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ABSTRACT
We study the target control problem of asynchronous Boolean net-

works, to identify a set of nodes, the perturbation of which can

drive the dynamics of the network from any initial state to the

desired steady state (or attractor). We are particularly interested

in temporary perturbations, which are applied for sufficient time

and then released to retrieve the original dynamics. Temporary

perturbations have the apparent advantage of averting unforeseen

consequences, which might be induced by permanent perturba-

tions. Despite the infamous state-space explosion problem, in this

work, we develop an efficient method to compute the temporary

target control for a given target attractor of a Boolean network.

We apply our method to a number of real-life biological networks

and compare its performance with the stable motif-based control

method to demonstrate its efficacy and efficiency.

KEYWORDS
Boolean networks, attractors, network control

1 INTRODUCTION
Cell reprogramming has garnering attention for its therapeutic

potential for treating the most devastating diseases characterised

by diseased cells or a deficiency of certain cells. It is capable of

reprogramming any kind of abundant cells in the body into the

desired deficient cells to restore functions of the diseased organ [10,

11, 38]. It has shown promising benefits for clinical applications,

such as cell and tissue engineering, regenerative medicine and drug

discovery.

In their seminal work, Yamanaka et al. showed that human so-

matic cells can be converted to induced pluripotent stem cells (iP-

SCs) by a cocktail of defined factors [40, 44]. The generated iPSCs

have the ability to further propagate and differentiate into many

cell types. However, the application of iPSC reprogramming is often

restricted, due to that: (1) the generated iPSCs have a risk of can-

cerous tumour formation [10, 11]; (2) the iPSC reprogramming and

differentiation process usually requires long time to produce suffi-

cient cells for application, which leads to a significant experimental

cost [11]; and (3) the iPSCs often encounter cell cycle arrest after

differentiation, which makes it impossible to expand the number of

cells for therapeutic transplantation [10]. The limitations of iPSC

reprogramming reinforce the need of direct reprogramming, also

called transdifferentiation. Direct reprogramming harnesses abun-

dant somatic cells to regenerate defective cells by reprogramming

the somatic cells directly into the desired cell type bypassing the

pluripotent state. As a consequence, direct reprogramming can not

only reduce the risk of tumourigenesis and teratoma formation, but

also shorten the period of time for producing enough desired cells

for therapeutic application.

Amajor challenge of cell reprogramming lies in the identification

of effective target proteins or genes, the manipulation of which can

trigger desired changes. Lengthy time commitment and high cost

hinder the efficiency of experimental approaches, which perform

brute-force tests of tunable parameters and record corresponding

results [42]. This strongly motivates us to turn to mathematical

modelling of biological systems, which allows us to identify key

genes or pathways that can trigger desired changes using computa-

tional methods. Boolean network, first introduced by Kauffman [15],

is a well-established modelling framework for gene regulatory net-

works and their associated signalling pathways, and it has apparent

advantages compared to other modelling frameworks [1]. Boolean

network provides a qualitative description of biological systems

and thus evades the parametrisation problem, which often occurs

in quantitative models, such as models of ordinary differential equa-

tions (ODEs). In Boolean networks, molecular species, such as genes

and transcription factors, are described as Boolean variables. Each

variable is assigned with a Boolean function, which determines the

evolution of the node. Boolean functions characterise activation

or inhibition regulations between molecular species. The dynam-

ics of a Boolean network is assumed to evolve in discrete time

steps, moving from one state to the next, under one of the updating

schemes, such as synchronous or asynchronous. Under the synchro-
nous scheme, all the nodes update their values simultaneously at

each time step; while under the asynchronous scheme, only one

node is randomly selected to update its value at each time step. We

focus on the asynchronous updating scheme since it can capture

the phenomenon that biological processes occur at different time

scales. The steady-state behaviour of the dynamics is described as

attractors, to one of which the system eventually settles down. At-

tractors are hypothesised to characterise cellular phenotypes [14].

Each attractor has a weak basin and a strong basin. The weak basin

contains all the states that can reach this attractor, while the strong

basin includes the states that can only reach this attractor and

cannot reach any other attractors of the network. In the context

of Boolean networks, cell reprogramming is interpreted as a con-

trol problem: modifying the parameters of a network to lead its

dynamics towards a desired attractor.

Control theories have been employed to modulate the dynamics

of complex networks in recent years. Due to the intrinsic non-

linearity of biological systems, control methods designed for linear

systems, such as structure-based control methods [5, 8, 19], are not

applicable – they can both overshoot and undershoot the number

of control nodes for non-linear networks [9]. For nonlinear sys-

tems of ODEs, Fiedler et al. proved that the control of a feedback
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vertex set is sufficient to control the entire network [7, 26, 47];

and Cornelius et al. proposed a simulation-based method to pre-

dict instantaneous perturbations that can reprogram a cell from an

undesired phenotype to a desired one. However, further study is

required to figure out if these two methods can be lifted to control

Boolean networks. Several methods based on semi-tensor product

(STP) have been proposed to solve different control problems for

Boolean control networks (BCNs) under the synchronous updat-

ing scheme [3, 18, 21, 43, 45, 48, 49, 51]. For synchronous Boolean

networks, Kim et al. developed a method to compute a small frac-

tion of nodes, called ‘control kernels’, that can be modulated to

govern the dynamics of the network [16]; and Moradi el al. devel-
oped an algorithm guided by forward dynamic programming to

solve the control problem. However, all these methods are not di-

rectly applicable to asynchronous Boolean networks. To tackle this

problem, we have developed several decomposition-based meth-

ods, which exploit both the structural and dynamical information,

to cope with source-target control with instantaneous, temporary

and permanent perturbations [22, 23, 31, 32, 39] and target control

with instantaneous perturbations [2] for asynchronous Boolean

networks. In view of the difficulties and expenses in conducting

biological experiments, our methods compute the minimal control

sets, which can be easily translated for wet-lab validation.

Cells in tissues and in culture normally exist as a population of

cells, corresponding to different stable steady states [36]. There is a

need of target control methods to compute a subset of nodes, the

control of which can always drive the system from any initial state

to a desired target attractor. The target control method developed

in our previous work [2] adopts instantaneous perturbations, that

are only applied instantaneously, but at a cost, rather larger num-

ber of control nodes are required than temporary and permanent

perturbations [39]. Moreover, it is difficult to guarantee that all

the perturbations take effect at the same time in biological experi-

ments. Thus, target control with temporary perturbations is more

appealing.

In this paper, we develop a target control method with tempo-

rary perturbations for asynchronous Boolean networks. Our idea

is to find a control C = (0,1), which is a tuple of two sets, such

that the application ofC – setting the value of a node, whose index

is in 0 (or 1), to 0 (or 1) – can drive the network from any initial

state s in the state space S to an intermediate state s ′ in the weak

basin of the target attractor. We hold the control C for sufficient

time and let the network evolve to a state in the strong basin of

the target attractor. After that, the control can be released and the

network will eventually and surely reach the target attractor. Since

the network can take any state s ∈ S as an initial state, the possible

intermediate states form a subset S ′ of S , called schema. According
to our previous work [39], we know that all the intermediate states

should fall into the weak basin of the target attractor. Therefore, we

partition the weak basin into a set of mutually disjoint schemata.

Each schema results in a candidate control, which is further min-

imised and verified. Clinical applications are highly time-sensitive,

controlling more nodes may shorten the period of time for gener-

ating sufficient desired cells [11]. Hence, we integrate our method

with a threshold ζ on the number of perturbations. By increasing

ζ , we can obtain solutions with at most ζ perturbations. It is worth

noting that more perturbations may cause a significant increase in

the experimental cost, hence, the parameter ζ should be considered

individually based on specific experimental settings.

We have implemented ourmethod and compared its performance

with the stable motif-based control (SMC) [46] on various real-life

biological networks, as both methods focus on temporary target

control of asynchronous Boolean networks. The results show that

our method outperforms SMC in terms of the computational time

for most of the networks. Both methods find a number of valid

temporary controls, but our method is able to identify more controls

with fewer perturbations for some networks. Another interesting

observation is that the number of required perturbations is often

quite small compared to the sizes of the networks. This agrees with

the empirical findings that the control of few nodes can reprogram

biological networks [27].

2 BACKGROUND AND NOTATIONS
In this section, we give preliminary notions of Boolean networks.

Let [n] denote the set of positive integers {1, 2, . . . ,n}.

2.1 Boolean networks
A Boolean network (BN) describes elements of a dynamical system

with binary-valued nodes and interactions between elements with

Boolean functions. It is formally defined as:

Definition 2.1 (Boolean networks). A Boolean network is a tuple

G = (X , F ) where X = {x1,x2, . . . ,xn }, such that xi , i ∈ [n] is
a Boolean variable and F = { f1, f2, . . . , fn } is a set of Boolean

functions over X .

A Boolean network G = (X , F ) can be viewed as a directed

graph G = (V , E), called the dependency graph of G, where V =
{v1,v2 . . . ,vn } is the set of nodes. Node vi ∈ V corresponds to

variable xi ∈ X . For every i, j ∈ [n], there is a directed edge from

vj to vi if and only if fi depends on x j . For the rest of the expo-
sition, we assume an arbitrary but fixed network G = (X , F ) of n
variables is given to us. For all occurrences of xi and fi , we assume

xi and fi are elements of X and F , respectively. A state s of G is

an element in {0, 1}n . Let S be the set of states of G. For any state

s = (s[1], s[2], . . . , s[n]), and for every i ∈ [n], the value of s[i],
represents the value that xi takes when the network is in state s .
For some i ∈ [n], suppose fi depends on xi1 ,xi2 , . . . ,xik . Then fi (s)
will denote the value fi (s[i1], s[i2], . . . , s[ik ]) and xi1 ,xi2 , . . . ,xik
are called parent nodes of xi . For two states s, s ′ ∈ S , the Hamming
distance between s and s ′ is denoted as hd(s, s ′).

Definition 2.2 (Control). A controlC is a tuple (0,1), where 0,1 ⊆
[n] and 0 and 1 are mutually disjoint (possibly empty) sets of indices

of nodes of a Boolean network G. The size of the control C is

defined as |C | = |0| + |1|. Given a state s ∈ S , the application

of C to s , denoted as C(s), is defined as a state s ′ ∈ S , such that

s ′[i] = 0 = 1 − s[i] for i ∈ 0 and s ′[i] = 1 = 1 − s[i] for i ∈ 1. s ′ is
called the intermediate state w.r.t. C .

The control can be lifted to a subset of states S ′ ⊆ S . Given
a control C = (0,1), C(S ′) = S ′′, where S ′′ = {s ′′ ∈ S |s ′′ =
C(s ′), s ′ ∈ S ′}. S ′′ includes all the intermediate states with respect

toC . The application ofC results in a new Boolean network, defined

as follows.



f1 = x2
f2 = x1
f3 = x2 ∧ x3
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Figure 1: (a) Boolean functions, (b) the dependency graph,
(c) transition system TS and (d) transition system under con-
trol TS |C for Example 2.5.We omit selfloops for all the states
except for state 101 in (c).

Definition 2.3 (Boolean networks under control). Let C = (0,1)
be a control and G = (X , F ) be a Boolean network. The Boolean

network G under control C , denoted as G |C , is defined as a tuple

G |C = (X̂ , F̂ ), where X̂ = {x̂1, x̂2, . . . , x̂n } and F̂ = { ˆf1, ˆf2, . . . , ˆfn },
such that for all i ∈ [n]:
(1) x̂i = 0 if i ∈ 0, x̂i = 1 if i ∈ 1, and x̂i = xi otherwise;

(2)
ˆfi = 0 if i ∈ 0, ˆfi = 1 if i ∈ 1, and ˆfi = fi otherwise.

The state space of G |C , denoted S |C , is derived by fixing the

values of the variables in the set C to their respective values and

is defined as S |C = {s ∈ S | s[i] = 1 if i ∈ 1 and s[j] = 0 if j ∈ 0}.
Note that S |C ⊆ S . For any subset S ′ of S , we let S ′ |C = S ′ ∩ S |C .

2.2 Dynamics of Boolean networks
In this section and the next section, we define several notions that

can be interpreted on both G and G |C . We use the generic notion

G = (X , F ) to represent either G = (X , F ) or G |C = (X̂ , F̂ ). We

assume that a Boolean network G = (X , F ) evolves in discrete time

steps. It starts in an initial state s0 and its state changes in every

time step according to the update functions F . Different updating
schemes lead to different dynamics of the network [25, 50]. In this

work, we are interested in the asynchronous updating scheme as it
allows biological processes to happen at different classes of time

scales and thus is more realistic.

The asynchronous evolution of G is a function ξ : N → ℘(S)
such that ξ (0) = {s0} and for every j ≥ 0, if s ∈ ξ (j) then s ′ ∈
ξ (j + 1) is a possible next state of s iff either hd(s, s ′) = 1 and

s ′[i] = fi (s) = 1 − s[i] or hd(s, s ′) = 0 and there exists i such
that s ′[i] = fi (s) = s[i]. It is worth noting that the asynchronous

dynamics is non-deterministic. At each time step, only one node is

randomly selected to update its value and a different choice may

lead to a different next state s ′ ∈ ξ (j + 1). Henceforth, when we

talk about the dynamics of G, we shall mean the asynchronous

dynamics. The dynamics of a Boolean network can be described as

a transition system (TS).

Definition 2.4 (Transition system of Boolean networks). The transi-
tion system of a Boolean networkG , denoted as TS, is a tuple (S,E),
where the vertices are the set of states S and for any two states s
and s ′ there is a directed edge from s to s ′, denoted s → s ′ iff s ′ is
a possible next state of s according to the asynchronous evolution

function ξ of G.

Similarly, we denote the transition system of a Boolean network

under control, G |C , as TS |C .
Example 2.5. Consider a networkG = (X , F ), whereX = {x1,x2,x3},

F = { f1, f2, f3}, and f1 = x2, f2 = x1 and f3 = x2 ∧ x3. The
dependency graph of the network G and its associated transi-

tion system TS are given in Fig. 1 (b) and (c). Given a control

C = (0,1),0 = {2},1 = ∅ (i.e., {x2 = 0}), the transition system

under control TS |C is given in Fig. 1 (d).

2.3 Attractors and basins
A path ρ from a state s to a state s ′ is a (possibly empty) sequence

of transitions from s to s ′ in TS, denoted ρ = s → s1 → . . . → s ′.
A path from a state s to a subset S ′ of S is a path from s to any state

s ′ ∈ S ′. An infinite path ρ from s , ρ = s → s1 → . . ., is a sequence
of infinite transitions from s . A state s ′ ∈ S appears infinitely often
in ρ if for any i ≥ 0, there exists j ≥ i such that sj = s

′
. We assume

every infinite path ρ is fair – for any state s ′ that appears infinitely
often in ρ, every possible next state s ′′ of s ′ also appears infinitely

often in ρ. For a state s ∈ S , reach(s) denotes the set of states s ′
such that there is a path from s to s ′ in TS.

Definition 2.6 (Attractor). An attractor A of TS (or of G) is a
minimal non-empty subset of states of S such that for every state

s ∈ A, reach(s) = A.

Attractors are hypothesised to characterise the steady-state be-

haviour of the network. Any state which is not part of an attractor

is a transient state. An attractorA of TS is said to be reachable from
a state s if reach(s)∩A , ∅. The network starting at any initial state
s0 ∈ S will eventually end up in one of the attractors of TS and re-

main there forever unless perturbed. Under asynchronous updating

scheme, there are singleton attractors and cyclic attractors. Cyclic

attractors can be further classified into: (1) a simple loop, in which

all the states form a loop and every state appears only once per tra-

versal through the loop; and (2) a complex loop, which has intricate

topology and includes several loops. Fig. 2 (a), (b) and (c) show a

singleton attractor, a simple loop and a complex loop, respectively.

LetA denote all the attractors of TS. For an attractorA, A ∈ A, we

define its weak basin as basWTS (A) = {s ∈ S | reach(s) ∩A , ∅}; the
strong basin of A is defined as basSTS(A) = {s ∈ S | reach(s) ∩ A ,
∅ and reach(s) ∩ A′ = ∅ for any A′ ∈ A,A′ , A}. Intuitively, the
weak basin ofA, basWTS (A), contains all the states s from which there

exists at least one path to A, and there may also exist paths from s

to other attractorA′ (A′ , A) of TS. The strong basin ofA, basSTS(A),
consists of all the states from which there only exist paths to A.

Example 2.7. The network in Example 2.5 has three attractors

A1 = {000}, A2 = {110} and A3 = {111}, indicated as dark grey

nodes in Fig. 1(c). For attractor A1, its strong basin basSTS(A1) =
{000, 001} is shown as the shaded grey region; its weak basin con-

tains six states, i.e. basWTS (A1) = {000, 001, 101, 011, 100, 010}. We

can see that only attractor A1 is preserved in TS |C in Fig. 1(d).
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(b)
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Figure 2: Different types of attractors of an asynchronous
Boolean network. We omit selfloops for all the states.

2.4 The control problem
As described in the introduction, many devastating diseases, such

as Parkinson’s disease and Alzheimer’s disease, are caused by a

deficiency of particular cells. Cell reprogramming can transform

abounding somatic cells into the desired cell type. In the context

of Boolean networks, this process is, indeed, stirring the dynamics

of the network from a source attractor to a desired target attractor.

However, cells in culture and in situ are usually not isolated but

exist in a population consisting of various cell phenotypes or even

transient cell states. Hence, it is important to develop a target

control method to identify key nodes that can guide the network

towards a desired target attractor from any other distinct steady

states or transient states.

This can be defined as a target control problem: given a Boolean

network G and a target attractor At , finding a control C , the appli-
cation of which can drive the network from any source state s ∈ S
to At . When the source state s is fixed, finding a control C to drive

the network from s to At , is a source-target control problem. Based

on the application time of control, we have: (1) temporary control
- perturbations are applied for a finite (possibly zero) number of

steps and then released; (2) permanent control - perturbations are
applied for all the following steps. When perturbations are applied

instantaneously, we call it instantaneous control, which is a special

case of temporary control. Temporary control has shown its appar-

ent advantages in reducing the number of perturbations [39], thus

in this work, we focus on temporary target control, formally defined

as follows.

Definition 2.8 (Temporary target control). A temporary target

control is a control C = (0,1), such that there exists a t0 > 0, for

all t > t0, the network always reaches the target attractor At on
the application of C to any source state s ∈ S for t steps.

3 RESULTS
In this section, we shall develop a method to solve the temporary

target control problem. First, we introduce the following lemma,

which is crucial for the development of the method.

Lemma 3.1. A controlC = (0,1) is a temporary target control to a
target attractorAt from any source state s ∈ S iff basSTS(At )∩S |C , ∅
and C(S) ⊆ basSTS |C (bas

S
TS(At ) ∩ S |C ).

Instead of presenting a formal proof for Lemma 3.1, we give an in-

tuitive explanation below. Definition 2.3 shows that the application

of a control C results in a new Boolean network G |C and the state

space is restricted to S |C . To guarantee the inevitable reachability

ofAt , by the time we release the control, the network has to reach a

state s in the strong basin of At w.r.t. the original transition system

TS, i.e. basSTS(At ), from which there only exist paths to At . This

requires the remaining strong basin in S |C , i.e. (basSTS(At ) ∩ S |C ),
is a non-empty set; otherwise, it is not guaranteed to reach At . Fur-

thermore, the condition C(S) ⊆ basSTS |C (bas
S
TS(At ) ∩ S |C ) ensures

any possible intermediate state s ′ ∈ C(S) is in the strong basin

of the remaining strong basin (basSTS(At ) ∩ S |C ) in the transition

system under control TS |C , so that the network will always evolve

to the remaining strong basin. Once the network reaches the re-

maining strong basin, the control can be released and the network

will evolve spontaneously towards the target attractorAt . Based on
the definition of the weak basin, it is sufficient to search the weak

basin basWTS (At ) for temporary target control.

A noteworthy point is that temporary control needs to be re-

leased once the network reaches a state in (basSTS(At ) ∩ S |C ). On
one hand, Lemma 3.1 guarantees that partial strong basin of At in
TS is preserved in TS |C , while it does not guarantee the presence
of At in TS |C . In that case, the control C has to be released at one

point to recover the original TS, which at the same time retrieves

At . On the other hand, in clinic, it is preferable to eliminate human

interventions to avoid unforeseen consequences. Concerning the

timing to release the control, since it is hard to interpret theoreti-

cal time steps in diverse biological experiments, it would be more

feasible for biologists to estimate the timing based on empirical

knowledge and specific experimental settings.

Previously, we have developed efficient decomposition-based

algorithms to compute the exact basins of an attractor, which exploit

both the structural and dynamical properties of the network [31, 32].

In the algorithm we develop here, we shall use these procedures

to compute the weak basin and the strong basin of an attractor

and refer them as Comp_WB and Comp_SB, respectively. Next, we

define the projection of a state s ∈ S to a subset B of [n], which
represents the indices of a subset of nodes X ′ ⊆ X as follows.

Definition 3.2 (Projection). Let X ′ = {xi1 ,xi2 , . . . ,xik } be a sub-
set of X and B = {i1, i2, . . . , ik } be the set of indices of X ′

. The

projection of a state s to B, is an element of {0, 1}k , defined as

s |B = (s[i1], s[i2], . . . , s[ik ]). The projection is lifted to a subset S ′

of S as S ′ |B = {s |B |s ∈ S ′}.

Given a control C = (0,1), the possible intermediate states with

respect to C , denoted S ′ = C(S), form a schema, and can be defined

as follows.

Definition 3.3 (Schema). A subset S ′ of S is a schema if there

exists a tripleM = (0,1,D), where 0 ∪ 1 ∪ D = [n], 0,1 and D are

mutually disjoint (possibly empty) set of indices of nodes ofG , such

that S ′ |0 = {0} |0 | , S ′ |1 = {1} |1 | and S ′ |D = {0, 1} |D |
. 0,1 and D

are called off-set, on-set and don’t-care-set of S ′, respectively. The
elements in 0 ∪ 1 are called indices of support variables of S ′.

Intuitively, for any node xi , i ∈ 0, it has a value of 0 in any

state s ∈ S ′; for any node xi , i ∈ 1, it has a value of 1 in any state

s ∈ S ′. The projection of S ′ to the don’t-care-set D contains all

combinations of binary strings with |D| bits. Thus, any schema S ′

is of size 2
|D |

. Since the total number of nodes n = |0| + |1| + |D|
is fixed, a larger schema implies more elements in D and fewer

elements in 0 ∪ 1.



Algorithm 1 Temporary Target Control

1: procedure Temp_Target_Control(G,At )
2: initialise L := ∅ and Ω := ∅ to store valid temporary control sets and the checked control sets, respectively.

3: I , Ins :=Comp_input_nodes(G) //compute input nodes I and non-specified input nodes I ns .

4: SB :=Comp_SB(F ,At ) //strong basin of At in TS
5: WB :=Comp_WB(F ,At ) //weak basin of At in TS
6: W :=Comp_schemata(WB),m := |W|
7: generate a vector Θ of lengthm and set all the elements to false Θ[i] indicates ifWi can be skipped or not.
8: ζ := n set an initial threshold on the number of perturbations. n is the size of the network.
9: for i = 1 :m do // traverse the schemata
10: if Θ[i] = true, then continue
11: Ci :=Comp_support_variables(Wi ) // Ci := (0i ,1i )
12: Ce

i := (0i ∩ Ins,1i ∩ Ins), Cri := (0i \ I ,1i \ I ) //essential control nodes and non-input nodes in Ci
13: k := 0, isValid := false
14: while isValid = false and k ≤ min(ζ − |Ce

i |, |C
r
i |) do

15: Csub
i :=Comp_subsets(Cri ,k) //compute subsets of Cri of size k .

16: for Csub
j ∈ Csub

i do

17: C
j
i := C

sub
j ∪Ce

i , Φ := C
j
i (S) // Φ represents the intermediate states w.r.t. C j

i .

18: if C j
i < Ω then // Ci has not been checked.

19: isValid :=Verify_TTC(F ,C j
i , SB,Φ)

20: add C
j
i to Ω.

21: if isValid = true then
22: add C

j
i to L, ζ := min(ζ , |C j

i |)
23: Θ[z] := true ifWz ⊆ Φ for z ∈ [i + 1,m] // if a schemaWz is a subset of Φ, it will be skipped.
24: end if
25: end if
26: end for
27: if isValid = false, then k := k + 1
28: end while
29: end for
30: return L
31: end procedure

Algorithm 2 Verification of Temporary Target Control

1: procedure Verify_TTC(F ,C, SB,Φ)
2: isValid := false
3: if Φ ⊆ SB then
4: isValid = true
5: else
6: SB|C :=Comp_state_control(C, SB) //compute the

remaining strong basin w.r.t. C in TS |C
7: F |C :=Comp_Fn_control(C, F )
8: basSTS |C (SB |C ) :=Comp_SB(F |C , SB|C )
9: if Φ ⊆ basSTS |C (SB |C ) then
10: isValid = true
11: end if
12: end if
13: return isValid
14: end procedure

Example 3.4. To continuewith Example 2.7, the setW1 = {000, 001, 010, 011}
is a subset of the weak basin of A1 in TS. There exists a triple

M1 = (01,11,D1), where 01 = {1}, 12 = ∅ and D2 = {2, 3}, such
thatW1 |01

= {0},W1 |11
= ∅ andW1 |D1

= {00, 01, 10, 11}. There-
fore,W1 is a schema. Let us denote the value of xi , i in 01, 11 and
D1, as 0, 1 and ∗, respectively. Then,W1 can be represented as 0 ∗ ∗.

The notion of schema leads the way to find temporary target

control. Each schemaWi of the weak basin basWTS (At ) gives a can-
didate temporary target control Ci = (0i ,1i ) for further optimisa-

tion and validation. A larger schema results in a smaller control

set. To explore the entire weak basin basWTS (At ), we partition it

into a set of mutually disjoint schemata W = {W1,W2, . . . ,Wm },
W1 ∪W2 ∪ . . . ∪Wm = basWTS (At ). EachWi , i ∈ m is one of the

largest schemata in basWTS (At ) \ (W1 ∪ . . . ∪Wi−1). ForWi , the in-

dices of its support variables in 0i and 1i form a candidate control

Ci = (0i ,1i ). Each candidate control Ci is primarily optimised

based on the properties of input nodes. Because input nodes do

not have any predecessors, it is reasonable to assume that specified

input nodes I s are redundant control nodes, while non-specified
input nodes Ins are essential for control. For the remaining non-

input nodes in Ci , denoted C
r
i , we verify its subsets of size k based



on Lemma 3.1 from k = 0 with an increment of 1, until we find a

valid solution.

To further improve the efficiency of our method, we use binary

decision diagram (BDD) as a symbolic representation of large state

space. The size of a BDD is determined by both the set of states

being represented and the chosen ordering of the variables. In BDD,

a schema is represented as a cube and each state is the smallest

cube, also called a minterm. To compute the largest schema Si of
S is equivalent to compute the largest cube of S . The partitioning
of the weak basin into schemata is then transformed into a cube

cover problem in BDD. A different variable ordering may lead to

a different partitioning. Given a fixed ordering, the partitioning

remains the same. Although finding the best variable ordering is

NP-hard, there exist efficient heuristics to find the optimal ordering.

In this work, we compute a partitioning under one variable ordering

as provided by the CUDD package [37] and compute the smallest

subsets of candidate controls that are valid temporary target control

sets.

Algorithm 1 implements the idea in pseudo-code. It takes as

inputs the Boolean network G = (X , F ) and the target attractor

At . It first initialises two vectors L and Ω to store valid controls

and the checked controls, respectively. (We use Ω to avoid dupli-

cate control validations.) Then, it computes input nodes I and the

non-specified input nodes Ins, Ins ⊆ I (line 3). The strong basin

SB and the weak basin WB of At of TS are computed using the

decomposition-based procedures Comp_SB and Comp_WB devel-

oped in [31, 32] (lines 4-5). The weak basin WB is then partitioned

intommutually disjoint schemata with procedureComp_schemata.

Realisation of this procedure relies on the function to compute the

largest cube provided by the CUDD package [37]. For each schema

Wi , the indices of its support variables computed by procedure

Comp_support_variables form a candidate control Ci (line 11).
The essential control nodes Ce

i of Ci consist of the non-specified
input nodes and the non-input nodes in Ci constitute a set C

r
i for

further optimisation (line 12). We search for the minimal subsets

of Cri starting from size k = 0 with an increment of 1 and verify

whether the union of a subset Csub
j of Cri and the essential nodes

Ce
i , namely C

j
i = Csub

j ∪ Ce
i , is a valid temporary target control

using procedure Verify_TTC in Algorithm 2. If C
j
i is valid, save it

to L. When all the subsets have been traversed or a valid control

has been found, we proceed to the next schemaWi+1. In the end,

all the verified temporary target controls are returned.

The most time-consuming part of our method lies in the verifica-

tion process. As shown in Algorithm 2, for each candidate control

C , we need to reconstruct the associated transition relations F |C
and compute the strong basin of the remaining strong basin in

TS |C , i.e. basSTS |C (SB |C ) (lines 6 and 7 of Algorithm 2). Even though

we have developed an efficient method for basin computation, the

computational time of Algorithm 2 still increases when the network

size grows. To improve the efficiency, we propose two heuristics:

(1) skip a schemaWz (line 10 and 23 of Algorithm 1) if it is a subset

of intermediate states Φ of a pre-validated control C
j
i (line 23 of

Algorithm 1); and (2) set a threshold ζ on the number of pertur-

bations, keep ζ updated with the smallest size of valid temporary

target controlC
j
i (line 22 of Algorithm 1) and only compute control

sets with at most ζ perturbations.

Algorithm 1 is easily adapted to solve target control problem

with instantaneous perturbations by focusing on the schemata of

the strong basin ofAt . In this way, we don’t need to use Algorithm 2

for additional verification and the indices of support variables of

each schema form an instantaneous control.

4 EVALUATION
Our temporary target control method, described in Algorithms 1

and 2, is implemented in the tool ASSA-PBN [25] based on the

model checker MCMAS [20] to encode Boolean networks into the

efficient data structure BDD. All the experiments are performed

on a high-performance computing (HPC) platform, which contains

CPUs of Intel Xeon Gold 6132 @2.6 GHz.

As discussed in the introduction, both our method (TTC) and the

stable motif-based control (SMC) [46] focus on temporary target

control of asynchronous Boolean networks. We apply our method

on several real-life biological networks and compare its perfor-

mance with SMC. Here we give a brief description on the networks.

An overview of the networks can be found in Table 1.

• The myeloid differentiation network is designed to model

myeloid differentiation from common myeloid progenitors

to four cell types, including megakaryocytes, erythrocytes,

granulocytes and monocytes [17].

• The apoptosis network consists of necessary pro-apoptotic

and anti-apoptotic pathways to capture decision-making on

cell survival or apoptosis [41].

• The cardiac gene regulatory network integrates major genes

that play important roles in early cardiac development and

FHF/SHF determination [13].

• The ERBB receptor-regulated G1/S transition protein net-

work combines ERBB signalling with G1/S transition of the

mammalian cell cycle to identify new targets for breast can-

cer treatment [34].

• TheHSPC-MSCnetwork describes intercommunication path-

ways between hematopoietic stem and progenitor cells (HSPCs)

and mesenchymal stromal cells (MSCs) in bone marrow

(BM) [6].

• The PC12 cell network models temporal sequence of pro-

tein signalling, transcriptional responses and subsequent

autocrine feedbacks [29].

• The network of hematopoietic cell specification covers major

transcription factors and signalling pathways for lymphoid

and myeloid development [4].

• The bladder cancer network allows us to identify deregu-

lated pathways and their influence on bladder tumourigene-

sis [33].

• TheMAPK network is constructed to studyMAPK responses

to different stimuli and their contributions to cell fates [12].

• The model of HGF-induced keratinocyte migration captures

the onset and maintenance of hepatocyte growth factor-

induced migration of primary human keratinocytes [35].

• The Th-cell differentiation network models regulatory ele-

ments and signalling pathways controlling Th-cell differen-

tiation [28].



Network #nodes #edges

Number of attractors Time (seconds)

TTC SMC Attractor detection Control

#singleton #cyclic #singleton #quasi TTC SMC TTC SMC

myeloid 11 30 6 0 6 0 0.002 7.100 0.025 7.710

apoptosis 12 26 2 1 2 1 0.004 2.423 0.010 2.679

cardiac 15 39 6 0 6 0 0.004 10.710 0.200 10.279

ERBB 20 52 3 0 3 0 0.004 6.400 0.105 5.788

HSPC-MSC 26 81 2 2 2 2 0.101 33.910 0.099 11.433

PC12 33 62 7 0 7 0 0.013 84.904 14.953 191.299

hematopoiesis 33 88 5 0 - - 0.452 - 97.773 -

bladder 35 116 3 1 3 1 0.735 25.662 2.181 34.035

MAPK 53 105 2 0 2 0 1.749 6.461 7.980 86.073

HGF 66 103 2 0 2 0 2.443 20.694 58.727 -

T-diff 68 175 6 0 6 0 1.245 13.475 18.790 14.103

HIV-1 136 321 8 0 - - 28.274 - 270.617 -

Table 1: An overview of the networks and a comparison of the twomethods (TTC and SMC). Symbol ‘-’ means that the method
failed to finish the computation within five hours.

• The HIV-1 network models dynamic interactions between

human immunodeficiency virus type 1 (HIV-1) proteins and

human signal-transduction pathways that are essential for

activation of CD4+ T lymphocytes [30].

Attractors of the networks. Before the computation of target

control, attractors are identified with our decomposition-based

attractor detection method [24] and SMC, respectively. Our method

identifies all the exact attractors (the number of states and the

structures for both singleton and cyclic attractors) introduced in

Section 2.3, while SMC identifies exact singleton attractors and

quasi-attractors, which correspond to cyclic attractors. A quasi-

attractor can be considered as a superset of an attractor: the values

of oscillate nodes in the corresponding attractor are not specified in

a quasi-attractor. Columns 4-5 and 6-7 of Table 1 show the number

of attractors computed by the two methods. Most of the attractors

identified by the two methods are the same except for the cyclic

attractor of the apoptosis network (marked in bold in Table 1). SMC

identifies its quasi-attractor, which consists of 64 states, while the

corresponding cyclic attractor has 56 states. Columns 8 and 9 of

Table 1 show the execution time for attractor detection. We can see

that our attractor detection method is more efficient than SMC.

Effectiveness.We compute temporary target control for each at-

tractor of the networks with TTC and SMC. Since neither of the

methods guarantees the minimal control, they may find control

sets of different sizes for one attractor. For comparison, we only

consider the smallest control sets.

Fig. 3 (a) shows the number of smallest control sets for the

myeloid differentiation network. The blue bars and grey bars rep-

resent the control sets that only appear in the results of TTC and

SMC, respectively. The green bars denote the intersection of the

two methods. The equation above each bar |C | = k describes the

size of control sets. For attractors A1, A5 and A6, TTC identifies

smaller control sets than SMC. Taking A5, as an example, the mini-

mal number of perturbations required by TTC and SMC is 3 and

4, respectively. Since we only consider the smallest controls, SMC

identifies no control sets of size 3, thus we can only see the blue bar

for this case. For other attractors (A2, A3 and A4) of the myeloid

network in Fig. 3 (a) and all the attractors of the cardiac network in
Fig. 3 (b), two methods require the same number of perturbations,

but our method has the potential to identify more solutions than

SMC.

For the other networks listed in Table 1, we summarise the num-

ber of control sets for one of the attractors in Fig. 3 (c). It shows
that our method is able to identify smaller control sets than SMC

for the bladder cancer network (SMC failed to compute results for

hematopoiesis, HGF and HIV-1 networks). Our method also has the

capability to provide more solutions, which may give more flexibil-

ity for clinical applications. Another interesting observation is that

even for large networks, the number of perturbations is relatively

small.

Now we use the myeloid differentiation network as an example

to show the consistency of our results with biological conclusions

in [17]. This network consists of six attractors, four of which corre-

spond to erythrocytes, megakaryocytes, monocytes and granulo-

cytes. To realise the conversion to granulocytes (A5 in Fig. 3 (a))
from any initial state, TTC needs to perturb C/EBPα , PU.1, together
with one of the nodes in {cJun, EgrNab, Gfi1}. It has been verified

that coordinated overexpression of C/EBPα and PU.1 is required for

the convergence to GM lineage (granulocytes and monocytes) [17].

One more control node in {cJun, EgrNab, Gfi1} helps to further

distinguish granulocytes from monocytes.

Efficiency. The last two columns of Table 1 summarise the ex-

ecution time for computing temporary target control for all the

attractors of the networks. We can see that our method is more

efficient than SMC for most of the cases. SMC failed to finish the

computation for three networks (hematopoiesis, HGF, and HIV-1)

within five hours. For the hematopoiesis network, SMC failed in

the identification of stable motifs, which has been pointed out to

be the most time-consuming part of SMC [46]. The reason could

be that the number of cycles and/or SCCs in its expanded network

is computationally intractable. For the HGF-induced keratinocyte

migration network, SMC is blocked in the optimisation of stable

motifs due to that this network has 19 stable motifs and most of
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Figure 3: An overview of the control results. The blue bars and grey bars represent the control sets that only appear in the
results of TTC and SMC, respectively. The green bars denote the intersection of the two methods.

the stable motifs contain more than 16 nodes. SMC failed to con-

struct the expanded network representation for the HIV-1 network

because some of its Boolean functions depend on many parent

nodes (K ≥ 10). Detailed discussion on the complexity of SMC

can be found in [46]. The efficiency of our method is influenced by

not only the network size, but also the number of attractors and

the number of required perturbations. The results show that our

method is quite efficient and scales well for large networks.

5 CONCLUSION
In this work, we have developed a temporary target control method

for asynchronous Boolean networks to identify a set of nodes, the

temporary perturbation of which can drive the network from any

initial state to the desired target attractor. We have evaluated our

method on various biological networks to demonstrate its efficacy

and efficiency.

We compared our method with SMC, a promising method to

solve the same control problem. SMC explores both structures and

Boolean functions of Boolean networks, and is potentially more

scalable for large networks. In contrast, our method is essentially

based on the dynamics of the networks, and it will suffer the state

space explosion problem for networks of several hundreds of nodes.

We believe that these two methods complement each other well. In

the near future, we aim to find a way to combine the strengths of

both methods by simultaneously exploring network structure and

dynamics to achieve more efficient computational methods for the

control of large biological networks.
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