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ABSTRACT
Epilepsy is a common neurological disorder characterized by recur-
rent seizures accompanied by excessive synchronous brain activity.
The process of structural and functional brain alterations lead-
ing to increased seizure susceptibility and eventually spontaneous
seizures is called epileptogenesis (EPG) and can span months or
even years. Detecting and monitoring the progression of EPG could
allow for targeted early interventions that could slow down disease
progression or even halt its development. Here, we propose an
approach for staging EPG using deep neural networks and identify
potential electroencephalography (EEG) biomarkers to distinguish
different phases of EPG. Specifically, continuous intracranial EEG
recordings were collected from a rodent model where epilepsy is
induced by electrical perforant pathway stimulation (PPS). A deep
neural network (DNN) is trained to distinguish EEG signals from
before stimulation (baseline), shortly after the PPS and long after
the PPS but before the first spontaneous seizure (FSS). Experimental
results show that our proposed method can classify EEG signals
from the three phases with an average area under the curve (AUC)
of 0.93, 0.89, and 0.86. To the best of our knowledge, this represents
the first successful attempt to stage EPG prior to the FSS using
DNNs.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification; Cross-validation; Neural networks; • Applied com-
puting→ Bioinformatics; •Networks→Network performance
analysis.
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1 INTRODUCTION
Epilepsy is one of the most common and disruptive neurological
disorders affecting about 1% of the world’s population. It is charac-
terized by recurrent unprovoked seizures and is accompanied by
various co-morbidities such as migraine, depression, dementia, etc.
[12]. Over 30% of the patients will eventually develop refractory
epilepsy, defined as inadequate control of seizures by any medica-
tion [15]. In acquired epilepsy, an initial precipitating injury (IPI)
such as stroke, traumatic brain injury or encephalitis leads to struc-
tural and functional remodelling of neuronal networks resulting
in the occurrence of spontaneous seizures after a clinically silent
latent period [20]. This remodelling process is termed epileptoge-
nesis (EPG). Traditionally, epilepsy is diagnosed and treated after
at least one unprovoked seizure, which indicates that the EPG has
already progressed to a relatively advanced stage. This latent period
can last months or even years. Treating high-risk patients at the
early stage of EPG, or even customizing the treatment based on the
severity of EPG could result in more effective disease-altering or
even disease-arresting outcomes.

Pathomechnisms of EPG are not fully understood and its de-
tection remains a major challenge. Studying early EPG in human
patients is extremely difficult, simply because the epilepsy is typ-
ically only detected after the FSS. Therefore, work on early EPG
is typically restricted to animal models [2]. Furthermore, early
EPG can comprise a complex cascade of changes to the brain af-
ter the initial brain insult and this cascade may strongly depend
on the type of brain insult. Changes can include, e.g., inflamma-
tory reactions or blood-brain-barrier damage [9]. Some of these
brain changes may be reflected in the EEG in the form of interic-
tal epileptiform discharges (IEDs, including sharp-waves, spikes,
spike-and-waves complex.), high-frequency oscillations, slowing
or alteration of sleep spindles. Correspondingly, there have been
attempts to identify suitable EEG biomarkers for EPG using a wide
range of approaches [1, 3, 6, 17–19, 21]. However, a reliable staging
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Figure 1: Timeline of the experiment. Shaded boxes indi-
cate the different time periods where training and testing
data are extracted. Upper row: PPS group. Lower row: con-
trol group (identical butwithout PPS). FSS: first spontaneous
seizure. PPS: perforant pathway stimulation.

of EPG based on EEG measurements has not been demonstrated
yet to the best of our knowledge.

Here, we use a rat epilepsy model, where EPG is induced by
electrical perforant pathway stimulation (PPS) [8]. In previous work,
we have shown that a DNN can be trained to distinguish EEG signals
from baseline and EPG, i.e., before and after the PPS, with high
specificity and sensitivity. Furthermore, we have demonstrated
generalization to unseen rats [18]. Here we extend these results and
present the first attempt to stage EPG using DNNs. In particular,
we ask whether a DNN can also learn to distinguish early and
late phases of EPG after the PPS but prior to the FSS, thereby
allowing to estimate how “close” an individual may be to their
FSS. The timeline of the experiment is shown in Fig 1. There are
two groups of rats involved: a PPS group and a control group. The
PPS group undergoes PPS and develops epilepsy before the end
of the recording. The control group is not stimulated and they do
not develop epilepsy before the end of the recording. Data from
the control rats are used as a comparison to the PPS group. We
demonstrate that our approach based on DNNs can successfully
stage the EPG process and distinguish early from late EPG and that
it generalizes to previously unseen rats.

2 RELATEDWORK
2.1 Deep Learning for EEG analysis
Deep Learning (DL) techniques are commonly used in the analysis
of EEG data in medical research. Example applications include the
detection of Alzheimer’s disease [4], autism [5], or Parkinson’s
disease [10]. In the context of epilepsy, DL has been applied for
abnormal brain activity detection [22, 29] as well as seizure detec-
tion and prediction [7, 14, 28, 30, 33]. Roy et al. proposed a hybrid
CNN and gated recurrent units (GRU) in classifying normal and
abnormal brain activity, which takes time series EEG data as input
and outputs the probability of being normal and abnormal, which
is one of the first steps to understand the state of the brain activity
in order to improve the accuracy of the diagnosis and the quality of
patient care [22]. Tjepkema et al. explored different combinations
of CNNs and recurrent neural networks (RNNs) as classifier to iden-
tify IEDs from scalp EEG [29]. Zhou et al. proposed a CNN-based
approach to classify EEG time series data from different states, i.e.,
ictal, preictal, and interictal for the purpose of seizure detection
[33]. They also compared the performance with time series and

frequency-domain as input and found that frequency-domain input
exhibits better potential for this task. Kiral-Kornek et al. proposed
a DL-based approach for patient-specific seizure prediction by clas-
sifying intracranial EEG data in pre-ictal and interictal phases [14].
Thodoroff et al. proposed a neural network combining convolu-
tional layers (conv-layers) with recurrent layers to detect seizure
onset. Their network takes the image-based representation of EEG
signals as input capturing spatial, spectral, and temporal features of
patient-specific seizures [28]. Cho et al. compared the performance
of different input modalities of EEG data with different DNN-based
network architectures for seizure detection [7]. They concluded
that the CNN with time-series EEG data, and the RNN with peri-
odogram data resulted in the best performance. While these works
have demonstrated the utility of DL for EEG analysis in the context
of epilepsy, they have not addressed the challenging detection and
staging of EPG prior to the FSS that we demonstrate here for the
first time.

2.2 Interpretable DNNs
The interpretation of the reasoning of a neural network is crucial in
medical applications, as it allows verification by human users and
provides insights rather than just succumbing to a black box. Many
studies have been done to address the interpretability of DNNs
[13, 23, 25, 27, 31, 32]. Yosinski et al. developed a software tool for
visualizing live feature extraction in the neural network by viewing
the activation maps of different channels in different layers as well
as by regularized optimization to generalize inputs that maximize
the channel activation [31]. Simonyan et al. proposed to generate
an input image that maximizes the output softmax probability of
a given class. Meanwhile, a saliency map can be computed, which
is the ranking of each pixel based on their contribution to the
given class of a given sample [25]. Bach et al. proposed the Layer-
wise Relevance Propagation (LRP), which understands the learning
of the network by decomposing the output in terms of the input
dimensions in a fashion that relates to Taylor decomposition [23].
Sturm et al. applied the LRP technique to visualize the frequency
contribution to the classification result with EEG data [27]. Zhou et
al. proposed the concept of class activation map (CAM), which can
identify important regions in the inputs by propagating back the
weights of the dense softmax layer to the inputs [32]. CAM is easy
to deploy and provides more focused and localized discrimination.
In this work, we also leverage CAM with 1-𝑑 EEG data to better
visualize the network properties and the learned features.

2.3 EEG-based Biomarkers of Epileptogenesis
Over the last decades several studies have attempted to find EPG
biomarkers in EEG signals. Li et al. and Bragin et al. focused on high-
frequency oscillations (HFOs) in a rat epilepsy model with kainic
acid (KA) injection [6, 17]. They found that the sooner HFOs appear
after the injection, the higher the rate of spontaneous seizures in
the chronic phase, and the shorter the latent period is, the more
spontaneous seizures will occur. Milikovsky et al. focused on theta
band activity and showed that a decreased theta power can be a
robust feature in identifying EPG in five animal epilepsy models
[19]. Andrade et al. investigated the role of sleep-wake disturbance
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in EPG and found that there is a decrease of the dominant fre-
quency and the duration of sleep spindles in a traumatic brain
injury epilepsy model with generalized seizures [1]. Bentes et al.
found that in stroke patients, the asymmetry in the background
activity with the occurrence of IEDs are independent indicators of
post-stroke epilepsy in the first year after stroke [3]. Sheybani et al.
found that in a mouse model of epilepsy with kainate injection, the
spatial propagation of a subgroup of spikes across the brain can be
a reliable indicator of EPG as well as epilepsy in the chronic phase
[24]. Lu et al. trained a DNN with the Fourier transformation of
the time-series EEG data from a rat epilepsy model and showed
that a decrease of power in theta band and an increase of power
in frequencies over 100 Hz can be reliable indicators of EPG [18].
Rizzi et al. investigated the nonlinear dynamics of EEG signals and
found a significant decrease of the so-called embedding dimension
in early EPG that correlates with the severity of the ongoing EPG
[21]. Here, we use an unbiased deep learning approach to study
the EPG process to subdivide it into different stages and identify
potential biomarkers to distinguish early and late phases of EPG.

3 METHODS
3.1 Animal Model
We use a mesial temporal lobe epilepsy with hippocampal sclerosis
(mTLE-HS) rodent model, where epilepsy is electrically induced
through PPS. Details have been described in [8]. Continuous single-
channel EEG recordings from a depth electrode implanted in the
dentate gyrus are collected from each rat from the beginning of the
implantation until the FSS, which indicates the manifestation of
epilepsy. The 24/7 recordings enable us to continually monitor the
entire EPG prior to the FSS. There are two groups of rats involved
in this study, 1) seven rats had PPS and developed epilepsy before
the end of recording, which we denote as PPS rats, 2) three rats did
not get PPS stimulation and did not develop epilepsy by the end of
recording, which we denote as control rats. In the PPS group, the
average EPG phase is 4 weeks (range 1 – 7 weeks). The EPG phase
is terminated by the FSS. The timelines for both group are shown
in Fig. 1. Training data are taken from the three highlighted periods
from PPS rats for the three-class classification task. We define the
three classes to be the Baseline class (BL) – green, the early EPG
class – blue, and the late EPG class – orange. The data from the
control rats are used only for testing the model trained on the PPS
group. The total available number of recordings from each rat is
summarized in Table 1 and Table 2.

3.2 EEG Data Preprocessing
The data acquisition was achieved through wireless EEG trans-
mitters with a sampling rate of 512 Hz and a band-pass filter be-
tween 0.5 - 160 Hz as well as a notch filter at 50 Hz. Occasion-
ally, EEG artifacts can appear as extreme amplitude values and
signal loss due to electronic interference and weak transmission.
To combat this problem, we first applied a MATLAB function,
i.e., filloutliers 1 with the parameters method = ’pchip’;
movmethod = ’movmedian’; window = 50 to filter out unrealistic
extreme values. Then, the continuous recordings are divided into

1https://www.mathworks.com/help/matlab/ref/filloutliers.html

Table 1: Summary of the data collections from PPS rats in
hours (hrs).

rat ID PPS 1 PPS 2 PPS 3 PPS 4 PPS 5 PPS 6 PPS 7

BL (hrs) 162 160 149 82 163 164 157
EPG (hrs) 700 508 400 140 1568 173 648

Table 2: Summary of the data collections from control rats
in hours (hrs).

rat ID Ctr 1 Ctr 2 Ctr 3

in total (hrs) 1536 2140 2248

five-second long non-overlapping segments. To manage data loss,
we discarded any five-second segments with more than 20 % data
loss. As a result, we discarded around 5% of the total recordings.
The remaining segments were eligible for the DNN training.

3.3 DNN Architecture
We use a deep residual neural network with 16 blocks with residual
connections (res-block), as shown in Fig. 2, inspired by [11]. The
model takes five-second long EEG segments as input and outputs
the probability over three classes, i.e., BL, early EPG, and late EPG.
We keep the design of each res-block as in [11], where each res-
block consists of two conv-layers, batch-normalization, dropout,
and ReLU non-linear activation. The number of channels in the
first conv-layer and the first block is 16, and it increases by a factor
of 2 in every four blocks. There are two branches in each block: one
goes through convolution, batch-normalization, ReLU activation
and dropout; the other, called skip connection, simply goes through
max-pooling. They are combined in an additivemanner at the end of
the block before passing through the batch-normalization and ReLU
activation. To reduce the dimensionality of the feature maps, we use
a stride of two in the second conv-layer and the max-pooling layer
in every other block starting from the second block. The output
of the last conv-layer is fed to the global average pooling (GAP)
operation, which is followed by a dense layer with three output
units with softmax non-linear activation. The dropout rate is 0.2
everywhere in the graph.

3.4 Class Activation Map
Proposed by Zhou et al., the class activation map is a method to
visualize the “importance” of different regions of the input for the
classification decision. It takes advantage of the global average pool-
ing (GAP) after the last conv-layer, and assigns different weights
to each squashed feature map. To be specific, the 𝑘-th feature map
from the last conv-layer, denoted as 𝑓𝑘 , which has shape [ℎ𝑒𝑖𝑔ℎ𝑡 ,
𝑤𝑖𝑑𝑡ℎ]. The GAP layer takes the mean activation of each 𝑓𝑘 , and
the resulting 𝑘-th feature map 𝐹𝑘 is 1

𝑁

∑
𝑖, 𝑗 𝑓𝑘 (𝑖, 𝑗), where 𝑁 is the

total number of elements of 𝑓𝑘 . It reduces the dimension by the
factor of ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ. Then, for a given class 𝑐 , the input to the
softmax layer, 𝑆𝑐 , is a weighted linear combination of all the feature

https://www.mathworks.com/help/matlab/ref/filloutliers.html
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Figure 2: The DNN structure used in this study. The network takes a mini-batch of five-second segments as input and outputs
the probability over the three classes. GAP: global average pooling. BL: Baseline

maps, which is computed by

𝑆𝑐 =
∑
𝑘

𝑤𝑐
𝑘

1
𝑁

∑
𝑖, 𝑗

𝑓𝑘 (𝑖, 𝑗) ∝
∑
𝑖, 𝑗

∑
𝑘

𝑤𝑐
𝑘
𝑓𝑘 (𝑖, 𝑗), (1)

where 𝑤𝑐
𝑘
denotes the importance of 𝑓𝑘 for class 𝑐 . Finally, the

softmax probability for class 𝑐 can be computed as exp𝑆𝑐∑
𝑐 exp𝑆𝑐

. Then,
when the training is finished, the class activation map for class 𝑐 at
position (𝑖, 𝑗 ), CAM𝑐 (𝑖, 𝑗), is given by

CAM𝑐 (𝑖, 𝑗) =
∑
𝑘

𝑤𝑐
𝑘
𝑓𝑘 (𝑖, 𝑗) . (2)

Hence, 𝑆𝑐 =
∑
𝑖, 𝑗 𝑤

𝑐
𝑘
CAM𝑐 (𝑖, 𝑗), and the weights 𝑤𝑐 are fixed af-

ter the training. Then, CAM𝑐 (𝑖, 𝑗) indicates the importance of the
activation at the position (𝑖, 𝑗) contributing to the class 𝑐 .

3.5 DNN Training and Evaluation
We apply a seven-fold leave-one-out cross-validation (LOO-CV)
scheme, where the network is trained with the data from six out of
seven rats in the PPS group. Specifically, in each fold, we withhold
the data from one rat as the test set, and the data from other six rats
form the training and the validation sets with a train-validation-
split of 8:2. This procedure is repeated seven times, and each time
we hold out a different rat for testing. This is highly relevant to
test the generalization ability of the classifier to unseen data from
unseen subjects. We randomly select 25 hours from a three-day
window from each phase for training and validation, shown as the
shaded periods in Fig. 1. The choice of 25 hours is a reasonable
trade-off between computational cost and performance from em-
pirical experience, since we also experiment using all data from
the three day periods and it increases the total training time by a
factor of three and no significant improvement regarding the classi-
fication performance is found. Our DNN model is implemented in
Tensorflow and trained with an NVIDIA GeForce RTX 2080 Ti GPU
and one epoch of training takes 35 minutes on average. After the
network is trained, we test it with all the data from those three-day
periods (shown in Fig. 1) of the previously withheld rat. We report
results as the average across all seven LOO test trials.

To evaluate the performance, we compute the receiver operating
characteristic (ROC) curve in the multi-class scenario, where the

ROC curve is computed for each class in a one-vs-all manner. The
area under the ROC curve is a scalar value indicating the goodness
of the trained classifier. Several other performancemetrics including
precision, recall, and F1-score are also computed. These metrics are
given by:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score = 2 · precision · recall
precision + recall

accuracy =
TP + TN

TP + TN + FP + FN
,

where TP, TN, FP, and FN are true positive, true negative, false posi-
tive, and false negative numbers, respectively. We also compare our
results with several baseline network structures: a feed-forward neu-
ral network (FNN), a deep convolutional neural network (DCNN)
[26], EEGNet [16], and one variant of our proposed model with
only four blocks, which we denote as Proposed-4block.

The FNN used in this work is a straight forward multi-layer
perceptron with three dense layers equipped with 1024, 256, and
128 units per layer. Each dense layer is regularized with 𝐿2 penalty
with a factor of 0.01 and followed by a batch-normalization layer
and a dropout (rate=0.5) layer. The nonlinear activation is ReLU in
this model.

Sors et al. proposed the DCNN for sleep staging with single-
channel EEG. Compared to the original architecture, we made sev-
eral changes to adapt to the training data format we have in our
experiment. First, due to our input being shorter (five-second seg-
ments under 512 Hz sampling rate, which yields 2560 data points
per sample) than theirs (15 000 data points), we reduced the number
of conv-layer from twelve to nine: five (instead of six) conv-layers
with 128 output channels and four (instead of six) conv-layers with
256 output channels. Each conv-layer has stride 2 to sub-sample the
feature map. The architecture is conv (7 × 1, 128, stride 2) – conv
(7 × 1, 128, stride 2) – conv (7 × 1, 128, stride 2) – conv (7 × 1, 128,
stride 2) – conv (7 × 1, 128, stride 2) – conv (5 × 1, 256, stride 2) –
conv (5×1, 256, stride 2) – conv (5×1, 256, stride 2) – conv (3×1, 256,
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stride 2) – flatten – fully-connected (units=100) – fully-connected
(units=3). We kept other training parameters identical to the origi-
nal paper.

Lawhern et al. proposed the original EEGNet for EEG classifi-
cation in multiple brain-computer interfaces. The EEG snippets
used in their evaluation are multi-channel event related poten-
tial (ERPs) recorded from surface EEG setups, band-pass filtered
between 1-40 Hz, downsampled to 128 Hz, and focused on 1 to
2 seconds around the event onset. The original EEGNet demon-
strates good generalization to EEG classification among different
experiment diagrams even though the total number of parame-
ters is two orders of magnitude smaller than the baseline methods
evaluated in their work. To adapt EEGNet to our task, we made
several changes to the architecture while keeping layers such as
batch-normalization, dropout, exponential linear unit (ELU) activa-
tion function, and average pooling unchanged: 1) We expanded the
width of the convolutional filter from 64 to 256, which is half of our
sampling rate as suggested in the original paper. 2) We used three
instead of two layers of convolution while omitting the depth-wise
convolution, since our data is single-channel. Unfortunately, the
classification accuracy of this modified EEGNet (henceforth denoted
EEGNet1) does not exceed chance-level. One contributing factor
might be the low number of trainable parameters. In total, EEGNet1
only has 223 323 learnable parameters, which is considerably fewer
than our proposed model. To make the total number of trainable
comparable to ours, we increased the number of conv-layers and
the number of filters in each layer. This is essentially equivalent
to a relatively shallow CNN (7 conv-layers compared to 33 lay-
ers in our proposed model) with very wide convolutional filters,
which we denote as EEGNet2. The resulting structure of EEGNet2
is conv (256 × 1, 16) – batch-normalization – conv (256 × 1, 16) –
batch-normalization + ELU + average-pooling + dropout – conv
(256 × 1, 32) – batch-normalization + ELU + average-pooling +
dropout – conv (256×1, 32) – batch-normalization + ELU + average-
pooling + dropout – conv (256 × 1, 64) – batch-normalization +
ELU + average-pooling + dropout – conv (256 × 1, 64) – batch-
normalization + ELU + average-pooling + dropout – flatten – fully-
connected (units=3). As a result, the EEGNet2 has a total number
of 4 195 107 parameters, which is comparable to that of our pro-
posed model (4 200 048). However, the results show that with the
same amount of training data and training time, both versions
of EEGNets, i.e., EEGNet1 and EEGNet2 perform at chance-level.
Thus, their performance measures were omitted in the performance
report.

4 EXPERIMENTS AND RESULTS
Table 3 shows the performance summary of our proposed model
in comparison to the baseline methods. The reported performance
metrics are averaged for each class as well as a macro-average of
all classes across all LOO test trials. Our proposed method obtains
the best performance in almost all evaluated metrics compared
to the baseline methods. Notably our proposed-4block model still
obtains better performance than FNN and DCNN, even though
the number of trainable parameters is more than 20 times smaller.
Compared to the full-size proposed model, the Proposed-4block
model suffers from a slight performance degradation. From the

class-wise performance, we can see that, in general, the BL class is
easier for the networks to classify as shown by the highest average
performance among the three classes in all models.

4.1 Prediction Aggregation and ROC Analysis
To gather statistics of the estimated class membership over a longer
time period, we apply a prediction aggregation technique as pro-
posed in our previous study [18]. Essentially, we apply a linear
average aggregation of the resulting softmax probability across
multiple consecutive five second data segments such that the prob-
abilities of each class are accumulated across a longer period of
time. Figure 3 shows the averaged AUCs of the three classes across
all LOO test trials with and without the prediction aggregation
(Fig. 3A and Fig. 3B) as well as the effect of the pooling length used
in the prediction aggregation (Fig. 3C). In general, the network
can distinguish BL segments better than the other two classes as
shown by the highest average AUC under the ROC curve among
the three classes, with or without the prediction aggregation. Pre-
diction results for the control group are only marginally better than
chance, suggesting that the network really detects changes in brain
activity patterns due to the PPS, rather than any changes triggered
by the initial electrode implantation that are independent of the
PPS. Prediction aggregation over one hour increases the average
AUC of the baseline, early, and late EPG classes by 0.1, 0.12, and
0.11, respectively.

To study the benefits of aggregation in more detail, we compute
the AUCs for various aggregation lengths in each LOO test trial,
i.e., 5 seconds, 30 seconds, one, two, five, ten, 20, 30, and 60 minutes.
The average AUC as a function of the aggregation lengths is de-
picted in Fig 3C. It reflects the inter-rat variability in the three-class
classification with our proposed network, i.e., the AUC starts at
different levels of confidence without prediction aggregation (the
first data points from all rats). The figure shows that with an in-
creasing pooling length, the average AUC increases in all LOO test
trials. To be specific, with one hour of aggregation, the average
AUC improved by 0.12 (a maximum of 0.18 and a minimum of 0.06).
Hence, aggregating the softmax output from the network across
multiple consecutive segments captures trends across a longer pe-
riod, which is essential for distinguishing different classes in our
task. Aggregation over even longer time periods (>1 hour) might
be able to further improve performance.

4.2 Disease Progression
EPG is a gradual process, but above we treated EPG detection and
staging as a discrete classification problem by defining (somewhat
arbitrarily) the first three days after the stimulation as the early EPG
phase, and the last three days before the FSS as the late EPG phase.
The data from the period in between these two phases has not
been considered so far. In the following, we analyze samples from
this intermediate period and study how the network, which has
been trained to distinguish Baseline, early and late EPG phases, will
classify them. Specifically, we consider the estimated probability
for each class, denoted as the class score, throughout the whole
recording period from a randomly picked pre-trained model from
the LOO cross-validation scheme, which we call "Pretrained-1"
model. Here, we are interested in the general trend rather than the
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Table 3: Performance across all leave-one-out test trials with one hour of prediction aggregation. Evaluation metrics are re-
ported in class-wise average and overall average for each model. Numbers are shown in𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 .

Model Class Precision Recall F1-score Accuracy # trainables

FNN 0 0.51 ± 0.08 0.67 ± 0.13 0.57 ± 0.06 0.44 ± 0.06 2 920 963
1 0.49 ± 0.07 0.65 ± 0.07 0.55 ± 0.02 0.43 ± 0.04
2 0.43 ± 0.06 0.63 ± 0.16 0.49 ± 0.04 0.39 ± 0.03

average 0.47 ± 0.03 0.65 ± 0.04 0.53 ± 0.03 0.42 ± 0.03

DCNN 0 0.47 ± 0.13 0.54 ± 0.25 0.46 ± 0.18 0.46 ± 0.13 1 607 187
[26] 1 0.43 ± 0.32 0.40 ± 0.30 0.41 ± 0.31 0.41 ± 0.08

2 0.35 ± 0.23 0.35 ± 0.28 0.33 ± 0.23 0.40 ± 0.07
average 0.42 ± 0.11 0.43 ± 0.22 0.40 ± 0.18 0.42 ± 0.07

Proposed-4block 0 0.70 ± 0.14 0.88 ± 0.04 0.78 ± 0.10 0.66 ± 0.14 82 912
1 0.43 ± 0.06 0.68 ± 0.18 0.53 ± 0.10 0.41 ± 0.05
2 0.51 ± 0.05 0.82 ± 0.13 0.62 ± 0.01 0.47 ± 0.02

average 0.55 ± 0.04 0.79 ± 0.09 0.64 ± 0.05 0.51 ± 0.05

Proposed model 0 0.85 ± 0.17 0.96 ± 0.02 0.90 ± 0.10 0.84 ± 0.17 4 200 048
1 0.69 ± 0.12 0.81 ± 0.17 0.74 ± 0.14 0.64 ± 0.15
2 0.71 ± 0.33 0.74 ± 0.32 0.72 ± 0.31 0.71 ± 0.22

average 0.75 ± 0.15 0.84 ± 0.12 0.78 ± 0.14 0.73 ± 0.14
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Figure 3: Network performance across all test trials within the PPS and the control group. A. Average ROC curves of multiple
classes without aggregation within the PPS group and the control group. The AUC for the three classes of PPS rats are 0.83,
0.77 and 0.75 (solid lines) and those of the control rats are 0.52, 0.51, and 0.50 (dashed lines). B. Average ROC curves of multiple
classes with aggregation over one continuous hour within the PPS and the control group. The AUC of the three classes for the
PPS rats (solid lines) are 0.93, 0.89, and 0.86, and those of the control rats are 0.58, 0.56, and 0.53 (dashed lines). C. The AUC as
a function of the aggregation length in all individual PPS LOO test trials (magenta lines) and the average AUC of all classes
across all trials (purple with diamonds). ROC: receiver operating characteristic. AUC: area under the curve.

classification accuracy, so the training data were also included. The
progression of class scores from two example PPS rats and one
control rat are shown in Fig. 4. One of the PPS rats (PPS 1) has a
relatively long EPG duration (30 days) and the other (PPS 4) has a
short EPG duration (6 days). The control rat (Ctr 1) has 64 days of
recordings in total.

Several findings are evident in the data for the PPS rats in
Fig. 4A,B. First, the Baseline score is high during the entire baseline
period and drops to small values during the EPG phase. Second,
with the beginning of the EPG phase, the early EPG score increases
and then gradually decreases towards the late EPG phase. Third,

conversely, the late EPG score is low during baseline and the be-
ginning of EPG and then gradually increases towards the late EPG
phase. Fourth, in some animals we observe a circadian rhythm in
the early and late EPG scores during the transition period between
early and late EPG (compare Fig. 4A). These findings are in sharp
contrast to those for the control rats. In their case, the late EPG
score remains low throughout the entire recording period, in line
with these animals not developing epilepsy during the experiment
(compare Fig. 4C).
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4.3 Feature Representation
The interpretation of EEG signals is always challenging, since they
are highly variable — especially across subjects. Analyzing and
understanding the discriminative features learned by a DNN model
can give valuable insights as to what distinguishes the classes. This
can be particularly helpful in medical applications, where the dif-
ferences between classes many not be easily spotted — even by the
expert eye. Here, we present the feature representations learned by
the network. Using the Pretrained-1 model, we passed all the data
from all seven rats through the network and computed the average
activation of the last conv-layer for each class, shown on the top left
of Fig. 5. We can see that there is a group of feature channels that
are very active. Most importantly some of these feature channels
are most active for one class but not the others and some extract
features that contribute to more than one class. Next, we identified
several channels that were highly active for each class and plot-
ted the EEG segments that maximally activate them. Interestingly,
we found several feature channels responding to very distinctive
features such as spikes in channel 3, spike-and-slow-waves in chan-
nel 9, spindles and HFOs in channel 15, theta rhythm in channel
16, delta wave plus low beta in channel 21, etc. From this we can
conclude that before the softmax layer, the network has already
extracted class-specific features that are clinically meaningful.

To further elucidate which parts of the input contribute most to
the classification of the different EPG stages, we leverage the CAM
visualization while manipulating the assigned labels for the EEG
segments. Taking Pretrained-1 model, we freeze the weights and for
a given sample, we assign in turn the three different labels. Then,
by computing the CAM of the given sample under the assigned
label, we trace back which parts of the given five second input seg-
ment most support (> 80-th percentile) the assigned classification.
The results are shown in Fig. 6. Indeed, the CAMs for the sample
vary depending on the given label. There are several interesting
features that the network has discovered. First, the BL class is most

supported by low-amplitude waves, and many downwards deflec-
tions. Second, sharp waves contribute to both EPG classes, but the
difference lies in the width of the wave forms. While an early EPG
classification is supported by narrow spikes, or spike-like waves,
a late EPG classification is supported by somewhat wider sharp
waves.

5 CONCLUSION
Wehave proposed a DNNmodel for single-channel intracranial EEG
classification to better understand the progression of epileptogene-
sis (EPG). Specifically, our aim was to stage the EPG process prior to
the first spontaneous seizure (FSS), which could facilitate early in-
tervention before an epilepsy becomes manifest. In previous work,
we had already shown that a DNN can learn to distinguish EEG
data from before and after the epilepsy-inducing stimulation with
high discrimination and generalization ability [18]. Here, we have
sought to answer a) whether we can further distinguish different
stages of EPG before the FSS, and b) what EEG features would be
representative for each stage. To this end, we have trained a DNN
model with five-second EEG segments recorded from three phases
in a rodent epilepsy model [8]: three days before the PPS (Baseline,
BL), three days shortly after the PPS (early EPG), and three days
immediately before the FSS (late EPG). We have evaluated our ap-
proach in a LOO scheme to test the generalization ability of the
model to data from unseen rats. To pool evidence over larger time
windows, we applied a prediction aggregation method as in previ-
ous work [18]. We also compared the performance of our model
to four other models, specifically an FNN model, a DCNN model
[26], the well-known EEGNet [16], and a reduced version of our
model with 50 times fewer parameters. In an extensive performance
evaluation, we showed that our proposed model yielded the best
results and could distinguish different EPG stages with high accu-
racy. Furthermore, we showed that the network learns to extract
meaningful EEG features to perform the classification.

Various challenges will need to be overcome, in order to translate
our findings to human patients. First, the rodent model we have



BCB ’20, September 21–24, 2020, Virtual Event, USA Lu and Bauer et al.
C

h
. 3

C
h

. 4
C

h
. 1

5
C

h
. 6

C
h

. 1
0

C
h

. 1
6

C
h

. 9
C

h
. 2

1

1 sec

C
h

. 2
C

h
. 3

0

1 sec

channel index 

120

100

80

60

40

20

0

av
er

ag
e 

ac
ti

va
ti

o
n

0            20          40          60         80        100        120

Average activation of each class 

BL
Early EPG
Late EPG

2

3

4

6

9 10

16

15

21

30

Figure 5: Normalized average activation of the last conv-layer by class (top left). Examples of five second EEG samples that
maximize the activation of certain channels in the last conv-layer. Color indicates a sample’s class label. Scale bar represents
1 second.

used provides quasi ideal conditions, supplying high quality, 24/7
intracranial recordings directly from the affected brain region. It
is unclear whether similar results could be achieved with surface
EEG recordings from a diverse set of human patients. The second
challenge is that epilepsy is typically diagnosed only after the FSS.
In order to attempt early detection of EPG as we have demonstrated
here in human patients, one would have to obtain recordings from
patients before the FSS. This requires monitoring a population of
patients with a sufficiently high risk of developing epilepsy, which
is challenging. Third, our approach relies on a large data set com-
prising around-the-clock recordings over several weeks for each
individual. Acquiring similar data from a (homogeneous) patient
population would be very difficult. It is an open question, how
much data would be required to allow accurate classification and
good generalization. Fortunately, in our experiments, pooling data
over one hour already provided very good results. Such a time span

appears manageable in clinical practice. Finally, even if EPG could
be detected and staged reliably in human patients at risk of develop-
ing epilepsy, it is far from clear which forms of early intervention
would be effective in modifying or halting the disease development.
In fact, such interventions will likely have to depend on the specific
type of epilepsy and be adapted to individual patients. In the future,
machine learning may also support physicians in this challenging
task.
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