
An Integer Linear Programming Solution for the Most
Parsimonious Reconciliation Problem under the

Duplication-Loss-Coalescence Model
Morgan Carothers∗
mcarothers@hmc.edu

Department of Computer Science
Harvey Mudd College
Claremont, California

Joseph Gardi
jgardi@hmc.edu

Department of Computer Science
Harvey Mudd College

Gianluca Gross
ggross@seas.upenn.edu

Department of Computer Science
University of Pennsylvania
Philadelphia, Pennsylvania

Tatsuki Kuze
tkuze@hmc.edu

Department of Computer Science
Harvey Mudd College

Nuo Liu
ivliu@hmc.edu

Department of Computer Science
Harvey Mudd College

Fiona Plunkett
fplunkett@hmc.edu

Department of Computer Science,
Harvey Mudd College

Julia Qian
jqian@hmc.edu

Department of Computer Science
Harvey Mudd College

Yi-Chieh Wu
yjw@cs.hmc.edu

Department of Computer Science
Harvey Mudd College

ABSTRACT
Given a gene tree, a species tree, and an association between their
leaves, the maximum parsimony reconciliation (MPR) problem
seeks to find a mapping of the gene tree to the species tree that
explains their incongruity using a biological model of evolutionary
events. Unfortunately, when simultaneously accounting for gene
duplication, gene loss, and coalescence, the MPR problem is NP-
hard. While an exact algorithm exists, it can be problematic to use
in practice due to time and memory requirements. In this work, we
present an integer linear programming (ILP) formulation for solv-
ing the MPR problem when considering duplications, losses, and
coalescence. Our experimental results on a simulated data set of 12
Drosophila species shows that our new algorithm is both accurate
and scalable. Furthermore, in contrast to the existing exact algo-
rithm, our formulation allows users to limit the maximum runtime
and thus trade-off accuracy and scalability, making it an attractive
choice for phylogenetic pipelines.

KEYWORDS
phylogenetics, reconciliation, gene duplication and loss, deep coa-
lescence, integer linear programming

∗Authors except the PI in alphabetical order.

BCB ’20, September 21–24, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7964-9/20/09.
https://doi.org/10.1145/3388440.3412474

ACM Reference Format:
Morgan Carothers, Joseph Gardi, Gianluca Gross, Tatsuki Kuze, Nuo Liu,
Fiona Plunkett, Julia Qian, and Yi-Chieh Wu. 2020. An Integer Linear Pro-
gramming Solution for theMost Parsimonious Reconciliation Problem under
the Duplication-Loss-Coalescence Model. In Proceedings of the 11th ACM In-
ternational Conference on Bioinformatics, Computational Biology and Health
Informatics (BCB ’20), September 21–24, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3388440.3412474

1 INTRODUCTION
Phylogenetic studies of gene and genome evolution often rely on
understanding the relationship between two types of trees: a species
tree that depicts the evolutionary history of a set of species, and a
gene tree that depicts the evolutionary history of a set of genes sam-
pled from these species. When the two trees are congruent, the gene
tree topology can be explained through speciation events alone.
However, gene trees can often differ from species trees due to sev-
eral evolutionary processes [2]. For example, macro-evolutionary
events such as gene duplication and gene loss can create a new
locus or remove an existing locus from a genome, horizontal gene
transfer can introduce a new locus from a contemporary species,
and gene conversion can replace an existing homologous locus.
Within a population, multiple lineages could fail to coalesce, lead-
ing to a phenomenon known as incomplete lineage sorting (ILS).
Discordance can also arise due to species hybridization, gene fission
and fusion, and recombination. Given a gene tree, a species tree,
and an association between their leaves, the reconciliation prob-
lem seeks find a mapping of the gene tree “inside” the species tree
that accounts for topological incongruence with respect to a given
model of evolution.

Historically, for eukaryotic species, the two most popular rec-
onciliation methods relied on either the duplication-loss [10, 21]
or multispecies coalescent [16] models. In the last decade, new
evolutionary models and associated reconciliation methods have

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

https://doi.org/10.1145/3388440.3412474
https://doi.org/10.1145/3388440.3412474
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3388440.3412474&domain=pdf&date_stamp=2020-11-10

BCB ’20, September 21–24, 2020, Virtual Event, USA Carothers, et al.

been introduced that simultaneously account for duplication, loss,
and coalescence [3, 22, 25]. Though a few models also allow for
transfers [3, 23], little evidence has been found for horizontal gene
transfer in eukaryotes [6], making DLC models suitable for captur-
ing eukaryotic evolution. Evaluations of the reconciliation methods
show improved inference of orthologs, paralogs, duplications, and
losses, particularly as the frequency of ILS increases [22, 27].

In this work, we rely on the DLCoal model [22], which is based
explicitly on the popular duplication-loss [10, 21] and multispecies
coalescent [16] models for evolution. Two approaches exist for rec-
onciliation under this model: DLCoalRecon [22] finds a maximum
a posteriori reconciliation and DLCpar [27] finds a maximum par-
simony reconciliation (MPR). Because the probabilistic approach
relies on a heuristic search and requires several biological parame-
ters that may be difficult to estimate accurately, the MPR approach
is more broadly applicable.

However, the MPR problem for the DLC model is NP-hard and
even hard to approximate (APX-hard) [1]. While the current dy-
namic programming algorithm provides an exact solution and is
fixed-parameter tractable (when parameterized by the number of
genes that map to any given species)1 [7], it has worst-case expo-
nential runtime and can be problematic to use in practice due to
time and memory requirements.

For insight, we can look to other complex phylogenetic prob-
lems. For example, given a collection of gene trees, the gene dupli-
cation problem, which seeks a species tree that implies the mini-
mum number of gene duplication events, is NP-hard [15]. Given
a gene tree and species tree, the problem of finding temporally
feasible MPRs under the duplication-transfer-loss model is NP-
complete [13, 20, 24]. And finding a reconciliation of minimum
cost that simultaneously models the evolution of domains, genes,
and species is NP-hard [12]. To overcome the problem complexity,
heuristic algorithms are often employed, which do not guarantee
optimality and may result in biologically unrealistic evolutionary
scenarios. As an alternative, several exact approaches based on
integer linear programming (ILP) formulations have been proposed
and shown to be effective [4, 11, 13, 26].

In this work, we present an ILP formulation for solving the MPR
problem under the DLC model. The corresponding tool is part of
the DLCpar software, which is freely available for download at
http://www.cs.hmc.edu/~yjw/software/dlcpar.

We demonstrate the utility of our ILP formulation by applying it
to a simulated data set of 12 Drosophila species and comparing re-
sults with our previous dynamic programming (DP) algorithm. For
every gene tree, ILP found a reconciliation with cost equal to that
of DP. While ILP often has a longer runtime than DP, as tree sizes
or gene tree-species tree incongruence increases, ILP becomes the
more efficient approach. Furthermore, users can sacrifice accuracy
by limiting the maximum runtime of the ILP solver, making it an
attractive choice for phylogenetic pipelines.

1Let m denote the number of leaves in the species tree, n denote the number of
leaves in the gene tree, and k denote the maximum number of nodes at the top or
bottom of any species branch. The value of k is induced by the LCA species map.
The worst-case running time of the DLCpar algorithm is O(m(f (k) + n)), where
f (k) = Bk 22k (2k)!k2 and Bk denotes the k th Bell number.

2 BACKGROUND
We start by reviewing prior work that formalizes the concept of
reconciliations and maximum parsimony reconciliations under the
DLC model [7, 18, 27].

2.1 Preliminaries
Throughout this work, the term tree refers to a rooted binary tree.
Given a tree T , let V (T) denote its node set and E(T) denote its
branch set. Let L(T) ⊂ V (T) denote its leaf set, I (T) = V (T) \ L(T)
denote its set of internal nodes, and r (T) ∈ I (T) denote its root node.
For node v ∈ V (T), let c(v) denote its set of children, p(v) denote
its parent, and e(v) denote the branch (p(v),v). Define ≤T (<T) to
be the partial order on V (T), where given two nodes u and v of T ,
u ≤T v (u <T v) if and only if u is on the unique path between r (T)
andv (andu , v). The partial order ≥T (>T) is defined analogously.
In such a case, u is said to be a (strict) ancestor of v and v a (strict)
descendant ofu. We say thatu andv are comparable if eitheru ≤T v
or v ≤T u, and u and v are incomparable otherwise.

Let a species tree S depict the evolutionary history of a set of
species, and let a gene tree G depict the evolutionary history of a
set of genes sampled from these species. To compare a gene tree
with a species tree, let a leaf map Le : L(G) → L(S) label each leaf
of the gene tree with the leaf of the species tree from which the
gene was sampled.

Definition 2.1 (Species Map). GivenG , S , and Le , let a species map
M : V (G) → V (S) map each node of G to the a node of S subject
to the following constraints:

(1) If д ∈ L(G), then M(д) = Le(д).
(2) If д ∈ I (G), then for each д′ ∈ c(д), M(д) ≤S M(д′).

Constraint 1 asserts that M extends the leaf map Le . Constraint 2
asserts that M satisfies the temporal constraints implied by S .

Given a species map M, implied nodes may need to be added to
each gene branch that spans multiple branches of the species tree
(Supplemental Section S1.1).

Next, we define some useful sets. Given a species node s ∈ V (S)
and a species mapM, let nodes(s) denote the set of gene nodes that
map to s:

nodes(s) = {д | д ∈ V (G); M(д) = s };

bottoms(s) denote the subset of nodes(s) that are leaves or whose
children map to descendants of s:

bottoms(s) = {д |д ∈ nodes(s);
д ∈ L(G) ∨ ∀д′ ∈ c(д),д′ < nodes(s)};

and tops(s) is equal to the bottom nodes of the parent species or
contains the root of the gene tree:

tops(s) =
{bottoms(p(s)) if s , r (S)
{r (G)} otherwise.

Note that bottoms(s) and tops(s) can be viewed as the set of gene
nodes at the “bottom” or “top” of species branch e(s), respectively.

2.2 The Labeled Coalescent Tree
The labeled coalescent tree (LCT, Figure 1) formalizes the notion of
a reconciliation in the DLC model.

http://www.cs.hmc.edu/~yjw/software/dlcpar

Integer Linear Programming for DLC Reconciliation BCB ’20, September 21–24, 2020, Virtual Event, USA

a

c1

A B C
a1 b1b2 c2

m1

m2

g
h

implied

node i

kj

c

duplication loss

deep coalescence

at speciation

deep coalescence

at duplication

speciation

d

j <� k
Alternative

j

k

Original

j k

k <� j

b

� = {1,2}

�

m1

m1

m1

m2

m2

A

B

B

C

C

�

1

1

1

1

2

1

1

2

1

2

g

h

i

j

k

a1
b1
b2
c1
c2

mother_loci

{}

{1}

{}

{}

{}

m1

m2

A

B

C

k <� j

N

{j}

D

{k}m2,1

Figure 1: The labeled coalescent tree. (a) Evolution is represented using the LCT. In this example, a duplication (yellow star)
creates a new locus, “locus 2” (yellow), from the original locus, “locus 1” (red), and lineages j and k fail to coalesce within
speciesm2. (b) The LCT consists of a species map M, a locus map L, and a partial order O. Sets mother_loci(·) of loci and N (·, ·)

and D(·, ·) of nodes necessary for the partial order are also shown. (c) Evolutionary events are depicted in the LCT. Except for
speciation, evolution within a single species tree branch is shown. (d) An alternative scenario is presented for evolution in
species m2. The new partial order induces an extra lineage at the time of the duplication. [Figure and caption adapted with
permission from Mawhorter et al. [18] and Wu et al. [27].]

Definition 2.2 (Labeled Coalescent Tree). Given G, S , and Le , a
labeled coalescent tree (LCT) for ⟨G, S,Le⟩ is a tuple ⟨M,L,L,O⟩,
where

• M : V (G) → V (S) is a species map that maps each node of
G to a node of S .

• L ⊂ N is a locus set, a finite set of natural numbers, each
representing a locus that has evolved within the gene family.

• L : V (G) → L is a locus map that maps each node of G to
a locus in L.

• O is a partial order on V (G) that represents the relative
times of nodes. For each species node s ∈ V (S), letmother_loci(s) ⊂
L be the set of loci that yield a new locus in species s:
mother_loci(s) = { L(д) | д ∈ I (G);

∃д′ ∈ c(д) : M(д′) = s,L(д′) , L(д) }.

Then for each species node s ∈ V (S) and each locus l ∈

mother_loci(s), consider the set of gene nodesO(s, l) = N (s, l)∪
D(s, l), whereN (s, l) contains “original” gene nodes that map
to species s and locus l , descend from locus l , and have mul-
tiple children:
N (s, l) = {д |д ∈ V (G) \ {r (G)}; M(д) = s;

L(д) = l ; L(p(д)) = l ; |c(д)| > 1 },

and D(s, l) contains “duplication” gene nodes that map to
species s and not locus l but immediately descend from locus
l :

D(s, l) = {д |д ∈ V (G) \ {r (G)}; M(д) = s;
L(д) , l ; L(p(д)) = l }.

Note that the sets N (s, l) and D(s, l) are disjoint. Now con-
sider a total order onD(s, l); this order introduces |D(s, l)|+1
bins in which each node in N (s, l)may occur. The total order
on D(s, l) and the partition of N (s, l) represent the relative
times of duplication nodes as well as the relative times of

original nodes with respect to duplication nodes. Define <O
to be the partial order on O(s, l), where given two nodes
д,д′ ∈ O(s, l) where д , д′, then д <O д′ if and only if д
precedes д′ in time. Note that no order is induced on nodes
of N (s, l) in the same bin.

The LCT is subject to the following constraints:
(1) For each д,д′ ∈ L(G) where д , д′, if M(д) =M(д′), then

L(д) , L(д′).
(2) For each l ∈ L, there exists a д ∈ V (G) such that L(д) = l .
(3) For each l ∈ L, there exists exactly one д ∈ V (G) such that

L(д) = l and either д = r (G) or L(p(д)) , l .
(4) For each s ∈ V (S), each l ∈ mother_loci(s), and each д,д′ ∈

O(s, l) where д , д′, if д <O д′, then д ≱G д′.
(5) For each s ∈ V (S), each l ∈ mother_loci(s), each д ∈ D(s, l),

and each д′ ∈ N (s, l), if д′ ∈ L(G), then д <O д′.
Constraint 1 asserts that extant genes (leaves) mapped to the same
extant species (leaves) are mapped to different loci. Constraint 2 as-
serts that L includes only loci used by at least one gene. Constraint 3
asserts that every locus is created only once. Constraint 4 asserts
that O satisfies the temporal constraints implied byG . Constraint 5
ensures that extant genes (leaves) are ordered in the last bin.2

Because the locus set L is defined by the locus map L, we often
represent an LCT using the reduced tuple ⟨M,L,O⟩. Note that the
species mapM is defined first, then implied speciation nodes are
added to G, then L is defined, and finally O is defined.

The LCT allows for several evolutionary events (Figure 1c, Sup-
plemental Section S1.2). A speciation event corresponds to a locus
present at the bottom of a species branch continuing at the same
locus in at least one child species. As a speciation in the LCT re-
flects a speciation in the species tree, it is considered a null event.

2This constraint was not explicitly stated in previous work but was implicitly satisfied
in simulations or enforced by properties of MPR solutions.

BCB ’20, September 21–24, 2020, Virtual Event, USA Carothers, et al.

A duplication event corresponds to the creation of a new locus
along a gene branch, which occurs when a gene node and its parent
are mapped to different loci; such a gene branch is said to have a
duplication. A loss event corresponds to a locus present at either
the top of a species branch, or created via a duplication within
the species branch, being no longer present at the bottom of the
species branch. A coalescence event is, in fact, a deep coalescence,
in which two or more lineages fail to coalesce; such failure can
result in multiple lineages at speciations or duplications. Note that
inferring speciation, duplication, loss, and coalescence at speciation
events requires only the species map and locus map while inferring
coalescence at duplication events also requires the partial order
(Figure 1d).

2.3 Maximum Parsimony Reconciliations
Let CD , CL , CC , and CK denote the positive real-number costs
associated with duplication, loss, and extra lineages at coalescence
at speciation and coalescence at duplication events, respectively.
The cost of reconciling G and S according to LCT ⟨M,L,O⟩ is
defined as follows:

Definition 2.3 (Reconciliation Cost). Given G, S , Le , CD , CL , CC ,
and CK , the reconciliation cost of an LCT ⟨M,L,O⟩ for ⟨G, S,Le⟩
with d duplication events, ℓ loss events, c extra lineages due to
coalescence at speciation events, and k extra lineages due to coales-
cence at duplication events is R ⟨M,L,O⟩ = CD · d +CL · ℓ +CC ·

c +CK · k .

Given G, S , Le , CD , CL , CC , and CK , the objective of the most
parsimonious reconciliation (MPR) problem is to find an LCT for
⟨G, S,Le⟩ with minimum reconciliation cost (Supplemental Sec-
tion S1.3). The solution to this problem is not necessarily unique.

Next, we define optimality of LCT components.

Definition 2.4 (Optimal LCT Components). A species map M∗ is
said to be optimal if there exists a locus map L and a partial order
O such that ⟨M∗,L,O⟩ solves the MPR problem. Given a species
mapM, a locus map L∗ is said to be optimal if there exists a partial
order O such that ⟨M,L∗,O⟩ solves the MPR problem. Given a
species map M and locus map L, a partial order O∗ is said to be
optimal if ⟨M,L,O∗⟩ solves the MPR problem.

Henceforth, the term MPR refers to an LCT that solves the MPR
problem.We previously showed that the species mapM∗ is optimal
if and only ifM∗ is the lowest common ancestor (LCA) map [7, 27].

3 AN ILP FORMULATION
In this section, we present an integer linear programming formula-
tion for solving the MPR problem under the DLC model. Table 1
summarizes the definitions of ILP variables and provides a key to
the notation used in this section.

3.1 Preliminaries
To formulate the ILP problem, we start by setting the optimal species
map M∗ to be the LCA map, then prune the species tree to the
subtree rooted at M∗(r (G)) and add implied speciation nodes to
the gene tree. Let S ′ denote the pruned gene tree and G ′ denote
the gene tree with implied speciation nodes. The goal of the ILP

formulation is to find an optimal locus mapL∗ and an optimal order
O∗. To simplify notation, throughout the remainder of Section 3,
we use S and G to denote S ′ and G ′ andM to denote M∗.

To prevent double-counting of gene lineages, we require an
ordering of some nodes. Specifically, we arbitrarily order nodes
tops(s) and bottoms(s) by preorder traversal of the gene tree. Given
two nodes д and д′ in a set, we say that д′ ≺ д if д′ precedes д in
this order.

To quantify the number of variables and constraints in the ILP
formulation, letm denote the number of leaves in the (input) species
tree, h denote the height of the (input) species tree, and n denote
the number of leaves in the (input) gene tree. Note that the gene
tree has 2n − 1 total nodes and 2n − 2 branches. The pruned species
tree has height h′ ≤ h, and adding implied speciation nodes creates
at most h′ + 1 nodes along any gene branch. Let n′ be the number
of nodes in the gene tree with implied speciation nodes. Then n′ ≤
(2n−1)+(2n−2)(h′+1). Given a set ofn distinct elements, letC(n,k)
and P(n,k) denote the number of combinations and permutations,
respectively, of a subset of k elements.

3.2 Variables and Constraints
3.2.1 LCT Representation. We first define variables to represent
the LCT and ensure its constraints are satisfied. Given a locus map,
we can define the locus set and thus satisfy LCT constraint 2. For
convenience, rather than specify the locus map directly, we specify
the placement of duplications along gene branches. Via a trivial ex-
tension of Theorem 1 of Bork et al. [1], these two characterizations
are equivalent, and thus, we can use locus maps and duplication
placements interchangeably. By requiring a duplication to create
a new locus, a duplication placement automatically satisfies LCT
constraint 3. Thus, we seek an ILP formulation that can represent
an LCT as duplications along gene branches and a partial ordering
of nodes subject to LCT constraints 1, 4, and 5.

Duplication Variables For each gene branch e(д) ∈ E(G), we
define a binary variable dд that denotes whether e(д) has a du-
plication. If e(д) has a duplication, then dд = 1, and otherwise
dд = 0.

LCT constraint 1 requires that two gene leaves mapped to the
same species belong to different loci, or equivalently, there must
be at least one duplication on the path between any two gene
leaves mapped to the same species. Given a pair of gene nodes
д1,д2 ∈ V (G), let Pд1д2 denote the edges on the unique path from
д1 to д2. Then for each pair of gene leaves д1,д2 ∈ L(G) such that
д1 , д2 andM(д1) =M(д2),∑

e(д)∈Pд1д2

dд ≥ 1.

Since one duplication variable is created for each gene branch,
there are n′ − 1 variables. The number of duplication constraints is
upper bounded by C(n′, 2), the number of pairs of gene leaves.

Order Variables The LCT requires only a partial order on gene
nodes in the same species and locus. However, because we are si-
multaneously inferring the locus map by placing duplications, we
must instead infer a total ordering on nodes in the same species.

Integer Linear Programming for DLC Reconciliation BCB ’20, September 21–24, 2020, Virtual Event, USA

Variables Definitions

LCT
dд ∈ {0, 1} dд = 1 iff gene branch e(д) ∈ E(G) has a duplication
oд1д2 ∈ {0, 1} oд1д2 = 1 iff gene node д1 ∈ V (G) precedes some other gene node д2 ∈ V (G) in time

Events
ℓsд ∈ {0, 1} ℓsд = 1 iff gene node д ∈ tops(s) becomes lost in species branch e(s) ∈ E(S)
csд ∈ {0, 1} csд = 1 iff for gene node д ∈ survived(s) with child node д′ ∈ nodes(s), gene branch e(д′) = (д,д′) is an extra lineage at

the top of species branch e(s) ∈ E(S)
kд ∈ N0 kд = 0 if gene branch e(д) ∈ E(G) has no duplication; otherwise kд is the number of extra lineages at the time of

duplication along e(д)

Auxiliary
ωд1д2 ∈ {0, 1} ωд1д2 = 1 iff for species node s ∈ V (S), gene node д1 ∈ bottoms(s) and some other gene node д2 ∈ nodes(s), gene branch

e(д1) does not have a duplication and gene branch e(д2) has a duplication
pд1д2 ∈ {0, 1} pд1д2 = 1 iff at least one edge along the path from gene node д1 ∈ V (G) to some other gene node д2 ∈ V (G) has a

duplication
λsд ∈ {0, 1} λsд = 1 iff for species node s ∈ V (S), gene node д ∈ tops(s) is mapped to the same locus as some other gene node

д′ ∈ tops(s) that precedes д
κд1д2 ∈ {0, 1} κд1д2 = 1 iff for species node s ∈ V (S), gene node д1 ∈ nodes(s) ∪ bottom_children(s) and some other incomparable gene

node д2 ∈ nodes(s) such that both д1 and д2 have parents, e(д2) has a duplication and e(д1) is a contemporary lineage at
the time of duplication along e(д2)

Table 1: Variables and definitions used in the ILP formulation.

Consider an ordered pair of gene nodes д1,д2 ∈ V (G) where
д1 , д2. We define a binary variable oд1д2 that denotes whether д1
precedes д2 in time. If д1 precedes д2 in time, then oд1д2 = 1, and
otherwise oд1д2 = 0.

Next, we introduce the pairs of gene nodes over which oд1д2 is
defined, which can be separated into several cases:

(1) The nodes are in the same species and comparable, so their
order is given by the topology ofG . That is, for each species
node s ∈ V (S) and each pair of gene nodes д1,д2 ∈ nodes(s)
such that д1 , д2 and д1 <G д2, we define two variables
oд1д2 and oд2д1 . We constrain these variables to have values
oд1д2 = 1 and oд2д1 = 0.

(2) The nodes are in different species that are comparable, so
their order is given by the species tree S and the species map
M. That is, for each species node s ∈ V (S), we consider each
child s ′ ∈ c(s). For each pair of gene nodes д1 ∈ nodes(s)
and д2 ∈ nodes(s ′), we define two variables oд1д2 and oд2д1 .
We constrain these variables to have values oд1д2 = 1 and
oд2д1 = 0.

(3) Otherwise, for each species node s ∈ V (S) and each pair of
gene nodes д1,д2 ∈ nodes(s) where д1 , д2, we define two
variables oд1д2 and oд2д1 .

LCT constraint 4 requires that the order satisfies the temporal
constraints implied by G. This constraint is satisfied by our defini-
tions in case 1. However, a valid set of order variables must satisfy
additional constraints. Specifically, an ordering of д1 relative to д2
implies an ordering of д2 relative to д1, as expressed by

oд1д2 = 1 − oд2д1 .

Additionally, an ordering must satisfy the transitive property of
inequality: if д1 precedes д2 and д2 precedes д3, then it must be that

д1 precedes д3. This constraint is expressed by

oд1д3 ≥ oд1д2 + oд2д3 − 1.

Because we create at most two order variables for each pair
of gene nodes, the number of order variables is upper bounded
by P(n′, 2) = 2C(n′, 2). The number of order constraints is upper
bounded P(n′, 2) + P(n′, 3).

Lastly, we recall that, in defining a partial order, the timing of
duplications introduces bins in which nodes in the same species
and with the same mother locus may occur, and LCT constraint 5
requires that extant genes are ordered in the last bin. We introduce
auxiliary variables and constraints to ensure this constraint is satis-
fied. For each species leaf s ∈ Le(S), consider each two gene nodes
д1 ∈ bottoms(s) andд2 ∈ nodes(s)whereд1 , д2. We define a binary
variable ωд1д2 that denotes which branches e(д1) and e(д2) have du-
plications. If e(д1) does not have a duplication and e(д2) does have
a duplication, then ωд1д2 = 1, and otherwise ωд1д2 = 0. We note
that variable ωд1д2 can be expressed using a logical AND operation
with two operands, represented in the following constraints:

ωд1д2 ≤ 1 − dд1

ωд1д2 ≤ dд2

ωд1д2 ≥ dд2 +
(
1 − dд1

)
− 1

By LCT constraint 5, if e(д1) does not have a duplication but e(д2)
does, then д2 must precede д1 in time. Equivalently, if ωд1д2 = 1,
then oд2д1 = 1:

oд2д1 ≥ ωд1д2

The number of ω variables is upper bounded by P(n′, 2), and the
number of constraints is upper bounded by 4P(n′, 2).

BCB ’20, September 21–24, 2020, Virtual Event, USA Carothers, et al.

3.2.2 Counting Events. Next, we define how to count the evolu-
tionary events induced by a LCT as encoded in ILP variables.

Number of Duplications The number of duplications is straight-
forward using the duplication variables and is given by

d =
∑

e(д)∈E(G)

dд .

Number of Losses In a LCT, loci are lost rather than genes. How-
ever, just as with order variables, because we are simultaneously
inferring the locus map in our ILP formulation, we must have a
different way of representing losses so that we can define variables
without knowing the locus map. We note that in an MPR, a locus is
never created via a duplication and then lost in the same species, as
it is always more parsimonious to have never created the locus in
the first place. Then, for a species s ∈ V (S), if a locus l ∈ L is lost in
the species, then the first gene node д ∈ tops(s) mapped to locus l
is said to be lost. We note that д cannot be lost if there exists some
other gene д′ ∈ tops(s) such that д′ is mapped to l and д′ ≺ д. Thus,
each locus can contribute at most once to the number of losses.

For each species node s ∈ V (S) and each gene node д ∈ tops(s),
we define a binary variable ℓsд that denotes whether д becomes
lost in species s . If д becomes lost, then ℓsд = 1, and otherwise
ℓsд = 0. Then, the number of losses is given by

ℓ =
∑

s ∈V (S)

∑
д∈tops(s)

ℓsд .

Before defining constraints for ℓsд , we introduce some auxiliary
variables.

For each ordered pair of gene nodes д1,д2 ∈ V (G)where д1 , д2,
we define a binary variable pд1д2 that denotes whether at least one
edge on the path fromд1 toд2 has a duplication. If so, thenpд1д2 = 1,
and otherwise pд1д2 = 0. Path variables must be consistent with
duplication variables, as expressed by the following constraints:

pд1д2 ≤
∑

e(д)∈Pд1д2

dд∑
e(д)∈Pд1д2

dд ≤ |Pд1д2 | pд1д2

The first constraint ensures that if there are no duplications on
the path between д1 and д2, then pд1д2 = 0. The second constraint
ensures that, if there there is at least one duplication on the path
between д1 and д2, then pд1д2 = 1. There are P(n′, 2) path variables
and 2P(n′, 2) constraints.

For each species node s ∈ V (S) and each gene node д ∈ tops(s),
let λsд be a binary variable that denotes whether д is mapped to
the same locus as some other gene node д′ ∈ tops(s) that precedes
д. If so, then λsд = 1, and otherwise λsд = 0. Note that if λsд = 1,
the existence of д′ means that д cannot be lost. λ variables must
satisfy the following constraints:

λsд ≤
∑

д′∈tops(s):д′≺д

(
1 − pдд′

)
∑

д′∈tops(s):д′≺д

(
1 − pдд′

)
≤ |tops(s)| λsд

The first constraint ensures that if, for each gene node д′ ∈ tops(s)
such that д′ ≺ д, there is at least one duplication along every path
between д and д′ so that pдд′ = 1, then λsд = 0. That is, д cannot
be mapped to the same locus as any preceding д′. The second
constraint ensures that if there exists a gene node д′ ∈ tops(s) such
that д′ ≺ д and there is no duplication on the path between д and
д′ so that pдд′ = 0, then λsд = 1. That is, д is mapped to the same
locus as a preceding д′. Since an internal gene node can be at the
top of two species, it can result in at most two λ variables. Thus,
the number of λ variables is upper bounded by 2(n′ − n), and the
number of constraints is upper bounded by 4(n′ − n).

Finally, we define the constraints on the loss variables ℓsд using
these auxiliary variables:

ℓsд ≥ 1 − λsд +
©«

∑
д′∈bottoms(s)

(
pдд′

)
− |bottoms(s)|ª®¬

That is, д becomes lost (ℓsд = 1) if two conditions are satisfied. First,
as noted before, to prevent double-counting of losses, we require
that λsд = 0 so that no preceding gene node in tops(s) is mapped
to the same locus. Second, we require that for each д′ ∈ bottoms(s),
there exists at least one duplication on the path between д and д′
so that the locus of д no longer exists at the bottom of the species
branch. We further note that, because we are minimizing the num-
ber of losses, ℓsд = 0 unless these conditions are satisfied. Similar
to λ variables, the number of loss variables and constraints is each
upper bounded by 2(n′ − n).

Number of Extra Lineages due to Coalescence at Speciation
For each species node s ∈ V (S), let survived(s) denote the subset of
tops(s) with a child in nodes(s):

survived(s) = {д | д ∈ tops(s); ∃д′ ∈ c(д) : д′ ∈ nodes(s)}

Note that survived(s) can be viewed as the set of gene nodes that
“survived” in species s . A gene node д can be in tops(s) but not
survived(s) if д survived in the sibling species s ′ of s but was lost in
s . Furthermore, because the gene tree includes implied speciation
nodes, for each д ∈ survived(s), there exists at most one child
д′ ∈ nodes(s). As with tops(s), we define an arbitrary ordering of
nodes in survived(s) via preorder traversal of the gene tree.

For each species node s ∈ V (S) and each gene nodeд ∈ survived(s)
with child node д′ ∈ nodes(s), we define a binary variable csд that
denotes whether e(д′) is an extra lineage at the top of species branch
e(s). If e(д′) is an extra lineage, then csд = 1, and otherwise csд = 0.
Then, the number of extra lineages due to (deep) coalescence at
speciation is given by

c =
∑

s ∈V (S)

∑
д∈survived(s)

csд .

Next, we note that, to count extra lineages, we look at the loci at
the top of a species branch, that is, at the locus of д, not the locus
of д′, which may be different if e(д′) has a duplication. e(д′) is an
extra lineage if д is mapped to the same locus as some other gene
node д′′ ∈ survived(s) that precedes д. Thus, csд is constrained
similarly to λsд :∑

д′′∈survived(s):д′′≺д

(
1 − pдд′′

)
≤ |survived(s)| csд

Integer Linear Programming for DLC Reconciliation BCB ’20, September 21–24, 2020, Virtual Event, USA

While λsд has two constraints, one upper bound and one lower
bound, csд is only constrained by lower bound. Because we are
minimizing the number of extra lineages, csд = 0 unless there exists
a constraint csд ≥ 1. So an upper bound is not needed.

Similar to λ variables, the number of coalescence at speciation
variables and constraints is each upper bounded by 2(n′ − n).

Number of Extra Lineages due toCoalescence at Duplication
For each gene node д ∈ V (G), we define a non-negative integer
variable kд . If e(д) has no duplication, then kд = 0. Otherwise,
kд denotes the number of extra lineages at the time of duplica-
tion along e(д). Then, the number of extra lineages due to (deep)
coalescence at duplication is given by

k =
∑

д∈V (G)

kд .

Before defining constraints for kд , we introduce some auxiliary sets
and variables.

For each species node s ∈ V (S), let us consider the set of gene
lineages in species branch e(s). Clearly, this set must include e(д)
for all д ∈ nodes(s). However, it must also include e(д) where д is a
child of a bottom node p(д) ∈ bottoms(s). To understand why it is
important to consider this second set of nodes, we consider the case
in which a bottom node д ∈ bottoms(s) precedes some other node
д′ ∈ nodes(s). Then the children branches of д might exist at the
time of д′ and contribute to the number of extra lineages. Formally,
for each species node s ∈ V (S), let bottom_children(s) denote the
union of the set of children nodes of bottoms(s):

bottom_children(s) =
⋃

д∈bottoms(s)

c(д).

For each species node s ∈ V (S), consider a pair of gene nodes
д1 ∈ nodes(s)∪bottom_children(s) and д2 ∈ nodes(s)where д1 , д2,
both д1 and д2 have parents, and д1 and д2 are incomparable. We
define a binary variable κд1д2 that denotes whether e(д2) has a
duplication, p(д1) and p(д2) are mapped to the same locus, p(д1)
precedes д2 in time, and д2 precedes д1 in time. If so, then κд1д2 = 1,
and otherwise κд1д2 = 0. In other words, κд1д2 = 1 if and only if
gene lineage e(д1) exists at the time of duplication along e(д2) and
the locus of lineage e(д1) at the time of duplication is equal to the
mother locus of the duplication. The variableκд1д2 can be expressed
using a logical AND operation with four operands, represented in
the following constraints:

κд1д2 ≤ dд2
κд1д2 ≤ 1 − pp(д1)p(д2)

κд1д2 ≤ op(д1)д2
κд1д2 ≤ oд2д1

κд1д2 ≥ dд2 + (1 − pp(д1)p(д2)) + op(д1)д2 + oд2д1 − 3

The number of κ variables is upper bounded by P(n′, 2), and the
number of constraints is upper bounded by 5P(n′, 2).

Finally, we define the constraints on the coalescence at duplica-
tion variables kд using these auxiliary variables:

kд2 =
©«
∑
д1∈A

κд1д2
ª®¬ − 1

where

A = {д | s =M(д2); д ∈ nodes(s) ∪ bottom_children(s)}.

Since one coalescence at duplication variable is created for each
gene branch, the number of variables and constraints is each equal
to 2n′ − 2.

3.3 Objective Function
The objective is to minimize the reconciliation cost, which is re-
peated here for completeness:

R = CD · d +CL · ℓ +CC · c +CK · k

Once a solution is found, it is straightforward to convert the du-
plication and order variables into a locus map and order. Together
with the LCA species map, these components constitute an MPR.
Lastly, it is worth noting that multiple feasible solutions to the ILP
may correspond to a single LCT due to equivalent orderings set by
the order variables.

Correctness
The proof of correctness of the ILP formulation is straightforward.
Every LCT constraint has a corresponding set of constraints in the
ILP, and the objective function of the MPR problem is captured
exactly in the objective function of the ILP.

Complexity
Recall that we let h denote the height of the species tree and n
denote the number of leaves in the gene tree. Using the LCA map
as the optimal species map, the pruned species tree has height
h′ ≤ h, and the gene tree with implied speciation nodes has
n′ ≤ (2n − 1) + (2n − 2)(h′ + 1) nodes, which is bounded by O(nh).
In the ILP formulation, the number of variables of each type is
bounded by some constant factor of n′,C(n′, 2), or P(n′, 2), so there
exist O((nh)2) variables. The number of constraints of each type is
bounded by some constant factor of n′,C(n′, 2), P(n′, 2), or P(n′, 3),
so there exist O((nh)3) constraints. However, we note that though
the total number of variables and constraints grows polynomially,
no known polynomial-time algorithm exists to solve ILPs.

Implementation
We implemented our ILP formulation in Python. The program uses
the PuLP package [19] to setup the ILP problem then launches one
of several ILP solvers. The software currently allows users to select
the publicly available CBC solver from COIN-OR [14] or the more
powerful commercial solver CPLEX, which is free for academic use.
Both solvers offer multithreaded parallel optimizers.

4 RESULTS
To assess the impact of our ILP software, we compared the results
of our previous dynamic programming (DP) approach and our new
ILP approach with CPLEX 12.9 [5]. Briefly, the DP approach sets
the optimal species map to be the LCA map, then exhaustively enu-
merates “tiles” for each species, with each tile consisting of a locus
map and a partial order for nodes in the species, and finally uses
dynamic programming to combine tiles so that loci of nodes shared
across species match. In contrast, our ILP approach relies on an ILP

BCB ’20, September 21–24, 2020, Virtual Event, USA Carothers, et al.

solver to efficiently search the space of feasible solutions. However,
we note that the time and space complexity of both approaches
depends not only on the sizes of gene and species trees but also on
the level of discordance between them. For both methods, we used
the default event costs of CD = CL = 1 and CC = CK = 0.5.

4.1 Simulated gene trees across 12 flies
We used the simulated Drosophila data set of Rasmussen and Kellis
[22], which was previously used to evaluate reconciliations under
the DLC model [22, 27]. Briefly, this data set modeled real data by
using estimated species trees and parameters (divergence times,
duplication and loss rates, effective population sizes, generation
times) for a clade of 12 Drosophila species, then used the DLCoal
model to simulate gene trees. To allow more extreme incongruence
between the gene tree and species tree, the authors used a wide
range of effective population sizes (1 − 500 million individuals)
and a range of duplication-loss rates (1×, 2×, and 4× as fast as the
estimated real rate). For each of the 24 parameter settings, 500 gene
trees were simulated. In our experiments, we used a single core on
a Linux-based Mac with a a 3.0 GHz Intel Core i5-7400 processor
and 8 GB of RAM.

As both DP and ILP are exact approaches, we first verified that for
every gene family, both programs return equally optimal solutions
in terms of reconciliation cost.

Next, we compared the runtime of DP against ILP (Figure 2). Our
ILP approach can be up to an order of magnitude slower to several
orders of magnitude faster than the existing DP approach. ILP
tends to require more consistent amounts of time, with a noticeable
speedup over DP for gene trees simulated with high duplication-
loss rates or large effective population sizes. These findings suggest
that ILP may be more useful for larger, more incongruent gene
trees, which are likely to become more prevalent as we sequence
denser clades.

We also compared the time to setup versus solve the ILP problem
(Figure 3). We found that the time to generate the variables and
constraints often exceeds the time required by the solver itself. Un-
fortunately, these results suggest that advancements in ILP solvers
may only moderately improve overall runtime.

4.2 Simulated species trees and gene trees
We are also interested in the performance of our approach for a vari-
ety of species trees. Thus, we simulated species trees and gene trees
using SimPhy [17] with a speciation rate of 0.2 events/species/myr,
an extinction rate of 0.18 events/species/myr, duplication and loss
rates of 0.05 events/gene/myr, a generation time of 1 yr/generation,
and an effective population size of 1 million. We used a range of
species tree sizes (10-50 taxa) and created 50 gene tree-species tree
pairs for each size. In our experiments, we used a 64-core cluster
consisting of four AMD Opteron 6276 CPUs, each with 16 cores at
2.3 GHz, and a total of 512 GB of DDR3-1600 RAM. We restricted
each run to 2 days and 20 GB of RAM. For ILP, we also took advan-
tage of CPLEX’s parallel optimizer and used 8 threads per run.

As with the flies dataset, when comparing total runtime (Fig-
ure 4), neither the ILP nor DP approach is consistently faster. How-
ever, in contrast to the flies dataset, our analysis of time to setup
and solve the ILP problem (Figure 5) suggests that more efficient ILP

solvers can substantially decrease overall runtime. We believe that
increased heights of the species trees result in larger ILP problems
that are more difficult for solvers, an effect not seen in the smaller
fly species tree.

5 DISCUSSION
In this work, we have presented an ILP formulation and correspond-
ing tool for solving the NP-hard maximum parsimony reconcilia-
tion problem under the duplication-loss-coalescence model. Our
ILP formulation provides an exact solution, with the total number
of variables and constraints polynomial in the size of the gene tree
and the height of the species tree. Our analysis of simulated data
sets shows that ILP yields reconciliations with cost equal to the
existing DP algorithm. By relying on ILP solvers, we do not need to
exhaustively search the space of reconciliations as DP does, making
our ILP formulation more scalable to large data sets with high gene
tree-species tree incongruence.

Our ILP formulation has a further advantage over DP in that
it allows users to limit the maximum runtime of the ILP solver.
Previously, the only alternative to an exhaustive search relied on
heuristics such as limiting the number of duplications and losses
per species or searching through hill climbing [27]. These heuristics
both limited the accuracy of resulting reconciliations, and in the
latter case, it could be unclear how many steps were necessary to
achieve a reasonable reconciliation. In contrast, despite being NP-
hard, ILP problems benefit from solvers that can yield approximate
solutions, though more research is needed to characterize the trade-
off between accuracy and scalability. In this vein, future work might
also investigate the effect of linear programming relaxations or
heuristic methods on resulting ILP solutions.

However, we note that our ILP formulation is not without its
disadvantages. For example, there can exist multiple optimal recon-
ciliations between a gene tree and species tree for a fixed assignment
of event costs [7]. Because the number of solutions tends to increase
exponentially with gene tree size, enumeration is infeasible, but
the DP approach can count the number of solutions and return one
sampled uniformly at random. In contrast, because ILP variables
over-specify a reconciliation (in that multiple settings of the vari-
ables could yield the same LCT), it is unclear how one could count
or sample solutions using ILP.

Our ILP implementation currently relies on Python’s PuLP pack-
age to setup the ILP problem, which has the advantage of allowing
multiple solvers but at the cost of added overhead. An alternative
approach that would likely speed up the setup would rely on the
Python or C++ interfaces provided by CPLEX. Furthermore, some
variables must take on binary or integer values because they are
constrained by other variables. Relaxing integrality constraints for
such variables may speed up the solver.

We envision our ILP formulation as one step towards more com-
plex analyses of gene family evolution. For example, DLCpar is used
to reconcile gene trees and species trees as part of the OrthoFinder
method [8, 9] for inferring orthologs. Because the full DP search
is too time-intensive, OrthoFinder uses DLCpar with a heuristic
search instead. By providing a more thorough search and allowing
users to bound the runtime, our ILP formulation already has several

Integer Linear Programming for DLC Reconciliation BCB ’20, September 21–24, 2020, Virtual Event, USA

1 10 25 50 75 100 200 500

effective population size (millions)

10-2

10-1

100

101

102

103

104

105

106

ru
n
ti
m

e
 (

s
e
c
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-1

100

101

102

103

104

ra
ti
o
 (

D
P
 /

 I
L
P
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-2

10-1

100

101

102

103

104

105

106

ru
n
ti
m

e
 (

s
e
c
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-1

100

101

102

103

104

ra
ti
o
 (

D
P
 /

 I
L
P
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-2

10-1

100

101

102

103

104

105

106

ru
n
ti
m

e
 (

s
e
c
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-1

100

101

102

103

104

ra
ti
o
 (

D
P
 /

 I
L
P
)

Rate 2x

Rate 1x

Rate 4x

Figure 2: Runtimes of DP and ILP approaches on simulated fly gene trees. Gene trees were simulated using duplication and loss
rates the same as (1×), twice (2×), and four times (4×) the rate estimated in real data and a wide range of effective population
sizes, with 500 gene trees simulated per parameter setting. We reconciled the gene trees using both our existing dynamic
programming (DP) approach and our new integer linear programming (ILP) approach. Distributions and quartiles are shown.

BCB ’20, September 21–24, 2020, Virtual Event, USA Carothers, et al.

1 10 25 50 75 100 200 500

effective population size (millions)

10-3

10-2

10-1

100

101

102

103

ru
n
ti
m

e
 (

s
e
c
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-1

100

101

102

ra
ti
o
 (

s
o
lv

e
 /

 s
e
tu

p
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-3

10-2

10-1

100

101

102

103

ru
n
ti
m

e
 (

s
e
c
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-1

100

101

102

ra
ti
o
 (

s
o
lv

e
 /

 s
e
tu

p
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-3

10-2

10-1

100

101

102

103

ru
n
ti
m

e
 (

s
e
c
)

1 10 25 50 75 100 200 500

effective population size (millions)

10-1

100

101

102

ra
ti
o
 (

s
o
lv

e
 /

 s
e
tu

p
)

Rate 1x

Rate 2x

Rate 4x

Figure 3: Runtimes to setup and solve the ILP formulation on simulated fly gene trees. See Figure 2 for a description of the
dataset.

Integer Linear Programming for DLC Reconciliation BCB ’20, September 21–24, 2020, Virtual Event, USA

10 20 30 40 50

number of species

10-2

10-1

100

101

102

103

104

105

ru
n
ti
m

e
 (

s
e
c
)

10 20 30 40 50

number of species

10-3

10-2

10-1

100

101

102

103

ra
ti
o
 (

D
P
 /

 I
L
P
)

Figure 4: Runtimes of DP and ILP approaches on simulated species trees and gene trees. Species trees and gene trees were
simulated using SimPhy [17] using a range of species tree sizes, with 50 gene tree-species tree pairs for each size. Distributions
and quartiles are shown.

10 20 30 40 50

number of species

10-3

10-2

10-1

100

101

102

103

104

105

ru
n
ti
m

e
 (

s
e
c
)

10 20 30 40 50

number of species

10-1

100

101

102

103
ra

ti
o
 (

s
o
lv

e
 /

 s
e
tu

p
)

Figure 5: Runtimes to setup and solve the ILP formulation on simulated species trees and gene trees. See Figure 4 for a descrip-
tion of the dataset.

advantages over the heuristic method and may therefore be a better
alternative.

Lastly, though the DLCmodel is more complex than the standard
duplication-loss model and multispecies coalescent model, it still
fails to account for several evolutionary processes, including species
hybridization, horizontal gene transfer, copy number hemiplasy,
and genetic linkage. Inferring reconciliations under such model
extensions may be difficult if not impossible using the DP algorithm.
However, by allowing us to focus on encoding constraints rather
than solving for solutions under the constraints, our ILP approach
opens up several avenues for further research.

ACKNOWLEDGMENTS
The authors thank Eliot Bush for use of his cluster for prelimi-
nary experiments, Susan Martonosi for helpful discussions on ILP

formulations and feedback on this manuscript, and Ran Libeskind-
Hadas for helpful discussions on reconciliations and feedback on
this manuscript.

This work was supported by the Department of Computer Sci-
ence and the Dean of Faculty of HarveyMudd College. This material
is based upon work supported by the National Science Foundation
under Grant No. IIS-1751399 to YW.

REFERENCES
[1] Daniel Bork, Ricson Cheng, JinchengWang, Jean Sung, and Ran Libeskind-Hadas.

2017. On the computational complexity of themaximumparsimony reconciliation
problem in the duplication-loss-coalescence model. Algorithm Mol Biol 12, 6
(2017). https://doi.org/10.1186/s13015-017-0098-8

[2] Bastien Boussau and Celine Scornavacca. 2020. Phylogenetics in the Genomic Era.
No commercial publisher | Authors open access book, Chapter Reconciling Gene
trees with Species Trees, 3.2:1–3.2:23.

[3] Yao-ban Chan, Vincent Ranwez, and Céline Scornavacca. 2017. Inferring incom-
plete lineage sorting, duplications, transfers and losses with reconciliations. J

https://doi.org/10.1186/s13015-017-0098-8

BCB ’20, September 21–24, 2020, Virtual Event, USA Carothers, et al.

Theor Biol 432 (2017), 1–13. http://www.sciencedirect.com/science/article/pii/
S0022519317303740

[4] Wen-Chieh Chang, Gordon J. Burleigh, David F. Fernández-Baca, and Oliver
Eulenstein. 2011. An ILP solution for the gene duplication problem. BMC Bioinf
12, 1 (Feb. 2011), S14. https://doi.org/10.1186/1471-2105-12-S1-S14

[5] International Business Machines Corporation. 2019. IBM ILOG CPLEX Optimiza-
tion Studio, CPLEX User’s Manual, Version 12 Release 9.

[6] Etienne G. J. Danchin. 2016. Lateral gene transfer in eukaryotes: tip of the iceberg
or of the ice cube? BMC Biology 14 (Nov. 18 2016). https://doi.org/10.1186/s12915-
016-0330-x

[7] Haoxing Du, Yi Sheng Ong, Marina Knittel, Ross Mawhorter, Nuo Liu, Gian-
luca Gross, Reiko Tojo, Ran Libeskind-Hadas, and Yi-Chieh Wu. 2019. Mul-
tiple Optimal Reconciliations under the Duplication-Loss-Coalescence Model.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (2019), 1–1.
https://doi.org/10.1109/TCBB.2019.2922337

[8] David M. Emms and Steven Kelly. 2015. OrthoFinder: solving fundamental
biases inwhole genome comparisons dramatically improves orthogroup inference
accuracy. Genome Biology 16, 1 (Aug. 2015), 157. https://doi.org/10.1186/s13059-
015-0721-2

[9] David M. Emms and Steven Kelly. 2019. OrthoFinder: phylogenetic orthology
inference for comparative genomics. Genome Biology 20, 1 (Nov. 2019), 238.
https://doi.org/10.1186/s13059-019-1832-y

[10] Morris Goodman, John Czelusniak, G. William Moore, A.E. Romero-Herrera, and
Genji Matsuda. 1979. Fitting the Gene Lineage into its Species Lineage, a Parsi-
mony Strategy Illustrated by Cladograms Constructed from Globin Sequences.
Syst Zool 28, 2 (1979), 132–163.

[11] Lei Li and Mukul S. Bansal. 2018. An Integer Linear Programming Solution for
the Domain-Gene-Species Reconciliation Problem. In Proceedings of the 2018
ACM International Conference on Bioinformatics, Computational Biology, and
Health Informatics. Association for Computing Machinery, Washington, DC,
USA, 386âĂŞ397. https://doi.org/10.1145/3233547.3233603

[12] L. Li and M. S. Bansal. 2019. An Integrated Reconciliation Framework for Domain,
Gene, and Species Level Evolution. IEEE/ACM Trans Comput Biol Bioinform 16, 1
(2019), 63–76.

[13] R Libeskind-Hadas and M Charleston. 2009. On the Computational Complexity
of the Reticulate Cophylogeny Reconstruction Problem. J Comput Biol 16 (2009),
105–117. https://doi.org/10.1089/cmb.2008.0084

[14] R. Lougee-Heimer. 2003. The Common Optimization INterface for Operations
Research: Promoting open-source software in the operations research community.
IBM Journal of Research and Development 47, 1 (Jan. 2003), 57–66.

[15] Bin Ma, Ming Li, and Louxin Zhang. 2000. From Gene Trees to Species Trees.
SIAM J Comput 30 (Aug. 2000), 729–752.

[16] Wayne P. Maddison. 1997. Gene Trees in Species Trees. Syst Biol 46, 3 (Sept.
1997), 523–536.

[17] Diego Mallo, Leonardo De Oliveira Martins, and David Posada. 2016. SimPhy:
Phylogenomic Simulation of Gene, Locus, and Species Trees. Syst Biol 65, 2
(March 2016), 334–344. https://doi.org/10.1093/sysbio/syv082

[18] Ross Mawhorter, Nuo Liu, Ran Libeskind-Hadas, and Yi-Chieh Wu. 2019. In-
ferring Pareto-Optimal Reconciliations across Multiple Event Costs under the
Duplication-Loss-Coalescence Model. BMC Bioinformatics 20, 20 (Dec. 2019), 639.
https://doi.org/10.1186/s12859-019-3206-6

[19] Stuart Mitchell, Michael O’Sullivan, and Iain Dunning. 2011. PuLP: A Linear
Programming Toolkit for Python. (Sept. 5 2011). http://www.optimization-
online.org/DB_FILE/2011/09/3178.pdf

[20] Y. Ovadia, D. Fielder, C. Conow, and R. Libeskind-Hadas. 2011. The Cophylogeny
Reconstruction Problem Is NP-Complete. J Comput Biol 18, 1 (2011), 59–65.

[21] Roderic D.M. Page. 1994. Maps Between Trees and Cladistic Analysis of Historical
Associations among Genes,Organisms, and Areas. Syst Biol 43, 1 (March 1994),
58–77. https://doi.org/10.1093/sysbio/43.1.58

[22] Matthew D. Rasmussen and Manolis Kellis. 2012. Unified modeling of gene
duplication, loss, and coalescence using a locus tree. Genome Res 22 (2012),
755–765. https://doi.org/10.1101/gr.123901.111

[23] Maureen Stolzer, Han Lai, Minli Xu, Deepa Sathaye, Benjamin Vernot, and Dannie
Durand. 2012. Inferring duplications, losses, transfers and incomplete lineage
sorting with nonbinary species trees. Bioinformatics 28, 18 (2012), 409–415.

[24] Ali Tofigh, Michael Hallett, and Jens Lagergren. 2011. Simultaneous Identifica-
tion of Duplications and Lateral Gene Transfers. IEEE/ACM Trans Comput Biol
Bioinform 8, 2 (March 2011), 517–535. https://doi.org/10.1109/TCBB.2010.14

[25] Benjamin Vernot, Maureen Stolzer, Aiton Goldman, and Dannie Durand. 2008.
Reconciliation with Non-Binary Species Trees. J Comput Biol 15, 8 (Sept. 2008),
981–1006. https://doi.org/10.1089/cmb.2008.0092

[26] N. Wieseke, T. Hartmann, M. Bernt, and M. Middendorf. 2015. Cophylogenetic
Reconciliation with ILP. IEEE/ACM Trans Comput Biol Bioinform 12, 6 (Nov. 2015),
1227–1235.

[27] Yi-Chieh Wu, Matthew D. Rasmussen, Mukul S. Bansal, and Manolis Kellis. 2014.
Most Parsimonious Reconciliation in the Presence of Gene Duplication, Loss,
and Deep Coalescence using Labeled Coalescent Trees. Genome Research 24, 3

(March 2014), 475–486. https://doi.org/10.1101/gr.161968.113

http://www.sciencedirect.com/science/article/pii/S0022519317303740
http://www.sciencedirect.com/science/article/pii/S0022519317303740
https://doi.org/10.1186/1471-2105-12-S1-S14
https://doi.org/10.1186/s12915-016-0330-x
https://doi.org/10.1186/s12915-016-0330-x
https://doi.org/10.1109/TCBB.2019.2922337
https://doi.org/10.1186/s13059-015-0721-2
https://doi.org/10.1186/s13059-015-0721-2
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1145/3233547.3233603
https://doi.org/10.1089/cmb.2008.0084
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1186/s12859-019-3206-6
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
https://doi.org/10.1093/sysbio/43.1.58
https://doi.org/10.1101/gr.123901.111
https://doi.org/10.1109/TCBB.2010.14
https://doi.org/10.1089/cmb.2008.0092
https://doi.org/10.1101/gr.161968.113

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 The Labeled Coalescent Tree
	2.3 Maximum Parsimony Reconciliations

	3 An ILP Formulation
	3.1 Preliminaries
	3.2 Variables and Constraints
	3.3 Objective Function

	4 Results
	4.1 Simulated gene trees across 12 flies
	4.2 Simulated species trees and gene trees

	5 Discussion
	Acknowledgments
	References

