Gauti Samuelsson
siggigauti@hi.is
University of Iceland
Reykjavik, Iceland

ABSTRACT

Powerful software tools, such as software development environ-
ments, often have complex graphical user interfaces (GUIs) that are
not intuitive to handle, especially when performing complex, multi-
step operations. We hypothesize that sketching could be a more
intuitive way of expressing user intentions than navigating nested
menus or memorizing keyboard shortcuts to accomplish complex
operations. Enabling this vision requires software capable of both
allowing the user to sketch anywhere on a GUI, and interpreting
those sketches as specific commands to be performed within the
integrated development environment (IDE). In this paper, we report
on preliminary results of an elicitation study performed to gather
insights into how developers would use a sketch-based interface.

CCS CONCEPTS

+« Human-centered computing — Interaction techniques; Em-
pirical studies in interaction design; Touch screens; « Software
and its engineering — Integrated and visual development environ-
ments.

KEYWORDS

sketching, user interfaces, software development environments

ACM Reference Format:

Sigurdur Gauti Samuelsson and Matthias Book. 2020. Towards Sketch-based
User Interaction with Integrated Software Development Environments. In
IEEE/ACM 42nd International Conference on Software Engineering Workshops
(ICSEW20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3387940.3392231

1 INTRODUCTION

Integrated software development environments (IDEs) tend to have
very feature-rich graphical user interfaces (GUIs) with a vast variety
of menus, dialogs, window panes, buttons and other widgets, all
tailored to specific tasks, and many unique to this particular tool.
Executing non-trivial manipulations of the shown software code,
or even navigating a complex project’s code base, may require
elaborate command sequences involving different menus, dialogs
or keyboard shortcuts.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05....$15.00
https://doi.org/10.1145/3387940.3392231

Matthias Book
book@hi.is
University of Iceland
Reykjavik, Iceland

ass HttpUrlTest {
(name = "Use get = {0}")
1lection<Object[]> parameters() {

[1 { true },

assertThat(parse http://host/\F\n\t \r")).isEqualTo(expected);

assertThat(parse(url "\r\n\f \thttp://host/")).isEqualTo(expected);

Figure 1: Indicating the intent to move a method from one
class to another in a sketch-enabled software IDE

Away from their computer, software engineers routinely use
sketches (i.e. informal, ad-hoc drawings) to visualize and commu-
nicate complex ideas [5]. This prompted our vision of elevating
sketches to a user interaction modality in software IDEs, enabling
developers to perform complex operations by sketching directly on
the software artefacts to be manipulated. [4].

For example, a software developer standing at a digital white-
board, using an IDE to perform a code review of a project with a
colleague, might identify a need to refactor a method by moving
it to a different class. Instead of having to leave the whiteboard to
reach for a mouse and keyboard to cut and paste the code, or call up
the necessary menus and dialogs, the developer could simply use
a pen to circle the method in the code editor, and draw an arrow
to the desired class in the project browser (as shown in Fig. 1), to
express the intended modification without having to interrupt the
discussion and leave the whiteboard.

In this paper, we will explore the idea of sketching as an inter-
action modality for reviewing and refactoring existing code. After
a brief overview of related work in Sect. 2, Sect. 3 presents pre-
liminary results of an ongoing elicitation study whose focus is on
observing how developers would trigger different operations in an
IDE using a digital pen and touch screen. Section 4 concludes the
paper and gives an outlook on our further research plans.

2 RELATED WORK

Our reason for turning to sketching as an additional input modality
for software IDEs is that sketching has always been used by people
as a way of externalizing thoughts and concepts [15]. In software
engineering in particular, sketches are used to convey complex ideas
in an informal style that takes less time to create and requires less
cognitive effort to understand than more formal notations such as

% At kVesionkt 8 SocksProxyjave & HipUnTestjmve - gL

https://doi.org/10.1145/3387940.3392231
https://doi.org/10.1145/3387940.3392231

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

the Unified Modeling Language (UML) [13]. Sketching works well
as a communication tool [8] and as an approach to solving complex
design problems for those who practice it routinely [2, 3, 16].

In software engineering tools, digital sketching has so far how-
ever been restricted to drawing software models (i.e. creating con-
tent), rather than being employed as an input modality (i.e. con-
veying commands). For example, there have been sketch-based
modeling systems [12] and interfaces, for example Teddy [9] and
SKETCH [19], as well as numerous academic tools that emulate the
classic whiteboard experience, such as Flatland [11], InkKit [6], and
Calico [10], to name just a few.

While we are not aware of other works utilizing sketching as a
command mechanism, performing gestures on touch screens [20]
certainly is a related interaction modality. Gestures however dif-
fer from sketches in some important ways: In most mainstream
software tools, the primary uses of gestures that can be performed
on trackpads or touchscreens (swipes, pivots, pinches, and zooms)
seem to be for navigation purposes (e.g. a single finger emulates
the mouse, two fingers are used for page navigation, and three are
used for system-level navigation such as switching between appli-
cations). Such simple, rather generic gestures, along with drag &
drop, seem to be the extent of gesture control implemented in most
software tools. Applications that enable interaction with the user
interface via more complex gestures appear to be quite rare. The
majority of gestural interactions implemented in common software
tools are single-stroke gestures related to the direct manipulation
of on-screen objects [18].

Encouragingly, research comparing stroke shortcuts (i.e. simple
gestures) and keyboard shortcuts showed that both modalities have
the same level of performance when given enough practice, with
the stroke shortcuts having substantial cognitive advantages in
both learning and recall [1]. However, that study examined only
gestures with relatively low complexity, and very little context.

Our long-term research goal is to improve on this state of the art
by showing that sketching can transcend the limitations of gestures
posited by Yee [18], because sketch strokes are visualized persis-
tently as they are being drawn, which could help to avoid errors
due to malformed strokes, increase precision, and make it easier to
draw more complex multi-stroke shapes (to the point of including
handwritten text as part of the sketch). Our hypothesis is that the
higher visual complexity expressible with sketches, and the ability
to more precisely relate to context (in the form of the underlying
user interface widgets and source code), should help to broaden
the possible command vocabulary and thus make sketches an even
more effective modality than gestures or keyboard shortcuts.

Regarding the choice of sketching tool, Tu et al. showed that
using a finger can be slightly faster than using a pen, but requires a
larger amount of surface and is less accurate for complex gestures
(e.g. with regard to shape and axial symmetry) [14]. Given that
sketching on an IDE is bound to involve complex shapes, high
accuracy in relation to background items, and possible handwritten
input, we chose to focus on the pen as the only input medium. Users
should still be able to use a finger on the touch screen to e.g. scroll
or open menus, but since that functionality is already provided by
the tool and operating system, it is not a subject of our research.

Sigurdur Gauti Samuelsson and Matthias Book

3 ELICITATION STUDY

Our current research focus is on exploring how users would interact
with a sketch-based user interface; specifically, what they would
sketch to express certain command intentions. Like gesture-based
user interfaces, sketch-based user interfaces have very few intrinsic
constraints on how the input could be shaped. Different users may
therefore have quite different opinions on what is the most intuitive
way to express a specific intended command through sketching.

To identify the “most agreeable” sketch-based expressions of
common command intentions, we are currently performing an
elicitation study that closely follows the structure of similar studies
by Wobbrock et al. [17] and Good et al. [7]: We are observing
professional software developers working at Icelandic software
companies, asking them to perform sketches that should trigger a
variety of operations in a hypothetical IDE.

3.1 Study Demographic

To date, 19 volunteers participated in our survey. Of the 19 par-
ticipants, twelve self-identified as male and seven as female. All
participants were right-handed. Their mean age was 32.6 years with
a variance of £10.15 years, the oldest being 57 and the youngest 23
years old. Fourteen participants were between 25 and 35 years old.

The participants’ mean time of work experience was eight years
with a variance of +10 years. This high variance is due to the
few older participants who had 20, 26 and 38 years of experience,
compared to the rest who had one to seven years of experience.
The participants’ specializations varied greatly and included e.g.
Android development, C# back-end development, COBOL legacy
software maintenance and computer security research.

3.2 Study Setup

Each experiment started off with obtaining informed consent from
the participant, letting them know that participation in the exper-
iment is voluntary and all data would be anonymized. This was
followed by a standard script describing the experiment. Each par-
ticipant was provided with an electronic pen (stylus) and a 15-inch
laptop with a touch screen folded to hide the keyboard and create
a large tablet-like device. To help participants being in comparable
mindsets, each was asked to imagine being in a meeting room with
one or more team members, discussing a software project or per-
forming a code review while standing in front of a large touchscreen
displaying source code in an IDE.

To ensure consistency of the experiment, we set up a Wizard-
of-Oz-style slide show on the laptop, in which each of the slides
contained a screenshot of an IDE and a written task prompt. The
participant was told that they would be shown screenshots of a
common IDE, and asked to imagine that a hypothetical sketch in-
terpretation interface could translate their sketches into the correct
operations exactly the way they imagined. The participant was
briefly trained on the device, allowing them to test the pen’s draw
and erase functions, as well as the slide show navigation. Once the
participant was ready, screen and audio recording software were
started, and the participant was encouraged to respond to the series
of task prompts by sketching their commands while thinking out
loud. Participants were able to skip a prompt if they had difficulties

Towards Sketch-based Interaction with IDEs

understanding it or could not come up with an appropriate sketch
for it. Each experiment comprised 16 prompts such as the following:

How would you move the whole get() method to line 83?

How would you add a comment between lines 71 and 72?

How would you rename the result variable to “value”?

How would you undo an action?

How would you trace the source of the url variable defini-

tion? (i.e. where it is defined)

e How would you create a new empty method PushNotif{)
within this class?

e How would you ask to see a brace’s matching brace?

e How would you remove the ink of a past sketch?

The experiment always began with the same three simple, pre-
sumably straightforward tasks, to get the participant used to and
comfortable with the novel concept of sketching commands. The
bulk of the commands then followed in random order, to minimize
any bias that the answer to one prompt might have on answers
to future prompts. The four most complex prompts were always
placed at the end of the experiment, to ensure the participant had
gained as much experience as possible with the new modality be-
fore answering these. During the experiment, the participant was
encouraged to think aloud, voicing any concerns, frustrations and
ideas, which were noted by the experimenter.

Each experiment took 15 to 25 minutes, depending on the speed
of the participant. After a participant had answered all prompts, the
experiment was concluded with a questionnaire capturing various
anonymous demographic information such as age group, gender,
left- or right-handedness, work domain and specialization.

3.3 Preliminary Observations

Figure 2 shows participant responses to a selection of prompts.
Every participant had a slightly different notion of what is possible
and how to approach sketch-based input, resulting in different
sketching styles. For example, while the participant’s command in
Fig. 2b is completely graphical, another participant’s command was
expressed in similar syntax as a Git command (Fig. 2c).

Participants who voiced think-aloud opinions offered useful sug-
gestions for capabilities that a sketch recognition and interpre-
tation interface would need. For example, editing tasks such as
renaming variables and methods or moving lines of code were of-
ten treated like annotating a paper printout, using strike-through
marks and margin notes. Another interesting observation was the
use of known symbols. For example, when prompted to insert a
comment between two lines, two participants used the iconic pair
of forward slashes (“//”, as shown in Fig. 2a) to indicate that the
following text should be a comment.

Regarding the lifetime of the command sketches, 18 out of 19
participants agreed that the ink of a sketch should vanish automat-
ically once the user had completed a sketch, and that sketch had
successfully triggered an operation, to revert to an uncluttered user
interface with room for the next command.

Some discussion revolved around possible cases of misinter-
preted commands, which would leave the user surprised and proba-
bly frustrated by an unintended operation, whose cause (and maybe
even effect) might not be obvious anymore after removal of the
ink. Two possible solutions to this issue were discussed: Either the

© sockprnyim

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

g G prpUtie 8 Cookiestina

@get: JvmName (name: "cacheControl”) val cacheControl: CacheControl

get() {
var result - lazycacheControl
== nul1) {

t
TazyCacheControl - result

+

return result

¥

@vaName(name
@eprecated(

"-deprecated_url")

"moved to val”,
replacellith = ReplaceMith(express
level - Deprecationlevel.ERROR)

£un url(): HtpUrl = url

@vaName(name: "-deprecated_method")

evel = DeprecationLevel . ERR
fun method(): String = method

@vaane(name:
@eprecat

"-deprecated_headers")

"moved to val",

CacheControl. parse (headers)

sion = "method"),

n = "url"),

How would you add a comment
between lines 71 and 72?

566 CRLF UTF0 2soaces G

(a) Adding a comment between two lines of code

& OtpClentit

> G@Test public void spaceInvalue() throws
assertThat(Cookie.parse(url, setC

)

> | @Test public void trimleadingAndTrailingkhitespaceFronNane()

assertThat(Cookie.parse (url,
assertThat(Cookie.parse(url,
assertThat(Cookie.parse(url, s
}
> | @Test public void emptyValue() th
assertThat(Cookie.parse(url,
assertThat(Cookie.parse (url,
assertThat(Cookie.parse(url,

)

& Requstit * @ Authenbcstort i Versonkt | 81560

oy X O R X ® CookicTetjon

{
).value()).isEqualTo("c d");

).name()) . isEqualTo(
").name()). isEqualTo("a");
AP\t \na\n\t \n=b").name()).isEqualTo("a");

n {

~value()).isEqualTo("");

= *).value()). isEqualTo("");
Ar\t \n").value()).isEqualTo("");

> @est public void trinleadingAndTrailinghhitespacefronvalue() throws fx n {

assertThat(Cookie.parse(url,
assertThat(Cookie. parse (ur
assertThat (Cookie. parse (u
assertThat(Cookie.pa

}

> | @Test public void invalidCharacters() throws Exception {

assertThat (Cookie.parse(url, s
assertThat(Cookie.parse (url,
assertThat (Cookie.parse(url,
assertThat(Cookie.parse (ur
assertThat (Cookie.parse(url,

nnnnn FThat(Cankia narcaliel
CoolieTer

a= ").value()). isEqualTo("");

“a\u6@eBb=cd")) . isNul1()
b=c\ueeood")) . ishul1()|
\udBetb=cd")). isNull ()|
b=c\ueeo1d")) . ishul1()|
\uBgesb=cd")). isNull(
Hahr\BBAAATYY S emn11 ()

How would you trace the source
of the url variable definition?
(i.e. where it is defined)

a
20 CRE TS 2spaces Grman

(b) Tracing the source of a variable

2 JazyCacheControl
if (fesult == null) {

result = CacheControl.parse(headers)

lazyCacheControl =
b
return result

b

result

@vaNane(name: "-deprecated_url")

@eprecated(
"moved to val”,
e ith = ReplaceMith(expression
level = Deprecationlevel.ERROR)

fun url(): Httpurl = url

@vaame(name: "-deprecated_method")
@eprecated(

"moved to val",

1 - Deprecationlevel.ERROR)
fun method(): String = method

@vmNane(na

"-deprecated_headers")
@eprecated(
message - "moved to val",

Resuet 1390

ith - ReplaceWith(expression ~

= "url"),

“method"),

How would you rename
the result variable to ,value“?

@eentio

565 CHF VTS Zspoces Glimmter % 8 %

(c) Renaming a variable

Figure 2: Responses to task prompts by different profes-
sional software developers

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

use of an interactive confirmation prompt that would describe the
imminent command and ask for confirmation before execution, or
the ability to easily undo any interpreted operation. The latter could
likely rely on the IDE’s built-in command stack, but still requires
user awareness of what just happened, and whether that operation
was intentional. Whether it would be more disruptive to explicitly
confirm every sketch interpretation, or to stay alert for occasional
misinterpreted operations in order to undo them, requires more
in-depth study before deciding on an implementation.

One of the interaction patterns suggested by four participants
was the use of a context menu that should appear upon touching
or hovering over a particular word for a second or two. This is
most likely influenced by experience with smart phones and other
touch interfaces, where contextual operations are often called up
by long-press gestures. While long-press or hover gestures fit nat-
urally into a touch- and pen-based interaction environment, we
will not focus on them in our research, for two reasons: Firstly, we
want to focus on exploring novel sketch-based interactions, while
long-pressing and hovering are already established gesture-based
interactions. Secondly, these gestures are typically already handled
by the operating system and the IDE itself, in order to bring up
context menus. While we certainly do not want to discourage users
from employing established gestures such as long-pressing, hov-
ering, tapping, swiping, pinching etc., our research will focus on
enabling additional interactions that rely on sketching alone.

Finally and perhaps unsurprisingly, a third of the participating
software developers did not just envision how they would sketch
a command for a given task prompt, but could not resist ponder-
ing how particular sketch commands should be recognized and
interpreted by the hypothetical user interface logic. This may have
biased their responses away from sketches inspired solely by in-
tuition, and towards sketches whose interpretation they deemed
technically feasible. While we appreciate the additional thought and
input provided by these participants, this observation led us to plan
the second phase of the elicitation study with university students,
i.e. an audience that is familiar with the prompted operations, but
does not yet have as much solution engineering experience.

Once we have collected responses from a broader base of users,
we are going to formally evaluate the findings using a similar tech-
nique as Wobbrock et al. [17] to evaluate agreement scores between
different causes for a specific effect, which will then inform the
implementation of interpreters for individual sketches and their
intended commands.

4 CONCLUSION

In this paper, we discussed preliminary findings of an elicitation
study aimed at learning how developers would use sketching as an
interaction medium to express command intentions.

Our next steps will be concluding the elicitation study and cre-
ating a taxonomy of sketch commands that should help with the
formulation of a visual language for sketch-based user interaction
with source code and possibly other content. In parallel, we will de-
velop a prototype of a sketch recognition and interpretation layer
for an IDE, as the basis for further studies on the usability and
recognition accuracy of sketch-based user input.

Sigurdur Gauti Samuelsson and Matthias Book

ACKNOWLEDGMENTS

This work was supported by the Icelandic Research Fund (grant no.
196228).

REFERENCES

[1] Caroline Appert and Shumin Zhai. 2009. Using Strokes As Command Shortcuts:
Cognitive Benefits and Toolkit Support (CHI '09). ACM, New York, NY, USA,
2289-2298. https://doi.org/10.1145/1518701.1519052

[2] Uday Athavankar. 1997. Mental Imagery as a Design Tool. Cybernetics
and Systems 28, 1 (1997), 25-42. https://doi.org/10.1080/019697297126236
arXiv:https://doi.org/10.1080/019697297126236

[3] Uday Athavankar and Arnab Mukherjee. 2003. Blindfolded Classroom: Getting
Design Students to Use Mental Imagery. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 111-120. https://doi.org/10.1007/978-3-662-07811-2_12

[4] Matthias Book and André van der Hoek. 2018. Sketching with a purpose: moving
from supporting modeling to supporting software engineering activities. In 2018
IEEE/ACM 11th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 93-96.

[5] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. 2007. Let’s Go to
the Whiteboard: How and Why Software Developers Use Drawings (CHI "07).
Association for Computing Machinery, New York, NY, USA, 557-566. https:
//doi.org/10.1145/1240624.1240714

[6] Ronald Chung, Petrut Mirica, and Beryl Plimmer. 2005. InkKit: A Generic Design
Tool for the Tablet PC. In Proceedings of the 6th ACM SIGCHI New Zealand
Chapter’s International Conference on Computer-human Interaction: Making CHI
Natural (CHINZ *05). ACM, New York, NY, USA, 29-30. https://doi.org/10.1145/
1073943.1073950

[7] Michael D. Good, John A. Whiteside, Dennis R. Wixon, and Sandra J. Jones. 1984.
Building a User-derived Interface. Commun. ACM 27, 10 (Oct. 1984), 1032-1043.
https://doi.org/10.1145/358274.358284

[8] Kathryn Henderson. 1991. Flexible Sketches and Inflexible Data

Bases: Visual Communication, Conscription Devices, and Boundary

Objects in Design Engineering. Science, Technology, & Human Val-

ues 16, 4 (1991), 448-473. https://doi.org/10.1177/016224399101600402

arXiv:https://doi.org/10.1177/016224399101600402

Takeo Igarashi, Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 2007.

Teddy: A Sketching Interface for 3D Freeform Design (SIGGRAPH ’07). ACM,

New York, NY, USA, Article 21, 8 pages. https://doi.org/10.1145/1281500.1281532

Nicolas Mangano, Alex Baker, and André van der Hoek. 2008. Calico: A Pro-

totype Sketching Tool for Modeling in Early Design. In Proceedings of the 2008

International Workshop on Models in Software Engineering (MiSE "08). ACM, New

York, NY, USA, 63-68. https://doi.org/10.1145/1370731.1370747

Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards, and Anthony LaMarca.

1999. Flatland: New Dimensions in Office Whiteboards. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’99). ACM, New

York, NY, USA, 346-353. https://doi.org/10.1145/302979.303108

Shigeru Owada, Frank Nielsen, Kazuo Nakazawa, and Takeo Igarashi. 2003. A

Sketching Interface for Modeling the Internal Structures of 3D Shapes. In Smart

Graphics, Andreas Butz, Antonio Kriiger, and Patrick Olivier (Eds.). Springer

Berlin Heidelberg, 49-57. https://doi.org/10.1007/3-540-37620-8_5

Beryl Plimmer and Mark Apperley. 2004. INTERACTING with Sketched Interface

Designs: An Evaluation Study (CHI EA "04). ACM, New York, NY, USA, 1337-1340.

https://doi.org/10.1145/985921.986058

Huawei Tu, Xiangshi Ren, and Shumin Zhai. 2012. A Comparative Evaluation of

Finger and Pen Stroke Gestures (CHI ’12). ACM, New York, NY, USA, 1287-1296.

https://doi.org/10.1145/2207676.2208584

Barbara Tversky. 2002. What do sketches say about thinking. In Sketch Un-

derstanding, papers from the 2002 AAAI Spring Symposium, March 25-27, 2002.

148-151.

[16] Ilse M Verstijnen, Cees van Leeuwen, G Goldschmidt, Ronald Hamel, and JM

Hennessey. 1998. Sketching and creative discovery. Design studies 19, 4 (1998),

519-546. https://doi.org/10.1016/S0142-694X(98)00017-9

Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-

defined Gestures for Surface Computing (CHI "09). ACM, New York, NY, USA,

1083-1092. https://doi.org/10.1145/1518701.1518866

[18] Wendy Yee. 2009. Potential Limitations of Multi-touch Gesture Vocabulary: Dif-

ferentiation, Adoption, Fatigue. In Human-Computer Interaction. Novel Interaction

Methods and Techniques, Julie A. Jacko (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 291-300. https://doi.org/10.1007/978-3-642-02577-8_32

Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 2007. SKETCH: An

Interface for Sketching 3D Scenes (SIGGRAPH ’07). ACM, New York, NY, USA,

Article 19, 6 pages. https://doi.org/10.1145/1281500.1281530

S. Zhai, P. O. Kristensson, C. Appert, T. H. Andersen, and X. Cao. 2012. Founda-

tional Issues in Touch-Surface Stroke Gesture Design: An Integrative Review. now.

https://ieeexplore.ieee.org/document/8187096

[9

[10

[11

[12

(13

[14

[15

[17

[19

[20

https://doi.org/10.1145/1518701.1519052
https://doi.org/10.1080/019697297126236
https://arxiv.org/abs/https://doi.org/10.1080/019697297126236
https://doi.org/10.1007/978-3-662-07811-2_12
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1073943.1073950
https://doi.org/10.1145/1073943.1073950
https://doi.org/10.1145/358274.358284
https://doi.org/10.1177/016224399101600402
https://arxiv.org/abs/https://doi.org/10.1177/016224399101600402
https://doi.org/10.1145/1281500.1281532
https://doi.org/10.1145/1370731.1370747
https://doi.org/10.1145/302979.303108
https://doi.org/10.1007/3-540-37620-8_5
https://doi.org/10.1145/985921.986058
https://doi.org/10.1145/2207676.2208584
https://doi.org/10.1016/S0142-694X(98)00017-9
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1007/978-3-642-02577-8_32
https://doi.org/10.1145/1281500.1281530
https://ieeexplore.ieee.org/document/8187096

